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I dea l solution of an inverse norma l mode problem

with finite spectral data.

‘-
Victor Barcilon Department of the Geophysical Sc i ences,

The Univers i ty of Chicago , Chicago, IL 60637, USA

Suninary. The problem of reconstructing the dens i ty o’ a vibrating s t r i ng  given

the first P1 eigenfrequencies for two vibrating confi gurat i ons admits an inf inite

number of solutions. Among all such strings compatible with the truncated data

set, we define the i deal string to be that string for wh i ch a weighted average

of the density Is minimum. We prove that this idea l string must have a finite

number of degrees of freedom and hence, that It is made up by a finite number

of concentrated point masses. By specializing the optima lity criterion , we can

also show that the Krein string is an Idea l string.
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I. Introduction.

This paper is concerned with the solution of inverse ei genvalue problems

for which the data sets are insufficient for insuring unique solutions . This

situation is typ i cal of most i nverse eigenva l ue problems arising in Geophysics .

A very appealing approach to certain i nverse problems with partial data

sets was pioneered by Parker (1974, 1975). His ori ginal work dealt with inverse

problems associated with the reconstruct ion of a buried body embedded In a known

matrix from surface gravity anomaly data. Confronted wi th the inherent nonunique-

ness of the problem , he dec i ded to construct that part i cular body which was (I)

capable of explaining the data and (ii) had the least possible maximum density .

Parker called this unique body the idea l body. Thus , out of a set of many possible

solu t ions , he singled out a particular one by means of an extremum Criterion . This

procedure yielded rigorous bounds for the entire class of soiutions.

A similar approach has also proved very successfu l is studying certain

turbulent flows (Howard 1 963, 1 972, Busse 1 969). There the problem stems from

the fact that the Navier—Stokes equations admit a multiplicity of solutions.

Out of this class of solutions , a distinguished one is selected by means of an

optimality criterion . This optimum solution can then yield genera l results , e.g.

bounds on all solutions.

The present paper attempts to approach the simplest i nverse norma l modes

problem , namely that for a vibrating string, from the same point of view. The

data, which consist of truncated frequency spectra, cannot guarantee a unique

solution to the i nverse problem. Among the set of strings which have the same

g iven elgenfrequencles , we shall select an idea l string . As a selection criterion ,

we shall minimize a weighted average of the density ; • We shall prove that this

idea l string has a finite number of degrees of freedom and hence, is made up of

concentrated point masses joined by weightless threads.

