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SECTION 1
INTRODUCTION

The goal of this report is to describe in detail two solutions to the problem of complexity reduction in the
amount of hardware needed to implement a tree of Galois linear modules tor the Galois field GF(2™). The
solutions can be broken into two cases: reduction of the number of modules in a tree, and reduction of

the complexity of each module. The solution to the first problem is the use of sequential trees, a topic which
is discussed in paragraph 3.2. Far more sophisticated is the solution to the second problem. This approach

involves the idea of subfield multipliers, and it generalizes to arbitrary Galois fields GF(p™), p is a prime.

The subject discussed in most of this report is Galois subfield multiplication tor arbitrary Galois fields
GF(p™), with a special emphasis on the fields GF(2™). In the latter fields it has been known for some time
that the Galois multiplier designed by J. T. Ellison [ 1] does the multiplication in the binary field GF( 2h=
{0, 1} It turns out that for GF(p") in general and for GF(2™) in particular, multiplication can be corried
out with arbitrary subfield multipliers. In order to reduce the complexity of the GF(p™ multiplier, it is
necessary to do the multiplication in a sequential mode. The process of subfield multiplication implies a
potential for using multi-level logic circuits. It the number of levels is a power of two, subfield multiplica-
tion of the elements in GF(2™) can be done with less hardware and without as much loss of speed as would

result if subfield multiplication were done with binary circuits.

Section 2 will be devoted to the known facts that are needed to discuss the reduced trees and subfield mul-
tiplication topics in Section 3. Some of this material can be found in previous Sperry Univac reports on

Galois logic design, but most can be found only in mathematical textbooks.

In Section 3, two methods of reducing the complexity of a full tree of Galois linear modules are discussed:
a reduced tree which lowers the number of modules in a full tree, and a subfield multiplier which reduces
the complexity of the individual module. The subtield multiplication can take place for any Galois field
GF(p™), whereas consideration of a reduced tree is relevant only for GF(2M),

Also in this section a theoretical discussion needed for the generation of larger Galois fields from subfields
is given. The remainder of Section 3 is devoted to a detailed exposition of the construction of a GF( 28

hl
multiplier over (’-F(Z“) and of a GF(34) multiplier over GF(3-).

Finally, an appendix is added for completeness. In it the basis product matrices used in the construction of

GF(p™ multipliers are discussed.
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SECTION 2
GALOIS FIELD DEFINITIONS

Since Galots fields play a central role in this report, a precise detinition of a Galots tield is given tn this sec-

tion, First, the definition of a mathematical tield is necessary.

DEFINITION: Let D be a set of elements a, b, ¢, ... tor which the sum a + b and the product ab of any two
clements a and b (distinet or not) of D are defined. Then D is called a field it the tollowing postulates
(1) = (X) hoid:
(1) Closure, It a and b are in D, then the sum a + b and the product ab are in D;
() Uniqueness. fa=a"and b=b"inD, thena+b=a"+b" and ab=a'd’,
(i) Commutative Laws, ForallaandbinD,a+b=b+a and ab=ba;
(iv)  Associative Laws, Foralla,b,andcinDat(b+o)=@+b+¢  and  ado) = (abe;
(V) Distributive Law. For all a, b, and ¢ in D, a(b + ¢) = ab +ac:
(vi)  Zero. D contains an element O such that a + 0 = a, for all a in D;
(vit)  Unity. D contains an element | # 0 such thatal =a forallae D;
(vit)  Additive Inverse, For each a in D, the equation a + X = 0 has a solution X in D;
(X)) Cancellation Law. It ¢ # 0and ca = ¢cb, thena = b,

(\)  Inverse, Every nonzero element a of D has an inverse al satistying the equation alasl,

By [ 2.Theorem o.4], the residue classes of integers modulo any prime number p torms a field of p elements
called the Galois field GE(p). It can be shown that there is at least one irreducible polynominal of every
degree over GE(p) (such a polynomial tis one with no roots in GE(p), e, fiy) # 0 tor every v in GE(p)

2. page 155]. In fact, for any positive integer n there is a polynomial t of degree n which generates the
Galois field of p" elements. called GF(p™ where GE(p™ = (0, t. t=, . . ., t““.‘ =1} torarocot tof f. In
this case tis called a primitive element of GE(p™ and ' is called a primitive polynomial. Every element \ of
GE(p™ can also be expressed in the form

NEggtepte e et (¢; in GF(p). (2.0

In this case X is written (¢, S =1 h which s called the p-nary component form ot x (if p = 2,1t
called the binary torm, and it p = 3, it as called the ternary torm). The procedure tor relating the two repre-
sentations of X ~the power form and the component form - is via the primitive polvnomial £, The set of the
component forms ot all the elements X in GE(p™ in relation to the power torms of these elements is called
an additive code for GF(p™. Such a code has the property that, for x = (g ¢p. - o dand v =

Woedpo o adph nry =g @ dge o ®dy e @ d ) where @ denotes addition modulo p.
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Multiplication of two elements x and y in GF(p™) is more easily carried out when x and y are written in

their power forms, say x = t) and y= tk. Then xy = tj+k, where j and k are summed modulo (p™-1). In
the remainder of the paper, for notational convenience, the component form of an arbitrary element of

GF(p™) will be written €Q €] - - -» Cp-y instead of (¢, ¢, ..., )

It is well known that every finite field is the Galois field GF(p™) for some prime p and positive integer n

[2, Section 6.5]. It is also true that GF(p™) minus its O element, denoted GF(p™) - {0}, is a multiplicative
group [ 2, Section 6.6]. (A group G is a set with a single operation such that the product (sum) of every two
elements in G is a third element of G, there is a multiplicative (additive) identity of G, denoted 1(0), and every
element of G has a multiplicative (additive) inverse.) It was pointed out earlier that tpn'l = | for a primitive
element t of GF(p"). In fact, xpn'l =] for every element x # 0 in GF(p™) [2, Theorem 6.18]. The number
p™-1 is called the order of the group GF(p™) - {0}. Since every element x of GF(p™) - {0}is a power of a
primitive element t, i.e., x = t) for some integer j between 1 and p™-1 (p"-1 = 0 mod (p"-1)), GF(p") - {0}

is a cyclic group (2, page 157]. In this paper GF(p™) - (0} will often be referred to as the cyclic group of
GF(p™).

Another mathematical structure of interest in this paper is the subfield. A subfield F of an arbitrary Galois
field GF(p™) is a subset of GF(p™) which is itself a field under the operations of addition and multiplication
in GF(p™). All subfields of the Galois field GF(p®) are necessarily GF(p™) for some integer m dividing n

[3. page 447]. It can be seen in equation (2.1) and in the paragraph following (2.1) that every element x in

GF(p™) can be written in its component form x = cg ¢] ... Cp-1 Over GF(p). The set {1,t. t2 t“'1 }
is called a basis for GF(p") over GF(p). More generally, if GF(pm) is an arbitrary subfield of GF(p“) then
the set {1,t, t- t_'ﬁ } of n/m elements is a basis for GF(p™) over GF(p™). The set {1, t- t“-_1~ ]}

of -elements is a basis for GF(p™) over GF(p™). Moreover, by the same method that GF(p™) can be gener-
atecl from GF(p) by a primitive polynomial over GF(p) of degree n, GF(p™) can be generated from GF(p™)
by a primitive polynomial over GF(p™) of degree ;. Also, every element x in GF(p™) can be written as

-1
x=ao-l+al-t+"'+a€$_l)tm (2.2

with coefficients ag, ay, . . ., 3(3_ -l) in GF(p™),
m

Much of the work on Galois logic design that has been done by Sperry Univac has been concerned with imple-
mentation of an arbitrary function/polynomial over the Galois field GF(2™). The solution to the implemen-

tation problem chosen by Sperry Univac is a tree network of Galois linear modules. The Galois linear mod-

ule, pictured in Figure 2-1 (external view) and in Figure 2-2 (internal view) is basically a GF(2™) multiplier




" -

[ —

with a few exclusive - or gates added at the end in order to make a linear tunction. The tree of linear
modules is shown in Figure 2-3. Notice that there are 1S modules in this tree, and that 15 = 2.1, For

arbitrary n there are 2" - 1 Galois linear modules in a full, or universal tree.

