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SECTION 1

INTRODUCTION

a

- 
The goal of this report is to describe in detail two solutions to the problem of complexity reduction in the
amount of hardware needed to implement a tree of Galois linear modules for the Galois field GF( 2n 1~ The
solutions can be broken into two cases: reduction of the number of modules in a tree, and reduction of
the complexity of each module. The solution to the fi rst problem is the use of sequentia l trees , a topic which
is discussed in paragraph 3.2. Far more sophisticated is the solution to the second problem. This approach
involves the idea of subfield multipliers , and it generalizes to arbitrary Galois fields GF(p ’11. p is a prime.

a ,

The subject discussed in most of this report is Galois subfield multi plication for a rbitra ry Galois fields

GF(p ”~. with a special emphasis on the fields GF( 2~ ). In the latter fields it has been known for some t ime
that the Galois multiplier designed by J. T. Elliso n I does the multipli cation in the binary field ( F  2 !)
(0 , 1 }. It turns out that for GF(p n ) in general and for GF(2 ’~) in partic ular , multiplication can he carried

- out with arbitrary subfield multipliers. In order to reduce the complexity of the GF(p~’) multiplier ,  it is
- necessary to do the multiplication in a sequential mode. The process of subfield multiplication implies a

potential for using mult i-level logic circuits. If the number of levels is a power of ’ two , subfield multipl ica-
tio n of the elements in GF(2” ) can be done with less hardware and without as much loss of speed as would

- 
result if subfield multiplication were done with binary circuits.

Section 2 will be devoted to the known facts that are needed to discuss the reduced trees and subfield mu!-
4 tiplicatio n topics in Section 3. Some of this material can be found in previous Sperry Univac reports on

Galois logic design, hut most can be found only in mathematica l textbooks.

In Section 3. two methods of reducing the complexity of a full tree of Galois linear modules are discussed:
a reduced tree which lowers the number of modules in a full tree , and a subfield multi plier which reduces
the complexity of the individual module . The subtield multiplication can take place for any Galois field
GF(p ”), whereas consideration of a reduced tree is relevant only for GF(2n ).

Also in this section a theoretical discussion needed for the generation of larger Galois fields from sub fields
• is given. The remainder of Section 3 is devoted to a detailed exposition of the construction of a GEt

multiplier over ( F( 24) and of a GF(34) multiplier over GF(3 2 i.

Finall y, an appendix is added for completeness . In it the basis product matric es used in the constnict ion ot ’

T GF(p~ multipliers are discussed.

I-I
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I ; Sl tl ’ION 2
i.~~ L.OlS I tEll) DEFINIT I ONS

1.
Since Galois fields pht v a centra l role in th i s report. .i Pr~c~se defin it ion of a ( ik Its field is given in this ‘~‘c-

ison. First, the def inition of a math emat ica l field is necessary.

7 - 

DEFINITION . Let I) be a set of elements a. t~. c . ... for which the sum a + h and the Protllic t at’ ot ’ an~ two
a elements a and h ‘~disti nct or not ) of t) are defined. Then I) is called a t’ield it ’ the following postulates

(it — (xl hold :
a - il Closure. If a and I’ are in D , then the sum a + h and the product at’ are in ft

— t ii ) Uniqueness. If a • a ’ a nd h h ’ in I) . then ~ + 1’— a’ + h ’ and at’

t - ( i i i )  Commutative Laws. For all a and 1’ in D, a + 1’ 1’ + a and at’ Isa ,
(iv) Associative Laws. For all a, h , and c in I’), a + ~h + cI (a + t~) + c and a~t ’c) —

~v) Distributive Law. For all a, h , and c in ft a~h + c) at’
tv i) Zero. 1’) contains an element 0 such that .i + (I a, for all a in l)~

t vti ~i Unity. D contains an element I * 0 such that a I — a (or all a ~ II .
( i i i i )  Additive Inverse . For each a in L) , the equation a + s — 0 has a solution ~ tu ft

I ‘ix )  Cancel lation Law. It ’ c * 0 and ca ch. then a 1’;
(xl Inverse, Every nonzero element a ot ’ D has an inverse a’1 sat isf ~ ing the equation a’ I a I -

— Hs (2. rbe~reii~ c~,4 I , the residue classes of intege rs modul ’o any prime i~umber r~ forms a field of ~ element s

called the Gab /s f ia~1 GF(p), It can be shown th at there is at least one irredt icihk polynominal of ese ry
a . degree over GF(p ) (such a polynomial (is one with no roots in tIF( p ) . i . e . t I  (1 for eser~ s in GF p) l

(2 . page 155 . In t’act, for an~ positive integer n there is a polynomial (of degree u which genera tes the
(;

~l~i~ field of p1’ elemen ts, called (W( p n ) where GFtp1’) (0, t .  t 2 ,~ n l  
I \ tot a root i of t’. In

this case t is called a p # ’imIr ibe ,lw.’n*,t of (3F(p’1) and f is called a p thnitiv, polynomial. I s  ers element x of

can also be expressed in the form

1 
— 

~o + c 1 t + ‘ ‘ + c1~_ ~
i
~
’ I in GEt ~~ 

(2. I 1

In thi s case x is writ ten c I “ii ‘ I ~ hi~’Is is called the p’nary com ponent form of \ ( it ’ I’ 2, it i~

called the binary form. antI it p 3. it is called the ternar y form) the prvcedure for r e latin g the two repre-

sentati on s of x the power form and the com ponent form is ia the pr imit i v e pots nomhi l t .  ~~~ set of the

component forms of all the elements ~ in GF(p ”l in rel at ion to the  power t or i l i s  of these elements is called

an ~ k~iti~~ c&~ for t Ft p’~l. Such a code has the propert~ that, for 5 — (
~~ . 

~~~~ 
and —

I itt 0, ~t I ’  ‘ - 

~n’ l~’ ~ + V • d~1. c I ~ d 1 c~ I d~ I ~~. where ‘~~ denotes .iddit ion modulo p.
2.1

I 
—- , -
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Multiplication of two elements x and y in GF(p ’1) is more easily carried out when x and y are written in
their power forms, say x = 0 and y = t k . Then xy = ~~~~ where j and k are summed modulo (p fl - 1) . In
the remainder of the paper, for notational convenience , the component form of an arbitrary element of
GF(p~ ) will be written c0 C 1 .. .. Cfl_ 1 instead of(c0, c 1, . .

It is well known that every finite field is the Galois field GF(p ”) for some prime p and positive integer n
12, Section 6.5 1. It is also tru e that GF(p ”1) minus its 0 element, denoted GF(p ’1) - (0 }, is a multi plicative

group (2 , Section 6.6]. (A group G is a set with a single operation such that the product (sum) of every two
elements in G is a third element of G, there is a multiplicative (additive ) identity of G. denoted 1( 0), and every
element of G has a multiplicative (additive) inverse.) It was pointed out earlier that tP’~’~ = I for a primitive
element t of GF(pn). In fact, ~p”-I = I for every element x * 0 in GF(p11) [2, Theorem 6.181. The number
p~’-l is called the order of the group GF(pn) - (0 }. Since every element x of GF(pn) - (0 } is a power of a
primitive element t , i.e. , x = t~ for some integer j between I and p~-l (p

a-I = 0 mod (p’~—J )), GF(p’~) - {0}
is a cyclic group [2 , page 157]. In this paper GF(pn) - (0 }will often be referred to as the cyclic group of

I . GF(p’~).

Another mathematical structure of interest in this paper is the subfield. A subfield F of an arbitrary Galois
field GF(p~) is a subset of GF(p

n) which is itself a field under the operations of addition and multiplication
in GF(p~). All subfiefds of the Galois field GF(p~’) are necessarily (‘,F(pm) for some intege r m dividing n
[3, page 447). It can be seen in equation (2.1) and in the paragraph following (2.1) that every element x in
GF(pn) can be written in its component form x = c0 c 1 ..  ., c~

_
~ over GF(p). The set ( I , t. t 2 , . . . ,  tn~ I )

is called a basis for GF(p’~) over GF(p). More generally, if GF(Pm) is an arbitrary subfield of GF(p’~). then
the set ( 1. t. t 2, . . . ,  - 

} of n/m elements is a basis for GF(p~) over GF(P
m). The set (1 ,t,t2,... . tm 

I

of.!ielements is a basis for GF(p”) over GF(pm). Moreover, by the same method that GF(p’~) can be gener-
ated from GF(p)by a primitive polynomial over GF(p) of degree n, GF(Pn) can be generated from GF(Pm)
by a primitive polynomial over GF(pm) of degree i!~. Also, every element x in GF(p’t) can be written asm

-n_ -I
x = a 0 ’ l + a 1 “ t + ’ ’ ’ + ~ç. 1~ t m (2.2 )

with coefficie nts a0, a 1 in GF( pm).

— Much of the work on Galois logic design that has been done by Sperry Univac has been concerned with imple-
mentation of an arbitrary function/polynomial over the Galois field GF(2’1). The solution to the implemen-

tation problem chosen by Sperry Univac is a tree network of Galois linear modules. The Galois linear mod-

ule, pictured in Figure 2-1 (external view) and in Figure 2-2 (internal view) is basically a GF(2 ’~) multiplier

2-2 
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with a few exclusive — or gates added at the end in order to make a linear t~~,iction . The tree of linca r
modules is shown in Figure 2-3 . Noti ce that there are I ~ modules in this tr ee, and that  I ~ = 2~ 

. I . For Ii

arhitrar~ n there are 
2n — I Galois linear modules in a ful l ,  or univers a l tree .

*

J 
ELlison (4 1 aLso addressed the problem ot doing constant mult ipli cation bs a single element of a Galois field .

The big advantage of doing constant mult iplicatio n is that there is much less circuitry involved than in the

full multiplier. The reason th at constant multipliers are important in the context of th i s report is that th ey

are used often in subfield multipliers , as will he seen in Sections 4.2 and 4.3. The constant mult ipliers tie-

- - 
scribed in Efliso n in (4 ) are called Beethoven multipliers and the concept of multiplication by a constant in
a Galois field is called Beethoven redu ction.

a

1I

~ 
CO F ENT

V A R I A B L E  GLM 
~~~~~~~~~~~~~~~~~~~

