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Software Complexity Research Program

Department of Defense (DOD) software production and maintenance is a
large, poorly understoad, and inefficient process. Recently Frost and Sullivan
(The Military Software Market, 1977) estimated the yearly cost for software within
DOD to be as large as $9 billion. DeRoze (1977) has also estimated that 115 major
defense systems depend on software for their success. In an effort to find near-
term solutions to software related problems, the DOD has begun to support research
into the software 1ife-cycle.

A formal 5 year R&D plan (Carlson & DeRoze, 1977) related to the management
and control of computer resources was recently written in response to DOD Directive
5000.29. This plan requested research leading to the identification and validation
of metrics for software quality. The study described in this paper represents an
experimental investigation of such metrics and is part of a larger research pro-
gram seeking to provide valuable information about the psychological and human
resource aspects of the 5 year plan.

The challenge undertaken in this research program is to quantify the psy-
chological complexity of software. It is important to distinguish clearly between
the psychological and computational complexity of software. Computational complexity
refers to characteristics of algorithms or programs which make their proof of
correctness difficult, lengthy, or impossible (Rabin, 1977). For example, as the
number of distinct paths through a program increases, the computational complexity
also increases. Psychological complexity refers to those characteristics of software
which make human understanding of software difficult. No simple relationship between
computational and psychological complexity is expected. For example, a program with
many control paths may not be psychologically complex, as any regularity to the
branching process within a program may be used by a programmer to simplify under-
standing of the program.
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Halstead (1977) has recently developed a theqry concerned with the psycho-
logical aspects of computer programming. His theory provides objective estimates
of the effort and time required to generate a program, the effort required to
understand a program, and the number of bugs in a particular program (Fitzsimmons
& Love, 1978). Although some predictions of the theory are counter-intuitive and
contradict results of previous psychological research, the theory has attracted
attention because independent tests of hypotheses derived from it have proven
amazingly accurate.

Although predictions of programmer behavior have been particularly impressive,
much of the research testing Halstead's theory has been performed without sufficient
experimental or statistical controls. Futrther, much of the data was based on
imprecise estimating techniques. Nevertheless, the aailable evidence has been
sufficient to justify a rigorous evaluation of the theory.

Rather than initiate a research program designed specifically to test the
theory of software science, a research strategy was chosen which would generate
suggestions for improving programmer efficiency regardless of the success of any
particular theory. This research focuses on four phases of the software 1ife-
cycle: understanding, modification, debugging, and construction. Since different
cognitive processes are assumed to predominate in each phase, no single experiment
or set of experiments on a particular phase would provide sufficient basis for
making broad recommendations for improving programmer efficiency. Each experiment
in the series comprising this research program has been designed to test important
variables assumed to affect a particular phase of software development. Professional
programmers will be used in these experiments to provide the greatest possible
external validity for the results (Campbell & Stanley, 1973). In addition, Halstead's
theory of software science and other related metrics can be evaluated with these '
data. ;
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Predicting Programmers' Ability to Modify Software

Currently, computer programmers spend more of their time modifying existing
software or converting it to operate in new environments than in developing new
software. Although modifications and maintenance costs have been estimated to
be three times higher than those associated with development, managers continue
to invest their resources in modification in the mistaken belief that development
costs and risks are prohibitive. Thus, modified systems frequently become
inefficient collections of concatenated patches. Decisions to modify programs
would be aided by systematic information estimating the cost, time, and resources
necessary to complete a particular modification. This study was designed to
determine the characteristics of software and requested modifications which are
related to the speed and accuracy with which programmers are able to make modifica-

tions.

Several programming practices should influence the ease with which a program
can be modified. Among these practices are documentation and the use of structured
coding techniques. Dijkstra (1972) argued that program construction should proceed
in a top-down structured fashion, and that programs consistent with these guidelines
would be easier to understand, debug, and modify. In an experiment using student
programmers, Lucas and Kaplan (1974) found that structured programs took less time
to modify. Sheppard, Borst, & Love (1978) found that programs which were
structured in a manner to compensate far the lack of suitable control structures in
FORTRAN were more easily comprehended by professional programmers.

