
AD AO S6 079 GENERAL ELECTRIC CO ARLINGTON VA Ffl 5/9
PREDICTING PRoGRAMMERS’ ABILITY TO MODIFY SOFTWARE.CU)
MAY 7$ S B SHEPPARD. M A GORST. B CURTIS N00014 77 C 0158

UNCLASSIFIED TR—7a—3B8100 3 NI.

_ I
END

~At t

B - 70

_ _ _ _ I

- -

I TR- 78-3883.OO-3

I LEVEL’1 TECHNICAL REPORT

I
P RED I CTING PRO G RAM1~ERS’ ABILITY TO

1 MODIFY SOFTW ARE

I
I
I
I
1 MAY 1978 D DC

_
ç

~~~~O 19TB~~~

_ _ _  B

. 1 J C ~)

I GENERAL • ELECTRIC
INFORMATION SYSTEMS PROGRAMS

F9 ARLINGTON, VIRGIN IA

?8 06 08 009



SICUNII ’f CLASSIF ICATION OF THIS PAG E (W~~~ Da.

REPflDT I~~~~~ T A r tt%I DA~ E READ U4STRUCT IONS
“ ~~~~~~~~~~~~~~~~ ‘~~~~‘ ‘~~~‘ — BEFORE COMPLETIPIG FORM

I. REPORt PIUMIER 2. GOVT ACCEUIOM NO 3. RECIPIENTS CATALOG NUMSER

Tq-78 388100 -3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TI1I.E (med SubUui.) I. TYPE OF REPORT & PERIOD COVERED

Predicting Progranmiers ’ Ability to Modify Technical Report
Software V a. PERFORMING ORG. REPORT NUMIER

?R-7 P- ~R~l0fl-~37. AUTP4OR (I ) I. CONTRACT OR GRANT NUMSER(.)

S.B. Sheppard, M.A. Borst, B. Curtis & L.T. Love N00014-77-C-0158 —
.

S. PERFORMING ORGANI ZATION NAM E AN D A DDRESS t O. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NIJUSERS

General Electric Co.
1755 Jefferson Davis Highway, Arlington, VA 22202 MR 197-037

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

OFFICE OF NAVAL RESEARCH 5/31/78 /

Arl ington, VA 22217 
WMSER OF RAG ES

14. MONITOR ING AGENCY NA M E  S AOORESS (S1 dIII.rw t fru Cmur.Wng Oh io.) II. SECURITY CLASL (oh tAt. rsporI)

UNCLASSIFIED
Ia DECLASSIFICAT ION/OOWN GRA OING

SCM EDULE

IS. OISIRISUTION STATEMENT (oh hi. R.pofl )

Approved for public release; Distribution unlimited. Reproduction in whole
or In part Is permitted for any purpose of the U.S. government.

17. DISTRISUTION STATEMENT (oh A. ib~tt.ct .nt.q~d in 1..k 30. ii dill .ra,t fr.a R. ..f)

1$. SUPPL EMENTARY NOTES

This research was supported by Engineering Psychology Programs , Offi ce of
Naval Research

II, KEY WORDS (Cmwinv. me savor.. .id. it n.c...~~~ med Idmltifr bp block maib.r)

Structured Progrwaning Modern ~rograiiibTh~~Pract1ces
Software Complexi ty Metrics Modification
Control Flow Complexity . Documentation
Software Engineering

2} ASITRAC1 (Conff m.. a, savor.. .id. II n.c.. ..v med Id.UtI~~ ~? 
bJork ~~~~bSV)

&his report describes the second experim~nt in a p~~gram of researcft designed
to identify characteristics of computer software which are related to Its psy-
chological complexity. Thirty-six experienced prograniners were given unlimited
time to make specified modifications to a preliminary program and three expert-
mental programs. The correctness of the modi fication and the time requi red to
make each modification served as dependent variables. Results Indicated that
the difficulty of the modi fication was signi ficantly related to the time to
en1i,p4a~ Thie rol i rinehip w~~~ d~crr1b.d by ~ hvn~rbnllc function relatino

DO ~~~~~ 
1473 EDITiON OF I NOV SI IS OSSOLEV E

SiN 0102- 0 14. 110 1
SECU R IT Y CLAUIFICATION OF Th IS PA GE (WIe.., 0... Jai.vod )

— - - .~~ -~ -~~~~~~ - -—~~~~~~~~- --=-- ~~—
—--- .



\ ..L .LIJ4I TY CLASSIFICATION OF THIS PAGE(W1I.n Did. *nt.vod)

~t1me to the nunter of statements to be Inserted In the code. Modest effects
on the score and time were observed for order of presentation, suggesting a
learning effect~On two of the three programs studied, better modifications
were made when the control flow of the original programs was well-structured.
No performance effects were related to the absence of coninents or the type of
coninents. (in—line versus global) used. Moderate relationships with the
criteria were observed for several complexity metrics , and these were strongesti
where metrics were obtained from the modifed code rather than the original
programs. 

~

~: ~~~~~ ~

io.t ~~~~~~ ..~ ~~~~~~~~~~~~~~~~~~ 

C

01st. tiyf L ~~~~~~~~~ j .tt

fr! Li I
O t

SECURITY CLASIIFICATION OP ThIS PAGI(lRIus, D.. ~ u.rs~

L. _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _

j . L TR~ 78~ 388J4~
-3 /

TECHNICAL
/ j

(7~ 1
,.~REDICTING PROGRAI~IERS I

ABILITY TO MODIFY SOF114ARE 0

by

S.B.,~heppard, M4A./~orst~~B./CurtisT/
L.T.~Love ~~~~~~~

17 ~~~ 178 / 
‘