COEFF I CIENT

FIGU RE 2-1. EXTERNAL VIEW OF GALOIS LINEAR MODULE (GLM I

0*

1

2-3
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FIGURE 2~2. GALOIS LINEAR MODULE OVER GF(24 )
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MF THODS OF COMPL I X l t \  R1 :DUCTION

3.1 IN TRODI’cr loN

*

The original thrust ot Galois logic design was a uni ~ersa I one. n f act . f or  the m ost p a r t . the research done

to date has been directed toward designing circuits capable of doing arbitrary functions in a Galois field.

Thus, the complexity of Galois circuits has been greater than if the circuits were devised for a specific

function. In order to maintain the generality with a more reasonable amount of hardware , methods of re-

ducing the complexity of the Galois circuits were studied. Two different approaches were investigated: a

reduction in the number of modules in a tree , and a reduction in the ~iie of a module h~ doing subfield

multiplication. In this section these two methods will be discussed : Section 3.2 deals wi t h  sequential trees

and Section 3.3 considers subfield multipliers.

3.2 SEQUENTIAL TREES

L
For a full tree of GF (2r% ) Galois linear modules there are (2~ - I )  modules , as it was pointed out in Section

2. For large n. 2n - I )  can he prohibitively large and so it is of interest to reduce the number of modules in

a fuU tree without losang computing capability. It turn s out that  if ii is an even integer , say n = 2k . then

2 r~~ l = 22k - l  = ( 2k ~ _ 1 2 ( 2k - 1~~~,k 
~~~ ( 3 . 1 )

This factorization of the number of modules in a GF~2~ ) tree into two numbers , one of which is the number

— —  of modules in a full GF( 2k ) tree . suggests that sequential operation o t a  GF( 2k ) tre e with (2 k + I )pas se~
a . wilt simulate a GF( 2~’l tree. Figu re 3-I is a reduced t ree o f t  2 n ~~ I )  = - I Galois linear modules. The

firs t 2 n 2 passes are made with the coefficients of the polynomial and the outputs f 1. are stored in a stor-
age register. The final pass is made with these outputs used as the coefficients, at which time the variable
inputs of each module are altered in order to allow for the change iii the levels of the original tree that the
reduced tree simulates in its last pass.

_
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For a given n there may be many factorizations 01’ (2 fl - I ) .  For example , if ii is even there are always
* other facto rizations of ( 2n - I )  other than (2 n12 - I) (2n/2 + I) 12 , page 474 1. In fact (2f l  — I )  has

j 3 as a factor since 2~~2 - I and 2n 12 + I are two consecutive odd numbers encompassing , n/ 2

* wh ich clearly does not have 3 as a factor. Therefore, either 2n/2 - I or 2n / 2  ÷ I has a factor of 3.
— Thus, for even n , a full tree o f ( 2 ”  - I ) Galois linear modules can be replaced either by a tree of ’ 2 n,’2 -

modules or by a tree o f ( 2 2 - I )  = 3 modules. It is also important to observ e that  for odd n . 2~’ - I may be

prime: for example , if n = 3 or S. 2n - I is prime.

_~~~

STORAGE REGISTER —a’

FIGURE 3.1, A RED’JCED TREE OF GALOIS LINEAR MODULES IN GF(2’1)

Note that in the description given above only the size of the tree is altered . The size of the individual mod-
• . tiles remains the same. The amount of hardware involved in the individual modules can be reduced also.

- which is the subject of the next paragraph. The advantages of the two concepts of hardware reduction , when
combined , should be the subject of a future study.

3.3 SUBFIEL D MULT IP L I E R S

The theoretical background needed to develop the idea of Galois subfield multiplication begins with the
fact that every Galois field can be generated fro m any one of its subfi elds by a primitive polynomial over
that subfield by the method described in Section 2. If GF(p n ) is the larger field , and if GF(p m ) is a subfield
of GF(P n ), then m divides n , and there exists at least one primitive polynomial of degree n/rn over GF(P m )

• which generates GF(p~ ). (2 , Section 6.6]. For each primitive polynomial there are several bases which can
- be used to develop the code for the larger field. The process which will be discussed below for doing sub-

field multiplication suggests using for a basis the (n/ rn )  elements of GF(2 1~’I , I , ‘y. r. . . 7( n/ in) I (here 7 IS

- a root of the selected primitive polynomial. This basis allows for an easier determination of the code repre-

- 
sentation of the larger field writt en with the elements of GF(2i 1) as coefficients sce equation (2. 2 ) ) .  In
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the remainder of this paragraph the theoretical aspects of subfield multiplication are discussed. Let n be a

positive integer and consider the Galois field GF(p~ ). Let ~ be a primi t ive element of GF(p~ ). The mini-
mum poly nomial 017k for any positive integer k is the polyno mial of ’ lowest degree over GF p) t’or which
.y k is a root . All eleme nts of GF(p n ) which have the same minimum polynomial as are called conjugate

• elements of 7k 15 1- The totality of such elements forms a so-called cyclotomic coset. Since every element

of the cos e t is a roo t of the sam e min imum polynomial , the size of the coset is the saint as the degree of

the corresponding minimum polynomial. In view ot’ the fact that the minimum polynomial of ’ each coset

divides the polynomial ~~ - x 12 . Theorem 6.231, and that the minimum polynomials are irreducible (2 ,

Theorem 6.1 51. the minimum polynomial of each coset has degree less than or equal to n (2 , Theorem 6.24 1.
Hence , the number of elements in each coset of GF(p ’~) is less than or equal to n. It is well-known that if ~
is an element of GF(p n) with minimum polynomial f ( x )  of degree k. then 

~~~
, 7P, 7P , 7P are all the

roots of 1(x) [2, Theorem 6.25 1. Hence, the coset of y is precisely {y, ~“ 7pk~ }. More generally, if

the base field is an arbitrary subfield GF(p m) of GF( p”) instead of GF(p ) . the concepts of minimum poly-
• nomial, conjugation, and cyclotomic cosets over G F p ’~) carry over fro m GF(p) . In particular , the fo l low -

ing proposition gives a descriptio n of these generalized cyclc’tomic cosets.

• PROPOSITION 3.1: Let ~ be a pri mitive element of GF( p’1) and let j he any positive integer less than n . If
m is a positive integer dividing n , say n = md. then the set of conjugates of ~J (including ‘~J~ with respect to
GF(p m)is precisely the set of elements ( 7 J) ~tm It = 0. 1 d - I }.

