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THE GINI INDEX, THE LORENZ CURVE, AND
THE TOTAL TIME ON TEST TRANSFORMS

by

Mahesh Chandra
Nozer D. Singpurwalla

In this note we point out the connection between some well-known
indicators used in economics and a central concept in reliability theory.
In particular, we show that the "Lorenz curve" and the "Gini index" are
related to the "total time on test transform'" and the "cumulative total
time on test transform,'" respectively. Thus, the recently proposed tests
for exponentiality based on the Gini statistic inherit the properties of
the tests for exponentiality based on the cumulative total time on test.
statistic.

Analogous to the '"total time on test process,'" we define the "Lo-
renz process,' and show its weak convergence to functionals of a Brownian
motion process. This provides a theory for developing goodness-of-fit
tests for any general distribution using the Lorenz curve and the Gini
statistic. In addition, we state some new results on the geometry of the
Lorenz curve that follow from the geometry of the total time on test
transform.

We show that there exists a relationship between the "mean residual
life" and the Lorenz curve. This motivates us to propose that the Lorenz
curve methods of economic theory also be considered for use in the analysis
of failure data.

We hope that this note will help to consolidate and integrate
statistical knowledge that has independently evolved in two different
areas of application.
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THE TOTAL TIME ON TEST TRANSFORMS

by

Mahesh Chandra
Nozer D, Stagpurwalla

1. Introduction

A unifying concept in the statistical theory of reliability and
lite testing is the "total time on test transform,”" first discussed by
Marshall and Proschan in 1965, Bavltow (1968) and Barlow and Doksum

(1972) have introduced and studied a scale=tree test tor exponentiality

' "

based on the "cumulative total time on test statistic,'" which is dervived
from the total time on test transtorm. Barlow and Campo (1975), and
Bavlow (1977) have studied the geometry of the total time on test trans-
form, and have also used it for a graphical analysis of tailure data.
Langherg, Leon, awd Proschan (1978) provide characterizations of the to-

tal time on test transtorm.

Measures of income inequality used by econometvicians ave the
Lorenz curve and the Cini index (which is devived trom the Lorenz curve).
The lorenz curve plots the percentage of total income carned by various
portions of the population when the membevrs are ovdered by the size of

thelr incomes.  Castwivth (1972) has studied the various properties of

the Lorenz curve and the Gini index. Recently, in a sevies of papers,
Gall and Gastwivth (1977a, 1977b) proposed scale-tree tests for exponen-
tiality based on the Lorenz curve and the Gini statistic. Among other
things, they have shown that tests for exponentiality based on the Lorenz
statistic and the Gini statistic ave povertul against a varviety ot alter- q

nat Lves.,
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Our objective is to demonstrate that there exists a relationship
between the total time on test transform and the Lorenz curve, and be~
tween the cumulative total time on test transform and the Gini index.

Thus the tests for exponentiality proposed by Gail and Gastwirth (1977a,
1977b) inherit some very general properties of the tests for exponentiality
based on the cumulative total time on test statistic given by Barlow and
Doksum (1972). The relationship mentioned above also prompts us to define
what we call the "Lorenz process'" and discuss the weak convergence of this
process to functionals of a Brownian motion process. Such a result in-
creases interest in the Lorenz curve and the Gini index, since it brovides
a theory for developing goodness of fit tests for any general distribution

using the Lorenz curve and the Gini index.

Gastwirth (1972) has given some properties of the geometry of the
Lorenz curve that are of interest to an economist. In this note we pre-
sent some additional properties of the geometry of the Lorenz curve,

and generalize some of Gastwirth's results.

Bryson and Siddiqui (1969) and Hollander and Proschan (1975) have
pointed out that the notion of a '"mean residual lifetime'" is useful for the
analysis of biological data. We show that there exists a relationship be-
tween the mean residual lifetime and the Lorenz curve. Such a relationship
enables us to extend the use of Lorenz curve methods for the analysis and in-
terpretation of failure data. We illustrate our ideas by plotting and inter-

preting the Lorenz curves of two sets of failure data.