The use of comments, in-line, global, or both, is another standard software
engineering practice'which is thought to be related to ease of modification,
although there is some contention over how the documentation should be implemented.
Global comments preceding a program indicate what objective will be accomplished.
In-line comments delineate exactly how and where the objective is fulfilled.
Use of in-Tine comments has been encouraged to simplify the process of making changes
to programs (Wilkes, Wheeler, & Gill, 1951, Poole, 1973). Others (Musa, 1976;Shneiderman,
1977) have found that global comments improved student programmers' ability to ‘

comprehend and modify programs, but contend that in-1ine comments seemed distracting.
For example, in a FORTRAN modification task with student programmers, Yasukawa (1974)
found that a groupgiven global comments performed better than a group given
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detailed comments. However, Newsted (1974) found that on short FORTRAN programs,
comments preceding the code defining the variables were not useful. Still other
computer scientists recommend both global and in-line comments on the theory that
too much documentation is impossible.

In parallel with these attempts to improve programmer efficiency, several
approaches have been developed for predicting the psychological complexity of soft-
ware. Presumably, techniques which improve the efficiency of programmers' perfor-
mance do so by simplifying the cognitive task facing them. Thus, complexity metrics
are one way of measuring and validating this assumption. Where such validation is
successful these metrics may indicate guidelines for program development.

In 1972, Halstead first published his theory of software physics (renamed
software science) stating that algorithms have measurable characteristics analogous
to physical laws. According to Halstead (1972a, 1972b, 1975, 1977), the amount of
effort (E) required to generate a program can be calculated from simple counts of the
actual code. The calculations are based on four quantities from which Halstead
derives the number of mental comparisons required to generate a program; the number
of distinct operators and operands and the total number of occurrences of operators
and operands. Preliminary tests of the theory reported very high correlations
(some greater than .90) between Halstead's metric and such dependent measures as
the number of bugs in a program (Cornell & Halstead, 1976; Funami & Halstead, 1975),

programming time (Gordon & Halstead, 1975), and the quality of programs (Bulut &
H Halstead, 1974; Elshoff, 1976; Gordon, 1977; Halstead, 1973). A more recent test by
Sheppard, Borst, & Love (1978) indicated that the relationship between Halstead's
measure and program comprehensibility could be affected by differences among the
programs studied.

McCabe (1976) developed a definition of complexity based on the decision struc-
ture of the program. McCabe's complexity metric, V(G), is the classical graph-
theory cyclomatic number defined as:

V(G) = # edges - # nodes + # connected components.
Simply stated, McCabe counts the number of elementary control paths through a computer
program.

The present study experimentally evaluated the effects of two programming prac-
tices (i.e., well structured code and use of comments) on the ease with which a pro-
gram could be modified. In addition, there was an assessment of the relationship
between the spped and accuracy of making a modification and three software complexity

metrics,namely Halstead's E, McCabe's V(G), and the total number of statements.
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Method

Participants

The sample for this experiment consisted of 36 professional programmers from
three different locations within the General Electric Company. These participants
had an average of 5.9 years of programming. experience (SD = 4.1), and all had a
working knowledge of FORTRAN. Twenty of these programmers had an engineering
background, while the remaining 16 had diverse backgrounds often including statis-
tical and non-numeric programming.

Procedure

A packec of materials was prepared for each participant. The initial instruc-
tions to each participant are presented in Appendix A. In a preliminary exercise,
participants were asked to modify a short FORTRAN program. A1l 36 participants
were given the same preliminary program and a brief description of its purpose.
Participants were given unlimited time to complete the modification. The purpose
of this introductory program was two-fold:

1) to provide a common basis for comparing the skills of the participants
on this type of task, and

2) to control for initial learning effects.

Following this initial exercise, participants were presented in turn with the
three programs which comprised the experimental task. One modification was requested
for each program, and participants were allowed to work at their own pace, taking
as much time as needed.to implement the 'modification. An electronic timer was
used to record the beginning and ending times of each trial to the nearest minute.

Experimental Design

In order to control for the individual differences in performance, a within = :
subjects 34 factorial design was employed (Hahn and Shapiro, 1966). Three of the
programs from a previous experiment in this research program (Sheppard, Borst,

& Love, 1978) were used. Three levels of control flow were defined for
each of the three programs, and each of these nine versions was presented with three

types of documentation for a total of 27 programs. Modifications at three levels
of difficulty were developed for each program generating a total of 81 experimental
conditions.

1___.......-.......-....lllll-llllllllllllllllllllllllllllll..I




Four sets of nine participants were used in the experiment. The participants
in the first three sets exhausted the total of 27 program-modification combinations.
The fourth set of 9 participants repeated the assignments of one of the three
previous sets. Table 1 shows the design for the first 27 participants.