78 06 ~ 7 ‘

~~~~~
‘

— i  — — - — ‘ —- — - - p ———--_______ — -~~~~



— 2 —

The particular features of the i dea l string can be found by solving a

convex programming problem. Sabatier (l977a,b) was the first to point out the

relationship between Parker ’s idea l body theory and the classica l theory of

linea r programing. A similar relationship exists here. For a special ideality

criterion , the solution to this prog raming problem can be trivially obta i ned.

This special case is discussed at the end of the paper.
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2. The extremum criterion for the ideal string .

The vibrating system of interest consists of a string of (di mensionless)

density p(x), of unit l ength and taut by a unit tension. Two vibrating confi gu-

rations will be used , differing from each other by the fastening at the left end.

The corresponding eigenva l ue problems will be written thus:

U + A P U O

u CO) cosa — u ,(O) sina — 0 (2.1)

u (l) cosy + u~ (l) siny 0

and

v + l j p v — O  ,

v (O) cos8 — v’(O) sin8 0 , (2.2)

v (l) cosy + u’(l) siny 0

ct ,8 ,y are parameters such that

0 r~ a < 8 ¶ ii/2.

As a result the system represented by (2.1) is stiffer than that associated with

(2.2) and the eigenfrequencies interlace as follows :

< “1 < • • 
~n 

< ~ (2.3)

It is preferable to write (2.1) and (2.2) as integra l equations , viz.

u~ (x) - A~ ~ p (~
) G(x ,~) un(~)d~ (2.4)

and

v (x ) — 

~n 
p (~) r(x,~) v ( ~)d~ (2.5)

where
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{(1-~ )cosy + siny}{xcosct + sinct}

G(x ~
) 1 x < ~~ ~26cosacosy + sin (a+~J

{(l-x)cosy + siny}{~cosa + sinct}

and r(x,~) is obtained by replac i ng a by 8 in the above formula.

Given p(x), (2.4) and (2.5) can be looked upon as recipies for calculating

the corresponding eigenva l ues A,, and p .  For brev ity, we denote the result of

these cal culations by the notations A,,[p] and which emphasize that A and

are functionals of p (x).

It is well known (Borg 1946), that the complete A and p spectra are necessary

(and sufficient) for the uni que determination of p(x). Therefore, if we are only

given the truncated spectra (A,,}~ and we cannot infer p (x) uniquely: there

are infinitely many strings with the first N natura l frequencies Let us denote

the set of these strings by RN, i.e.

RN — (~ (x); p (x)>O , An EP] — A,,, p [p] — 
~
j ,,, n’l , 2, . . . N} (2.7)

Next, we define a weighted average of p(x), viz.

M [~] — f(x) Q(x) dx (2.8)

where f(x) is a positive , continuously different iable function of our own choosing.

The only other condition which we shall place on f(x) is that:

1(1) cosy + f’(l) sin-y - I . (2.9)

For instance , if y — 0, we can take f(x) to be equal to x
k, in which case

M (p] would correspond to the k—th moment of the density distribution .

We can now state the extremurn criterion which will def i ne the idea l

string. From among all the strings in RN , the ideal string b (x) is that string

for which the weighted average P1 is a minimum.

S - -~~~
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3. Structure of the idea l s t r i n g .~

in order to find the density ~(x) of the idea l string we must solve the

following rather atyp ica l problem in the calculus of variations.

M nimize P1(p) — f(x) p(x)dx (3.1)

subject to the equality constraints

A lp ] — A~ ~

~ (n — 1 , 2, . . . N) (3.2)
un

(p] — iJn J

and to the i nequality constraint

p (x ) > 0. (3.3)

In order to transform this optimizat ion problem into a more standard form,

we shall first prove that the ideal string must be made up of a finite number J

of concentrated point masses , i .e .  that

JAp (x) — m . ó (x -x .) (3 .4)
i_ l i J

The proof is of the reductio ad absurdum type. Namely, if RN~ 
denotes the subset

of RN wh ich is made up of al l the strings with an infin ite number of el genfr e-

quencies ,t then we shall assume that the idea l string is in that subset , i.e.

(3.5)

and then see that this assumpt ion least to a contradiction.

We start by writing

~(x) — [r (x)] 2 , (3.6)

thus satisfying the Inequality constraint (3.3). SInce 
~
2(x)eR N~

, we can solve

(2.4) and (2.5) and construct the set of functions {W~ (x ) }
1 defined as follows:

~Note that this class of strings is not equ valent to the class pcL 1 (0,i).
In deed , even though pu’l+ITI4(x—½)/L 1 (0,l ) ,  It has an infinite number of elgenfrequencles.
A rigorous treatment of this point would require the use of Stielt Jes integrals.

k - -~~~~~- — ____________________________________________ -- - - —- ~~ - —

- p  - -  - -
~~~
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W2n_l (X) —

n — 1 , 2, . . . (3.7)
W2~(x) —

This set of squares of the eigenfunct ions is complete (Borg 1 949, p. 61 , Lev i tar,

1952,1964). This result is closely related to the theorem regarding the uniqueness

of the solut ion of the inverse Sturm—Liouv ille problem. Heuristicall y, this resu l t

can be understood as fol lows . Consider two s t r ings  p(x) and p (x) +

where 5p is a small density variation. The corresponding eigenva l ues differ by

~p(x ) u~ (x)dx
— - 

1 
(3.Sa)

p(x) u2(x)dx

and

Sp (x) v2 (x) dx
— -  0 

, (3.8b )
n 

S p(x) v~ (x) dx

respect i vel y. If k were possible to find a ~Sp (x)~0, wh i ch is orthogonal to all

the functions {Wn
(x)}

1~
, then these two strings would have the same A and p spectra.

But this is not possible on account of Borg ’s theorem (Borg 1946). Hence the
A

func ti ons 
~
Wn

(x )}
i , and in particular {W,,(x )}

1 , form a base.