Proof: Recall that two elements are conjugates it’ they satisfy the same irreducible polynomial. Thus, if
f(x ) = + ad I  ~d l  + . + a1 x + a0 is an irreducible polynomial of degree d over GF(2m 1
with root ‘p1, then

~ (
~~~Ptm)  = 

(
~~ )Ptm)  d + ad_t ~~~~

) Ptm)d l f ’ ’ ,  + a 1 (~~)~tm 
+ a0

= (7Jd )Pt f l  
+ ad_l~ (,.i(d-n) ~tm 

+ , , - + a~~~ (~ J) 1’ +

= ((~~~ + ad l  (~~)(d l )  + ‘ ‘ ‘  + a 1 ~ + a0) ~tm

= 0

Note that (a i )P tm 
= a~. since a 1 is an element of GF(p tt ) for every i = 0. 1 d-l  and for e~erv t 0. 1.

. . . .d-I .

•1
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L
It should be pointed out that there may be t’ewer than .~~_ = d distinct conjugates oI’ ~~~~ , a situation which

* 

can arise only i f j  is a divisor of p’~ 
— I .

Recall from Section 2 that every Galois tield can be generated from any of its subfie lds by a pr imit ive poly ’
nomial over the subfield . The primitive polynomials arc among the minimum polynomials of elements of
the subfield (all minimum polynomials are irreducible. but are not necessarily primitive ) . It is of ’ interest to
k now which minimum polynomials are primitive to see the various paths with which to form a larger field
from a subfield . It will he shown below that minimum polynomials which are primitive can be distinguished
from nonprimitiv e polynomials by looking at the corresponding cyclotomic cosets. First , though , two
examples of a breakdown of GF( 2~ ) into cyctotomic cosets are GF( 2 1 ) and G F( 22) are given in Tables 3- I
and 3-2. Also listed are the corresponding minimum polynomials. In Table 3-2, the element t of GF( 2 2 )
is a root o t x + x +  I .

TA BLE 3.1. CYCLOTOMIC COSETS OF GF124) OVER GF( 2 1) (2 , PAGE 476 1

COSETS MINIMUM POLYNOMIAL PRIMITIVE

t .  ~ g2 ~4 , 98 ) + + 1 YES

2. ~ 3 ~6 9 12 99 ) + + + x + 1 NO

~ ~~~ 9 10 1 + x + I NO

~ ~ 7 ~14 913 911 } + x + I YES
s. j~

15 _~~
Q _ i i  x + 1  NO

TABL E 32.  CYCLOTOMIC COSETS OF GF(24) OV ER GF(22)

COSETS M I N I M U M  POLYNOMIAL P R I M I T I V E

I. (~,~~4 } x2 + t x + t  YES

2. (p2, ~8 } + + Y ES

3, ~~ ~12 } + t x  + 1 NO
4 {g6 ~9 

~ K
2 + t 2x + 1 NO

5. j~5 } x + t  NO

6. (g 1~~} x + t 2 NO

7. ~~ g I~~} + + t YES

8. t9~~ 9 14 } + + YES

9. (g~
5 1~ x i i  NO

3,4 
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A necessary condition tha t  a ~oset corr~’spoiid to a Primitive polynomial . i.e., that  the m inim um polyno m ial

of the coset have primitive elements for its roots , is that the coset contain n distinct elements. However ,
this condition is not sufficient , as can be seen in Table 3-I by the coset (g 3, g6 , g ’ 2 g9 }. The reason that

this coset does not consist of primitive elements is that the exponents 3, 6. I 2. and 9 have the common l~mc-

tor of 3 wi t h the order . I 5 2~ - 1 , of’ the cyclic group GF( 2~ ) - (0 }. Since cosets with fewer than n
elements correspond to cosets in sub fields ot GF( 2” ). the minim um polynomia ls corresponding to them
cannot be primitive. Thus, in order to determine the primitive polynomials of GF(2” ) over GF( 2 1 ), one

firs t computes the number of n— el ement cosets of GF(2 n ), and then discards the remaining cosets whose
elements have exponents having a common factor (larger than I ) wi th  (2 ’~ - I ), the order of the cyclic

group GF( 2n ) - { 0 )  of GF(2 ’m ). In Proposition 3-3 below there is a procedure given for counting the

number of n-element cosets. However , Lemma 3-2 , which in volves the concept of greatest common

divisor . is needed first.

A few facts concerning the greatest common divisor are now in order. Let n = ~ 1
k .,,,k 2 “t~~. ~~~

,

distinct primes. Then n/p 1, n/p2 are all &visors of n , in fact , maximal proper divisors of

ii , and so GF(p ”Pi) is a maximal subfield of GF(p ”) for every i. In other words , there are no proper noti-

iero subfields (i.e., not GF(p”fl of GF(p ’1) containing GF(p ’~/Pi) . The largest number which is a divisor of
two numbers a and b is called the greatest common diyisor of a and b , and is written gcd (a , b) : for example .
gcd(6 , 1S) d ( 2 ’3 . 3 5 ) = 3.

Lemma 3-2 helps to get an exact count of the number of cosets displayed in Proposition 3-3.

LEMMA 3-2 : [ct n he a positive integer and .~uppose that  n = 
k 1 ~,k 2 - . . p~kt , each p~ a distinct

- 
prime , and each k 1 a positive integer. Then the greatest common divisor of n ip 1, n/p , . , ~/p~ (g cd

k1-I k-,-1 k~-l
(n/p1. f l / P 2  . - - -

~ ~‘Pt~ 
is p 1  P~ 

— ‘ ‘ ‘ P1 -

k1 -l k-H kt— l n k 1 k, k I
Proof: Let y = P 1 P2 — ‘ ‘ ‘ 

~t - Now note that = p1 P~ 
- - P~ ‘ • Pt

for every I = I , 2 t. Therefore . y divides n/p t for every i I ,  2 1 , and so y divides

ged (n /p 1.  n/I’2 ~‘Pt~- Suppose d is an integer such that yd = gcd (n/p1  , n/p~ n/p t ).

If d is greater than I .  then d = ~.J1 . ~ 1J2 . . . p~ t where at least one of the j 1 ’s is greater than

0, say j 1  . Then

( k 1 l k-H kt —I \  7 i 1 1t\ k 1 I
yd ~P1 

‘ P~ 
- ‘ - - Pt ) ‘ t~PI ‘ 1” - Pt ) = P 1 ‘

k1 l ) + j 1
P1 (extraneous ) = ‘ (extraneous ) .

I
(The extraneous part is not important to this argument. )  Since yd is the greatest common di -

visor ol t i /p I - - • n /p 1. yd divides n / p 1  = — l . . . . p1
k~ and so. from (3.2 ) ,

1
~~~~~~~~~

_ . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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I = 0, a contradiction to the original assumption that ~ I is greate r than 0. Thus , j~ 0 for
all i = I , 2, . . ., t and sod = I and finally y = ged (n ip 1, nip , n/p t ).

F
PROPOSITION 3-3 : Let nbc a positive integer and p be prime, and suppose that  n = i,1

kI .

pt~ t , the p~’s disti nct primes. Then the number T of n-element cyclotomic cosets of ( F(p ” ) with respect
l 

to GF(p) is

! {p
n ~~‘ 

fl/ 1~, 
+ 

~~‘ ~gcd(n/pj . ~~~~ - 1,gcd(gcd(n/p~. n/ph ), gcd(n/p~. fl/ l’~1 ))

— 
i= l k>j j l  a, b ,c , d

l b  ~~~~. .  - 

, ~,2 k 1 l  . . .  ~ k~-l}

I l~ oo f : The proof consists of counting the number of ’ ele men ts in GF(p i~) which lie in cyclotomic cosets
of ’ le ngth n. and then dividing by n.

The first step is to subtract from ~n , the total number of elements in ( F(p ” ), the totali ty of ele-
ments of GF(p ’t ) which lie in maximal subfields of GF(p n) . The number of such elements is

~ 
p~1Pi p’~ P 1 + p~/P2 + . . . + p”/P t , i.e.. all the ele ments in the maximal suh field s of

GF( p~ ). However, unless t = I (i.e.. n is the power of’ a single prime number ) there are nontrivial
intersections among the maximal suhfields and so there are some elements which have been stiI~-

tracted more than once. Since the intersection of the two maximal subflelds GF(~t~/P~) and

— — 
GF(p~’~k) has gcd (p~~Pj , p”Pk ’) elements for j, k = I ,  2 , . . . ,  t , the numb er of elements in all
of these intersections is

4.

H
~ ‘

~
“ p8cd(n/P j n/Pk )

k~ j j = I

• — and this sum must be added to the total. Once again, there may he a nontrivial intersection of

the fields c,F(p8~dth/Pa. ~‘~b~) and GF(p~
l~~~’Pc~ ~‘Pd~) for some a, h, c. d. Hence. the sum