2. Definitions and Notation

Let X be a random variable with distribution F , and let u
be the mean of F ; let F(0 ) = 0 . Then, the total time on test trans-

form is defined as

Definition 2.1:

=1

F “(t)_
H’l(t) del ¢ F(u)du , 0<t
F 0 =

A
(==
-

where -F(u) = 1-F(u) and F-l(t) , the inverse of F(t) , is defined by

=D =




I'-308 :
3
F-l(t) = fnf {x : F(x) > ¢t} .
N

1t is casy to verify that N;‘\(l) oI ¥

The soaled total time on test tnmsfomm is defined in

Definition 2,2:

WL () Qeof s gnanlil SO . 5. 9 T

In Fipure 2.1, wve show a plot of the scaled total time on test
¥ I

transform for a gamma distvibution with shape parameters a = 1 and 2,
respectively.  Other properties of the scaled total time on test transform

arve discussed by Barlow and Campo (1975).

. .

4 > . -
The qiative total time on test tnmaform is defined in

Definition 2.3

A i
& “l.-(“‘\‘“ w = [ Ny (wWdu .
0 L

let
Vv L1408
¥

Thus, the cumulative total time on test transform {s simply the area under

the scated total time on test transform.

Gastwivth (1971) has defivned the Lodens curee covvespouding to a

vandom variable X with distribution F , F(0O) = 0 , and mean 1  as
Det il\“»lnn‘ '.‘»,_.'.'-

A

J F”l(u)\lu % OCXp <€l
o 5

det

Le(n)

In econometrics, ‘-}-(M denotes the fraction of total {fncome that the

holders of the lowest pth fraction of incomes possess,  In Fieure 2.2
aure 2,

we show a plot of the Lorenz curve for a gamma distribution with shape

parameters 0 = 1 and 2 | respectivelv. It is ecasy to verify that the

Lovenz curve {8 always a convex function of p .




Definition 2.5:

e v il

T= 308

e Tap——

Analogous to Detinition 2.3, we define the cwnulative lorens curve in

(Cl')l" wew | l.},(p)dp w-=f [ \"~1(u)du dp .

w.(t
p(0)
Al
0 B A bbb A AL b bbbk =
° N 1.00 :

Figure 2.1--Total tiwe on test transtforms for gamma distribution
X \\1“«\*1 S ?
F(x) = J - —“-." du for a= 1,2 .
- 0
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LF(p)

0 ahe, 4 .8 .8 1

Figure 2.2--Lorenz curves for gamma distribution
X 0 Q-1 =lu
Au e : %
F(x) = ] —~————— du for o = 1,2
0 r
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The wmost common measure of income inequality is the Gind index,
detined in
Detinition 2.6:
1
[ ou.(p)dp
é 0 3
(¢ = R e e s
F 2/2)

That is, the Gintl index is the ratio of the area between the lLorenz curve
Ly(p) and the 45% line, to the area under the 45° line (which is 1/2).

» > »
wea of concen-

The avea between the 45% line and LF(P) is called the

taatton,

Concepts of Section 2

We now establish some relationships that exist among some of the

concepts intrvoduced in Section 2,

l =
Integrating NF(t) - T ! F(uw)du by parts, we have

F 1 ))da

or

1 =1 3 :
HF(() y (I-t)F (t) + LF(r) PR o R (3.0)

Thus, the scaled total time on test transform is related to the Lorenz

curve as shown in (3.1).

1
Since vF = [ wp(cmc .
0
y A = L
V% = 87 -t)F ")t 4 54 7 F T (u)du de
Mo ¥6 o

Inteprating by parts, we can verify that




| 14
B 1 g
F PR "taydude = L Q=) T)de
6 0 0
Thus
3 > =1 gk o
VF IR F -2)F “(c)dt = = f [ F “(u)du dt ,
Yo Yo o
; or
: =Y 2
§ VF h(CL)F 5 (3.2)

Thus the cumulative total time on test transform ts twice the cwmulative

Lorens curve.

: In order to see the relationship between the Gini index and the

cumulative total time on test transform, we note that

1 i1
Gy ™ 2 5 -(f) LF(p)dp

Ay A
- Y1 ~2F .1l J F “(u)du dp ,
Q 0
or
G ® L= Ve o (3.3)

Thus the Gint index ts simply one minus the cwnulative total time on

3

test transform.