Unfortunatel y, the base thus formed is not orthonormal. This is a minor

nu i sance since a second base, bi—ortho gonal to the first is usually required . We

denote this base by {~n
(x ) }

1
0
~ and adopt the normalization

J~ 
W (,C)dX — 

~mn ‘ 
(3.9)

where cS is the standard Kronecker delta. The actua l construction of the

functions c~~(x) can be carried out by means of a Gram—Schmidt like procedu re.

~

--

~

-

~

-- _ _ _ _ _ _ _ _
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2Let us consider next a string [r(x) + ~Sr(x)] wh i ch is in RN, i.e. a

nearl y idea l string . As can be seen from (3.8), the fact that this string is

in RN implies that ‘
~6r Is orthogona l to the funct ions W,,(x) for n — 1 , 2, ... , 2$.

Consequently,
A A
rS r  — 

~ 
a,,c2,,(x) (3.10)

n— 2N+l

where the coefficients (a,,) are arbitrary . Consequently, the variation in the

weighted mean, viz.

~M 2  f(x)~~~~rdx , (3.11)
J o

can be written thus:
çl A

— 2 
~ 

an I f (x )~~ (x)dx . (3.12)
n’2N+1

Plow, slnce~~(x) is the ideal string , this variation must vanish for al l an ’s.

This requires that

A

j f (x )~ (x)dx — 0 n — 2N + 1 , . . . (3.13)n

and therefore the function f(x) admits the following finite series representation :

2$ A
f (x) ~ f,, W (x) . (3.14)

n 1

By means of simple manipulat ions , we can also write
2N A A p

f(x)cosy+f’(x)siny — ~~ f~ (W~ (x)cosy+W,,(x)siny] . (3.15)
n— 1

Plow, recalling condition (2.9) we can see that near x — 1 , the left hand side of

the above equation is a function nearl y equa l to I , whereas on account of the

boundary condition at x — 1 , the right hand side represents a function nearly

equal to 0. More specifically, we can always find an interva l , say (l—E ,l ) ,

over wh i ch (3.15) is false. We have reached a contradiction which implies that

is not in R$
00
. Consequently ~(x) must have a finite number of degrees of

freedom and hence b. of the form (3. 4 ) .

—
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By making use of this knowledge about the structure of the idea l string,

we can transform the original problem (3.1) — (3.3) into a programming problem.

Indeed , by replacing (3.4) into (3.1) - (3.3), we can state the new problem as

follows :
J

M i n i m i z e  H — ~ f ( x . )  m. , (3. 1 5)
j—l -~ ~

subject to the equality constraints

G
n I J J  A IJ

n = 1 , 2, ... , N (3. 1 6)
r det (r .m . - -~—-~~..) 

— o
n f .j j  1i

~ 
t~g

and the i nequality constraints

O — x 0
< x 1 < • . . < x ~~1 — I

(3. 1 7)
m~~> O ~~ j l , 2,. . ., J

In (3.16)

— G(x1, x.)

r,. — r(x., x . )
Ii I J

and “det” stands for determinant. Even though it is not possible to write the

solution of (3.15) - (3.17) for a genera l function f(x) and genera l spectra l data ,

much is known about such problems (see e.g. Gass 1 969).

4 -— --—-- - - -- - _____-_ _ _ _ _ _ _ _ _ _ _  - - - - - -  - --- - -  — — — —  —
-- -———-

— I  - - S — — —
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4. A special case: the Krein string

If the function f(x) is chosen as follows :

f (x )  = 4~
. (xcos8 + s inB) 2 (4.1)

where c is determined by means of (2.9), v iz .

c (cos8+sin8) (cosBcosy+sin~ cosy+2cos~ siny ) , (4.2)

then the convex programing problem (3.15) — (3.17) can be solved ve ry eas i l y .

Note that for this case , the idea l string minimize a linea r comb i nation of the

mass H0 and the f i r s t  and second moments M 1 and P12. I ndeed ,

HIp] — 1 (M
2cos 2

8+2M1sin8cos$+M0sin28) . (4.3)

It is possible to express this combination of M0, M 1 and H2 in terms of

the given eigenva lues , viz .

M2cos 2
8+2M1sin8cos8+M0sin2

B = sin(8-ct)

1 
. (4.4)

iT
I J (I— .~!2. ) I (1— ~~k—I k k—l k

where the prime ind i cates that the term k = n is omitted. This fo rmula , which

is derived in the appendix , generalizes the formula for M0 first given by Krein

( 1 951 ,

Return ing to the idea l string, we can show that the number of degrees

of freedom of this string is equa l to N. I ndeed , if it were made up of J>N

point masses, then it would have J ei genfrequencies {A} 1~ an d {~~}J
, and

tKre i n ’s formula is obta i ned by setting a — y — 0 and B — ir/2.