Programmers at each location were randomly assigned to the design so that over
the course of their three experimental programs every participant had seen each
program, each level of modification, each type of dccumentation, and each type
of control flow. For simplicity the design is presented in Table 1 without regard
to the order of presentation to the participants. One of the six possible orders of
presentation of the three programs was assigned randomly and without replacement
to each participant.

Independent Variables

Programs. Three programs were selected from among those employed in a previous
study from this research program (Sheppard, Borst & Love, 1978). The programs
were considered to be representative of programs actually encountered by professional
programmers. A1l versions of these three programs were compiled and executed using
appropriate test data. The programs were all written in standard FORTRAN.

Complexity of control flow. Three levels of control flow complexity were de-
fined for each program. The least complex level adhered strictly to the tenets of
modern structured programming (Dijkstra, 1972). Program flow proceeded from top to
bottom with one entry and one exit. Neither backward transfer of control nor arith-
metic IFs were allowed.

In FORTRAN awkward constructions often occur when structured programming prac-
tices are applied rigorously, such as DO loops with dummy variables (Tenny, 1974).
These awkward constructions were largely eliminated in the moderate or quasi-
structured level where a more natural control flow was allowed. A judicious use
of backward GO TO statements and multiple exits was permitted. IF statements were
again restricted to assignment and logical IF's.

In the most complex (i.e., unstructured) versions of each program the control
flow was not straightforward. GO TO statements occurred frequently, and backward
transfer of control was not restricted. The three-way transfer of control statement
(arithmetic IF) was allowed only at this level (Appendix B).

Comments. Three types of comments were tested in this experiment: global,
in-1ine, and none. Global comments provided an overview of the function of the pro-
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: gram and identified the primary variables. In-line comments were interspersed

throughout the program and described the specific function of small sections of
| code. Examples are presented in Appendix C.

Modifications. Three types of modifications were selected for each program
as representative of the tasks a programmer might be expected to encounter in
relation to such programs. The level of difficulty for seven of the nine modifications
increased as the number of lines which had to be added to the code. iricreased. In
avery case, the hardest madification for each program was the one which required the
most lines of code to be inserted into the original program.

Covariates

In order to obtain a measure which was assumed to be related to programming
ability, all participants were required to perform the same preliminary task. A
short program was given to the participants to modify. Theirstores on this task
1 were used as a covariate to measure individual performance differences. Participants
were asked their type of programming experience, the number of years they had been
programming professionally, and the size of the largest program they had ever
constructed. Order of presentation was measured as a situational covariate.

Complexity Metrics

Halstead's E. Halstead's E metric was computed from a program (based)
on Ottenstein, 1976) which had as input the source code 1istings of nine programs

(three separate programs at each of three levels of complexity). The computational
formula was:

(N.I + Nz) log, (n1 + "2)
(2/n1) ("z/Nz)

where,




number of unique operators

3
-
b}

number of unique operands -

= total number of occurrences of operators

= =
—
u 1}

2 total number of occurrences of operands

McCabe's V(G). McCabe's metric is the classical graph-theory cyclomatic
number, defined as {(G) = # edges - # nodes + # connected components. Because the
- McCabe measure is defined only for programs that adhere strictly to the rules of
structured programming, some modifications to the metric were necessary in order to
evaluate the less structured control flow versions.

In the simplest program possible, Y{G) = 1; sSequences do not add to the
complexity. IF-THEN-ELSE is valued as 2, increasing the complexity by 1. A DO
or DO WHILE is also 2, the assumption being that there are really only two control
paths, the straight path through the DO and the return to the top, regardless of
the number of times executed. Clearly a DO executed 25 times is not 25 times more
complex than a DJ executed ance.

In order to compute the metric for unstructured programs, several alterations
were made. An additional RETURN was counted as an extra path in each case, keeping
the cyclomatic number the same as that of a "GO TO end". For statements of the
form:

IF ( ) 100, 200, 300

the complexity was increased by 2 as opposed to the logical IF, which increases

the complexity by 1. These are small changes which appear to be reasonable extensions
of McCabe's theory. However, one difficulty arises with the arithmetic IF when two
paths are the same:

IF ( ) 100, 100, 200.

In order to standardize the procedure, it was counted in the same way as the standard
arithmetic IF, with 2 added to the Y(G) metric.

A1l experimental programs were checked before the experiment to insure that
the most complex version of the program had the highest McCabe value and the least
complex version had the lowest value.




Dependent Variables

The dependent variables were the correctness of the modification and the time
taken by the participant to perform the task. The individual steps necessary for
correct implementation of the requested modifications had been delineated in advance
and assigned equal weights. The participants’' changes were then compared to the
criteria. Thus, a percentage score reflecting the correctness of each modification
was achieved. Al1l of the responses were scored by the same grader. The time to
write a modification was measured to the nearest minute.