~~~~~~ 
. J ’ ? I

I /

Submitted to: Office of Naval Research
Engineering Psychology Programs

,~m Arlington,lirgtnia 22217
Contrac~ 1 ~ Mø~~l 4—77-C-,el 58

Work Unit. ~NR 197-037

General Electric Company
Information Systems Programs

1755 Jefferson Davis Highway, Suite 200
Arlington, Vi rginia 22202

Approved for public release; distribution unl imi ted. Reproduction in
whole or In part is permitted for any purpose of the United States Government

r).1 1~~~~’
—

hi ~ 1/1/ ~~~~~
O(6~ Q’) S

-~~~~~~~~~____________

PREDICTING PROGRA*IERS’ ABILITY TO MODIFY

SOFTWARE

by

S.B. Shepaprd, M.A. Borst, B. Curtis &

L.T. Love

Information Systems Programs
General Electric Company

1755 Jefferson Davis Highway, Suite 200
Arlington, Vi rginia 22202

May 1978

Software Complexi ty Research Program

Department of Defense (DOD1 software production and maintenance is a
large, poorly understood, and fnefficient process. Recently Frost and Sullivan
(The Military Software Market , 1977) estimated the yearly cost for software within
DOD to be as large as $9 billion. DeRoze (1977) has also estimated that 115 major
defense systems depend on software for their success . In an effort to find near-
term solutions to software related problems, the DOD has begun to support research
Into the software life—cycle.

A formal 5 year R&D plan (Carison & DeRoze, 1977) related to the management
and control of computer resources was recently written in response to DOD Di rective
5000.29. This plan requested research leading to the identification and validation
of metrics for software quality. The study described In this paper represents an
experimental investigation of such metrics and is part of a larger research pro-
gram seeking to provide val uable information about the psychological and human
resource aspects of the 5 year plan.

The challenge undertaken in this research program is to quanti fy the psy—
thologlcal complexity of software. It is important to distinguish clearly between
the psychological and computational complexity of software. Computational comp1exi~y
refers to characteristics of algori thms or programs which make their proof of
correctness difficult, lengthy, or impossible (Rabin , 1977). For example, as the
nunter of distinct paths through a program increases , the computational complexity
also increases. Psychological complexlty~ refers to those characteristics of software
which make human understanding of software difficult. No simple relationship between
computational and psychological complexi ty is expected. For example, a program with
many control paths may not be psychologically complex, as any regularity to the
branching process wi thin a program may be used by a prograniner to simplify under-
standing of the program.

ii

—4

Halstead (1977) has recently developed a theory concerned with the psycho-
logical aspects of computer progranining, His theory provides objecti ve estimates
of the effort and time required to generate a program, the effort required to
understand a program, and the nunter of bugs in a particular program (FitzsirTinons
& Love , 1978). Although some predictions of the theory are counter-intuitive and
contradict resu lts of previous psychologi cal research , the theory has attracted
attention because Independent tests of hypotheses derived from it have proven
amazingly accurate.

Although predictions of prograniner behavior have been particularly impressive,
much of the research testing Haistead ’s theory has been performed without sufficient
experimental or statistical controls. Further , much of the data was based on
imprecise estimating techniques . Nevertheless , the waflab le evidence has been
sufficient to j ustify a rigorous eval uation of the theory.