- _ _  .- . -

- -
. — S S —
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J .1
Hf m. ô (x-x.)] — Q 1 

1 (4.5)
-~ n 1  J J

~~ 
~~~~ ~ TJ (1- )

k—i k k—I k

where Q is a constant related to a, B and y. Recalling that the p and A eigen—

values interlace , it is easy to see that all the terms in the above sum are

positive. Consequently,

J N P
MI ~ m. d (x-x.)] > Q ~ n

n 1  N NJ 
p ~~T’ ~ TTn (l- .~~.) f

k—i k k—l k
where

J

~n — IT 1 
• (4.6)

~~ (l- ~~n )(l _ 1~
1 )k—N+1

On account of the ordering of the ei genva l ues 
~n 

and A,,~ it is obvious that

> 1 . (4.7)

As a result
J N

Ml ~ m. S (x—x.)] > Hf ~ rn. S (x-x.’)] . (4.8)
j—1 -~ i— I

In other words, given the truncated spect ra {A n}~ 
and 

~~~~~ 
the minimum of

H2 cos
2B + 2M 1 sinBcos8 + H0 sin

2
B is reached for a string with N—degrees of

freedom. Since there Is onl y one such string in RN, this Idea l string is

uniquely determ i ned. For the case a — y — 0, 8 — n/2 this string is none other

than the Krein string obtained by writing the rationa l fraction (1 - 
Z/ A n ) I

as a Stieltjes continued fract ion, name l y

___— 
~- .-- .- - -_ _ _ _ _ _  - -- - - - --. —- - - — —  —,-- —- *
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n 1  (1 - Zip )  - m1Z + 
________________________

.

(4.9)
.

where — x 1~ 1-x 1.

S q  

-

~~~~~~~~ - 

- -
~
-
~

- i ~~~~~~. - S  

-
~~~~~~~~~~

S
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Appendix

• A generalization of Krein ’s formula.

We shall be concerned with a string of density p (x) vibrating in two

differen t configurations. The ei genva l ue problem for the first confi guration

is:

u’
~ + A Pu — 0n n n

un (0)cosa — u,,’(O)s ina 0 (A.l)

u~ (l)cosy + u ’(l)siny — 0

whereas the second is

+ 
~n~”n 

— 0

v (O)cos8 — vn’(O)sinB 
— 0 (A.2)

v~~(l)cosy + v,,’ (l ) s iny — 0

Just as in the body of the paper , we can assume without loss of generality

that 0 < a < B < —j . . As a result , system (A.l) is stiffer than system (A.2)

and
< A 1 < . . • < A,, < . . . (A.3)

In order to solve (A.l) and (A.2), we introduce two fundamental solutions

y1 (x;X) and y2(x;A) of the equat ion

y” + Apy — 0 (A.4)

such that

y1 (l;A) — —siny

(A.5)
y1 ’(l;A) — cosy

and
— —cosy ,

(A.6)

4 y2’ (l ;A ) — — siny

- — -- --- ~~~~~~~~~—- -
~~~~

- -
~~~~ 

----5--- -
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In view of the linear independence of these solutions and of the

conditions (A.5), (A.6) we can write

y 1 (x; A ) y2’(x;A) 
— y2(x;A) y 1 ’(x;A) — 1 . (A.7)

It is convenient to introduce two pa i rs of auxiliary variables , namely

U(x;A) — cosa y 1 (x;A) 
— sina y 1 ’(x;A)

(A. 8)
V(x;A ) — cos8 y 1 (x ;A)  - sin B y 1 ’(x;A)

and

~ (x ; A )  — cosa y2 (x;)~) 
— 3ina y2’(x;A)

(A .9)
‘Y(x;A) — cosB y2 ( x ;A )  - sin$ y2’(x;A)