Ellison {4] also addressed the problem of doing constant multiplication by a single element of a Galois field.
The big advantage of doing constant multiplication is that there is much less circuitry involved than in the
full multiplier. The reason that constant multipliers are important in the context of this report is that they
are used often in subfield multipliers, as will be seen in Sections 4.2 and 4.3. The constant multipliers de-
scribed in Ellison in [4] are called Beethoven multipliers and the concept of multiplication by a constant in

a Galois field is called Beethoven reduction.

COEFFICIENT
INPUT

VARIABLE GLM

INPUT

COEFFICIENT
INPUT

cX + 2

FIGURE 2-1. EXTERNAL VIEW OF GALOIS LINEAR MODULE (GLM)
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SECTION o
METHODS OF COMPLEXITY REDUCTION

3.1  INTRODUCTION

The original thrust of Galois logic design was a universai one. In tact, for the most part. the research done
to date has been directed toward designing circuits capable of doing arbitrary functions in a Galois field.
Thus, the complexity of Galois circuits has been greater than if the circuits were devised for a specific

function. In order to maintain the generality with a more reasonable amount of hardware, methods of re- 3

ducing the complexity of the Galois circuits were studied. Two different approaches were investigated: a
reduction in the number of modules in a tree, and a reduction in the size of a module by doing subfield
multiplication. In this section these two methods will be discussed: Section 3.2 deals with sequential trees

and Section 3.3 considers subfield multipliers.

0

ta

SEQUENTIAL TREES

For a full tree of GF(2™) Galois linear modules there are (2" - 1) modules, as it was pointed out in Section
2. For large n. (2™ - 1) can be prohibitively large and so it is of interest to reduce the number of modules in

a full tree without losing computing capability. It turns out that if n is an even integer, say n = 2K, then

2

AU R S B L LA P S D L Y @3.D

This factorization of the number of modules in a GF(2?) tree into two numbers, one of which is the number
of modules in a full GF(Ik) tree, suggests that sequential operation of a GF(2X) tree with (2K + 1) passes
will simulate a GF(2™) tree. Figure 3-1 is a reduced tree of (2™ 2= 1) = 2K - | Galois linear modules. The
first 202 passes are made with the coefficients of the polynomial and the outputs f, are stored in a stor-
age register. The final pass is made with these outputs used as the coefficients, at which time the variable
inputs of each module are altered in order to allow for the change in the levels of the original tree that the
reduced tree simulates in its last pass. p




For a given n there may be many factorizations of (2™ - 1). For example, if n is even there are always
other factorizations of (2™ - 1) other than (2 n/2_ l) (2“/2 + l) 2, page 474]. In fact (2" - 1) has
3asafactorsince 2™2-1 and 2V2 41  are two consecutive odd numbers encompassing 212,
which clearly does not have 3 as a factor. Therefore, either /2 or 20241 hasa factor of 3.
Thus, for even n, a full tree of (2™ - 1) Galois linear modules can be replaced either by a tree of /2o
modules or by a tree of(ZZ - 1) = 3 modules. It is also important to observe that for odd n, 2" ~ | may be

prime; for example, if n =3 or §, 2" - | is prime.

x ————————
EDUCED
E MUX TREE I » f(x)
]
4
)
12
STORAGE REGISTER —®[ ¢
n/2

FIGURE 3-1. A RED'JCED TREE OF GALOIS LINEAR MODULES IN GF(2")

Note that in the description given above only the size of the tree is altered. The size of the individual mod-
ules remains the same. The amount of hardware involved in the individual modules can be reduced also.
which is the subject of the next paragraph. The advantages of the two concepts of hardware reduction, when

combined, should be the subject of a future study.

3.3  SUBFIELD MULTIPLIERS

The theoretical background needed to develop the idea of Galois subficld multiplication begins with the

fact that every Galois field can be generated from any one of its subfields by a primitive polynomial over
that subfield By the method described in Section 2. If GF(p™) is the larger field, and if GF(p™) is a subfield
of GF(p™), then m divides n, and there exists at least one primitive polynomial of degree n/m over GF(p™)
which generates GF(p"). [2, Section 6.6). For each primitive polynomial there are several bases which can
be used to develop the' code for the larger field. The process which will be discussed below for doing sub-
field multiplication suggests using for a basis the (n/m) elements of GF(2™), 1, v, 72. gk’ 'y("/m 1 (here 7 is
a root of the selected primitive polynomial. This basis allows for an easier determination of the code repre-

sentation of the larger field written with the elements of GF(2") as coefficients (see equation (2.2)). In

3-2
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the remainder of this paragraph the theoretical aspects of subfield multiplication are discussed. Let n be a

positive integer and consider the Galois field GF(p™). Let y be a primitive element of GF(p™). The mini-

mum polynomial of 7"

7k is a root. All elements of GF(p™) which have the same minimum polynomial as y

for any positive integer k is the polynomial of lowest degree over GF(p) for which
Kare called conjugate
elements of -yk [5]. The totality of such elements forms a so-called cyclotomic coset. Since every element
of the coset is a root of the same minimum polynomial, the size of the coset is the same as the degree of

the corresponding minimum polynomial. In view of the fact that the minimum polynomial of each coset
divides the polynomial xpn - X |2, Theorem 6.23], and that the minimum polynomials are irreducible [2,
Theorem 6.15], the minimum polynomial of each coset has degree less than or equal to n [2, Theorem 6.24].
Hence, the number of elements in each coset of GF(p™) is less than or equal to n. lt1 is well-kll:?lwn that if
is an element of GF(p™ with minimum polynomial f(x) of degree k, theny, yP.¥P~... .. 4P are all the
roots of f(x) [2, Theorem 6.25]. Hence, the coset of v is precisely {y, P, ..., 1pk'| }. More generally, if
the base field is an arbitrary subfield GF(p™) of GF(p™) instead of GF(p), the concepts of minimum poly-
nomial, conjugation, and cyclotomic cosets over GF(p™) carry over from GF(p). In particular, the follow-

ing proposition gives a description of these generalized cyclotomic cosets.

PROPOSITION 3.1: Let v be a primitive element of GF(p™) and let j be any positive integer less than n. If
m is a positive integer dividing n, say n = md, tthen the set of conjugates of 'r’ {including -ri) with respect to

. tm
GF(p™) is precisely the set of elements {(3))P | t=0,1,...,d-1)

Proof: Recall that two elements are conjugates if they satisfy the same irreducible polynomial. Thus, if
f(x) = xd + ag- -l s a) X + ag isan irreducible polynomial of degree d over GF(2™)
with root ¢/, then

f (wi)P"")

ot Lot i ot
(W)P ) d + ad_l(('yJ) Pm)d" o ka P 4 g

0o tm tm p t tm  tm tm
PP + ag-(P (ﬂ(d—l)) - el “‘l) (,mp * "Op

]

((.ri)d # gy D 4 g ol o ﬂo) ptm

= 0

tm
Note that (ai)p = aj, since a; is an element of GF(p™ forevery i=0.1,....d-1 and foreverv t = 0. 1,
ooy @=L,




It should be pointed out that there may be fewer than N = 4 distinct conjugates ol'yj. a situation which
m

can arise only if j is a divisor of p" - 1.

