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0. Introduction and Overview

In practice, long life items are often subjected to larger
than normal stresses (doses) in order to obtain failure data in a
short amount of test time. It is common to test the items at more
than one stress level, and typically, more items are tested at the
higher stress levels than those at the lower stress levels; such
tests are known as accelerated or overstress life tests. The basic
aim is to make inferences about the life distribution of the items
at the normal stress levels using the failure data from accelerated

tests.

The current approach to this important problem makes inferences
under parametric assumptions. This may be valid in some situations,
and does yield results which are appealing from a statistical point
of view. However, an engineer or a statistician working under less
well-defined conditions may find this approach too restrictive. For
example, it is common to assume that at all stress levels, failure
times are governed by exponential distributions or Weibull distribu-

tions. In addition, a functional relationship between the parameters




of the failure distribution and the applied stress is assumed. Such

a relationship is known as an acceleration junction or a time trans-
formation function; examples can be found in Mann, Schafer, and Sing-
purwalla (Chapter 9, (1974)). In two recent papers, Phatak, Zimmer,
and Williams (1977) and Shaked, Zimmer and Ball (1977), the distribu-
tional assumption is dropped, but the requirement is retained that
the (unknown) failure distribution be of the same form at the use and

at all the accelerated stress levels.

Clearly, there are many situations where the above assumptions
may not be appropriate. Of particular concern is the assumption that
the failure distribution is of the same form at all the stress levels.
One reason for this concern is that different stress levels may have
different effects on the mechanism which causes failure, and thus from
a physical point of view, it may be more realistic to allow for differ-

ent forms of the failure distribution at the different stress levels.

The approach that we propose in this paper requires neither
distributional assumptions nor the specification of a time transforma-
tion function. Rather, our approach is Bayesian, and is prompted by
what is actually done in practice. The Bayesian point of view allows
us to incorporate some a prior{ information which is available in
accelerated life tests. We would like this paper to be construed as
preliminary and pragmatic, and thus have not attempted to give a tull
theoretical justification. Consequently, we would like to invite

mathematical statisticians to resolve the statistical problems posed.

1. Preliminaries

As stated betore, in accelerated life tests the items are tested
under different stress environments. A stress environment may be
characterized by a single stress such as voltage or temperature, or
by multiple stresses, each of a different type. We denote a stress
enviromment by E , and the set of all E's by éf‘. We assume

that the elements of ?4n may be ordered according to the magnitude

of their severity. Thus, for any two elements Hi and E1
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belonging to éf, Ei > E. denotes the fact that E is more severe

j i
than Ej . Let us denote the k accelerated stress environments by
El,Ez,...,Ek , and the normal or use conditions stress environment

=
by Eu . We shall assume that the set éf is completely ordered with

respect to the relationship » and that
E1> Ey > ... >Lk‘r E,

The basic problem in accelerated life testing is to make
inferences about the life distribution of the item under use environ-

ment Eu using failure data obtained under accelerated stress environ-
ments El,‘z....,Ek , where k > 1 . In some situations, it is possible

to obtain a limited amount of failure data under the use conditions
environment Eu ; however, in practice, these situations do not appear
to be very common. Although having failure data under the use condi-

tions environment Eu has advantages, its absence is in no way detri-

mental to our approach. However, in order to obtain results which are
useful, it is necessary that k be moderate to large, and this is what
we require. This requirement does not impose any practical difficul-
ties in many situations of interest, especially those involving the
accelerated life testing of electronic components and in bioassay

experiments on animal populations. )

In order to introduce some notation, let us denote the failure 1

distribution of the items which are tested under environment Ej by

F, , where F (0_) = 0 for all values of j . We assume that Fi

3 3

is absolutely continuous and thus fj(x) , its probability density

function, exists for xe(0,») . If we denote 1 - F,(x) by Fi(x) "

3
(x) , is defined by

then Aj(x) , the failure rate of F

i
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We {ind it convenient and reasonable to assume that \i(x) is
continuous in x for xe[0,®) . We use the terms Juilure rut

and fasand rate interchangeably. Since l-ll ™R, > e > l§k>~ l-.u .

it is logical to assume that
Xl(x) > xl(x) > aeay Ak(x) b Au(x) (1,1)
for all xe[0,»)