Rather than initiate a research program designed speci fically to test the
theory of software sci ence , a research strategy was chosen which would generate
suggestions for improving prograniner efficiency regardless of the success of any
particular theory. This research focuses on four phases of the software life—
cycle: understanding, modification, debugging, and construction. Since di fferent
cognitive processes are assumed to predominate in each phase, no singl e experiment
or set of experiments on a particular phase would provide suffi cient basis for
making broad reconinendatlons for improving prograniner efficiency. Each experiment
In the series comprising this research program has been designed to test important
variables assumed to affect a particular phase of software development. Professional
prograniners will be used in these experiments to provide the greatest possible
external validity for the results (Campbell & Stanley, 1973). In addition , Haistead’s
theory of software science and other related metrics can be evaluated with these
data.

iii

Acknowledgements

The authors gratefully acknowledge the assistance of Dr. Gerald Hahn of
General Electric ’s Corporate Statistics Staff in developing the experimental
design. Dr. John O’Hare ’s careful review of a preliminary version of this
report has resulted in substantial Improvements.

iv

TABLE OF CONTENTS

INTI~ DUCTI0N I

~ETH0D 3

Participants 3
Procedure 3
Experimental Design 3
Independent Variables 4

Programs
Complexi ty of control flow 4
Coninents 4
Modifications 6

Covar iates 6
Complexity Metrics 6

Halstead ’s E 6
McCabe ’s V(~~ 7

Dependent Var iables 8
Analys is 8

RESULTS 10
Pretest 10
kcuracyand Completeness of Modification 10
Time to Compl ete Modifications 12
Software Complexity Metrics 14