Analysis
The analyses of results was conducted in two phases. The first phase was an
experimental test of the programming practices, while the second phase was a evalua-

tion of the software complexity metrics.
The first phase, involving experimental manipulations of programming practices,

was analyzed by ahierarchical regression analysis. In this analysis domains

of variables were entered sequentially into a multiple regression equation to deter-
mine if each successive domain significantly improved the prediction of the equation
developed from domains already entered. Thus, the order with which domains were
entered into the analysis was important. In this study, effects related to differences
among participants, programs, modifications,and order were entered into the analysis
prior to evaluating the effects of programming practices. The variable domains were

entered in the following order:
Differences related to participants and programs

1) Pretest scores

2) Order of presentation
3) Specific program

4) Modification

Programming practices

5) Program structure
6) Documentation

The variables representing the different conditions of domains three through six were
effect coded (Kerlinger & Pedhazur, 1973).




The secand phase of analysis investigated relationships among Halstead's
£, McCabe's Y(G), number of statements in the program, and the time and score on

the experimental task. Correlations ameng these measures were examined in both
the modified and unmodified programs.




Results

Across all experimental conditions an average score of 62% was received on
modi fications made (SD=31%). The 108 accuracy scores ranged in value from five
scores of O to 24 scores of 100; they were negatively skewed. The average time
to complete the modifications was 17.9 minutes (SD=11.4),ranging from a low of 2-

minutes to a high of 59 minutes. The time data were positively skewedQ Score
and time were uncorrelated.

Pretest

Means and standard deviations for the pretest accuracy score (M=66%, SD=30%)
and time to completion (M=21.4 min, SD=14.6) were similar to those observed on
the experimental tasks. Score and time for the pretest were correlated -.44 (df=34,
P = .005) indicating that participants with high scores worked more quickly; but no
causal interpretation is implied. Pretest performance was modestly related to exper-
ience in that the number of statements in the largest program a participant had ever
written was related to the score (5(34)=.32,_g:$ .05), while participants with more
years of experience were able to complete their modifications more quickly (5<34)=
.35, p=.025). With the exception of pretest score, none of the individual difference
variables were related to the dependent variables on the experimental tasks.

Accuracy and Completeness of Modification

Results presented in Table 2 indicate that overall,only 19% of the variance
in scores on the modifications could be predicted by the variable domains measured
here. However, there were substantial differences in the degree to which performance

on the three programs could be predicted. Performance on twa of the programs
was reasonably predictable; half of the variance was accounted for in

the separate results for each program, and 35% was accounted for in the combined
results for both programs. However, the results for a third.program were insig-
nificant.

Modest relationships with the performance score were observed for both the
pretest and order of presentation. The significance of the order variable suggests
the presence of leaming or practice effects. However, this interpretation is
confounded by the fact that random assignment of presentation order failed to counter-
balance the number of times each condition appeared in each position order. With

10




TABLE 2

Hierarchical Regression Analyses for Accuracy of Modification

A 52
et A1l programs ° Two most predictable
Variable domain : (n=108) ' programs (n=72)

1) Pretest score .05* .05

2) Order of presentation -05* L13%*

3) Specific program .02 .01
\ 4) Modification difficulty .02 +Qg%*

5) Control flow complexity .04 LQ7%*

6) Comment type .01 .00

A1l domains .19 - 3Gk

Note: Figures indicate the precent of variance contributed to prediction
of performance in addition to that afforded by preceding domains.
Significance levels indicate whether this represented a significant
contribution to prediction.

*» < .05
**p < .01
**p < .001

1




each succeeding experimental task, participants made more complete modifications
in less time. However, the two programs on which performance proved most predictable
were presented to participants more frequently in the second or third order position.

Accuracy scores differed as a function of the difficulty of the modification on
the two most predicatable programs. As expected, performance was not as good on modi-
fications which required more lines of code to be inserted. The complexity of the
control flow also affected accuracy scores on the two programs for which accuracy
was most predictable; modifications to the structured programs were more accurate
and complete than those made to unstructured programs.

Accuracy scores did not differ as a function of differences among programs.
Hawever, differences among programs moderated relationships among other independent
variables and the accuracy criterion. While mean accuracy scores did not differ
significantly across programs, relationships between accuracy and other variables
did differ among these programs. No differences in scores were observed as a
function of the type of comments included in the program.