Using failure data obtained under El’E°""‘Ek , we would

like to obtain estimators A,(x) of A, (x) , j = 1,2,..,k , such that

3 A
for some 0 < L < « and all xe{0,L] ,
A 8T . st g :
Al(x) Ag(x) > sse > Ak(x) ¥ (1.2)

st
The notation X > Y denotes the fact that X is stochasticelly

larger than Y ; i.e.,

P(X>x] > P[Y>x] for all values of «x

In order to obtain estimators of xj(x) + 3= d 2 vk
which satisfy Equation (1.2), we shall use a Bayesian approach. Under
this approach, Condition (1.1) is incorporatel as a prior assumption.
Qur approach is in contrast with that of Brunk, Franck, Hanson and ‘ 4
Hogg (1966), who embody a similar but weaker condition than (1.1) in
their likelihood function. Specifically, Brunk et al. assume that

the distributions are ordered, i.e.,
Ry(x) > Fy(x) > oo 3 F (x) Vx

The above condition is a consequence of Condition (1.1), but is not

equivalent to it. Also, the approach of Brunk et al. is not Bayesian.

We shall first present a methodology for a Bayesian estimation

of the individual hazard rate )\,((x) unconstrained by (1.1).

j
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2. Bayesian Estimation of a Single
Hazard Rate Function

For estimating an individual hazard rate X (t) , we use

3

the following Bayesian procedure.

Let Nj(t) be the number of items exposed to the environment
E. .at time t . ‘Thus, Nj(O) is the number of items that are initially
put on test in environment Ej .

We hypothesize that the failure times are governed by a time-
dependent Poisson process with the probability of failure in {t,t+h]
given by

Nj(c)Aj(t)h + o(h) ,

where X, {(t) 1is the failure rate at time t under environment Ej

j

For purposes of analysis, we divide the time interval {[o,L]
into intervals of length h > o , where h 1is chosen to make L a

multiple of h . For convenience, we denote (i-1)h by ti .

N.{t,) by Nj,i , and Aj(ti) by A for 4w 1,2, .., (LIR) .

e Joi °

Let xj i denote the number of failures in [ti,ti+h) O
’

there are no withdrawals, removals, censoring, etc., then

Nj P It is helpful to clarify the above terms by
’

- TR e
j,i Jgd

the following diagram:

Number of failures = x, .
J,1

Number surviving = N

j,i
\ L
3 +- 4 - + 4 -
oh=t lh=t 2h=t ces (i-1)h=t L=t exn l&)
1 2 3 i i+1 h

g ) e IV
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The joint distribution of x is

e TP
given by the multinomial distribution
(L/h)+1 xJ g
) ' n » ] -
(hjl)- I (pj‘i) /xj’i- » (2.1)

i=1

where pj i is the probability of failure of a specified unit in
| [ti'ti+1) , with
(L/h) (L/h)
-=1- } - = i
Py, (L/)+1 il ® g B AT Sl R W

i-1
*
Denoting pj i/ (= Z pJ t] by p] { Equation (2.1) can
* (-] . J e

i

be expressed [Wilks (1962), p. 151, Problem 6.13] as

N, .~x

L/h (N, ) X
( 7: ) - ‘.1)1 = e (p* ) ,vi (1_1‘* ) jvl j’i b (’7 2)
o T G < NEET  € R y et he
i=1 3.4 y I . 7 ¢
* g
The pj L's can be interpreted as the averace faiiure rate
Al

*
over the interval lti,t ) ; that is, pj { is the conditional prob-

i+l

ability that an item which survived to time t1 will fail by time

t In terms of the 1A , we can write

y o % - P

*
Xy h = + o(h
i g % )

Fquation (2.2) provides us with a starting point for a
Bayesian analysis.

%

2.1 Prior Distributions for pJ i

We shall confine the discussion in this section to

the jth environmental condition.




X
Suppose that the p\ P S (R AR (T R

@ priori independent beta random variables with marginal

densities

-1
T(a, ,)T(B a, -1 B, 1
£(p) ,) = ~‘~-~’J———if—— 0 et gy LT
j'l r(\‘j i j 1) .pi “i

It is of interest to note [cf. Lochner (1975)] that
the above prior density leads us to a generalised Diricile:

denstty f o = = Pyt
ngtty for the EJ (Pj,l Py.2 P )

§,(L/h)+1

Given the N 's and the x 's , the posterior

, 1 3.1
. f N * v P 8
density o (pj.l'pj,2’ pj‘(L/h)) -

L/t [ (a + * < X, -1
(L/h) S, @ Si,i Niji) 25 (p* oy gt Xy g
n s L2 d.2

LT Tl Y

(2.3)
RN =i =1
*
(l'P1 1) j-i jo{ jvi

see DeGroot (1970) p. 160.