Relat ions hi ps among metrics 14
Relationships wi th criteria 14

DISCUSSION 19

REFERENCES 22
APPENDICES

I
I

V

- - -~~~~~~~~~—~~~~~~~~ - ,- ~~~~~~~~
.-—-

~~~~~~~~~~~~~~~~~~~~~~~~~~
-

Predicting Prograniners ’ Ability to Modi fy Software

Currently, computer prograniners spend more of their time modifying existing

software or converting it tQ operate in new environments than in developing new
software. Although modi fications and maintenance costs have been estimated to
be three times higher than those associated with development, managers continue
to Invest their resources in modification In the mistaken belief that development

costs and risks are prohibitive. Thus, modified systems frequently become

Inefficient collections of concatenated patches. Decisions to modify programs

would be aided by systematic Information estimating the cost, time, and resources

necessary to complete a particular modi fication. This study was designed to

determine the characteristics of software and requested modifications which are

related to the speed and accuracy with which programers are able to make modi fica-

ti ons.

Several programing practices should infl uence the ease with which a program
can be modifi ed. Among these practices are documentation and the use of structured
coding techniques. Dijkstra (1972) argued that program construction should proceed
in a top—down structured fashion , and that programs consistent with these guidelines
would be easier to understand, debug, and modify. In an experiment using student
prograniners , Lucas and Kaplan (1974) found that structured programs took less time
to modify. Sheppard , Borst, & Love (1978) found that programs which were
structured in a manner to compensate far the lack of suitable control structures in
FORTRAN were more easi1y-comp,ret~ended by professional programmers.

The use of comments, in—line , global , or both , is another standard software
engineering practice which is thought to be related to ease of modification,
although there is some contention over h~. the documentation should be imp l emented.
Global comments preceding a program indicate what objective will be accomplished.
tn-line comments delineate exactly how and where the objective is ful filled.
Use of in—line coments has been encouraged to simplify the process of making changes
to programs (Wilkes, Wheeler , & Gill , 1951 , Poole , 1973). Others (Musa, l976;Shneiderman ,
1977) have found that global comments imp roved student programmers ’ ability to
comprehend and modify programs, but contend that in-line comments seemed distracting.
For example, in a FORTRAN modification task with student prograniners, Yasukawa (1974)
found that a group given global coments performed better than a group given

1



detailed comments. However, Newsted (1974) found that on short FORTRAN programs,
comments preceding the code defining the vari ables were not useful. Still other
computer scientists recommend both global and in-line comments on the theory that
too much documentation is impossible.

In parallel with these attempts to improve programmer efficiency, several
approaches have been developed for predicting the psychological complexi ty of soft -
ware. Presumably, techniques which improve trie efficiency of programmers ’ perfor-
mance do so by simplifying the cognitive task facing them. Thus , complexity metrics
are one way of measuring and validating this assumption. Where such validation is
successful these metrics may indicate guidelines for program development.

In 1972, Halstead first published his theory of software physics (renamed
software science) stating that algorithms have measurable characteristics analogous
to physical laws. According to Haistead (l972a, 1972b , 1975, 1977), the amount of
effort (E) required to generate a program can be calculated from s imple counts of the
actual code. The calculations are based on four quantities from wh ich Halstead
derives the number of mental comparisons required to generate a program; the number
of distinct operators and operands and the total number of occurrences of operators
and operands. Prel iminary tests of the theory reported very high correlations
(some greater than .90) between Halstead ’s metric and such dependent measures as
the number of bugs in a program (Cornell & Halstead , 1976; Funami & Haistead , 1975),
programing time (Gordon & Halstead , 1975) , and the quality of programs (Bulut &
Haistead , 1974; Elshoff, 1976; Gordon, 1977; Halstead, 1973). A more recent test by
Sheppard, Borst, & Love (1978) indi cated that the relationship between Haistead’s
measure and program comprehensibility could be affected by differences among the
programs studied.

McCabe (1976) developed a definiti on of complexity based on the decision struc-
ture of the program. McCabe ’s complexity metric, V(GJ, is the classical graph-
theory cyclomatic number defined as:

V(G) = # edges - # nodes + # connected components.

Simply stated, McCabe counts the number of elementary control paths through a computer
program.

The present study experimentally eval uated the effects 0f two programming prac-
tices (I.e., wel l structured code and use of comments) on the ease wi th which a pro-
gram could be modified. In addition , there was an assessment of the relationship
between the spped and accuracy of making a modification and three software complexity
metrlcs3namely Halstead s 

~ , McCabe ’s yj~), and the total number of statements.

2



Method

Participants

The sample for this experiment consisted of 36 professional programmers from
three different locations within the General Electric Company. These participants
had an avtrage of 5.9 y&rs of programing. experience (~.Q = 4.1), and all had a
working knowledge of FORTRAN. Twenty of these programmers had an engi neering
background , while the remaining 16 had diverse backgrounds often including statis-
tical and non-numeric programming.

Procedure

A packe~ of materials was prepared for each participant. The initial instruc-
tions to each participant are presented in Appendix A. In a prelimi nary exercise,
participants were asked to modify a short FORTRAN program. All 36 partici pants
were given the same preliminary program and a brief description of its purpose.
Participants were given unlimi ted time to complete the modification. The purpose
of this introductory program was two-fold:

1) to provide a common basis for compari ng the skills of the participants
on this type of task, and

2) to control for initial learning effects.

Following this initial exercise, partici pants were presented in turn with the
three programs which comprised the experimental task. One modification was requested
for each program, and participants were allowed to work at their own pace, taking
as much time as needed . to implement the ‘modification. An electronic timer was
used to record the beginning and ending times of each trial to the nearest minute.

Experimental Design

In order to control for the individual differences in performance,a wi thin—
subjects 34 factorial design was employed (Hahn and Shapiro , 1966). Three of the
programs from a previous experiment in this research program (Sheppard, Borst,
& Love , 1978) were used. Th ree levels of control flow were defi ned for
each of the three programs , and each of these nine versions was presented with three
types of documentation for a total of 27 programs. Modifications at three levels
of di fficulty were developed for each program generati ng a total of 81 experimental
conditions.

3



Four sets of nine participants were used in the experiment. The partici pants
in the first three sets exhausted the total of 27 program-modification combinations.
The fourth set of 9 participants repeated the assignments of one of the three
previous sets . Table 1 s hows the design for the fi rst 27 partici pants .

Programmers at each location were randomly assigned to the design so that over

the course of thei r three experimental programs every partici pant had seen each
program, each level of modifi cation , each type of documentation, and each type

of control flow. For simpl icity the design is presented in Table 1 without regard
to the order of presentati on to the partici pants . One of the six possible orders of
presentation of the three programs was assigned randomly and without replacement
to each participant.

Independent Var iables

Programs. Three programs were selected from among those employed in a previous

study from this research program (Sheppard, Borst & Love, 1978). The programs
were cons idered to be representative of programs actually encountered by professional
programmers. All vers ions of these three programs were compi led and executed us ing
appropriate test data. The programs were all written in standard FORTRAN.

Complexity of control flow. Three levels of control flow complexity were de-
fined for each program. The least complex level adhered strictly to the tenets of
modern structured programing (Dijkstra, 1972). Program flow proceeded from top to
bottom with one entry and one exit. Neither backward transfer of control nor arith-
metic IFs were allowed.

In FORTRAN awkward constructions often occur when structured programing prac-
tices are applied rigorously, such as DO loops wi th dummy vari ables (Tenny, 1974).
These awkward constructions were largely elimi nated in the moderate or quasi-
structured level where a more natural control flow was allowed. A judicious use
of backward GO TO statements and multiple exits was permi tted. IF statements we re
again restricted to assignment and logical IF’ s.

In the most complex (i.e., unstructured) versions of each program the control
flow was not straightforward. GO TO statements occurred frequently, and backward
transfer of control was not restricted. The three-way transfer of control statement
(ari thmetic IF) was allowed only at this l evel (Appendi x B).

Comments. Three types of comments were tested in this experiment: global ,
in-line, and none. Global comments provided an overview of the function of the pro—

4

L .‘~~
—.—“-

~~



.J LL~~~~= — —LLJ~~~~ L~~~~~~~ I-
~~~ — —I- LL. ~~ L) — —~ — —(.0 N~ U~ O~ © ‘—s ~~ ‘~~~LU c~i — c’.a ~-s —