Time to Complete Modifications

Data presented in Table 3 indicate that 28% of the variance in the time
required to complete the modifications across all three programs could be accounted
for by variables studied here. The time to complete the modification was more easily
predicted than the accuracy of the modification on the program for which prediction of
accuracy was low. Although time to completion was not as highly predicted on this
program as it was on the other two, including data from it in the regression analysis
did not lower the percents of variance accounted for to the extent that had been
observed in the accuracy analysis.

Results of the hierarchical regression for time were similar to the results
which had been observed for accuracy. The specific program and type of comments
were unrelated to the criterion. Unlike the earlier analysis for accuracy scores,
however, the pretest results were not related to time to complete the modification.
Significant effects were observed for difficulty of the modification and order of
presentation, although again, the interpretation of the effect for this latter
variable is confounded. Although control flow complexity was significantly related
to the accuracy of the modification on the two programs on which accuracy was most
predictable, no such effect was observed for the time to complete the modification.

12




TABLE 3

Hierarchical Regression Analyses for Modification Time

A R?
A1l programs Two most predicatable
Variable domain (n=108) programs (n=72)

1) Pretest time .03 .00

2) Order or presentation .06** .06

3) Specific program .01 .01

4) Modification difficulty L16%* .29%**

5) Control flow complexity 02 .00

6) Comment type .01 .01

A1l domains STk jeiaticd B fiadiad

Note: Figures indicate the percent of variance contributed to prediction
of performance in addition to that afforded by preceding domains.
Significance levels indicate whether this represented a signifi-
cant contribution to prediction.

*p £ .01
***p < .001

13




A post hoc inspection of the nine individual modifications in this experiment
verified that the numben of new statements to be inserted into the code was
related to the time required to make the modification. Fitting a hyperbolic function
to these data using least squares procedures (Figure 1) resulted in an 5? of .80 and
a standard error of estimate of 2.53. No such relationship was found for score.

Software Complexity Metrics

Relationships among metrics. Correlations among Halstead's and McCabe's metrics
and the length (number of statements) are presented in Table 4 for the original
programs and their modified versions. There were nine different versions of the
original programs (three programs each with three versions of control flow) and
27 modified versions representing three different modifications to each original pro-
gram. Correlations among these measures were quite high on both the original and
modified programs, especially between length and Halstead's E.

Relationships with criteria. Correlations between the three complexity metrics
and the two dependent variables are shown in Table 5 for individual datapoints (n=108)
and data aggregated across the 27 modified programs. In each case, the correlations
on the aggregated data were numerically larger than those in the unaggregated data.
These larger correlations result from the elimination of individual differences and
other sources of error through the aggregation process. The strongest relationship
on the original programs was a tendency for higher McCabe values to be associated
with lower accuracy scores, but the largest number of significant relationships were
observed in relationship to the modified programs. While McCabe's V(G) continued to
demonstrate the largest relationship with score, both the length and Halstead's E
metrics demonstrated moderate correlations with the time to complete the modification.

Correlations between complexity metrics and performance measures were found to
differ with different types of comments. Table 6 presents the correlations between
complexity metrics and performance measures for the data generated with each type
of comment. A1l but one of the significant correlations observed occurred when no
comments were included in the program. These correlations were stronger on the
modified programs than on the original programs.

14
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TABLE 4

Correlations amang Measures of Software Complexity

Correlations

Metric Length V(G)
Original programs (n=9)

McCabe's V(G) .80%*

Halstead's E B ST TR
Modified programs (n=27)

McCabe's V(G) .§3x**

Halstead's E B il e
**p £ 0]
**%p < 001
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TABLE 5

Correlations between Complexity Metrics and
Performance Measures for Aggregated
and Unaggregated Data

Correlations
Original Program  Modified Program

Criterion Length V(G) E Length V(G) E
Accuracy score

Unaggregated (n=108) = 07* =.22%* - 12 -.20% -.22* -, 17*

Aggregated (n=27) -.28 -.38* -.21 - 37* -.46**-.29
Time to completion

Unaggregated (n=108) 13 .14 .16* .30***.23*‘_' .28%*

Aggregated (n=27) .20 .22 .25 LA5%* 34 Q4wx

*p<.05

*#*p <01
**p<.001
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TABLE 6

Correlations between Complexity Metrics and
Performance Measures under Different
Types of Commenting