Recall from Section 2 that every Galois field can be generated from any of its subfields by a primitive poly-
nomial over the subfield. The primitive polynomials are among the minimum polynomials of elements of
the subfield (all minimum polynomials are irreducible, but are not necessarily primitive). It is of interest to
know which minimum polynomials are primitive to see the various paths with which to form a larger field
from a subfield. It will be shown below that minimum polynomials which are primitive can be distinguished
from nonprimitive polynomials by looking at the corresponding cyclotomic cosets. First, though, two
examples of a breakdown ot GF( 24) into cyclotomic cosets are GF(2 1) and GF(2:) are given in Tables 3-1
and 3-2. Also listed are the corresponding minimum polynomials. In Table 3-2, the element t ofGF(Zz)

1s a root of x: +x*1.

TABLE 3-1. CYCLOTOMIC COSETS OF GF(2%) OVER GF(2') (2, PAGE 476]

COSETS MINIMUM POLYNOMIAL PRIMITIVE
L {992 9% 0% xd+x3 e YES
2. (9% 65 ¢'2 %) 3+ x4 x4 NO
3. {95. e'o) x2+x+1 NO
4 gl 9" "3 ") x4 x4 YES
5 (9'%=g0 .1} X+ 1 NO
TABLE 32, CYCLOTOMIC COSETS OF GF(2% OVER GF(2?)
COSETS MINIMUM POLYNOMIAL PRIMITIVE

1. {9.0‘} x4t x4t YES

2. (g2 ¢%) x4 12 + 12 YES

3. {03. 9‘2} x2 4 tx + 1 NO

4. {¢5 ¢%) x2 + 12 + 1 NO

5. (g%} X+t NO

6. {ﬂ‘ol x + t2 NO

7. {07. 9'3} X2+ x 4t YES

8. {g". 9") X2+ x+ t2 YES

9. (@'%-1) x +1 NO

34
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A necessary condition that a coset correspond to a primitive polynomial, i.e., that the minimum polynomial
of the coset have primitive elements for its roots, is that the coset contain n distinct elements. However,
this condition is not sufficient, as can be seen in Table 3-1 by the coset (g3. g". g' 2, gq }. The reason that
this coset does not consist of primitive elements is that the exponents 3, 6, 12, and 9 have the common fac-
tor of 3 with the order, 1§ = 24 - 1, of the cyclic group GF( 24) - {0}. Since cosets with fewer than n
elements correspond to cosets in subfields of GF(2™M), the minimum polynomials corresponding to them
cannot be primitive. Thus, in order to determine the primitive polynomials of GF(2") over GF(2!), one
first computes the number of n~element cosets of GF(2™M), and then discards the remaining cosets whose
elements have exponents having a common factor (larger than 1) with (2" - 1), the order of the cyclic
group GF(2™ - {0} of GF(2™. In Proposition 3-3 below there is a procedure given for counting the
number of n-element cosets. However, Lemma 3-2, which involves the concept of greatest common

divisor, is needed first.

A few facts concerning the greatest common divisor are now in order. Let n=p k-pzkz e ptkt. the

p;’s distinct primes. Then n/p, n/py, ..., n/pg are all divisors of n, in fact, maximal proper divisors of

n, and so GF(p"Pi) is a maximal subfield of GF(p™) for every i. In other words, there are no proper non-
zero subfields (i.e., not GF(pM) of GF(p™) containing GF(p™Pi). The largest number which is a divisor of
two numbers a and b is called the greatest common diyisor of a and b, and is written ged (a, b): for example,
ged (6, 15) = ged (2:3,3:5)=3.

Lemma 3-2 helps to get an exact count of the number of cosets displayed in Proposition 3-3.
kH

k k
LEMMA 3-2: Let n be a positive integer and ;uppose that n = p; . - el t each p; a distinct

prime, and each k; a positive integer. Then the greatest common divisor of n/p, n/p:. an/pe (ged

k-1 k5-1 K¢

(/py.n/py. .. on/p)isp) g Ps 27 ... Py t
kq-1 ky-1 k-1 n k k k-1 k
Proof: Lety =p) ! 'p22 "'ptt .Nownotclhat-‘;}=p| "p:z"'pi' ~--ptt
forevery i=1,2,...,t. Therefore,y divides n/p; foreveryi=1,2, ..., t, and so y divides

ged (n/py.n/pa. ... n/pe). Suppose d is an integer such that yd = ged m/ppon/pa..on/py).
If d is greater than 1, then d = pijl . pzjz SRS p'Jt where at least one of the j;'s is greater than

0, say jj. Then

ky-| k4-1 k-1 i i i kil
yd=<p|' ‘ py 2 "'pt‘) : (Pl"l*:“"'ﬂ')‘ Bt ety

j (ky-1) +j
m” *© (extrancous) = py ! o (extraneous).

(The extrancous part is not important to this argument.) Since yd is the greatest common di-

visor of n/py. ... n/py, yd divides n/p) = Plkl‘| g p:kl b plkt and so, from (3.2),

3-5
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h* 0, a contradiction to the original assumption that j; is greater than 0. Thus, Jj =0 for f

alli=1,2,.. ., tandsod =1 and finally y = ged (n/py. n/py. . . ., n/py).

PROPOSITION 3-3: Let n be a positive integer and p be prime, and suppose that n = plkl . p:"l Ly
p'kl. the p;'s distinct primes. Then the number T of n-element cyclotomic cosets of GE(p™) with respect
to GF(p) is

t
t 2
T ="_, {pn > p"/l‘i +.B F peed(n/pjn/pp) _ y piedged(n/py. n/py ), ged(n/p. n/pg))
i=1 k=i j=1 a,b,c.d
k-1 . koy-1 ... k,-1
PRUERL Y R Pt‘}
Proot: The proof consists of counting the number of elements in GF(p™) which lie in cyclotomic cosets

of length n, and then dividing by n.

The first step is to subtract from p", the total number of elements in GF(p™), the totality of ele-

ments of GF(p™) which lie in maximal subfields of GF(p™). The number of such elements is

t
'El Pn/pi = P“/pl + p“/pl + ...+ p“/pt. i.e., all the elements in the maximal subfields of
|=

GF(p™. However, unless t = | (i.e., n is the power of a single prime number) there are nontrivial
intersections among the maximal subfields and so there are some elements which have been sub-
tracted more than once. Since the intersection of the two maximal subfields (1F(p“/"j) and
GF(p"/pk) has ged (p“/pj. p"/pk) elements forj, k=1,2,..., t, the number of elements in all
of these intersections is 4

5
) > T pRed(n/py n/py)
& /o

and this sum must be added to the total. Once again, there may be a nontrivial intersection of
the ficlds GF(ngd(“/pu‘ n/Py)) and (}F(pg“‘d("/pc‘ n/Pg)) for some a. b, ¢, d. Hence, the sum

Y ¥ 3 peed (gcd(n/pa.n/pb)‘gcd(n/pc, n/pd)>
b d

<

=

must be subtracted from the previous total. This process continues until all the pairwise intersec-
tions are the same, at which point the number of elements in this subfield is added or subtracted.
The final sum is the total of all the elements which do not lic in any proper subficld ot GIE(p"i.

and therefore which do not lie in any coset of length less than n. This total is p Ikl . P ol