3. A Bavesian Estimation of Ordered
Average Failure Rates

In a Bavesian context, Condition (1.1) leads us to the require-

ment that for every fixed value of {1 ,
for: § ® 2.3 iunsk (3.1)

* *
Thus, our prior distributions on p;_l " and p’ i will have

to be chosen such that

* *
P[pl-l g 201 2 P(pj.i >p] for all p>0. (3.2)

One way of achieving Condition (3.2) is to assume that the

* *
parameters of the prior distributions of p1_1 { and pj i satisfy

-

3




the following conditions for every fixed valuc of i

@§,1 = %§-1,1

and (3.3)

Bj,i 3_ Bj“l,i for j = 2’3’...,1( A

For a proof of the above statement, see Appendix A.

In order to be assured that Condition (3.1) is also satisfied

with respect to the posterior distributions of

*
and pj,i -

*
Py-1,1
it is sufficient (see Appendix A) that, for every fixed value of i

T T N T S

and (3.4)

By o TR o ~ % > B + N - x,

; % Sy BRI, T Wt I T S T DR B Y, SO

In order to make our Bayesian analysis more practical, we will
have to reduce the number of prior parameters. One way of doing this

is to assume that

i

o a for all values of i and j ,

AR

and that (3.5)

Bj,i = Sj for i=1,2,...,(L/h)

P
Thus, the prior distribution of each p1 i G0 o R TRE R (A 1 ) S
J ¥

is a beta with parameters o and Bj . This plus Conditions (3.3)
and (3.4) lead us to the following remarks.

The first part of Condition (3.4) will be satisfied whenever

X < X for j = 2,3,...,k . That is, the number of failures
j’i o= ."1’1

in the interval [ti’ti+h) under environment E, must ot be greater

A

than the number of failures in the same interval under environment

T T A e SR Y
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E for all values of | . Because Condition (3.4) will have to

j-1 *
be sati{sfied for every fixed value of { , = 1,2,...,(L/h) , a

reasonable strategy is to have N‘ \ < N' \ for w38 ik
) Y

That is, we shall put more items on test ({nftfally) under the more

severe environment E ) than under the environment H) x

Since Nj‘l - N},l

second part of Conditfon (3.4) can be written as

" - D] .
a1 "%y 0 1 20 (L/R), che

B + N < B

: - = 2! ' 3.6
dap T Nelg iy SB R B gy TOE % &3k . (3.6)

An interpretation of the above condition is that, tor every
tixed value of 1 , the number surviving at the start of the (itl)st

interval plus the prior parameter 6‘ \ tor the eavironment L]—l A

must be smaller than the corresponding sum for the environment Fl .
Thus, whether the second part of Condition (3.4) is satistied or
not, depends not only on the number of fallures in the ith interval
and the number surviving, but also on the values of the prior

3

parameters 3 and R . Since the number of failures in a

| 1-1
particular interval is a function of the severity of the environ-
ment and the number on test, and stnce “\-l has to be less than
or equal to BJ (sce Conditions (3.5) and (3.6)), it 18 reason-

able to have ¢ < B whenever R'-< H‘ P That {s, the

j~1 J

values of the prior parameters “)-l and ﬁ) are indicative

of the relative severity of the environmental conditions

E and E. . Since E > E. P> (..> B, we will choose the
j~1 | 1 2 k

R's such that £, < B, < ... < A , and the values of the R's
i 1 2 k 1

will be indicative of the severity of the environmental conditions

By, v J = Lidyeink

If the prior parameters R, , ) = 1,2,...,k, and the data

from the accelerated life test, x’ { and N‘ { R ) ST ¢ ¢ 1 Y

are such that Conditfon (3.4) is satisfied tor every fixed value ol
{ , then the stochastic ordering Condition (3.1) will be automatically §

satisfied with respect to the posterior distribution of |

. ]

WJ
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* * *
(pj,l’pj,Z""'pj,(L/h)) . If the above is not the case, then we

will have to pool the adjacent violators using the pooling procedure

described in the next section.

4.0 The Pooling of Adjacent Violators

The procedure for pooling adjacent violators described here
is commonly used in isotonic regression; see Barlow, Bartholomew,
Bremner and Brunk (1972). The pooling is between the violators of

the assumed ordering; that is, whenever x, then

j-1,1 i xj,i 8

xj-l,i and xj,i are pooled.

Consider the time interval [(i-1)h,ih): by Condition (3.4)

we require

and

T O R R A TR

or if

B + N - X

j_l ]_1{ >B + N >

3-1,1 3 3.1 Jsd *

then we pool the violators and replace them as shown below.