Correlations
Original Program Modified Program
Criterion and Length V(G) E Length V(G) E
Type of commenting
] Accuracy score
{
In line ~-.03 -.09 .01 .03 .01 .03
Global ~-.14 -.22 =-.06 -,23 -.,23* -.,18
None ~31* -.34*% -.28% . 37% - 34* - 34*
Time to completion
In line .14 .09 .16 <16 .07 .16
Global .02 13 .09 + 18 21 2}
None .26 w2l .26 T Rt Y VL LSRN ¥ b

Note: n=36

*p < .05
**p < .01
w2p < .001
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Discussion

Three aspects involved in the programmers' task of modifying software are:
1) characteristics of the code to he modified, 2) characteristics of the requested
modification, and 3) characteristics of the programmer. The main factors found
é to influence programmers' ability to correctly modify programs were the difficulty
of the requested modification and the order of presentation. Other influences
were the complexity of the control flow of the original program and individual
g differences among programmers as measured by a pretest. Each of these factors
E contributed separately to the prediction of the performance on the task studied.
Contrary to expectations, documentation did not influence performance. Several
metrics of software complexity were, however, helpful in predicting the accuracy
of a modification and the time required to complete it.

It is not surprising that differences in the difficulty of the modifications
were related to the time taken to implement the modifications. The effect was
more pronounced for time than for accuracy. The number of new lines to be added
was the significant criterion for explaining the time spent to finish a task, rather
than the number of in-line changes, such as deletions or substitutions of operators and
operands. In general, the more new lines to be created, the longer the time expended.

The data reported here suggest that the difficulty of a modification affects
the accuracy with which it is implemented. This result agrees with a previous
study by Bofes and Gould (1974) concerned with syntactic errors. They monitored
editor commands which either inserted or substituted code in programs at a large
5 research center. Programs with syntactic errors averaged 32 inserted new lines,
while programs without syntactic errors averaged only three inserted lines. There
was no difference in the number of substitutions to existing code. These findings
probably indicate a greater cognitive difficulty in creating code than in merely
deleting or adapting it.

A significant effect due to the order of presentation of the programs suggests
the existence of a learning effect as the programmers progressed from task to task.
Such effects were not observed in a previous experiment (Sheppard, Borst, &

Love, 1978) which involved understanding, as opposed to modifying programs. The
failure of random assignment of presentation order to counterbalance the effects of
program differences does not permit a clear interpretation of the learning effect .

Control flow complexity was marginally related to the accuracy of the modifi-
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cation, but not to the time spent making it. This effect only occurred in the
two praogramswhere performance was most easily predicted. Structured code tended
to produce more accurate modifications.

It was anticipated that the inclusion of documentation, either global or
in-Tine coments, would significantly improve performance on a modification task.
No such improvement occurred on the programs used in this experiment. This is
counterintuitive; however, it concurs with the lack ofa significant effect from
our previous study (Sheppard, Borst, & Love, 1978) for a related cognitive programming
aid, mnemonic variable names. This lack of effect for cognitive programming aids
may have occurred for one of two reasons. First, in the experiment where levels
of variable mnemonicity were manipulated, global comments were provided with all
programs. In the current experiment where types of comments were manipulated,
mnemonic variable names were provided across all types of comments in all programs.
Thus, the existence of one type of cognitive programming aid may have reduced the
additional information available from the type of aid being experimentally manipulated,
reducing its impact on performance.

A second possibility is that these cognitive programming aids do not contri-
bute significantly to performance for programs of the modular size (approximately
50 lines) employed here. In large systems with many modules and the thousands
of Tines of code cognitive programming aids may have more impact on performance
because of the increased amount of information to be processed. Thus, it may be
that program size moderates the relationship between cognitive programming aids
such as documentation or mnemonic variable names and performance on various programming
tasks.

As expected from previous work (Sheppard, Borst, & Love, 1978), this experi-
ment showed extremely high correlations among the metrics used; length of the
program, Halstead's E, and McCabe's V(G). Since Halstead's theory of software
science applies primarily to programs in final form rather than programs under
development. both the original and modified programs were examined for correlations
with the complexity metrics. In every case, there was a higher correlation with
performance for complexity metrics computed on the modified programs than
had been observed for those computed on the original programs. Nevertheless, the
correlations observed are not as high as those reported by Halstead (1977) in other
verifications of his theory. The size of the programs employed here may have been
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a limiting factor in the results obtained. The range of values for the complexity
metrics may not have been sufficient to allow correlational tests to detect the
strength of re]atidnships that have been reported in other contexts (Fitzsimmons &
Love, 1978). When used with small programs, the metrics were equally productive;
when used ina larger system, it may be that one of the metrics will prove superior.