.-

: p‘kt 1 since it is equal to ged(n/py.n/ps. . on/py) (see Lemma 3-2). Dividing by n now

gives the number of n-element cosets.
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hy COROLLARY 3-4: Let n be a positive integer and p a prime. 11 mois a divisor of n, then the number of n/m-
, element cyclotomic cosets in GF2™ over GEQ2™) is mT.
3
N
Proof:  Since one needs a primitive polynomial of degree n/m over GEC2™) to generate GEF(2™), the max-
i &
i imum length of a coset in GE(2™) over GE(2™) is n/m.
There are T n-element cosets in GE(2™) and so there are no fewer than (m T) n/m-clement cosets .
: in GEQ2™) over GF(2™) (since there are a total of nT clements in these cosets, and nT = (n/m) (mT)). :
. In fact, there can be no other cosets of length n/m, since they would have been part of an n-length
X coset over GF(2™M), originally, by the definition of a cyclotomic coset.
The following three examples will help illustrate the preceding two results.
“
: < B
EXAMPLE 3-5: Lletp=2andn=12=2=+3. Then Py =2and py=3,and so n/py = 12/2 =6 and n/ps=
12/3 = 4. Thus, the maximal subfields of GF(2!2) are GF(20) and GF(2%), and the intersection of these two
subfields is the subfield GF(28¢4(0.4)) = GE(22). Hence, the number of elements in GE(2!2) of order
b
212 is
212026 +2%) 422 = 4096 - (64+16) + 4 = 4096 - 76 = 4020
and so the number of 12 element cosets in GF(‘.’| 2) is 4020/12 = 335.
EXAMPLE 3-6: Letp=3,andn=15=3-5. Then Py =3and py=S5,and son/py = 15/3 =Sand n/py =
15/5 = 3. Thus, the maximal subtields of GF(315) are GF(3%) and GF(33). Since ged(3,5)=1= 30.50,
the intersection of these two subfields is GF(31), and so there are
] 315 (35 4331+ 3!
_E elements of order 3!5- 1) in GE(3'S). Thus, there are
| | 315 - (35 +3%)+ 31 _ 14348907 - 270 + 3 _ 14348640 . gsp.576
g 15 15 15 i
i 1 PR
.. 1 S-element cosets in GF(3' ).




EXAMPLE 3-7: letp=landn=3060= 1303205 Then Pp=2py=3.and p3=5. Hence.n/p) =
360/2 = 180, n/py = 360/3 = 120, and n/p3 = 360/5 = 72. Thus, the maximal subfields of GF(2300) yre
GF(2180) GF(2120) and GF(277). Next, ged(180, 120) = 60, ged(180, 72) = 36, and ged(120, 72) = 24,
Finally. god(60. 36) = god(60, 24) = ged(36, 24) = 12, Note also that p K171« p,K27l e p ksl = 22
3150 = 4.3.1 = 12, Thus, the number of 360-clement cosets in GF(2300) i

?olT) {:360 , [zlso + 2120 :7% " [:o() + 236 4 3:€| . gl2

Since the cosets of length n in GF(p™) correspond to irreducible polynomials (recall that all minimal poly-
nomials are irreduciole), Proposition 3-3 gives the number of irreducible polynomials over the base field
GF(p). To determine which of these polynomials are primitive, it is sufficient to observe if the exponent
of any element of a coset has a tactor (other than 1) in common with the order of the field p™-1. If there
is such a factor, the corresponding minimum polynomial is not primitive (because the elements of the coset
cannot be primitive elements of the field); otherwise it is primitive. The next example illustrates this prin-

ciple.

EXAMPLE 3-8: Letp=landn=8= 23, Since 8 is the power of a single prime it is necessary to subtract
only the single maximal subfield GF(2% of GF(23), i.c.. there are

L 2824V L Jasg-16% = L (240 = 30
3 3 8

cosets in GF(ZS) with 8 elements (see [2. page 476] — note that there are 16 irreducible polynomials of de-
gree 8 listed there. Fourteen of those have different reciprocals and two are selt-reciprocal. Thus, there are
14 x 2 + 2 = 30 distinct irreducible polynomials listed there). To determine the number of primitive poly-
nomials, the order ofGF(l‘.s\ - {0} = 28 1=2255=3+5+17is needed. In Table 3-3. the lowest expo-
nent of each cyclotomic coset is listed and whether the corresponding minimum polynomial is primitive.
{Note that all the cosets which are not associated with a primitive polynomial have lowest exponent having
a common factor with 255.)

Note that if 'yl represents a primitive element from the first coset, then 7' 7 75' ; 785. 7' 19 and 7:55 =

70 = | represent the ditferent cosets of GF(2¥) (all the elements except 0 are accounted for).

It is often necessary to generate the Galois field GE(p=™) from GF(p™) with a primitive polynomial of de-
gree 2 over GF(p™). It is possible to choose a primitive element in (;F(p:“\ and its conjugate with respect
to GF(p™) (see Proposition 3-1) and calculate a primitive polynomial ot degree two. For designing the Gal-
ots multiplier for (}Ftp:“) by doing the actual multiplication over GF(p™), it is necessary to know how to
write the primitive element and its conjugate with coefticients in GF(p™). The next proposition tells exactly

how to do that.
3-8
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TABLE 33. LIST OF COSETS FOR GF(28) (LOWEST EXPONENTS ONLY)

LOWEST LOWEST LOWEST

COSET EXPONENT | PRIMITIVE | COSET EXPONENT PRIMITIVE |COSET EXPONENT PRIMITIVE

1. 1 YES 13. 25 NO 25. 59 YES

2 R} NO 14. 27 NO 26. 61 YES

3. 5 NO 15. 29 YES 27. 63 NO

4 7 YES 16. N YES 28. 85 (2 ELEMENTS)

5. 9 NO 17. 37 YES 29, 87 NO

6. n YES 18. 39 NO 30. 9 YES

7. 13 YES 19. 43 YES 31 95 NO

8. 15 NO 20. 45 NO 32 m NO

9. 17 (4 ELEMENTS)| 21. 47 YES 33. 19 (4 ELEMENTS)
10. 19 YES 22, 51 (4 ELEMENTS)| 34. 127 YES

1. 21 NO 23. 63 YES 35. 255 (1 ELEMENT)
12, 23 YES 24, 55 NO

PROPOSITION 3-9: Let p be a prime number and let n be a positive integer. Suppose that a is a primitive

element of GF(p™) and that f(x) = x= +aix +aKisa primitive polynomial over GF(p™) generating GF(p:“\.
n p

If v is a root of f, and if n is a positive integer, then the conjugate element Y™MP of yM =5 + t+y with re-

spect to GF(p™) is
.ph :
YWP = [(p-1t-al+s) - l:n+(p-l)t'7 (3.3)
for s and t in GF(p™. In particular it y™ is an element of GF(pM), i.e., if t = 0, then y™ is self-conjugate.

n o g
Proof:  Since Y™ and (Y™P  are conjugates with respect to GF(p™) by Proposition 3-1, then they are

the two roots of a quadratic polynomial over GF(p™). In fact, they satisfy the polynomial

n n n
(x- Y™ (x - yMP7y = x2 - (yM + 4MPT) 4 ym . yMP

n n = . ey n
and so the coefficients Y™ + yMP" and yM « yMP° must tie in GF(p™). Suppose yMP = a + bey.