Relationships (3.1), (3.2), and (3.3) now enable us to state some

other results for the Lorenz curve and the Gini index.

|
!
|

4. Some Properties of the Lorenz Curve

Gastwirth (1972) has given several properties of the Lorenz curve
and the Gini index that are of interest. We give here some additional prop- '
erties which follow naturally from the results of the previous section. |
Remark 4.1: L;l , the inverse of LF » is a distribution function with

: support on (0,11 ; also L;,l is concave.
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Proof: The conclusion follows from the fact that
1 b 1
L) = =[ F (pddp = 1
u
0
when F(0) = 0 , and that L;l(p) increases in p € [0,1] . Since LF

. -1
is convex, LF is concave.

We shall make use of Remark 4.1 in Theorem 4.6.

Definition 4.2: Let F be the class of continuous distributions on

[0,) , and let {deg} be the class of degenerate distributions. Then Fl
s star ordered with respect to F2 , denoted by Fl $ F2 5 1E Fl,F2 €

=]
F2 Fl(x)

F u{deg} , and is nondecreasing in x for 0 < x < le(l) .

We shall now state and prove

o o o]
Theorem 4.3 If F_ < F_  , and if [ xdF_ (x) = S =xdF,(x) = u , then
wneorem 2.2 1% 2 5 1 . 2
(a) L. () 2 L, (p}
kl F2
(b) (CL), > (CL) , and
1 2
(&) R 6 .
}1 FZ
Py s -1
Proof: Consider L_ (p) - L, (p) = [ —-(F (u) - F (u))du ; let
— F F V! 1 2
1 2 0
-3 =1 :
h(u) = F1 (u) - F2 (u) , and note that S h(u)du = 0 . Since F1 $ Fz 5
0

by the "single crossing property'" of star ordered distributions [cf. Bar-
low and Proschan (1975), p. 107], it follows that h(u) changes sign

exactly once, and from positive to negative values. Thus,
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o
" J h(u)du > 0 ,
0
and this completes part (a) of the theorem. Proof of parts (b) and (c)

follow from the above result and the definitions of (Cl,)F and C}_

1t l-‘J s F, v and if F, is taken to be an exponential distri-

bution, then l-“ belongs to the class of distributions which have "in-

creasing tailure rate average" [cf. Barlow and Proschan (1975)]. Theorem
7 of CGastwirth (1972) is analogous to Theorem 4.3 of this paper. However,
our theorem is more generval than that of Castwirth, since it applies to a

much larger class of distributions.

Detinition 4.4: Let F  be the class of continuous distributions on

[0,9) , and let {degl be the class of degenerate distributions. Then

Fl is convexr ordered with respect to F, , denoted by Fl S Fy o, Af

2 . ¢
qo -~ =
l'l.i',, ¢ F u{deg} , and F, !'l(x) is convex in x for 0 < x < l'l‘(l) .
Remark 4.5: l~‘l < ¥, dwmplies I“l s F, lect. Barlow and Proschan (1975),
e &0 k£ 7
p. LO7].

In the following theorem we shall show that the convex ordering

property is preservved by l.;,l , the inverse of Ll" R Fl L\ F, , and

it F, is taken to be an exponential distribution, then F‘ belongs to

the class of distributions which has an "increasing fatlure rate" [ef.

Barlow and Proschan (1979)].

- -1
heorem 4.6: . € F ’ " ¢ L s
Theorem 4.6 It l-l 2 I? then lFl ; lF,
" -1 . ~1
Proof: We wish to show that l.‘_‘ l.F (x) is convex in 0 < x < l'l ) .
: 4

We shall assume that Fooand F,  are absolutely continuous. Then we

1 P

need only show that d 1., |.‘.l(x) is nondecreasing in 0 < x < l"-‘(l) .
dx l'? l'l . ‘ = ]

w G
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Let 1, and ", be the means of F, and F2 , respectively. Then