. 1.
Replace both Xyo1,4 and 4.4 by 2(.(J_l,i+ xj,i) and
Sj-l + Nj-l,i - xj—l,i and SJ + Nj,i - xj.i by
l(s + B3, + N + N - X - X )
273-1 ] j=1,i hRR j~1,1 3,

- 10 -
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We now test to see if the new sequence is properly ordered, i.e.,

> eee >

1 1
P B R B UG T L (IS TR Bl

a-)x

x > . ‘
T~ K,i° a

and

By Ko ek

1
T Sl B Lot B tH i e L

j_lﬁi j’i j-]-’i j,1

"
N =

(B, _;* B +N +N, .-x

gy T B R R S SR,

kydt Tkl "

If a reversal exists in either of the new sequences, then we

replace again by appropriate averages. Thus, if

1 1
% a0 T R S P |
or if i
|
1
e R G N B NP T B N e B

st el tiig

then we replace each one of the three by the corresponding average

1
3( )

Xy1,17 41" By
(in the first sequence) and

X R ¢

o Bl e PO

1
TPa" P * Py Mg 6 B 0™ Ny

(in the second sequence).

We continue the above procedure until all reversals in the
interval [(i-1)h,ih) are eliminated. We use this pooling scheme for
each of the (L/h) time intervals to achieve the desired ordering.

4.1 Some General Comments Regarding
the Pooling Procedure

The following comments regarding the pooling of

adjacent violators will be helpful.

R

. 4, . " . li.l‘




T-375

1. An excessive amount of pooling occurs if the
relationship specified by Condition (1.1) is
incorrect, or if the environmental conditions

El, EZ""'Ek are too similar to each other.

2. 1f xj(o+) =0 for § =1,2,..,k , then it

is reasonable to expect that some pooling will
be necessary at the lower values of 1 ,
i=1,2,...,(L/h)

For many practical situations, it is reasonable to
assume that the failure distributions Fj P [ ey S % TER
have increasing failure rate (see Barlow and Proschan (1975)).
If we wish to make such an assumption, and incorporate it
into our analysis, then, for each value of j , we must have

in addition to Condition (3.1) ,

or that

& st
Piaed 20 g 1% Lidyeo AN

The above condition will further complicate our pooling

procedure; we shall therefore not assume that the F are

3

increasing failure rate.

5. The Posterior Distributions
of the p¥* ,['s
[0

It is apparent from the discussion in Sections 3 and 4 that the

*
posterior distributions of the pj 1's depend on the outcome of our
’

pooling procedure. The posterior analysis is straightforward if no
pooling is necessary, for then, the posterior distribution of

* * %
(pj,l’pj,Z""'pj,(L/h)+1) is simply

=12 =

. —
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(Léh) P(atB +N, ) " )a+xj'1"1(1~p* )BJ+”1,1'Xj,i’l
gl F(a+xj,i)r(8j+nj,i-xj,1) j,1 J,i

for § = 1,2,...,k .

Under the assumption of a squared error loss function, a Bayes

*
estimator of pj i 3= 1.2,...,(L/M) , ] =1,2,...,k , 18 simply
the posterior mean; that is

% otx
* ol

I (ot +N

U

(see DeGroot (1970) p.40) .
If pooling is necessary, then some or all of the xj i's and

the (Bj+Nj i)'s will be replaced by their appropriately pooled averages.
’
~%
In any case, the general expression for p will be of the form
i, i

given above.

6. A Model for Extrapolations to
Use Conditions Stress

Our analysis leads us to an array of Bayes estimators of the
average ‘failure rates over intervals of length h , for each environ-
mental |condition. Because of our pooling strategy, the Bayes estimators

will be correctly ordered. That is, for each fixed value of i ,

~% % ~%

Pri2P2g 2" 2R,y - L

Given the ‘s o) = 12,0005k and &= 1,2,...4CLIR)

~%

pj,i
11 dict o : ¥ the average

our goal is to predic pu’1 4 pu,Z,""Pu,(L/h) 5 g

failure rates over the time intervals [(i-1)h,ih) , i = 1,2,...,(L/h) ,

respectively, under the use conditions environmeat Eu .

.13 =




In the absence of any knowledge about a relationship between

the average failure rates and the values of the various stresses which
corstitute an environment, some form of an assumption is essential.
This is particularly crucial if k , the number of distinct environ-
mental conditions of interest, is small. If, however, k 1is large,
then a relationship between the average failure rates and the stresses

can be empirically obtained; this is what is often done in practice.
X

When - k is small, we shall postulate the following simple but

reasonable fg{?tionship between the average failure rate estimates.

by

For some™ k unknasn constants Wy s W , we

100 Y
assume that for each value of i , 1 = 1,2,...,(L/h) ,

“% ~%k ~“% *

= coe 3 )
L N R R o g ¥y g ¢ 082

The above relationship states that the average failure rate
over a particular time interval under the environmental condition
Ek , 1s a weighted sum of the average failure rates over the same

time interval under the conditions Ek—l s Ek-2 sSne El . This is

reminiscent of an autoregressive process of order k-1 which has found

useful applications in forecasting (see Box and Jenkins (1975)).