Then

n
YN +yMPT = (s+t9) +(a+b y) = (s+a) + (t+b)y [REY

and

39
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sa +(ta*'-sb)'y+!b'72 (3.5

n
M 4MPT = s+t y)@+bry)

sa +(ta +sb)y +tb [-(ady +aX)) = sa +(ta +sb)y +(p - 1) [y +aK]tb

(su+(p-l)aktb)l:n+[ta+sb+(p— 1) altb] y .

n n
Since Y™ +4MP" and yM « yMP" gre in GF(p") and since elements of GF(p=™) which lie in
GF(p™) are written h15, + 0, *y for some h in GF(p"),

t+b=0 from (3.4)and ta+sb +(p- I)n-i tb =0 from (3.5).
Thus, b = -t = (p - 1)t and together with the fact that (p - 1)° =1 (mod p) (since p - 1 =-1 (mod
P).0=ta+s(p- 1t +(p-Dadt (p- 1t = t(a+(p- s +adt) . Finally, t=0 or a+(p-1)s+

ot = 0.

Ift# 0,.thena+(p-1)s - oft=0,andsoa= - (p-1)s - alt = s +(p - 1adt. Thus.‘ympn =
[s+(p- l)ajt] +(p - 1) t*y, which agrees with (3.3).

n
Ift=0,thenb=-t=0,andsoy™P =a-1+0-y=a-1. Also.sinceympn=(-7m)pn=

n n
(s*1P = sP <1 = 5.1 ,a=sand y™ is self-conjugate.

The next example, which illustrates the preceding proposition, will be discussed in more detail in the next

section. That discussion occurs in the exposition of the generation of GF(28) from GF(2) in steps of de-

gree.

EXAMPLE 3-10: Let p =2 and n =4, and suppose that f(x) = X2+ X+ g where g is a primitive element of

GF(24). Then f is a primitive polynomial (see Example 4.2 below) which generates GF(28).and if wisa

. b) : 2 2 s '
root of f, then w=+w+g=0,ie,w*=g-l4+ Ig°w. By Proposition 3-1, the other root of f is we = wlo,

In order to apply the preceding proposition to write w16 in a form with coefficients in GF( 24, it s necessary

to observe that in the context of Proposition 3-9,j=0.k=1l.ands=0and t=1 (sincew=0°*1 + 1*w).

Thus, by (3.2), recalling that 14 is the unit element of GF( 24) and that 1g is the unit element of GF(JB).

16 = (2- 1190401 1+ Q- D 1-w=lg+iy-w

X 4 44 32 b J : . 4
The conjugate (w=)= = w-“ofw= = g+ Ig+ 14 w(therefores=gand t = 1) with respect to GF(2™)

is

w3 = (2-D 1 gl4g 1+ QD lew = v T tw =gl dg g w

3-10
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(that gl “=lg+tgin GF(J") can be seen in Table 4-2 in the next section.

o S8 3 . S
Suppose that f(x) as a primitive polynomial of degree 2 over GF(p=") which generates (.l~(p"ll). and sup-
pose that it is desired to determine a primitive polynomial of degree 4 which generates GE( p"“) over
GF(p™. The following proposition tells how to calculate such a primitive polynomial from f(x). Before

stating this proposition, though, the concept of a conjugate polynomial is needed.

Let f(x) = akxk +a. "k"l ++a xtagand g(x) = hk\k + 0+ b X+ by be two arbitrary polynomials
over GF(p'“) Then £(x) and g(xX) are called conjugate polynomials it aj and b; are nomugatc elements of
(-F(p'“) with respect to GF(p™) for every i=0,1,.. .. k. By l’mposnmn -1.b; =a; P for every i.

: = B P ¢ | oy | o A
PROPOSITION 3-11: Let f(x) = X= + ox +aX and gx)=x-+aod P x+ ok P he conjugate primitive poly-
nomials over (‘.F(p:“). Then the polynomial r = f-g. given by

rx) = x4 <oJ +od’ p) a(p 1) 4 oK + ok° p> xe + (a,ﬂ ™ & oY pl\>

+ qk(pn+| ) z
is a primitive polynomial with coefticients in GF(p™) which generates GF(p““).

Proot: It ¥ denotes one root of r(x). the other thrce roo(\ of r .xrc m the same cyclotomic coset with re-
spect to GF(p™) as v, and are given by 7“ 7“ . and 7P h\ Propmmon Since thc\e tfour

p.n

elements satisty f(x) and g(x). and since f(x) and g(X) are primitive v, 7‘ cand 7‘ :\re

primitive elements of (‘.F(p“"). Hence r(X) is a primitive polynomial. [t only remains to show

that the coefficients of r(x) are in GF(p™),
For convenience, r(X) will be written in the following way:
4 3 2
r(x) = X7 +a3x +2s5X" +a X +ag.

It must be shown that ag. aj. ay. and ay are all in GE(p™. This can be done by showing that

(a)“ T=1fori=0,1,2,3 First, ag.

/ .. g )
NO)P“" = Q‘k(pl‘+l> P"'l = ak“‘-“'l) = QJ"“") K = lk = |

A o n. n
since a is in GF(p=™) (recall that tor every element t in GE(p=M), P Lay, Thus ‘.lop L=,

T - | | st eyl | — .
and so agy 18 in GF(p™). Next it is shown that ay; = ol * P74 oK% (6 in GF(p™. Before this
10 |
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is done, however, the reader is reminded that tor any two elements a and b of GE(p™, (a + b =
n n 3

aP” +bP 2, Theorem 6.14] and so

alpn (@i+k'i‘" + ak.ﬂ'.p"> pn o (aj.f.k.p“) pn i (ak.ﬂ‘.p") pll

\ . % 3 : b
@-ak"‘") A (ak ~a~"pl‘> P a oi'P" . gkP " 4 gkep" . oip"

= 3 ¢ Y 4 & g
uJ'Pn : wp-n)k * oK, mp-n)J ¥ o,l‘P" o ak’l‘" o

= Qi.pn+k + ak'pn+j = ul‘

hl ;)
=N : o T 3 ] y Sy b n )
Note that aP ™ = a since acis in GF(p=™), i.c.. for all nonzero elements of GE(p="), aP™ =a is
. p:“-l . N . . pn .
equivalent to « = 1. Similarly, since it has now been shown that a\ V" = ap. it can be con-

cluded that a is in GF(p™. Next ay must be considered.

0"« (MY gk gk P L MIR" e gkepRep"

. R . 3 5 . .
B T I I I L B e (ap-n) IR A ST

b . . .
(“p-n)k = oo Pk Py R g T D g kPt gk s ay.
and so  ayisin GF(p™). Nextaj.

bl
‘.‘“ . .

vl 3
My @ = P‘+c\J=a;.

u3pn = (o *,Qj-p“)p“ = a-i'Pn + oJ‘P"‘P" = of'f

and so a3 is in GF(p™. Thus all the coefficients of r(x) are in GF(p™ and so r(x) is a primitive
polynomial over GF(p™).

Thus, it is not difficult to design a GF(p*™ Galois multiplier over GF(P™ if the design of a GF(p™) multi-
plier is known over GF(p=M),
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SECTION 4
EXAMPLES

4.1 INTRODUCTION

In this section, two examples are given iltustrating the concept of subfield multiplication which was dis-

cussed in the introduction to this report. Much of the procedure needed to do subfield multipiication is

based on the results of the preceding section.

<
The first example shows the process of constructing GF( %) in steps of degree 2, i.e., via GF( hag F(2-),

| B ]

(‘.F(I“') - GF()"). and GF(2H - GF( 38 This example is the same one used in reference (6], but it is

g 4
H given in much more detail here. The second example deals with the construction of GF(S") trom GF(3~).
. In both examples it will be shown how to multiply two elements in the larger tield by carrying out the
o actual multiplication in their subfields.