1 1
L;l(x)
1
II% Lp [LFI(X)] = »‘-?-’ fo f le(u)du
G| Bl | e A
le(L;l(x)) dL;l(x)
- 1 1
u2 dx
l.(tt
x = L. (p)
l‘1
~1
PR ‘
dp Wy 1
4
R AT TR
- -] - ¢
e Fll(p) Pl (0 Fll[Lpl(x)]
1 1
Hencoe
-1
dL., (%)
B G
dx F I[Lil(x)]
1 F
1 |
: i
an |
?
- 1r. -1 ?
LF (x) W F— L- (x)
1 12 F
& 3 Jf -1 1
ax . B ol 7 T
20 U Fy 1L, (x)
| F
1
RN 8
Since F] : F? implies that i is nondecreasing in 0 < x < Fl (1) ,
: -1 -1 -1
and since Fl LF (x) = t is nondecreasing in 0 < x < Fl (1) , a change of
1
- 10 - q
!
|
f




——

—

R

ST B e B e g S

T-368

—1(x)

LF
g 10"
variable shows that = R FZ (u)du 1is nondecreasing in 0 < x <
0

2

F—l(l) . Since continuous distributions can be approximated arbitrarily
closely by absolutely continuous distributions, the proof of the theorem

is completed.

». Some Statistics of Interest

Let X(l) < X(z) S s X(“) denote the order statistics corre-

sponding to a random sample of size n from a distribution F , where

F(O) = 0 . The total time on test statistic to the ith failure, T(X(i)) R

is defined by

1

(X)) def jzl (n—j+1)(x(j) 3 x(j_])) . (5.1)

Barlow and Campo (1975) have used the scaled total time on test

iRy i e
agtabiotie, N(n) , defined as
1

i

Y (n-i+)(X = Xy
w(%) def j=1 o ( L% i 1)) (5.2)

n
£ o

for analyzing failure data.

The cumulative total time on test statistic, vn , defined as

has been used by Barlow and Doksum (1972) for testing for exponentiality.

They show that a test based on Vn is asymptotically minimax against a

class of alternatives defined by the Kolmogorov distance.

= Y e

T R i 4 bl L
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Gail aund Gastwirth (1977a) have pronosed a test for exmonent{ality

based on the Lorena statistic, L"(p) , defined as

Inp] n
dqf . 3 N
L“(P) e {)1 x(i\ / iil X(l) ,

where 0 < p <1, and [np] is the largest integer in np . The sta-

tistice L“('5) is shown to have good power agaiunst a range of alterna-

tives; this is based on a Monte Carlo investigation.

Recently, Gail and Gastwirth (1977) proposed another test for

exponentiality based on the (Gin? statistie, Go» defined as

n

ach
e [):,l - (X g1y = Xepy)
¢ == == (5.5)

n l)!
(n-1) ) X
juy 33

Bascd upon Monte Carlo studies, Gail and Gastwirth (1977b) have concluded

that Gn is more powerful than Ln('ﬁ) for n=20 , against most of the

alternat ives that are studied.

We can easily verify the following relationships between the vari-

ous test statistics that we have discussed thus far:

(n~1)X, .

) T i AL 3 )
w(n) kY Ln(n) ¥ n (3:5)

X
g1 D
and
\Y _ e I S (5.7)
n n

In view of (5.7) above, the test for exponentiality based on the Gint
statistic is identical to the test for exponentiality based on the cumu-
lative total time on test statistic. Thus, we can say that the test for
exponent falfty based on the Gini statistic is asymptotically minimax

against some restricted alternatives.

b e b st B it a5 AT
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The exact distribution of Gn under exponentiality follows from

Theorem 6.2 of Barlow, Bartholomew, Bremner and Brunk (1972), and from
Equation (5.7) above. Gail and Castwirth (1977b) have also derived the

exact distribution of Gn , but by using a different argument.

6. The Lorenz Process and its Weak Convergence

Using previous notation, we define the Lorena process, Lﬁn(t) :
0<t<1), as

70 = Al - o). et
1 € 4%n; (6.1)
xn(O) = 0.

We are interested in the asymptotic behavior of this process for F in

general.