_ _ _ _ =— — — — — I-
>- .~ (.0 © ~0 L(’~ C~ t~~ N..

C~sJ ‘-I ‘-~ C~sJ — —_ _ _ _ _ _ _ _ _ z— — — — — —
-~~ 00 00 — ~~~ C~4 N~ ~~.-, — Cs4 C~’J — C~4 ‘l —

_ _ _ _ _ _ _ _ _ _ _ _ _ _
I-— — — — — — —~~ L(’~ I”t (.0 ~~ 0i C~.4 © 00

— ~~1 C~4 —— — — — — — — (a.
0

Lr, 01 ~~ N.. 00 — Lt~ i-I CsJ U).. ‘
~~ 1—s Cs4 C4 r-1 C~sJ i 4— — — — — — —© ~~~ N.. N~~ N~ — C~4 (.0

~~~1 
~~~ c’~ i- i — —

U,
— — — — — — — — — C/)

c’.a ,~~ ~~ ~-s Lr’~ c~ o ~~~ 00 UJ— ~~1 C~4 — C~4
LU -J — — — — — — — — I-‘00 ~- LU

t~~ — ~~~ 00 (.0 ~~~ N.. I~~\ ©

_ _ __

>C — ,-4 i-s — ~~ — UJ <
_ _ _ _ _ _ _ _ _ 0 —— — — __a — — — U

~~~ LU J— LU I— LU
~~~ ~~ L) ~~ L.~ =C/) LU ~~ LU ~~ V) LU Q Z ~~
— _J — — _I — — __J — uJ <
= LU ~~ = LU ~~ = LU ~~L) C/) = L) C/) = L) V)— — — — — — — 0~‘U

~~~~~LL
0U. UJ

LU
LU uJ cJ
_ 0 0L) =I— = — ‘_, I—L) UI— =t~.) V) = ~~ LU

~~~~Cn
V)

5

gram and Identified the primary variables. In—line coninents were interspersed

throughout the program and described the speci fic function of small sections of

code. Examples are presented in Appendix C.

Modifications. Three types of modifications were selected for each program
as representati ve of the tasks a programmer might be expected to encounter in
relation to such programs. The level 0f difficulty for seven of the nine modifications
Increased as the number of lines whi ch had to be added to the code .,lricreased. In
eve ry case, the hardest modification f~r each program was the one which required the
most lines of code to be inserted Into the original program.

Covari ates

In order to obtain a measure which was assumed to be re~ated to programing
ability , all participants were required to perform the same preliminary task. A

short program was given to the parti cipants to modi fy. Theirst ores on this task
v~re used as a covariate to measure indi vidual performance differences . Participants
were asked their type of programming experience, the number of years they had been
programing professionally, and the size of the largest program they had ever
constructed. Order of presentation was measured as a situational covariate.

Complexity Metrics

Halstead’ s E. Halstead’ s E metric was computed from a program (based)
on Ottenstein, 1976) which had as input the source code listings of nine programs
(three separate programs at each of three levels of complexity). The computational
formula was :

(N + N) log (n + n)1 2 2 1 2
(2 /n1) (n2/N2)

where,

6

number of unique operators

number of unique operands
= total number of occurrences of operators

N2 total number of occurrences of operands

McCabe ’s V (G) . McCabe ’s metric is the cl assical graph-theory cyclomatic
number, defined as ‘LL~J = # edges - f nodes + # connected components : Because the
McCabe measure is defined only for programs that adhere strictly to the rules of
structured programing, some modi fications to the metric were necessary in order to
evaluate the less structured control flow versions.