Relating the metrics to performance under conditions distinguished by type
of comments uncovered the interesting result that the metrics appeared to predict
| performance better when there was no documentation presented than when either in-
line or global comments appeared. Since the metrics are based on the code, comments
of either type add infecrmation which the metrics do not evaluate. In this experi-
ment that additional or possibly redundant information neither improved nor hindered
the programmer's performance in any way. This suggests that comments are not
ignored but that their effect on the programming tasks may be more complex than
can be explained by simple effects on performance.

Differences among programs played an important role in this experiment, as
they had done in a previous study (Sheppard, Borst, & Love, 1978). The complexity
metrics provided one source of information about program differences, but there
were other factors within the programs which were not assessed by these metrics.
Such factors may involve the complexity of the task performed by the program.
Thus, the cognitive difficulty of the program to the programmer may involve an
interaction between program characteristics and individual differences, such as the
programmer's experience with similar programs. Further research on complexity
metrics should evaluate ways of assessing the complexity of the task performed
by the program, in addition to the factors currently assessed by the Halstead and
McCabe metrics.
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APPENDIX A
INSTRUCTIQNS TQ PARTICIPANT

GOOD MORNING!!! -

Today we are going to ask you to participate in an experiment which we
hope will be hoth entertaining and challenging.

This work, sponsored By the Office of Naval Research, is being done to
make computer programs easier to modify. To do this, we will give you three
separate programs and modification slips and ask you to make the required modification
to each program.

Our purpose is to evaluate characteristics of programs which make them easier
to modify. It is not to evaluate computer programmers. Your performance on a program
will be compared only to your performance on other programs. Your only competition
is yourself. All programs and papers that you will be handed are carefully numbered
so it {s not necessary for you to put your name on any of these.

We would like you to answer the following questions for our research purposes:
1. How long have you been programming in FORTRAN professionally?

years months

- 2. Please circle one of the following: Hasyour primary experience been with
Engineering, Statistical,Non-Numeric, or Other programs?

Alsa, please briefly describe your specific areas of programming experience.

3.. Approximately how many source code instructions were in the longest FORTRAN
program that you have ever written? Please exclude blank lines and comments

During this experiment, each of you will be working on a different program.
If someone else seems to finish earlier than you, don't be concerned. They will have
been working on something else entirely which might not require as much time.

We will begin this morning with a short test program. We will ask you to make
the modification as accurately as possible, and to raise your hand as soon as you are
through. Because of the concentration required for this task, we ask you to make
an extra effort to remain quiet so that others will not be distracted.

If there are any questions, please ask them at this time.
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70
90
92
935

100
102

115

120
122

125
Je0

10

[ L

APPENDIX C
SELECT, UNSTRUCTURED,NQ COMMENTS

SUBROUTINE SELECT(N,STR, ERR,N1,N2)

EXTERNAL RND

INTEGER STR(N),MIX(26) ,RCHR, ERR, STO, ALP( 26)

DATA ALP/1HA, 1HB, 1HC, 1HD, 1HE, 18F, 1HCG, 1HH, 1HI, 1HJ, -
1HK, 1HL, 1HM, 1HN, 1HO, 1HP, 1HQ, 1HR, 1HS, 1HT, 1HU, 1HV, 1HW,
1HX, 1HY, 1HZ/

IF(N-23) 90,90,70
ERR=99

GO TO 300

ERR=0

1=0

I =2 1+1

IF (I - 26) 95, 935, 100
MIXC(I)=ALP(I)

GO TO 92
1=0
I=1+1

IF (I - 25) 118, 113, 129
RCHR=RND( I,26,N1,N2)
STO=MIX( RCHR)

MIX(RCHR) =MIX(I)
MIX(I)=STO

GO TO 102

1 ;)

1 1+

IF (1 - ™ 123, 123, 500
STR(I)=MIX(I)

GO TO 122

RETURN

END

FUNCTION RND(L1, L2, N1 ,N2)
INTEGER L1, L2, N1, N2

IF (L2-L1) 10,20,20

IRDP = L2

L2 = L1

L1 = INDP

SIZ = 12 ~L1 + 1

R = RAN (N1, N2)

RND = IFIX (R * SIZ + FLOAT (L1))
END
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UNIQUE, STRUCTURED, GLOBAL COMMENTS

SUBRgg}'INE UNIQUE
PURP
STR ACENT DUPLICATE ITENMS;

'il:gll mcgmﬁ'.’ TO ELIMINATE DUPLICATES IN A PRE-SORTED MAILING
LIST, OR HOMOGRAPHS (WORDS WITH THE SAME SPELLING BUT
DIFFERENT MEANINGCS) FROM A DICTIONARY.