Following the notation and terminology of Barlow and Campo (1975),
we shall say that a stochastic process (W(t) ; t > 0} is a "Brownian

motion process" with drift coefficient equal to 0 if:
(i) W) = 0 ;
(ii) {w(e), t 2 0} has stationary independent increments;

(iii) W(t) is normally distributed with mean 0 and variance
t s for all € >0 .

A process {U(t) ; 0 <t <1} is called a "Brownian Bridge" on [0,1]
when U(t) = W(t) - tW(l) , 0 <t <1 . Such a process is normal, has all
sample paths continuous, E(U(t)) =0 for 0 <t <1, and has covariance
s(1-t) for 0 <s <t <1. Note that V(t) = -U(t) 1is also a Brownian
Bridge on (0,1] .

6.1 Weak convergence of the Lorenz process

Let vn(u) be a discrete measure putting mass 1/n at u = i/n,
1{=1,2,...,0 . Then

- 13 =




. n (1) i/n X
L. (l) - -‘i-;‘l*--—-* w [ *—Lilll} dv (u)
nln 1 )_ , 0 X n
i (6D
tef
where X 96 ) X(‘)/u , and [nu] is the greatest integer in nu .
b o
R,
Since l.F(l) - [ F "(u)du , substitution in (6.1) gives
0
i/m (X =1
[} - s /.\{.i_'-‘_-"-‘- 1 Lﬁm} W
0 X
(6.2)
i/n o £
5 A g ) - )
I\ n
0
1f we assume that J xdF(x) <> , and if g = F-l has a nonzero continu-
0

ous derivative g' on (0,1) , then by Shorack (1972),

X -1 g o y
A\{ﬁﬁ'—f-Q)‘ ~E_ __L§)U“)_n%lz.
X " 3 N
[nul->t

P
In the expression above '"———->"  denotes convergence in probability,
o

U is the Brownian Bridge process on (0,1) , and Z = [ u[F(x)])dx is
0

2 2
normal with mean 0 and variance OF , where (’F is the variance of F .

Since the second term of (6.2) converges deterministically to zero,

it follows that

ne 2
M

» t U oy ~
‘{n(t) n J = (&-‘(l-‘-l)- U(u) + ?1(.;‘.), :’.) du def () .

We can also express JL(t) as

- 14 =
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1 () L(t) &
£(t) = -=/ VIR JdR = s I U[F(x))dx .
0 W oo

Ry a dirvect but tedious calculation [ctf. Cail (1977)]), it can be shown

that under exponentiality
2
Var(£(0)) = 201-0)8n(1-t) + t + t(1-0) - (¢t + (=-OW(1-))" .

Thus, in contrast to an analogous result based on the convergence of the
total time ou test process [see Barlow and Campo (1975)], under exponen-

tiality {£(t) ;3 0 <t <1} 1is not the Brownian Bridge.

0.2 Uses of the Lovenz process

The Lorenz process can be used to find the asymptotic distribution of

. E i) . i)
iy el }Ln(u) LF(n l 2

1<i<n

which by the invariance principle of Billingslev (1968) is the same as

that of

This statistic can be used to test the hypothesis that the given data has
distribution F  versus the general alternative that it does not. As seen
at the end of Section 6.1, under exponentiality it is net the Kolmogorov-

Smirnov statistic, and this is not very pleasing.
Another statistic that can be used for the same purpose is the area

i "
between the curve of Lu(h) and the curve of Lp(t) . A consideration of

this avea leads us to Theorem 6.2, which follows from Theorem 6.6 of

Barlow et al. (1972).




Theorem 6.1 |Barlow, Bartholomew, Bremner and Brunk (1972)]): If

J xdF(x) < @ and OZ(F) <o,
0

where

ol(F) = 2 S f {2[1-F(s)) - Vel X {201-F(D)] = VIF(s) (1-F(D) ds dt ,

s<t
then
-fr % 9 o (1)
vn {-— ) w(~) - v, ==> nlo, 2] .
0 n F n-xe 2
i=1 u
where "é?2>" denotes convergence in distribution.