~~‘ p~cd (gcd(n/.pa.n/ph)~gcd(n/pc.n/Pd))

r a b e d

must he subtracted from the previous total.  This process continues unt i l  all the pairwise intersec-
tions are the same, at which point the number of elements in this subfield is ~tlded or subtract ed.
‘ru e final sum is th e total of alt the elements which do not 1k’ in any proper sub f ie ld of ( 

~~~~~ p~ I .

and there fore which do not lie in any coset of length less th an n. This total ~ I’ 
I 2

j  . . . pt
kt I , since ii is equal to gcd (n/p I t1/;~ 2 fl ’P~ ) I see I emma 3— 2 ) .  l ) iv id ing h~ ii now

gives the number of n-element cosets.

1 3-6
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• ( ‘OROL .L.ARY 3-4 : let n be a positiv e integ er and ~ .‘ prime. II in 5 .i dis  1501 u I  Ii . t hemi f l i t ’ number of n/rn-
element cyclotomic cosets in ( F (  2fl ) over ( . 1 ( 2 111 ) is ml.

Proo f’: Since one needs a primit ive polynomial of degree ii /111 over ( l~( 2 t1I 1 to generate (;I t 2n ). the  m ax —
irnu n i length of a coset in GEl 211 ) over ( ;F( 2 111 is n / u n

l here are I n-element cosets in (l ~ 2
11 ) and so th ere art’ no fewer than I m 1) n/rn-element cosels

in GF( 211) over ( F ~ 
2111 ) (since there art ’ a total of u I ’  elements in these ctiscts . and u T  = (n / rn ) (mF ) ) .

In f-act , there can he no oIlier cosets of length n/ tn , since they would hav e been part of an n-length
coset ove r GF(2” ), originall y, by the def ’i n it ion of a cyc lotomic cost ’t.

‘I lie following three examples wi ll help illustrate tile preceding two results.

I XA MPI.E 3-5: Let p = 2 and n = 12 = 2 2 3. Then p 1 = 2 and 
~2 = 3. and so ml / l~l = I 2/2 6 and tl / 1~ 2 =

1 2/3 = 4. Thus , the maximal suhfields of GF(2 12 ) are GF(2 6) and GF(2 4). and the intersection of ’ these two
suhfi elds is the subfield ~~~~~~~~~~~ = (W ( 2 2  Hence, the number of’ elements in ( i l (  2 1 2 ) of ’ order

I m s

212 - (26 + 2~~} + 2 2 = 4096 (64 + 16)  + 4 = 40% - 7~ = 4020

and so the number of 12 element cosets in GF (2 1 2 ) 154 02 0/ 12 = 335.

EX A M P L E  3-6: Let p = 3, and n = IS  = 3 5. Then p 1 = 3 and p, = 5 , and so n/p 1 = 15/3 = S and t l / l~2 =

15/5 = 3. Thus , the maximal subt ’ields of GF( 3 I ~ are GF(3 5) and GF(3 3). Since gcd(3. 5) = = .

the intersection of these two subt ields is ( F(3 I ~, ant i so there are

3 l 5 _ ( 3 5 ~~33 j +  3 1

I - elements of order (315 I in (l(3 1 
~~

). Thus , there are

3 15 . ( 3 5 + 33) + 3 1 
= I4,34~,907 270 + 3 = l4 ,34$ ,t~4() 

=
IS IS  I S

.. I S-ekinent cosets in (W( 3 l5 )

a-

L -

~~~~~
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F
a

E XAMPLE 3” Let p 2 iintt n = = , 3~ ‘ 5. Then 
~ l = 2 . P2 3. and P3 = S. Hence, n p 1  =

3~0 2 ISO . n ‘
~~ 2 3~O 3  = 1 20, and n/p 3 360/5 = 72. Thus, the maximal suhfie lds of (;H 2360 ) are

(Wt 2 180 ), GF(*0). and G F(2 72 ). Next. ged( 180. 120) 60. gcd( l 80. 72 )  3~ , and gcd( 120 . ‘~2 ) 24 .

Final ly. gcd(60 . 36) gcdu~0. 24) = gcd 36, 24) 12 . Note also t i~a p 1 k r l . 1,2 k 2 -l .~~3k 3 l 2 2 ,

3 1 - 50 = 4 ’3 ’l 12. Thus, the number of 36O Iement cosets in GF( 2 360 ) is

~~~~~~~ 
- [180 + 21 20 + 27~~ + ~26O + 2~’~ + 2241 - 2 I 2}

Since the cosets of ’ length n in GF(p ”) correspond to irreducible polynomials (recall that all minimal poly-
nomials are irreduciole) . Proposition 3-3 gives the number of irreducible polynomials over the base field
GF(p) . To determine which of these polynomials are primitive , it is sufficient to observe if the exponent

of any element of a coset has a factor (other than I ) in common with the order ot the field p fl _ I .  if ’ there

is such a factor, the corresponding minimum polynomial is not primiti ve (because the elements of the coset

cannot be pr imitive elements of the field); otherwise it is primitive. The next example illustrates this prin

ciple.

EXAMPLE 3-8: Let p = 2 and n — 8 = 2~ . Since 8 is the power of a single prime it is necessary to subtract

only the single maximal subfield GF(2 4)of GF(2 8). i.e., there are

j ~~ 28~~ 2~~~~= J- ~~25b - lo} 
= ~i- 240) z 30

cosets in GF~28) with 8 elements (see (2.  page 4 76(  — note Ikat there are 16 irreducible polynomia ls of tie-

gree 8 listed there . Fourteen of those have different reciprocals and two are self-reciprocal . Thus , there are

• 14 x 2 + 2 30 distinct irreducible polynomials listed there ) . To determine the number of pr imiti s e poly-

— nomials. the order of GF(2 81 — ( 0 )  2 8~ I 255 3 5 ‘ 1” is needed. In Table 3-3, the lowest expo-

nent of each cyclotomic coset is listed and whether the corresponding minimum polynomial is pr imit ive .

(Note that all the cosets which are not associated with a primiti ve polynomial have lowest exponent having

a common factor with 255.)
.4

Note that if -y 1 represents a primitive element fro m the first coset , then ‘y 1 ~ y 51 
~y

85 ~I ~~~~ , and ~255

I represent the different cosets of ’ GF( 24 ) (all the element s except 0 ire accounted for ) .

It is often necessary to generate t u e  (‘ialois h eld GF(p 211) from GEt p” ) w ith a pr imitive pol~nornial of de-
gree 2 over (;F(p~ ). It is possible to choose a pr imitive element in ( F( p ’1) -and its conjugate wi th  respect

to (;F(p ”’~ (see Proposition 3-I and calculate a primiti ve polynomial of ’ degree two . For designing t h e  ( .il-

ois multip lier for (~~ ~~n) by doing the actual multip l i cation over GF 1~n ) it is necessary to knt ~%% how t o

write the primitive element and its conjugate with coefficients in (Wip e ). The next proposition tells exac t i )

how to do that .
3-8 
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L
TABLE 3~3. LIST OF COSETS FOR GF(2 8) (LO WEST EXPONENTS ONLY )

I - LOWE ST LOW EST LOWEST

~OSET EXPONENT PRIMITIVE COSET EXPONENT PRIMITIVE COSET EXPONENT PRIMITIVE

1. 1 Y ES 13. 25 NO 25. 59 YES

2. 3 NO 14. 27 NO 26. 61 YES

3. 5 NO 15. 29 YES 27. 63 NO

j 
- 

4. 7 Y ES 16. 31 YES 28. 85 (2 ELEMENTS )

5. 9 NO 17, 37 YES 29. 87 NO

6. 11 YES 18. 39 NO 30. 91 YES
S 7. 13 YES 19. 43 YES 31. 95 NO

8. 15 NO 20. 45 NO 32. 111 NO

1 9. 17 4 ELEMENTS) 21. 47 YES 33. 119 (4 ELEMENTS )
10. 19 YES 22. 51 (4 ELEMENTS) 34. 127 YES
11. 21 NO 23. 53 YES 35. 255 (1 ELEMENT )

12. 23 YES 24. 55 NO

I
- 

PROPOSITION 3-9 : Let p be a prime number and let n be a positive integer. Suppose that ~ is a primitive

element of GF(p~ ) and that f(x) = x 2 + a~x + is a primitive polynomial over GFkp ”) generating GF(p 2” ).

If ~ is a root of f, and if n is a positive integer, then the conjugate element (‘y ’ThP1’ of .,~m = s + t - y  with re-

j spect to GF(p~ )is

= UP - 1 )t - a’ + s I  - 2n + ( p  - flt - ‘y ( 3 . 3)

— 
for s and t i n  GF(p ”). In particular 1t .~m is an element of GF(p~ ). i.e.. if t = 0. then .~m is self-conjugate.

Proof: Since .)~m and ~
7fll )~

n 
are conjugates with respect to GF(p ”) by Proposition 3-I ,  then they are

the two roots of a quadratic polynomial over GF(p ” ). In fact, they satisfy the polynomial

~~~ 
.~m ) (~~ ~ fll~~fl

) = x - (~ m +~~‘~ P~ ) + 7
m , ,~mp n

:: and so tile coefficients ~m + ~mp~ and ~m , ~ 1UP~ must ~ie in (‘1 F p ~ ). Suppose ~mp~ = a + b’~ .
Then.—

.~fll + ~mp ’~ = (~ + t~~~) + ~a + 1’ ‘ ‘y ) = (5 + a) + (t + h) ‘,. (3.4)