In the simplest program possible , Y_L~.)
= 1~ sequences do not add to the

complexity. IF-THEN—ELSE is valued as 2, increasing the complexity by 1. A DO
or DO WHILE is also 2, the assumption being that there are real ly only two control
paths, the straight path through the DO and the return to the top, regardless of
the number of times executed. Clearly a DO executed 25 times is not 25 times more
complex than a 00 executed once.

In order to compute the metric for unstructured programs , sevt~ral alterations
were made. An additional RETURN was counted as an extra path In each case , keeping
the cyclomatic number the same as that of a “GO TO end” . For statements of the
form:

IF () 100 , 200, 300

the complexity was Increased by 2 as opposed to the logical IF, which increases
the compl exity by 1. These are small changes which appear to be reasonable extensions
of McCabe ’s theory. However , one difficulty arises with the ari thmetic IF when two
paths are the same:

IF () 100, 100, 200.

In order to standardize the procedure, it was counted in the same way as the standard
arithmetic IF, with 2 added to the ILIi.) metric.

All experimental programs were checked be fore the experiment to Insure that
the most complex version of the program had the highest McCabe value and the least
complex version had the lowest value.

7

Dependent Variables

The dependent variables were the correctness of the modification and the time
taken by the participant to perform the task. The individual steps necessary for
correct implementation of the requested modifications had been delineated in advance
and assigned equal wei ghts. The participants ’ changes were then compared to the
criteria. Thus , a percentage score reflecting the correctnes s of each modifi cation
was achieved. All of the responses were scored by the same grader. The time to
write a modification was measured to the nearest minute.

Analysis

The analyses of results was conducted in two phases . The first phase was an
experimental test of the programing practices , while the second phase was a eval ua-
tion of the software complexity metrics.

The first phase, involving experimental manipulations of programing practices ,
was analyzed by a hierarchical regression analysis. In this analysis domains
of variables were entered sequentially into a multiple regression equation to deter-
mine If each successive domain signi ficantly improved the prediction of the equation
developed from domains already entered. Thus, the order with which domains were
entered into the analysis was important. In this study , effects related to di fferences
among participants, programs , modifications ,and order were entered into the analysis
prior to evaluating the effects of programming practices . The vari able domains were
entered in the following order:

Di fferences related to parti ci pants and programs

1) Pretest scores
2) Order of presentation
3) Speci fic program
4) ModIfication

Programing practi ces

5) Program structure
6) Doc%.unentation

The variables representing the different conditions of domains three tI~rough~stx were
effect coded (Kerlinge r & Pedhazur, 1973).8

The second phase of analysIs investigated relationships among Halstead ’s
~~
,, McCabe ’s LL1~I).. number of statements in the program, and the time and score on

the experimental task. Correlations among these measures were examined in both
the modified and unmodified programs.

9

Results

Across all experimental conditions an ave rage score of 62% was recei ved on
modi fications made (SD= 3 1%). The 108 accuracy scores ranged in value from five
scores of 0 to 24 scores of 100; they were negatively skewed. The average time
to complete the modifications was 17.9 minutes (SD=ll.4),ranging from a low of 2-

minutes to a high of 59 minutes . The time data were positively skewed. Score
and time were uncorrelated.

Pretest

Means and standard deviations for the pretest accuracy score (M=66%, SD=30%)
and time to completion (M”21.4 mi SD=14.6) were similar to those observed on
the experimental tasks. Score and time for the pretest were correlated -.44 (dj=34,

~ .005) indi cating that participants with high scores worked more quickly; but no
causal interpretation is implied. Pretest performance was modestly related to exper-
ience in that the number of statements in the largest program a participant had ever
written was related to the score (.~~34) =.32. .p.~ .05), while participants with more
years of experience were able to complete their modifications more quickly (!~~4)*
.35, ~~ .025). WI th the exception of pretest score , none of the indi vidual difference
variables were related to the dependent variables on the experimental tasks .

Accuracy and Completeness of Modi fication

Results presented In Table 2 indicate that overall)only 19% of the variance
in scores on the modifications could be predicted by the variable domains measured

here. However, there were substantial di fferences in the degree to which performance

on the three programs could be predicted. Performance on two of the programs
was reasonably predi ctable ; half of the variance was accounted for in
the separate resul ts for each program, and 35% was accounted for In the combined
results for both programs. However, the results for a third..program were insig-
nificant.