4.2 CONSTRUCTION OF A GF(23) MULTIPLIER USING SUBFIELD MULTIPLIERS

To begin the construction of a GF(ZS\ Galois linear module using a GF( g multiplier, one starts with a
C-F(Z:\ module using G F\l‘ ) multipliers, i.e., AND gates. To construct such a module, a primitive poly-
nomial of degree 2 is chosen over (]F(ll\. There is exactly one such polvnomial, p(x) = XX+

[2. page 476]. Lett be arootof p. Then 0 =p(t) = R+t I, and so to=1+t Using this equation, the
code for the tield GFG:\ = {0y 1y 1, - } can be easily computed; see Table 4-1. (For example, t has the
code Ol since t =0+ 15+ 1 + t. In the remainder of this report, the 0 and 1 element of GF(2™) will be

labelled Oy, and 1, for every m greater than 1)

TABLE 4-1. A CODE FOR GF(2%) OVER GF(2")

 § 0, | o o
Yy | 0
:: a8 1

’ -~ . . .
Now the Galois multiplier for GF(2=) is constructed. It ( 14.t }is the ordered basis used. the basis product

matrix (see the Appendix) is given by

. : PO PR P s x) (m m)
M- & p = AEET = .
( tly et ¢ or 1

B 4-1
-
i-L—-M___




i §

[ ]
)

Thus, the two component matrices are

t - iz 10) 2 <01)
| § 0 2 R

‘ f M = and M =
: ! ( 01 2 1

Thus, the GF(Zz) multiplier over GF(2!) can be drawn in Figure 4-1.

3 Y2

9

X)
KEY
{
; END -
. S’
: r EXCLUSIVE-OR

(X-Y)l (x.y):
FIGURE4-1. A GF(22) MULTIPLIER OVER GF(?‘)

4-2
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The next step is to construct a GF(2% multiplier out of GF(2~) multipliers. It can be seen in Table 3-2

that there are 6 irreducible polynomials of degree % over GF(Zz) of which 4 are primitive. This fact also

tollows from Corollary 34 since T = '4( y 2:) = ‘f = 3 is the number of 4-¢lement cosets over GF(ZZ).
and hence there ure;n" +T =‘g—' 3 = 6 irreducible polynomials of degrce,‘?{ =%= 2 over GF(ZZ). Again
from Table 3-2, there are two cyclotomic cosets (numbers 3 and 4) which have a factor (3) in common
with the order 24-1 = 15 of the cyclic group GF( 2% . {0}. The primitive polynominal that is used in
this discussion is x- + tx + t. If g denotes a root of X2+ tx + t, then g: =t+tg,andif {14g}is the
ordered basis chosen, then the folicwing code (Table 4-2) is obtained for GF( 2%,

TABLE 4-2. A CODE FOR GF(2%) OVER GF(22) AND GF(2")

GF(2%) GF(22) GF2")

04 0, 0, 0000

14 % 0, 1000

g 0, 19 0010

g2 t : 0101

g t2 1 110

¢t t 1 0110

0° t 0, 0100

96 0, t 0001

g’ 2 t? 1

8 1, t 1001

¢ 2 t 1101 1
g'0 2 0, 1100 .
o' 0, 2 0011
g'? 1 % 1010

o' ' 2 o111

o4 1, 2 101

The primitive polynomial X+ tx + t used to generate GF( 2*) from GF(.?:\ has conjugate polynomial

X tox 4o (see the preceding section for the definition of conjugate polynomial). Thus, by Proposition
3-11, the product of these two polynomials is the primitive polvnomial of degree 4 which generates GF(Z")
from GF(Z'). Using Table 4-1 to carry out the calculations in GF(lz). it is possible to see that o 34
is this primitive polynomial over GF(2Y). In fact

- | 4 Al 1 bl
(x2+tx+t)(x:+(:x+t:)=x"+(t+t-\x3+(t'*(+l\x"*‘(t‘ +t')x+t3=x4+x3+l.

4-3
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The next step is to see how GE( 2“) multiplication can be done with GE(2<) multipliers. Again, the

ordered basis which is used here is in {1 4,2}, and so the multiplication matrix is

1, I\ '1 01 ())l’
M4'2 = 4 2 = g ey
£ '3 02 ) tt

Thus, the two component matrices of (,l~(24) over GEF(2<) in this case are

| 0 0 |
M2 - 2 0 and MpH? = 2
02 t '2 t

I'hese two matrices tell exactly how to connect the tour (il‘(.?z) multipliers in order to obtain a GF( 24)
multiplier: tor example, to obtain the first 2-bit output of the GI( bR} product, if Mk4'2 = ("'ii)k4'2'
then (my )|4 and (,":2)|4.2 are needed, the latter multiplied by t; similarly, the second 2-bit output is
obtained by adding (my 3):4'3 and (my )_1_4'2 to ('“22)24.2 times t. To construct a t-multiplier one uses
the Beethoven method of Ellison [4]. In particular, the two bits in the t-multiplier are calculated by
(M) =t Mll'l «xtand My =t le.! - x! where x!'is the transpose of x = (xX2) (it x is the row

. X :
vector (X x»). then xU is the column vector ! ) ). since t =01,
~ X1

10\ [/x X
M - 0l | = (01} 1 =
b ( )<0 1) <X:> ( (":) 4 And
X X
(M), = (()I)(?:><X‘> = (1) (\') *X[ex3.
b ) X "
Thus, a t-multiplier can be drawn in Figure 4-2,
A 2
(tx)y (tx),y
“Xg = X4 ® X7

FIGURE 4.2, A CONSTANT t-MULTIPLIER IN GF(?Q)

a4
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] : ;
:. Now a GF( Aa)) multiplier over GF(2=) can be seen in Figure 4-3. Here x and v in GF( M) are encoded by
X Xaandy 1y each xj and v; in GF(I:).
-
Yl \:
x 6F(24) 6F2)
X MULTIPL LER MULTIPLIER
‘ f
GF(2%) GF(24)
% MULTIFLIER NULTIPLIEK
L
_9 < 1 MULTIPLIER
. KEY
. @snum‘
EXCLUSIVE=OR
: (2 BITS)
« \x-v)l (NY DA
i FIGURE 4.3. A GF(2%) MULTIPLIER OVER GF (29)
-
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¢ %
= The next step in order to build a GF( 28) multiplier over GF( 24) is to generate a code tor GF( 2‘4) over 1

(‘-l‘(l"\. In Example 3-8 it was shown that there are 30 irrcducihlc\{mlynumiuls of degree 8 over GF(2) of

which 16 are primitive (see Table 3-3). By Corollary 34 there arc:; + 16 = 64 primitive polynomials of
degree 2 over GF( M, The one chosen here is p(x) = X+ X+ g One root of this equation in GE( M) is 1
called w, and therefore the other one is w34 = w“‘. by Proposition 3-1. Hence w satisties the equation !
we =W g and from this equation the entire tield GF(ZR\ minus 0 can be written as a power ot w. The .
ordered basis used for generating (‘.l"(ls) over GF(2H is | lg. W Jand so the basis matrix for (‘.F(ls) over
GFQY is

5 (‘a w> ; <l404 04 14
W \\: 04'4 8 l4

Thus,

ly Oy R
M 34 = ( > and M8 = (
04 la 14

Once again a constant multiplier is needed in a subfield multiplier, in this case a constant g-multiplier. As
in the case of the constant t-multiplier described earlier in this section, the g-multiplier is constructed by

the Beethoven method. Before describing the construction of the constant g-multiplier, Figure 4-4 shows
the GF( 28) multiplier over GF( ). Note the similarities of this multiplier to the GF( 23) multiplier over
GF(Q2 Y in Figure 4-1, and the GF( % multiplier over GF(Bz\ in Figure 4-3.