Using the fact that GF = 1—\’F , and Gn = 1—Vn , We are now in a
position to obtain the limiting distribution of the Gini statistic. We

have

Theorem 6.2: Under the conditions of Theorem 6.1,

/ (/‘:‘ Q ¢ ( 1)
v (U -G~) SRR AR iy .
%k n- 2

Y

4 Y 1 Bl 1
In the case of F  exponential, bF -y and 0 (F) = i2 ° Thus

£ @
v12n (cn - }) -'J“ N(O,1) ,

) n =

o«

a result also obtained by Gail and CGastwirth (1977b) using some arguments

due to Hoeffding (1949),

7. The Lorenz Curve and the Mean
Residual Lifet ime

Bryson and Siddiqui (1969) and also Hollander and Proschan (1975)

have pointed out that the notion of "mean residual lifetime"

is especially
usceful fov the analysis of biological data. 1In this section we point out

the velationship between the Lorenz curve and the mean residual lifetime.

- 16 -
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Such a rvelationship suggests to us that the Lorenz curve methods, which
have so far been mainly used in the social sciences, could also be used
in the biological sciences. This possibility has also been hinted at

by Thompson (1976).

The mean restdual lifetime corresponding to a random variable X

with distribution F, F(0 ) = 0 , is defined in

Detinition 7.1:
K

S >l-:(u)du

600 = S

;‘(.\')

We say that a distribution F has a decreasing (increasing) mean re-
stdual 11 fetime if CF(x) is decreasing (increasing) in x for all

x>0.

Bryson and Siddiqui (1969) have used the decreasing mean residual
litetime property to interpret some survival data on patients suffering

from leukemia.

It we denote the mean ol F by 4, then we can write {',F(x) as

1 =
ull - =/ F(u)du
Mo

plx) = O e
F(x) [
) 3
From Definition 2.2, it follows that |
1 =
-uf F(u)du = WF(F(X)) :
0
thus
uL - wF(v(x))]
eplx) = bt ;
i F(x)

The above expression when used with Equation (3.1) gives us a relationship

between cp(x) and LF(') ; specifically, we have

1 -1y -




Lp(F)) = 1 - Eﬁﬁl e () + x] . (7.1)

In order to demonstrate the use of the Lorenz curve for biological
applications, we shall consider the data given by Bryson and Siddiqui
(1969). These data pertain to survival times (in days), from the time
of diagnosis, of patients suffering from chronic granulocytic leukemia.
The ordered 43 survival times in days avre: 7, 47, 58, 74, 177, 232,

273, 285, 317, 429, 440, 445, 455, 468, 495, 497, 532, 571, 579, 581,
650, 702, 7t5, 779, 881, 900, 930, 968, 1077, 1109, 1314, 1334, 1367,
1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429, 2509.

If we denote the number of survivors at time x by S , and if
the size of the initial population is denoted by n , then Bryson and
Siddiqui estimate the mean residual life at time x by

Bty = 8N (%)

where X, denotes the survival time of the jth element and the sum is

3

for those having survived up to time x .

In Figare 7.1 we show a plot of §£(x) versus the time x , for
the data in question. Thus, the distribution of survival times has a
decreasing mean residual life; this conclusion is based upon an inspec-

tion of Figure 7.1.

In Figure 7.2 we give a plot of the sample Lorenz curve for these
data. The sample Lorenz curve is simply a plot of the Lorenz statistic

Ln(p) (defined in Section 5) versus p , 0 < p <1 . The sample Lorenz
curve Ln(p) represents the proportion of the total lifetime contributed

by the least fortunate p+100 percent of the patients; for example, 50X
of the patients contribute only 20% of the total lifetime. The sample
Lorenz curve can also be used to compare the heterogeneity of the survi-
val patterns of two groups of patients. To illustrate this, we give in
Figure 7.3 the Lorenz curves for the data on the survival times of guinea

plgs considered by Doksum (1974). The Lorenz curve for the "control
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Figure 7.1--Sample mean residual lifetime versus 1
time of leukemia patients )
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group" lics below the Lorenz curve for the "treatment group" for p  less
than about .8 ; the curves cross near p = .8 . Thus, initially the
treatment group is less heterogencous than the control group and the re-
verse s true later on.  This can also be verified by an inspection of the

actual data.
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