Modest relationships with the performance score were observed for both the
pretest and order of presentation . The signifi cance of the order variable suggests
the presence of learning or practice effects. However, this interpretation is
confounded by the fact that random assignment of presentation order failed to- counter—

• balance the number of times each condition appeared in each position order. With

10

TABLE 2

Klerarchical Regression Analyses for Accuracy of Modi fication

A

• All programs • Two most predictable
Variable domain (n l08) programs (n=72)

1) Pretest score •Q5* .05
2) Order of presentation .05* .l3~~
3) Specific program .02 .01
4) ModificatIon difficulty .02 .09~~
5) Control flow complexity .04
6) Comment type .01 .00

All domains .19 35***

Note: Figures indicate the precent of variance contributed to prediction
of performance in addition to that afforded by preceding domains.
Significance levels indicate whether this represented a signi ficant
contribution to prediction.

~pj .05
**a.�. .01

~~2. ’. .001

11

each succeeding experimental task, partici pants made more complete modifications
in less time. However, the two programs on which performance proved most predictable
were presented to participants more frequently In the second or third order position.

Accuracy scores differed as a function of the di fficulty of the modi fication on
the two most predicatable programs. As expected , perfo rmance was not as good on modi-
fications which requi red more lines of code to be inserted. The complexity of the
control flow also affected accuracy scores on the two programs for which accuracy
was most predictable; modi fications to the structured programs were more accurate
and complete than those made to unstructured programs .

Accuracy scores did not differ as a function of di fferences among programs.
However, differences among programs moderated relationships among other independent
vari ables and the accuracy cri terion. While mean accuracy scores did not differ
significantly across programs , relationships between accuracy and other variables
did differ among these programs. No differences in scores were observed as a
function of the type of comments inclu ded in the program.

Time to Complete Modi fications

Data presented in Table 3 indicate that 28% of the variance in the time
required to complete the modifications across all three programs could be accounted

for by variables studied here. The time to compl ete the modi fication was more easily
predicted than the accuracy of the modification on the program for which predi ction of
accuracy was low. Although time to completi on was not as highly predicted on this
program as it was on the other two, Inclu ding data from it in the regression analysis
did not lower the percents of variance accounted for to the extent that had been
observed in the accuracy analysis.

Results of the hierarchical regression for time were simi lar to the results
which had been observed for accuracy. The specific program and type of comments

were unrelated to the criterion. Unlike the earlier analysis for accuracy scores ,
however, the pretest results were not related to time to complete the modification.
Significant effects were observed for di fficulty of the modification and order of

presentation , although again , the interpretation of the effect for this latter

variable is confounded. Although control flow complexity was significantly related

to the accuracy of the modification on the two programs on which accuracy was most
predictable, no such effect was observed for the time to complete the modi fication.

12

L • •~ ~~~~~~~ • ~~~~~~~~~~ • ~~~~~~~~~

TABLE 3

Hierarchical Regression Analyses for Modification Time

~~R2 •

All programs Two most predi catable
Variable domain (n 108) programs (n=72)

1) Pretest time .03 .00
2) Order or presentation .06** .06
3) Specific program .01 .01
4) Modification di fficulty .15** .29**
5) Control flow complexity .02 .00
6) Comment type .01 .01

All domains .28*** 37***

Note: Figures indi cate the percent of variance contributed to prediction
of performance in addition to that afforded by preceding domains.
Significance levels indicate whether this represented a signi fi-
cant contribution to prediction.

**~ S .01
~~~~ .001

13



A post hoc inspection of the nine individual modi fications in this experiment
verified that the number of new statements to be inserted into the code was
related to the time required to make the modification. Fitting a hyperbolic function
to these data using least squares procedures (Figure 1) resulted In an r2 of .80 and
a standard error of estimate of 2.53. No such rel ationship was found for score.

Software Complexity Metrics

Relationships among metrics. Correlations among Haistead ’s and McCabe ’s metrics
and the length (number of statements) are presented in Table 4 for the original
programs and their modified versions. There were nine di fferent versions of the
original programs (three programs each with three versions of control flow ) and
27 modified versions representing three diffe rent modifications to each original pro-
gram. Correlations among these measures were quite high on both the original and
modi fied programs , especially between length and Haistead’ s E.

Relationships with cri teri a. Correlations between the three complexity metrics
and the two dependent variables are shown in Table 5 for individual datapoints (n=108)
and data aggregated across the 27 modified programs. In each case, the correlations
on the aggregated data were numerically larger than those in the unaggregated data.
These larger correlations result from the elimi nation of individual differences and
other sources of error through the aggregation process. The strongest relationship
on the original programs was a tendency for higher McCabe val ues to be associated
with lower accuracy scores , but the largest number of significant relationships were
observed in relationship to the modified programs. While McCabe’s V(G) continued to
demonstrate the largest relationship wi th score, both the length and Halstead ’s E
metrics demonstrated moderate correl ations with the time to compl ete the modification.

Correlations between complexity metrics and performance measures were found to
di ffer with di fferent types of comments. Table 6 presents the correlations between
complexity metrics and performance measures for the data generated with each type
of comment. All but one of the significant correlations observed occurred when no
comments were Included In the program. These correlations were stronger on the
modified programs than on the original programs.

14



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1*
4.’ U,go

In
I_ li-
go

~~‘T I ~~

Il a~~.V I— ~— W
(I,

I~
I I—. U’

It ~~ 4.’
• LU C

I ’ ‘
0

~
I

~~1 go
I ~, 4.’
~ La..

~~4__ ‘~~ 0 ’ -go
C

- 4.’
w ~w -