In order to make the above relationship more meaningful we

shall require that the environmental conditions Ek< Ek_1~< ssx R E, X E,

increase in magnitude of severity by the same fixed amount. For

example, if Ej represents a single stress, say a voltage stress V, ,

3

then we shall require that V - e V., = C, where C is some suitable

3 3

constant, j = 1,2,°++,k .

Since Equation (6.2) holds for i = 1,2,+++,(L/h) , the least

squares estimators of wo s wl ,'",wk_1 can be obtained in a routine

~ ~

w .e

manner. These estimators are denoted by wo s Wyosmeey “k-l

- 1k -
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1f the increase in the magnitude of the severity of the

environment from E to Ek is the same as that from E, to L, 5
u j j-1

j=2,3,*+,k , then an estimator of the average failure rate under

Eu is given by

~% - A Aoy » ~%
= + ece &
X B Tl ¥ M, TSR W Wha i
i (W/h) -,
e A8 Slraritinl v W Bondion T 1T 0 T

If the increase in magnitude of the severity of the environment

from Eu to Ek is two times that from Ej to Ej—l S U R I

then we iterate upon Equation (6.3) one more time to obtain the desired
result. Thus, in principle, we can iterate upon Equation (6.3) as many
times as is necessary, depending upon the separation between Eu and
*
By the definition of P, i the probability of an item surviving
»

*
to time ¢t (assumed a multiple of h ) under environment Eu is

5 ot t;/h &
u(t ) S i=1 (l—pu’i)

& *
Thus, we have the following as an estimator of Fu(t )

% . *) t;/h o g ;
t e -p s
u i=1 u,i

~x
where the »p are given by (6.3).
u,i

The properties of this estimator have not been studied. The

estimation procedure has been proposed as a practical method for

providing answers in the difficult area of accelerated testing.
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Appendix A

In this appendix we determine sufficient conditions under which
two beta random variables are stochastically ordered. The results may

already be known; however, they are included for completeness.

The notation and terminology are taken from Barlow and Proschan

(1975).
xa-le~-x
We first note that a gamma density f(x,a) = T i TP

<

o g=~1
in (x,a) . Therefore, F(x,a) = f %TET e Ndx is TP2 in (x,a) since
X

F(x,a) = ] f(y,a) H(x,y)dy, where H(x,y) =1 for y > x and

H(x;,y)) H(xp,y,)
H(x,y) = 0 for y <x . (Note that >0 for
“(xz»yl) H(xzvyz)

X, < Xy » y1 < Y, Thus, H(x,y) is TP2 , and so the composition of
£, 0 s 0,

Since F(x,a) is TP, , then for x

<x gy <d
2 2

1 1 i
Fx;,0) Flxp,0,)
" £ > 0 . Choose X, = 0 . Then
F(x,,a,) F(xz,az)

1 1l
f(x,al) i(x,az)

>

for 0 <x <o al < a, - Thus, ?(x,uz) z.F(x,al) for a, <o

1 2

and x > 0 .

0
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We have shown:

1. Lemma. Let Xa be a gamma r.v. with shape parameter

Then Xu is increasing stochastically in o .

& <
a,-1
2. Proposition. Let Y have density oo o™ O IR P
= ay P(ai)
Y“l
and Y , Y be independent. Then X = ~——— has beta
a a U, 5,0 Y +Y%
1 2 17272 a a,
P(u1+02) ul-l 02~1
density f(ul,mz,X) = quzsfzagj X Q) for 0 <x <1
(Hogg & Craig, 1970, p. 134).
3. Theorem. Let X have beta density f(a,,a,,X)
e ap,a, 1*-2
Then Xd - is increasing stochastically in @y and decreasing
S S
stochastically in a,
Y V¢
5 ST
Proof. Write Xal'az = Y;-:—Y‘Q- 5 an’“é = W, s
1 M2 i
st
h s oE X
bt 21 oF SaRe Ya i« xa ,Q z-\u ,a! . By unconditioning
1 L2 L2
'
st |
> ]
al.az > Xal,“; for a, < a,
st
By similar reasoning, we can show X <X for
ul,az == al,az

e e e - Sy he
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