USAGE
CALL UNIQUE(ARR, N, M

DESCRIPTION OF PARAMETERS " .
ARR - ARRAY OF ITEMS

N - NUMBER OF ITEMS IN ARRAY

M - MAXIMUM LENGTH OF AN ITEM
ALT1 - BUFFER FOR ALTERNATE ITEMS
ALT2 - BUFFER FOR ALTERNATE ITEMS
I1 - ITEM NUMBER IN ORIGINAL LIST
12 - ITEM NUMBER IN STRIPPED LIST

FUNCTIOR SUBPROGRAMS REQUIRED
NONE

| SUBROUTINE UNIQUE(ARR, N, D
INTEGER ALT1(ID ,ALT2(1D , ARR(N, 1D
1=1
12=1
DO 10 L=1,M
ALT1(L) =ARR(I1,L)
10 CORTINUE
DO 90 LP=1,N
DO 20 L=1,M
ARR( 12, L) =ALT1(L)
20 CONTINUE
122 12+1
DO 40 KTR=1,N
[1=11+1
IF (I1 .GT. M) GO TO 100
DO 30 L=1,M
ALT2(L)=ARRC I1,L)
30 CONTINUE : -
DO 40 L=1,M
IF (ALT1(L) .NE. ALT2(L)) GO TO 50
40 CONTINUE
50 DO 60 L=1,M
ARR( 12,L) =ALT2(L)
; 60 CONTINUE -
; 122 12+1
r DO 80 KTR=1,N
I1=11+1
IF (It .GT. M GO TO 100
DO 70 L=1,M
ALT1(L)=ARR( 11,L)
70 CONTINUE
. DO 80 L=1,M
IF (ALT1(L) .NE. ALT2(L)) GO TO 90
80 CONTINUE
90 CONTINUE
100 N=12-1
RETURN
END
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CHISQ, QUASI-STRUCTURED, IN-LINE COMMENTS

C CALCULATES DEGREES OF FREEDOM AND CHI-SQUARE

C FOR A GIVEN CONTIRGENCY TABLE OF OBSERVED FREQUENCIES
SUBROUTINE CHISQ(MAT, N, M, CS, DEG, ERR, RTOT, CTOT)
INTEGER ERR, DEG,PTR

REAL MAT

DIMENSION MAT( 100) , RTOT(N) ,CTOT(ID

C MAXIMUM NUMBER OF CELLS ALLOWED IS 100
C # OF CELLS = # OF ROWS * » OF COLUMNS
NM=NxM -
ERR=0
CS=0.0

C FIND DEGREES OF FREEDOM
DEG=(N-1)*x(I1-1)
IF (DEG .GT. o) GO TO 10

Cc mngngrznscnms OF FREEDOM IS ZERO

RETURN
C COMPUTE TOTALS OF ROWS
10 DO 20 I=1,N
RTOT(1)=0.0
PTR=I-N
DO 20 J=1,.M
PTR=PTR+N
RTOT( I) 2RTOT( I) +MAT(PTR)
20 CONTINUE
C COMPUTE TOTALS OF COLUMNS
C PTR POINTS TO CELL IN ARRAY
PTR=0
DO 30 J=1,M
CTOT(J)=0.0
Do 30 I=1,N
PTR=PTR+1
CTOT(J)2CTOT(J) +MAT(PTR)
30 CONTINUE
C COMPUTE GRAND TOTAL - e s o s s
GTOT=0.0
DO 40 I=1,N
GTOT=GTOT+RTOT( 1)
40 CONTINUE
C COMPUTE CHI SQUARE
PTR=0
Do 50 J=1,M
DO 30 1=1,N
PTR2PTR+1
EXPT=RTOT( I) *CTOT(J) /GTOT
C IS EXPECTED VALUE LESS THAN 1?
IF (EXPT .LT. 1.0) ERR=1
CS=CS+(MAT(PTR) ~EXPT) *( MAT( PTR) -EXPT) VEXPT
S0 CONTINUE
IF (NM .NE. 4) GO TO 70
C COMPUTE CHI SQUARE FOR 2 BY 2 TABLE (SPECIAL CASE)
60 CS=GTOTx( ABS( MAT( 1) *MAT( 4) =MAT( 2) *MAT(3) ) ~GTOT/2.0) **2
1  /(CTOT( 1) *CTOT(2) *RTOT( 1) *RTOT(2))
70 RETURN
END
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