V and

39 

-

~~~~
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1.

.~nl - 7n~p’~ = (S + t ‘ ‘y ) (a + h -y) = sa + (ta + sb)y + tb7 2 ( 3 .5 )

= s a+ (t a + sb)7 + t b ( - ( & - y + a ~’)) = s a + ( t a + s b ) 7 + ( p _ l ) I a J .y + a k j t b

I ~~~s a + ( p - l ) a ’~t b ) l i~~+ [ t a + sb + ( p -  l ) & t bj i .

I Since 1m + .~mp~’ and ~1m ~~~~ are in GF(p~ ) and since elements of GF(p 2
~) which lie in

I GF(p ’1) are written h ’I ’,~ + O,~~y for sonic h in GF(p~),

1. t + b 0 from (3.4)and ta + s b + ( p - l ) & t b = O f r o m (3.5).

1 
— 

Thus. b = -t = (p - I )t and together with the fact that p - I )2 = I (mod p) (since p - 1 = -I (mod
p)) . O ta + s ( p — 1 ) t + ( p - I )&t ( p - l ) t  = t~a + ( p - I ) s+& t )  - Fina lly .t 0 or a + ( p - J ) s +
øiJ t = 0.

l f t * 0, t h e n a + ( p - l ) s  - dt = 0. and soa=  - ( p - l ) s  ~ &t = s + ( p - l ) & t .  Thus. 7mP~ =

(s + (p - I )&tI + (p - I )  t”y~ whi ch agrees with (3.3).

1 I f t 0, t h e n b = _ t = O, and so ymP” i I a .  1 + 0  ‘ y a  - I .  Also.si nce~y mP” = ( ~ym?
(s I )P = sP I = s’ 1 . a s and 7m is self-conjugate.

The next example, which illustrates the preceding proposition , will be discussed in more detail in the next
- section. That discussion occurs in the exposition ot’ the generation of GF( 28) t’rom GF(2) in steps of ’ de-

gree.

EXAMPLE 3-10: Let p 2 and n = 4. and suppose that f(x ) x 2 + x + g where g is a primitive element of
GF(24). Then f is a primitive polynomial (see Example 4.2 below) which generates G F 2 8). and if w is a

— i4root of f, then w + w + g = 0, i.e., w~ = 814 + 18w .  By Proposition 3-I , the other root ot’f is w = w
* In order to apply the preceding proposit ion to write w ’6 in a form with coefficients in GF(24). it is necessary

to observe that in the context of Proposition 3-9,j  O.k = I . and s = 0 and t I (since w = O ’l + l ’w) .
Thus, by (3.2) . recalli ng that 14 is the unit element of GF~24) and that 18 is the unit element of GF( 28),

I. w 16 = [ ( 2 -  1) ’  I ‘ y ° + O j  I + ( 2 - i ) ’  I ‘ w 1 8 + l 4 w .

-, , ,4  3’ 1 4The conju gate (w~~ = w — of w = g ’  18 + 14 ’ w (therefore s g and t l ) w i t h  respect to GF (2 )

I w32 = ( ( 2 - I ) ’  I g0
~~g I ’  I + ( 2 - 1 ) ’  I ‘w  = ( I  +g ) ’ I + w  = ~2 . I~~+ 1 4 ’ W

3-10

I
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j . (that ~ l 2 1 4 + g in GF( 2~ ) can he seen in Table 4-2 in the next section.

Suppose rh -at f~x )  as a pr imitive pol nom ial of degree 2 over G F p 2
~ ) whi ch generates ( F p 4u1 ) , .iiid sup-

pose that it is desired to determine a primitiv e polynomial of ’ degree 4 which generates GF(p 4
~ ) over

GF(p ’1) . The following proposition tells how to calculate such .i primitiv e polynom ial from t x l  Before
stating this propositi on. thou gh , the concept of ’ a conjugate polynomial is needed ,

• L et t ix ) a k x k + ak l x + ‘ . ‘  + a~ x + a ~~and g( x ) =  h kx k + . ‘ + h 1x + h 0 be two arh it r arv poivnot ,iuiis
over GF(p 2n ). Then f(x ) and g(x) are called conjugate polynomials it a~ a nd h~ arc conjugate elements of

with respect to GF p ~) for every i = 0. 1 . . . . .  k . By Proposition 3- I .  h~ a~
P’1 for every i .

PROPOSITION 3-I I :  Let t’~x ) = ~2 + + and g(x ) x 2 + ai’P ’\ + ak ’p ” he conjugate pr im i t i%e pol\ -
nomials over G F p 2tl ). Then the po lynomial r = f’g. given by

r tx )  x4 +(~ i +a i P ~)x
3 + (atP~~ l)i +a k +a k ’P’) ~2 + ~

‘
~j +k ’p~ + ~k+i~P1) x

+

is a primitive polynomial with coefficients in GE(p ’~) which generates GF p4’~).

Proof: If ‘
~
‘ denotes one root of r (x ), the other three roots of ’ r are in the same cyclotomic coset ~i t h  re-

• spect to GF(p ”) as ‘
~~, and are given by y~~ . . and .~r by Proposition S-I .  Since these four

elements satisty ft x) and g~ x) . and since t ( x ) and gt x ) are pr imitive .
~~, ~I , . aild ~.1 are

- primitive elements of GF(p 4’~). Hence r( s) is a Primiti ve polynomial. It only remains to show
that the coefficients of r (x) are in GEtp~ ).

For convenience, r(x ) will he written in the following way

• . r (x) = x4 + a3x S + 3 2 x 2 + 3 1 x + a 0 .

- It must he shown that a~ . a 1. a 2 . and a~ arc a ll in (W pn ). This can he done by showing that

- 

(a i )P
fl ”l * I for i 0. 1 .2 . 3 .  First. a0~

= ~~k ( P 8
+l)  p’~-I k ( p — 11- l )  

~~~~~ K = 1 K =

since a is in GEtp 1h1 I tr ecal l that t~ r ~ % ~‘r~ clement t i n  GEtp ~~ ), t P~~
1 I ) . fluis a0~

0 
= I .

antI so a0 is in (W(p ’1) N e xt  it is shown that .i ~,+k ‘P ’ + 0k~~t P~ is in ( Wtp ” l . Itt ’l~ i c this

3 - I l
‘S

L~ . 
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nis done . however, the reader is reminded that for ,iuv two elements a and b of ( F(p ” ), ta  + h I P =

+ tIP” (2 ,  l’heoreni c~. 141 and so

a l
p’1 

c~~
+k. p8 

+ ~ k+j ’ p~~ ~n 
= ~~ +k .P n) ~~ + (ak+~~Pu1) p

fl

a (al . ~ k .P n) P’l + (ak ‘ P ~ ~) ‘P t
~ . 0

k .p il 
+ ak .P n 

.

(aP tl )k 
+ ak~P” - (aL” 1

1 
= &.p il , + ak ’P ” .

~j •p~+k + ~k ’P ’~ j = a l .

Note th at  a since a is in GF(p 2n ) . i.e.. for all noniero elements of GFtp 2
~ l . ci~~~

’1 a is

equivalent to aP~~ ”I = I .  Similarly , since it has now been shown that ~ I = a I it can he con-
cluded that a l is in GF(p ” l. Next a2 must he considered .

a (atp fl $~fli +cik +a k .P n) ~n 
= ~~~~~~~~~ + ~k .P n 

+ ak .P n .P t
~

+ ak’P ’1 +cvk .p 2n 
(ap2fl) i . &-

~~~ + ak ’P ” +

~ap2n) k ~j ~~~~~~~~~~~~~~~~~~~~~~~~ I ) +a k .p n
+~~k a2 .

and so a2 is in CF(p ”). Next a~ .

= (& + ~n
1~

n 
= ~~~~ + ~~~~~~ a + (~ P~~~ = ~~~~~ +~~ =

and so a~ is in GF(p ’1) . Thus all the coefficients of r (x )  are in GF(I~n~ and so r ( x f  is a primitive
polynomia l over GF( p’1).

Thus, it is not diff icult to design a GF(p4”) Galois multiplier over GF(p ”) if the design of a GF(p 4n ) multi-
plier is known over GF(p~~).

3- 12
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SECTION 4

F XAM PL I S

I
4. 1 INTRODU( ’rION

In this section. two e~ampks are ~ ven illustrating the concept of subfield multip lication which wa~ di s-

— cussed in the intro ducti on to this report. Much ot ’ the procedure needed to do subfield mult ip lic ation is
based on the result s of the preceding section.

The firs t example shows the process of constructing G F 2 8I in steps of degree 2. i.e.. via GEt 2 1 ) GF( 2 2 ).

~ GF(2 4), and GFi 24 ) GF( 8). This example is the same one used in refe rence (6 1, hu t it is

given in much more detai l here . The second example deals with the construction of GF~34) from GF(3 2).
o In both ex am ples it will be shown how to multiply two elements in the larger field by carrying out the

actual mult ipli cation in their cubtields.

4.2 CONSTRUCtION OF A GF( 2~ ) MULTIPLIER USING SUBFIELD MULTIPLIERS

To begin the construction of a GF(~
8) Galois linear module using a GE (2 4) multiplier ,  one starts with a

• GF( 2 2 ) m odule using GF( 2 1 ) multipliers. i.e., AND gates. To construct such a module, a primit ive poly-

nomial of degree 2 is chosen over GF( 2 1. There is exact ly one such polynomial , p(X ) = x 2 + ~ + I

(2 .  page .Pt~j. Let he a root of p. Then 0 a p(t) t + t + I . and so t = I + t . Using this equati on. the
code for the field GF( 2-) 

~2’ 12 , t, t c-an be easily computetL see Table 4 -I .  (For example, t has the

code 01 since a 0 - 12 + 1 ‘ t . In the remainder of this report. the 0 and 1 element of GF~ 
2(11) will he

labelled °m and I mu for every in greater than 1.)

TABL E 4-1 . A CODE FOR GF(22) OVER GF(2 1)

02 0 0

12 1 0

1 0 1

I 1

Now the ( aIois multiplier for GF( 2 2 ) is constructed. If (1  1.t ‘1 is the ordered basis used. the basis product

matrix ~sce the Appendix) is given l’

-‘ / 11. 12  li ’t \  / 1 2  t f 10 01
I I -~~ I = I

m ’ i ~ t ’t  \ t t -  / \oI  I I

4-I
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o Thus, the two component matrices are

= (~~
) and M2 2.1 = 

(01,
)

Thus, the GF(2 2 ) multiplier over GF(2 1) can be drawn in Figure 4-1.

L _

_y 

_
1

~

T
J

- 

X2 _ I t

_  