Seve ral remarks are now in order. Firs t of all , for x — 0 the zeros of

U and V are the ei genva l ues of (A.l) and (A.2). Consequentl y, in view of the

fact that U(0,A ) & V(O,A) are entire function s of A of order 1/2 (Titchmarsh

1 962), we can wr ite

U(0,A) — u(o,o) ff ( I - ~ ~
n—i

(A.lO)

v(o,A) - v(o ,o) ( I -

n 1

Next , we should point out that the W ronsk ian equality (A.7) can be wri t ten in

terms of the new variables as follows:

U(x;A) ‘Y(x; A) - V(x; A ) ~ (x;A) — sin(c&—8) . (A.l l)

Let us now consider the funct ion

F(z-A ) — 
V(O;O) ‘Y(O;Z) — ‘Y(O;O) V (O;Z) 

A 12Z(Z—A) V(O;Z)

This is ameromorphic function with simple poles at Z — A and Z — Pn ~~~~~~~ but

not at Z — 0. If An is a circle in the Z—plane of radius IZI — A , then it is

poss b le to show tha t 

-- -~~ — -— -—- ——____ --

_ S I  - S — 5  —
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i” 
~~~~~ ,5F(Z;A) dZ~ — 0 (A.13)

Making use of the calculus of residues , we can rewrite (A.l3) thus:

V(O;O)’1’(O;A) — ‘1’(O;O)V (O;A) 
— - ~ V(O;0)’1’(O;pn) 

-
AV (O;A ) n 1  

~ A
~n~~n ~3

Several simplifications are possible. In particular , since V(O;lin) 
— 0, we can

exploit (A.ll) to write ‘Y(O;p n) in terms of 
U(O;p,,); also we can use (A.lO) to

eval uate ~V (0,A)/aA. Therefore

v(0;O)’Y(0;A) - ‘Y(O/O)V (O;A) 
— ~~ sin(a—B)

A V~O; A ) n l  U(0;O)

(p -A) (I- ~)fJ ~~~~~~ )

k—i k— I

So far, we have just repeated the various steps in the proof of the Mittag—Leffler

theorem (Whittaker & Watson 1 952). We now let A -
~~ 0. The above formula becomes:

U(O;0) Urn I { V (O;0)W(O;A) — ‘I’(O;O)V(O;A) }
V (0;O) A-’O ~

— sin (a-B) 
1 (A.l4)

n I  PnTT ’ (l_
~!i)TT (l -

We shall now see that the left hand side can be expressed in terms of the mass

and first two moments of the density distribution . To that effect, le t us

expand y 1 (x;A) in powers of A and compute the 
first two terms by substituting

in (A.l) & (A.2). Omitting the intermediary calculations , we get

y1 (O;A) — -cosy-siny+A ((M1~ M2)cosy+M 1 siny] + . .
(A.l5)

y1 ’(O;A) — cosy+ A(-(M0-M 1)cosy-M0siny 1 + . .

— —.--S-—-— - - ——- — -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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and

— sirr1r_cosy+A(- (M1 M2)siny+M 1 cosyl + .
(A. 16)

— siny+A (M 0-M 1 )sirry’-M0cosy] + .

Replac ing these expressions in (A.8), (A.9) we deduce that

V(O;A) — fcos8cosy + sin(8+y)]

+ A [ ( M 1 -M 2)cosBcosy + M 1cos$sirry

+ (M 0-M 1 )sinBcosy + M0sinBs i ny] + . . . (A. l 7)

and

l1l(O;A) — fcos8s i ny - cos(8+y)J

+ Af- (M 1 -M2)cosBs i ny + M 1cos8cosy

- (110-M 1 )sin8sin-y 
+ M0sin$cosy] + . . . (A. 1 8)

and consequently

tini 1 {V(0;O)’F(0;A) - ‘F(O;0)V(O;A)} — (H —M )cos2B1 2

- M 1 (cosB+sin8)cosB + (M0—M 1 )sin8cosB

- M0(cos$+sinB)sinB

As a result (A.lk) reads:

~~~~~~~~~~~~~ (M2cos2$ + 2M1 sinBcosB + M0sin
2B) —

sin(B—a) Z 1 (A.19)
n—i 

~n “fl (1- ~ ) fl (1- )
k—i k—i

For a—0, 8—~rf2 and v 0
~ 

the formul a reduces to

N0 — ~ 
1 (A.20)

n I  
“nIT (i- .~2 ) IT (I-~~~~)

wh ich Is the formula gi ven by Krein (1952).
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