Now, tor the constant g-multiplier. From Table 4-2, the ordered basis of GF( 2 over GEQ2 1 consisting

of unit vectors is given by {14, 35. g, gb }= (1000, 0100, 0010, 0001 }. Again using the basis product f ]
matrix method and the Beethoven reduction method, the g-multiplication gate can be determined:
4
1 & @ 1000 0100 0010 0001

! g gl0 g0 Il 0100 1100 0001 0011 {
g g g ¢/ 0001 0011 1111 1010 |
g0 gl g7 !l 0001 0011 1111 1010 ‘

1000 0100 0010 0001

‘“14" - [ 0100 M = 1100 M{” - [ 0001 M_"“ <[ 0011

0001 5 0011 3 1001 0111

0011 0010 (VRN 1110

4-0
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|
!
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FIGURE 44. A GF(28) MULTIPLIER OVER GF(2%)
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Thus,

1000 X} x|
0100 X2 X

(Mg’l = (0010) (OOOI <x3> = (0001) <x3> 7 |
11 X4 X4
0100 X1 X1
1100 X9 X1

lMg)3= (0010) (00“ (‘;> = (0011) <x;> =  Xx3®x4
001 X4 X4
0010 X] X1
0001 XA XH

(Mg)_-;' (0010) <l00| <x;> = (1001) (x;> =  X;®xq
0111 X4 .‘(4
0001 X‘ xl
0011 X9 . XA

Mgy = (0010) <0Hl <‘;> = (0111) x;> = Xy®Xx3®x4
1110 X4 X4

It can now be concluded that the g-multiplication gate is as shown in Figure 4-5.

x1 X2 X3 X4
(9°%)4 (9°x) (@°x)4 (@°x)4
= X4 =x3%¥xy =%y Pxy =%y ®x3®xy

FIGURE 4.56. A CONSTANT g-MULTIPLIER IN GF(2%
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It turns out that subfield multiplication can be done bit-serially. By computing in this manner, it takes
only one GF(!“) multiplier to do GF(28) multiplication as Figure 4-6 shows. It is believed that

the advantages of bit-serial implementation are most strongly felt for very large n when the underlying
multiplier becomes prohibitively large. Here, multilevel logic may have a strong impact also. However,

with or without multilevel logic, subfield multipliers offer much potential for complexity reduction.

Y —0'5‘ 27' 26. 25 2‘4 ? - i
% il

¥ ¥ S = FORTION OF FIGURE 4-4 |
e WITHIN DOTTED LINES !
Pl &2 #] &
s P = PARITY NETWORK
T = TOGGLE FF
é 7 » Y N0 ERROR
. > GF(2Y ]
2 2 — x¥p62, = §p
MULTIPLIER e
25 A — xpY,82, # S,
54 0 7, ——2 ERROR
i . : :
o O— "
1. |
|
s O ‘
A
INITIATE SEQUENTIAL ) LOAD/UNLOAD (8 STEPS)
LOAD/MULTIPLY CONTROL | @) MULTIPLY (4 STEPS) |
L—@ MULTIPLY (I STEF) 3
COMPLETION
fm_.zp
1 —D— olr/ [0 [1> .

FIGURE 4.6. A 13.STEP GF(2%) GALOIS LINEAR MODULE (BIT SERIAL INTERFACE)
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A natural question at this point is to ask whether it is possible to use the technique stated above to build
L D) R e o8 . !
GF(28) multipliers out of GF(2=) multipliers. The answer is in the affirmative, and the process is

described below.

To begin with, recall from Proposition 3-11 that a primitive polynomial of degree 4 over GF(Z:) can be
obtained from a primitive polynomial of degree 2 over GF(24) by multiplying the latter polynomial by its
conjugate polynomial (See the definition of conjugate polynomial in the paragsaph prcceding Proposition
3-11.) Since x= + x + g is the original polynomial, its conjugate is x- +x + (3,)" =xT+x+ g (by
Proposition 3-1, g g4 is the conjugate of g in GF( ’4) with respect to GF(’")) Therefore, the primitive
polynomial generating GF(ZS) from GF(?.") in this case is

(x2+x+g)(x2*x+g4)=x4+0~x3+(g+g4+I)'x:+(g+g4)x+g5=x4+t2x:+tx+t

(See Table 4-2 for the computations.) To determine the basis of unit vectors ot'GF(‘.’8) over GF(22).
{15050,0,, 045150404, 050,150, 050,051, }, one simply notices that this set is the same as
{1404. 804, 0414, 048} (see Table 4-2). Since 1g =1404 and w =041y, it is necessary only to determine j
and k so that w = 204 and wk = 048 (recall that g0, is shorthand for g*1g + 04*w = g). Observe that w =
(g04) is in GF(2H and so (w13 = | = wO(mod 255)  Hence, 15j=255andsoj = 17. Finally. since wX =
041 +gw= wilow=wl8 Thus, the ordered basis of unit vectors for GF(ZS) over GF(Z") is (lg.w”, w

w“_; }. and as the basis product matrix is

s wil e w!8
s 0 SRR S | S
> I w!9
ST AR R R

Using the facts that t is embedded in GF(28) as w83 ((w85)3 =w3S = 1) and t- is embedded as w! 70.

and that x* + t2 x2 + t x + tis the primitive polynomial used to generate GF(28)'from GF(Zz). it is possible
to see that
12020702 07130505 03031303 07050315
8.3 02120:02 tt 020: 02020212 0303t t
MO =

0:0:‘:02 02020212 Ozlzlzoz it 0:‘2
05050515 0504t t tt 05l  to1att
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Theretore, the four component matrices are

1202050, 021,050,
N Mls‘: b O:t 020: M:S‘: & l:t 0:02
040404t 040414t i
i il 7 Al A 4
0203t lz 0:0:t I:
050,170, 02050513
050~04t 0450414t
* M38': = ot e M48‘: - S
120,150, 0515051,
0:( 02( l:t l:t

Now, using the same procedure for constructing a t-multiplier it is possible to construct a constant t=-
multiplier. Finally, the entire GF(28) multiplier built out of (7): =16 GF(ZI) multipliers can be de-
signed. It is also possible to design the GF(28) multiplier out of a single GF(Zz) multiplier by sequentially
inserting the inputs as it is done for the GF(28) multiplier over GF( %4 (see Figure 4-6).

4.3 CONSTRUCTION OF A GF(3%) MULTIPLIER USING SUBFIELD MULTIPLIERS

In this example a GF(34) Galois multiplier is constructed out of GF(32) multipliers. To begin with,
GF(3) = {0,1.2 } and the operations of addition and multiplication in GF(3) are given by addition and
multiplication modulo 3, a generalization of GF(2) arithmetic.

In order to construct GF(32) from GF(3), the primitive polynomial p(x) = X+ 2 x +2is used. If a root
of p is labeled a, then at=a+| (since 2 = -1 modulo 3), and the ternary code for GF(32) with ordered

basis {1,a} is shown in Table 4-3.

TABLE 4-3. TERNARY CODE FOR GF(32)

d 1 a 1 a |
i3 0 0 0 Full B 0 i
N
i | 4 1 1 0 2| o 2
| W
: a 0 1 S| 2 2
B =
|
-




i The multiply matrix for GF(32) is
:
E . 1
] a 10 01 |
» M = = = |
a a° 01 11 |
b
E &
i and so
|
P 4 1 o el
i Ml L and M, =
7 0 1 5 R
1 Thus, a GF(3%) multiplier for the temary code is illustrated in Figure 4-7. .
£
- X X9
I
‘ ¥ GF(3) GF(3) 1
: L MULT. l MULT. 3
; 1
‘ GF(3) GF(3) ’Q
Y2 MULT. MULT. i
18 ' t
by i a
il | ;
(xy)y (xy)qg .
1 KEY:

= GF(3) MULTIPLIER

@ = GF(3) ADDER i

FIGURE 4-7. A GF(32) MULTIPLIER OVER GF(3)




By Proposition 3-3 there are

T=7 {34—33}=l— (81-9)==+72 =18

]

=

cyclotomic cosets of length 4 in GF(34). Hence, by Corollary 3-4 there are mT = 218 = 36 2-¢lement
cyclotomic cosets in GF(34) with respect to GF(S:). In Table 4-4 below it can be seen that only 8 of the
cosets in GF(34) over GF(3) have no factor in common with the order, 3% -1 =80 of the cyclic group
GF(3% - (0)of GF(3%).