~~~~ExCLL S 1~~oR

(x . v ) 1 ( x . v ) ~
FI GURE 4.1 . A GF(22) MULTIPLIER OVEk GF(2 1 )
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1.

The next step is to construct a GF( 24) multiplier out of GF( 2 2 ) multipliers . It can he seen in Table 3-2
that there are 6 irreduc ible polynomials of degree 2 over GF( 2 2 ) of which 4 are prim itive. This fact also

• follows from Corollary 3-4 since T = ‘4 t2 ~ - 2 2 ) = 3 is the number of 4~~lement cosets over GF~2 2 ).
n 4 n 4and hence there are~~ - I -

~~~~ 3 = 6 irreducible polynomials of degree~~ =
~~~~~ 2 over GF ( 2 —) .  Again

from Table 3-2. there are two cyclotomic cosets (numbers 3 and 4) which have a factor (3) in common

- 
with the order 2~- i  = iS of the cyclic ~~oup GF( 24) -  ‘.0 }. The primitive polynominal that is used in
this discussion is x + tx + t. If g denotes a root of x + tx + t. then g = t + tg, and if 1 4,g}is the

“rd ered basis chosen , then the foli~ wing code (Table 4-2) is obtained for GF~ 2~ ’,.
S

- TABLE 4-2. A CODE FOR GF(24 ) OV ER GF(2 2) AND GF( 21 )

GF124) GF(2 2) GF(2 1 1

04 02 02 0000

14 12 °2 1000

g 02 12 0010

1 0101

1110

t 1~ 0110

t 0~ 0100

02 t 0001

1111

98 12 t 1001

- ~2 1101

p 910 ~2 02 1100

— °2 ~
2 0011

• 912 12 12 1010

913 t2 0111

~14 12 t 1011

The primitive polynomial x 2 + tx + t used to generate GF( 24) from GF(2 ) has conj ugate polynomial

— 
x- + t x  + t 2 (see the preceding section for the definition of conjugate polynomial) . Thus, by Proposition

3-I I , the product of these two polynomials is the primitive polynomial of degree 4 which generates GF~24)
- 

from GF( 2 1 I. Using Table 4-I to carry out the calculations in G F 2 ) . it is possible to see i ’-m at x4 + x 3 + 1

is this primitive polynomial over GEt 2 1 ). In fact
a’- ‘I ‘~ ‘

~ 4 * ‘~ ~ 4 ~( x- + tx + t ) ( x ’ . + t x + t ” . ) ‘. 4 - ( t + t l v  +~ t — +~~+ l )~~- + t t ’  +~~~~) \ + ~~ ‘ = x  + x  + I .

4-3
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I

The n ext  step is to see how ( I t  2~ ) mn u l t i p l i c a t mom i  can he done wi t h  ( l”( 2 2 ) nlul l ip l ie r % . Again. (lie

ordered basis which is used h ere is in tI 4,g ), and st the nmult i p l ic al i on matr ix  is

4 1  
= ( 14 g \  ( I~ 02 0 7 1 2

t I

— 
‘thus , the two component matrices of (W( 2~ ) over ( F (  2 2 ) in this  case arc

M 1
4 ’ 2 = (l~ 0~\ and M 14 ’ 2 = (O~ 12

\02 t / \ l 2  I

l hesc ~~ o matrices tell ex ac f ly  how to connect th ~ tour  ( F( 2 2 ) m Lmltlpl , er s  in order to obtain a ( ;I ”(

j mul t ip l i er :  l’or ex anipl e . to obt a in ti m e firs t 2—hit  output of th e ( F (  2 ) product . ii ‘
~~ 

(ni ~~~
I li eu Iii l I ~ l~ 

and ( mu 22~ l~~ 
are nec(lc( 1, I Ia’ kit ter mul l  ipl ied by I: similarly.  I lie 5&’CoIid 2—hit  out put is

obt aiiied by adding ( til l 2~ 2~
, 

~u ui ~1 ( hhi 2 l  ~2~
’ to (m 22 ) 2

4 .2 times I. To construct a t—mul t i pl i er  one uses
• l I me Ilee thovemi method of l~lIison (4 1. In part icular , ti le two bits in th e (—mul t ip l ie r  are calculated by

t M  ) = t - M 2. 1 ~ a n d ( M  )~ t - M 1 2
~ ‘ x~ where x~ is th e transpose of x (x  x~ ) ( i f x i s t h e row

vec f o r ~ I x ) ) ,  t h en x is the column vector 
(
~~) 

)
~ since 1 01 .

/ l &\ I x  \ ,‘ x \(M 1 ) 1 = (0 1) 1 ~~ 
I = (0 1) 1 I )

- \ O I /  \ X 2 /  and

= (0I) (0 i) ( I)  = ( I I)  (x i 
) ~ , ~

i’hus , a (—mult ip l ie r  can be drawn in Figure 4—2.

• 
_ _ _ _ _ _ _

(t x ) 1 ( t x ) 2
I

I i .

I . 2FIGUR E 4 2 .  A CONSTANT n-MULTIPLIER IN GF(2

- 1  
4-4
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: . Now a (
~Ft 2~ ) m ultipl ier over ( l  2~ ) can he seen in Figure 4-3 . ikie x .mmm d in & 1 m  2~ ) are encoded h~

‘l ’2 and~ 1 y 2 , each 
~ 

and y~ in

. 5

I

H MULTIPLIIR 

~~~~~
±

~~

iT

~~

Ll

~

k

_________ — MULTIFLIE R MULT IPLIEh

4- T MULT IPL IER

1•~ 
. 

U 
- t I

EJ) 
1
i_J.~ ®~~

lI
~

I S
~

is, ~~ ~lT S ’~¼ 5 . Y  ~~~~~~~ ~~~

A
FIGU RE 4 1  A GF(~~

) MULTIPLIER OVER O F( ” l
•5
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I The next step in order to build a GEt 28) mult ipl ier  over GEt 2~ ) is to gen erate a code for GEl 2 ’~) over
tW( 2~ ) . In Example 3-8 it was shown that there are 30 irr edtm cihle poty m lo mni a l s of degree S over GF~ 2 ) ol

$
which I~ are primitive tsee Table 3—3 ) . il y (‘or ollarv 3-4 ther e are —v ‘ I ti t~4 pr imitive polynomials ot

* t .
~ —

degree 2 over ( l ~( 2~ ). the one chosen here is p (x ) = x + x + g. One root of t Ili% equation in GEt ~~
‘ ) ~

called ~v , and there fore the other one is ~ 24 
w 1 

~, by Proposition 3-I - Hence w satisfies the equation

w + g and from this equation the entire field ( F  2~ ) minus 0 cams be ~ r m t t e m i  .is .i power of ~ The

ordered basis used for generating (W( 28) over GF( 24 ) is 18. w )and so the basis matr ix for GF 2 8) ove r

a GFt2 4 is

1 M8’4 — (is w )  ( 1 4 04 04 14
• w w 04 1 4 g 14 /

I
Thus.

I M 1
8’4 = ( 14 0

4)  antI ~i,, &4 = ( 04
04 g - 14 14

I - Once again a constant m u ltiplier is needed in a subfield multiplier , in this case a constant g-multip l icr. As
in the case of the constant t -mu lt ip lier described earlier in this section , (lie g-mn u lt ip l ier is constructed by
the Beethoven method . Before describing the construction of ’ the constant g-n iutt ip lier. Figure 4-4 shows
the (;F( 2 8) mult ipl ier  over GF( 2k ). Note (he similarities of this multipli er to the GF( 2 2 ) mult ipl ier  o~er

GEt 2 1’) in Figure 4-1 , and the GEt 2~ ) multiplier over GF( 2 2 ) in Figure 4-3 .

Now , for the constant g-multip lier. From Table 4-2 , the ordered basis of GEt 2~ ) over GEt 2 1 ) coilsist ing

of unit vectors is given by (1 4. g~. g, g6 } (1000 . 0100. 0010. 000 1 }. Again using the basis t ’roduct
matrix method and the Beethoven reduction method , the g-mult iplicat ion gate can he det ermined :

/ I g5 g g~ \ j I000 0100 00l0 000 1

F 4 1  ( ~5 g 1° g~ g 1 1 \ fo t o o  1100 0001 00 1 1
4 N’  ~ I—i

g gb g g ’ / ~ 000 1 0011 1 1 1 1  1010

L \g6 g 11 g7 ~I2/  \000l 0011 I l l I  1010

¶ - . 

/ 1000 / 0100 / 0010 / 0001
L ( 0100 M~

4’1 4 1100 
~t~ 4 .I _ (  000 1 ~14

4 . l ( 001 1
000 1 J 0011 / 

‘ 100 1 J Oh I i
\oo I l /  \ oo lo /  \ o l I l/  \ l l I o

p
1

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(4) 6 MULTIPLIER
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Thus,
‘I 

/l000\ / X 1\ / X l
(OiOO \f x’ \ ( x,

tM8)1 (0010) 
(~ooo i )~ 

x J = (000 1) (
~ 

x~
“~) I l /  \x 4/  \x 4

~0100\ ,x1 
~ j X 1

- 1 lI00~~I x,\ ( X i
- 

tM8)2 = (0010’) 
~ oo~ )~ ~ ) = (0011) = xym~x4

- 0010/ \x4/ \x4

S

- - 
/0010\ ,X 1\
1 000 1 ~(x i  \ I x-ih (N8)3 = OOlO) 
I~ I00I)I~ x~ ) 

= ( 1001) = x~ 4~x4

1 01 11 \x4/ \x4
I .

- /000l\ /X1\ /x l
1 0011 ~( x i  ( x i

(Mg)4 = (0010) 
~ )I~ ~; ) 

= (0111) ~ =
\ i l l o /  \ x4 / \x 4

It can now be concluded that the g-multiplication gate is as shown in Figure 4-5.

______

X’$ X2 X3 

____

X4

_____

(g x) 1 (g x) 2 (g x) 3 (g x) 4
•x 3~~x4 x 1~~x4 •x 2~P x 3~~x4

FIGURE 4-5. A co NsmN: g .MULTIPLIER IN GF(2 4 )

1 ,
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F It turns out that subfield multiplication can be done bit-serially. By computing in this manner , it takes

- 

only one GF(24) multiplier to do GF(2 8) multiplication as Figure 4-ô shows, It is believed that

the advantages of bit-serial implementation are most strongly felt for very large n when the underlying

multiplier becomes prohibitively large. Here , multilevel logic may have a strong impact also. However .

F with or without multilevel logic, subfield multipliers offe r much potential for complex ity reduction ,

I KEY

I
v S — PORTIO N OF FIuUR[ 4-4

2~ ~2 ,1 20 
W ITHIN DOTTE C LINES

P — PARITY NETWORK

I ‘ 
____________________ 

T —
T CG~L E FF

+ 
L~ 

:7 - ~~: 1..-i
— — GF(2 Li ) 

P •—•••’~~~ NO ERROR

- - 26 — ~~ 2~ — - • .
~ F’ l—. ~~~~~~~ 

- Sp
— MULTIPLIER x

— _
~ — - _.

~ x~v~Iz~ • S~,

• - ERROR
2k — - ’  20

- 
_

- G-’ I 
p

-2
— -( — — —

I — —~~a — — — —  S -
~!~~~~I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[ FIGURE 4-6. A 13-STEP GF(28) GALOIS LINEAR MODULE (BIT SERIAL INTERFACE)
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H
A natural question at this point is to ask whether it is possible to use the technique stated above to build

GF~28) multipliers out of GF( 2 2 ) multipliers. The answer is in tile affirmative , and the process is
described below .

To begin with , recall from Proposition 3-) 1 that a primitive polynomial of degree 4 over GF( 2 2 ) can he
obtained from a primitive polynomial of degree 2 over GF(24) by multiplying the latter polynomial by its
conjugate polynomial. (See the definition of conjugate polynomial in the paragraph preceding Proposition

43-I 1.) Since x- + x + g is the original polynomial , its conjugate is x ÷ x + (g) = x + x + g (by

Proposition 3-i , ~2’ = g4 is the conjugate of g in GF(24) with respect to GF(2 2)) . Therefore, tile primitive
polynomial generating GF(28) from GF(2 2 ) in this case is

1 4 4 3 4 4 C 4 i 1(x +x+g) (x +x+g ) x  +O’x +(g+g +l)-x +(g+g )x+g ’=x +t x + t x + t

(See Table 4-2 for the computations.) To determine the basis of unit vectors of GF( 28) over GF( 2 2 ).
(I ‘~O-~O-,O,, 0-,! ,O—~O , O-,0, I ~0,, O’,O,O., I ~, }, one simply notices that this set is the same as
(1404. 804, 04 14, 04g}(see Table 4-2). Since 18 = 1404 and w = 04 14. it is necessary only to determine j

and k so that w1 = 804 and ~
k = 048 (recall that 804 is shorthand for g 18 + 04w = g). Observ e that w~ =

(804) is in GF(241 and so (w i-) I ~ = = ~0(mod 255’) Hence, I Si = 255 and soj = 17, Finally , since =
04 1 + gw = w 17 w = w18. Thus, the ordered basis of unit vectors forGF( 28) overGF( 2 21 is ( lg . w 17 . w .
w~~ }, and as the basis product matrix is

/18 W I7 W W ’8

M8’2 ( W ’7 W 3’
~ W 18 W 35

I 18 1
w W

\w 18 w 35 w 19 w 36

a or 8~~~ ~çr
Using the facts that t is embedded in GF(2°) as w°~ ((w -a’)-’ = w---’ = I) and t - is embedded as w
and that + t 2 x 2 + t x + t i s  the primitive polynomial used to generate GF(28) from GF(2 2 ), it is possible
to see that

l10 010, 0~ l O ~O o~0d i0-~ 01010ili\

I ~~~~~~ t t 0-,Oi 01010111 0-,Oit t I
M8,2 =I — —  — — -  —

a-. 
0~0d~0, 0,010212 0111l202 t 0~ 1 - ~ J
020202 1 2 OlOlt ~ t t 0~ l - ~ ~2 

~~

4-10 
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t Therefore, the four component matrices are

-- 
,l~0~0~0~ \ / 02l~ 0202

- N 8.2 =( 02t 0~0~ M2 8’2 =( 12t 0,0-,

I 00-~0 t  I I
\O:O:~~

2 / \ ~~~
/0~0~1i0~\ /0i02dil~

M3
8’2 ( 020202t N4

8’2 ( 0~0,l,t
1 -,0-~l~0, / 0,1,021,

4 
0,t 0,t 12t 1,t

- 

Now , using the same procedure for constructing a t-multip liet’ it is possible to construct a constant
8~multiplier. Finally, the entire GF(2°) multiplier built out of (-4 = 16 GF( 2 - ’ )  multipliers can be de-

signed. It is also possible to design the GF(2 8) multiplier out of a single GF(2 2) multiplier by sequentially
inserting the inputs as it is done for the GF(2 8) multiplier over GF(24) (see Figure 4-6’).

4.3 CONSTRUCTION OF A GF(34) MULTIPLIER USING SUBFIELD MULTIPLIERS

I - 

In this example a GF(34) Galois multiplier is constructed out of GF(3 2) multipliers . To begin with .
GF(3) = (0.1.2 } and the operations of addition and multiplication in GF(3) are given by addition and

- multiplication modulo 3, a generali zation of GF(2) arithmetic.

In order to construct GF(3 2) from GF(3). the primitive polynomial p(x) = x 2 + 2 x + 2 is used. If a rc~ot
Iof p is labeled a, then a = a + I (since 2 = - I modulo 3). and the ternary code for GF(3 ~) with ordered

basis ( l .a  } is shown in Table 4-3.

TABLE 4.3. TERNARY CODE FOR GF(32)

4,, 1 a 1 a

0 0 0 a4 2 0

1 1 0 a~ 0 2

a 0 1 2 2

1 1 .~ 2 1

1 2 P

4-I l

£ 



P -~~~-,. ------- ‘-

The multiply matri x for GF(3 2 ) is

F / ‘  ~\ / 10  o i\
M = ~~ . 2) 

= L )
- - 

a a \Ol II

andso 

1 0 0 1
M 1 and = H

i i !~ 
\0 1/ 

- 
\ I  1

Thus, a GF(3 2) multiplier for the ternary code is illustrated in Figure 4-7.

- x l

— =  

_ _ _ _ _

~2 _ I f J~ ] LJ~E

K EY. 
- 

(xy) 1 (xy) 2

- GF(3) MULTIPLIER

- GF(3) ADDER

FIGURE 4~7 A GF(32) MULTIPL IER OVER GF(3)
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By Proposition 3-3 there are

J T= ~~- j 3 4 - 3 2
~~ =~~- ~~~~~~~~~~~~~~~ = 18

cyclotomic cosets of length 4 in GF( 34). Hence, by Corollary 3-4 there are ml = 2 -  15 = 3~ 2-element

cyclotomic cosets In GF(34) with respect to GF(32). In Table 4-4 below it can he seen that only S of the

cosets in GF(34) over GF(3) have no factor in common with the order, 34 - ) = SO of the cyclic group

L GF~34)-  1O}of GF(34).

TABLE 4-4 . TERNARY COSETS IN GF(34) WITH LOWEST EXPONENT IN EACH CLASS NAMED
1 3 9 27 2 6 18 54(1 is{b ,b • b , b }. 2 1s ~b , b , b , b ~. ETC.)

PRI MITIVE PRIMITIVE
COSET MINIMUM POLYNOMIAL COSET MINIMUM POLYNOMIAL

1. 1 YES 13. 20 (2 ELEMENT COSET)

2. 2 NO 14. 22 NO

3. 4 NO 15. 23 YES

4. 5 NO 16. 25 NO

:1 YES 26 

(1 ELEMENT COSET)

7. 10 (2 ELEMENT COSET) 19. 41 YES

8. 11 YES 20. 44 NO

9. 13 YES 21. 50 (2 ELEMENT COSET)

10. 14 NO 22. 53 YES

11 . 16 NO 23. 80 (1 ELEMENT COSET)

12. 17 YES

Hence, these 84 32 elements are primitive, and are, of course, pr imitive with respect to GF(3 2). Thus.
there are lb 2-element cyclotomic cosets of primitive elements in GF(34) with respect to GF(32’I. and so

there are 16 primitive polynomials of degree 2 over GF(3 2) with which to generate GF(34). The one used

here is g(x ’1 x 2 + x + a .  l fb i s ar o o t ofgtx ) in GF(34\ then0 h 2 + b + a a n d so b~~~- a - b 2a + 2b.
4 • A close look at Table 4-3 shows that GF(3) viewed as a subfield of GF(3 2 ) consists of the elem ents 0. 1. and

a4 (O~~ O, I I ,  and 2 —~ a4) and sob 2 = 2a’l  + 2b = a4 a-I +a4’h = a 5 -1 + a4 h. with coefficients in

GF(3 21. Thus, the basis product matrix for GF(34), with respect to the basis ~, I .h ~ . is