TABLE 44. TERNARY COSETS IN GF(3%) WITH LOWEST EXPONENT IN EACH CLASS NAMED
(1 is{b'. b3, 02,027}, 21is ®2, b5, b'8 6%, ETC)

PRIMITIVE PRIMITIVE
COSET MINIMUM POLYNOMIAL COSET MINIMUM POLYNOMIAL

| 8 1 YES 13. 20 (2 ELEMENT COSET)

2. 2 NO 14, 22 NO

3. 4 NO 15. 23 YES

4, 5 NO 16. 25 NO

5. 7 YES 17. 26 NO

6. 8 NO 18. 40 (1 ELEMENT COSET)

7. 10 (2 ELEMENT COSET) 19. 41 YES

8. n YES 20. 44 NO

9. 13 YES 21. 50 (2 ELEMENT COSET)
10. 14 NO 22. 53 YES
11, 16 NO 23. 80 (1 ELEMENT COSET)
12. 17 YES

Hence, these 84 = 32 elements are primitive, and are, of course, primitive with respect to GF(B:). Thus,
there are 16 2-element cyclotomic cosets of primitive elements in GF(S“) with respect to GF(33). and so
there are 16 primitive polynomials of degree 2 over GF(3:) with which to generate GF(B“). The one used
here is g(x) = X2+ x +a. lfbisarootofg(x)inGF(34). then0=b-+b+aandsob==-a- b= 2a+2b.
A close look at Table 4-3 shows that GF(3) viewed as a subfield of GF(37) consists of the elements 0.1, and
at O0-=0,1=-1l,and 2~ atyand so b2 = 221 + b =a% a1 +atb =251 +a*-b, with coefficients in
GF(Jz\. Thus, the basis product matrix for GF(34). with respect to the basis {1.b), is

1 b 10 0l 10 0l

M = =
b b= o1 ada? 01 ad2




{
.

& sy

aisis

»

[ T [t

.

|
v

L

™

and so

10 01 01
Ml = and M: = =
0 ad 1ot 12

4(=2) and 35 are needed to build the GF(S")

multiplier over GF(32) by the Beethoven reduction method (4). For ad multiplication by an arbitrary ele-
mentz= z125 of CF(J") with z| and z; in GF(3:). is the same as multiplication by 2:

10\ /2 z
ad, (20)(p )( ') = (20) ( ')
| l: l:
1 z z
(20(0 ) ( l) < (02) < ‘) 2z4
. 11 l: l: -

and, for a'5

0\ /z z
ad; (02)(:) ) 'Y (o:)( ‘) 224
1 l: l: 3
01 z 'z
(02( ) ‘> = (22) X
11 l: Z~

From M) and M, it can be seen that constant multipliers for a

2Zl

Zz] + 224

4 S

Thus, the multipliers for a™ and a” are shown in Figure 4-8 and are very simple compared to the com-
plexity of the total GF(3 3 multiplier, as can be seen in Figure 4-6. Here are two elements x = X 1% and

y=y|ysin GF(34). with x; and y; in GF(3:). are multiplied together.

2‘ 22 l' 22
ada2 ad
oo I
2:1 222 2:2 21‘ ® 222

FIGURE 4-8. CONSTANT a¥ = 2 AND a® MULTIPLIERS
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D

v
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FIGURE 4-9. A GF(3%) MULTIPLIER OVER GF(3?)
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SECTION 5
SUMMARY

A method of multiplying in arbitrary Galois fields by doing the actual multiplication in a subfield is pre-
sented in this report. The process can be carried out either in a parallel fashion or bit-serially. A theoreti-
cal discussion in Paragraph 3.3 establishes a basis for this subfield multiplication process. The two examples
in Section 4 show the implementation of the process both in binary and ternary fields.




SECTION 6
FUTURE WORK

One of the most important applications of Galois fields is signal processing (see, for example, [5] and [7)).
The Galois fields involved in the discussions of Reed, et al, are for the most part of the form GF(p) or
GF(p:) for very large and very special primes p. These primes are such that the cyclic group GF(p) - (0!
has order a multiple of a power of two. Therefore it is possible that the subfield multiplication process
presented in this report generalizes to a subgroup multiplication process, and that sresents GF(2™) multi-
pliers can be used to perform GF(p) or GF(pz) arithmetic. If so, the added on-line fault detection implicit
in GF(2™) multipliers can be utilized to do GF(p™) arithmetic. Therefore, an investigation of the potential
of subgroup multiplication is needed in order to determine the feasibility of applying known techniques to
do GF(p™) arithmetic.

Other methods of performing Galois field arithmetic for large p should be investigated also. In particular,

hardware implementation of modular Galois arithmetic should be investigated.

Another important application of Galois fields is error coding where a semi-fast Fourier transtorm algorithm
has been developed for use in Galois fields GF(2™) [8]. The use of present GF(2™) multipliers are possible
here, and it is important to study the potential of the use of the Galois multiplier which has the on-line
parity detection. In this case there would be a check (parity bit) on the checker (code).




APPENDIX
BASIS PRODUCT MATRICES

Let B= {b; }be an ordered basis in GF(p™) over GF(p™), which consists of 4 elements and let
m
n/m

3 . b. 1
j;l Yj bj, p any prime.

and y =

n/m
X = é] Xi bl
l=

Then the product xy is
T X;y;b:b:
B LR

Let bj; = b; b; and define MM = (mij)kn'm be defined by

n/m n,m
B TR

it

w2 1{:2_ X; ¥; (my) ™™ ) by .
J

Therefore, if xy = E z by, z = T I xpy;(my i)kn'm = y My m xt.

1)

The matrix M, ™™ is called the kth component basis product matrix and M™™M = (M, ™) is called the

basis product matrix for GF(p™) over GF(p™).
n 4 . 7l o) R
EXAMPLE: Let n=4 and m=2. Then i e 2. LetB={ l,g}land pick x =g’ =t~ +t--gand
y= gl F=¢2. g (see Table 4-2). Then the basis product matrix M+2 s
14°1 lg° 1 1,05 051
M2 4''4 1478 @ 4 BN Y3 M2
)
gl g8 g g 0212 ¢ ¢
15 04 04 14
M|4 2 - g M24 2 - = "
02 t lz t
ps
If xy = kE| Wi = z*ly+25°t, then

e alaM o i a i e e




, = (0415)
0, t \ t t2

t9

~
n
m—
A
'
(=7
')
\/
p—_—
3
-
e
]
=
2
to
~—
3
i
N—"
"
i

:
!
{
1
g
E‘.
&
%
P
¢

3 )

- 0y I5 0y 1y 1* t*
- - ) - -

3? Ry 8“ (87)‘ = (02(') = (tlh) = 14

4 2 A 2

kg ¢ 19 ¢ te t-

™

3

-

Xy = 12'14 + lz°g'(t212) = g3 (see Table 4-2.) Since g“-g7'gls '-33 (3 =18 modulo

(24- 1)),the answer is correct.
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