-
~~~ / i /

( 1  b \ ( 1 0  01 !t ( 1 0  0 1
= L I = L

tr/ \O l a5a4/ \O1 a52

4-13 
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andso

/ l O \  / 0 l \  / 0 1
N 1 = I ~ and N- I (

k,~O a 5) 
- 

\~ I a4) \, l 2

From N 1 and M 2 it can be seen that constant multipliers for 34( 2) and a 5 are needed to build the GF( 34
~

multiplier over GF(32 ) by the Beethoven reduction method [41. For a t multiplication by an arbitra ry dc-
ment £ a z 1z~ of GF(34) with z 1 and z~ in GF(32 ). is the same as multiplication by 2 :

/1 O~ /Z l \  / z l\
a4: (20)1 I I I (20) I I a 2z 1

~p I, \z~ j

/t~ 1\ J z i\  / Z 1\
(201 11  1 - ‘ (02) 1 2z

* ~I If \Z~~/ 
-

and, for a’5

/1 0\ /z i \  / z 1 \a5; (02~~ ) ( ) 
= (02) 

~ ) = 212I z2 z,

/0 I\ /z~\ /Z l\
(021 ) ( a (22 ) 1 1 2z i + 2Z 1

\l 1/ \Z2/ \z~ J 
-

Thus, the mu ltiplie rs for a4 and a5 are shown in Figure 4-8 and are very simple compared to the corn-
plexity of the total GF(3 2) multiplier , as can be seen in Figure 4-tb . Here are two elements x and
y = y 1y2 in GF(34). with x1 and in GF(3 2). are multiplied together.

a4.2

[4 ~~ I1 
___

— 2z 1 2z2 2z2 ~~
C

FIGURE 4-8. CONSTANT a~ - 2 AND a ’ MULTIPLIERS
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1 - (xy) 1 (xy)2

- 
FIGURE 4.9 A GF (34) MULTIPLIER OVER GF (32)
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•. SECTION S
SUMMARY

is
A method of multip lying in arbitrary Galois fields by doing the actual multiplication in a subfield is pre-
sented in this report , The process can be carried out either in a parallel fashion or hit-serially. A theoreti-
cal discussion in Paragraph 3.3 establishes a basis for this subfield multiplication process. The two examples

- in Section 4 show the implementation of the process both in binary and terna ry fields.

I

I-
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SECTION o
FUTURE WO R K

- 
F

One of the most important applications of Galois fields is signal processing (see , for example. 15 1 and I 1)-
The Galois fields involved in the discussions of Reed. et al , are for the most part of ’ the fo rm GF (p )  or
GF(p 2) for very large and very special primes p. These primes are such that the cycli c group GF (p I -

has order a multiple of a power of two. Therefore it is possible that the subfield multipl ication process

* presented in this report generalizes to a subgroup multiplication process , and that presents UFt ~ multi-
pliers can be used to perfo rm GF(p) or GF(p 2) arithmetic. If so, the added on-h oe fault detection implicit

- in GF(2n ) multipliers can be utilized to do GF(p r~) arithmetic. Therefore , an investigation of the pot ential
S -

of subgroup multiplication is needed in order to determine the feasibility of applying known tcclink~ues to
- do GF(p”~) arithmetic.

4 -

- Other methods of performing Galois field arithmetic for large p should be investi gated also. In particular .
hardware implementation of modular Galois arithmetic should be investigated.

Another important application of Galois fields is error coding where a semi-fast Fourier transform algorithm
has been developed for use in Galois fields GF(2 ’~) [81. The use of present GF(2~ ) multipliers are possible

- 

here, and it is important to study the potential of the use of the Galois multiplier which has the on-line
• parity detection. In this case there would be a check (parity bit ) on the checker (code).

4 -
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APPENDIX
BASIS PRODUCT MATRI CES

I 
Let B = (b ~ }be an ordere d basis in GF(p~ ) overGF(p m), which consists of ~~ elements and let

n/rn n/rn
x = ~ x~ b~ and ~ = ~ y~ b~. p any prime.

i=1 J=l

Then the product xy is

Z x~y~b~b~— I,)

Let b
~ = b1 bJ and define ~~~~~ = (m ij)k

f l m  be defined by

b u = ~~~ (m~ )i,~~ m bk

Then xy (~~ x~b1 ) (~~y~b~) ~~~ x 1y~b~ = ~~~ x 1 y~ E ( m ~J
)k”m bk

= 1 f ~ I x. y~ (m jj)k~
’
~
.m bk .

Therefore, if x~ = zk bk ,  2k x~~ (m~ ,I
)k

n .m = y M k
n
~
m 

~~~~~~

- The matrix M k
n .m is called the kth component basis product matrix and M n .m = (M k

n .m ) is called the
basis product matrix for GF(p ” ) over GF(p m).

EXAMPLE: L e t n 4 a n d  m=2. Then = = 2 . Let B ( I ,g} and pickx g7 t 2 + t 2 ’gand
-~ m 2 1y = g = t -g (see Table 4-2). Then the basis product matrix M ‘ is

M4,2 = (14 14 I 4 .
~
\ = (14 g \  = (

1 202 02 1-,

g I  g’g) \g g2J ~ 02 l2

/l Oi\ , /0-, l
M1

4 ’ - = ( - M,’1’- = ( - -

\02 t )

• If xy = ~ Z k W k = z 1 l +z - , -t , then
k l  - -

A-l
a-

J
~~~~~~.
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L 
£ 1 = g’t (~ 

0
2) ~g7)~ = (01t-,) (~ 

02~ ( 
~

)= (0 2 1 2) ( :) =

r 22 (~ :~ 
(g 7 1t = (02t 2) (~ :~ (: )= (t 2 l , )  (:~)= 12

xy a t 2 - 14 + 1, -g (t 2 l , )  g3 (see Table 4-2.) Since g M .g 7 = g lS = g 3 ( 3 a  l8modu lo
(2~— l )),the answer is correct.
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