~~~

‘ I  •

1

I La..

\

I I I I
I’, U, 0 U)
CU

N0I.LV3I4ICOW 3.L31dWO3 01 S3.LI1NIW

15



TABLE 4

Correlations among Meas ures of Software Complexity

Correlations

Metric Length V(G)

Original programs (n=9)

McCabe’s V(G) .8O~
Haistead’ s E 97*** 77**

0 Modi fied programs (n 27)
McCabe ’s V(G)
Halstead’s £ .9O~~* 77***

~~~~~~~ .01
***~~~~~ .001

16

• I TABLE 5

Correlations between Complexity Metrics and
Performance Measures for Aggregated

and Unaggregated Data

Correlations
Original Program Modified Program

Cri terion Length V(G) E Length V (G) E

Accuracy score
Unaggregated (n=l08) _.l7* -.22~~ — .12

_.20* _ .22* _ .l7*
Aggregated (n=27) -.28 _ .38* -.21 _

~37* - .46~~-.29

Time to completion

Unaggregated (n=108) .13 .14 .16* .30~~~.23~~ .28~~
Aggregated (n 27) .20 .22 .25 .45~~ •34* •44**

~~~~~ 05
**2..~_. 01

***2;~L 001

I
17

L 
• •~~~~~~~~~~~~~~~~~~~~~~ •~~~ •~~~~~~~~~~~~~~~~~~_



TABLE 6

Correlations between Complexity Metri cs and
Performance Measures under Different

Types of Commenting

Correlations
Original Program Modified Program

Criterion and Length V (G) E Length ~~
) ~g.

Type of commenting

Accuracy score
In line — .03 -.09 .01 .03 .01 .03
Global — .14 — .22 -.06 — .23 _ .23* — .18
None _ .3l* . 34* _ .28* _

~37* 
_ 34* ...34*

Time to completion

In line .14 .09 .16 .16 .07 .16
Global .02 .13 .09 .18 .21 .21
None .26 .21 .26 .55~~ .42~~ .47~~

Note: n36

~~~~ .05

a~ -.0Ol

18

Discussion

Three aspects Involved in the programmers ’ task of modifying software are:
1) characteristics of the code to be modified, 2) characteristics of the requested
modification , and 3) characteristics of the programmer. The main factors found
to infl uence programmers ’ ability to correctl~’ modify programs were the difficulty
of the requested modification and the order of presentati on. Other influences
were the complexity of the control flow of the original program and individual
differences among programmers as measured by a pretest. Each of these factors
contributed separately to the prediction of the performance on the task studied.
Contrary to expectations, documentation did not influence performance. Several
metrics of software complexity were, however , hel pful in predicting the accuracy
of a modification and the time required to complete it.

It is not surprising that differences in the di fficulty of the modifications
were related to the time taken to implement the modifications. The effect was
more pronounced for time than for accuracy. The number of new lines to be added
was the significant criterion for explaining the time spent to finish a task, rather
than the number of in-line changes, such as deletions or substitutions of operators and

operands. In general , the more new lines to be created, the longer the time expended.

The data reported here suggest that the difficul ty of a modification affects
the accuracy with which it -Is implemented . This resul t agrees with a previous
study by Botes and Gould (1974) concerned wi th syntactic errors. They monitored
editor commands which either inserted or substituted code in programs at a large
research center. Programs with syntactic errors averaged 32 inserted new lines ,
while programs without syntactic errors averaged only three inserted lines . There
was no difference in the number of substitutions to existing code. These findings
probably indicate a greater cognitive difficulty in creating code than in merely
deleting or adapting it.

A sign ificant effect due to the order of presentation of the programs suggests
the existence of a learning effect as the programers progressed from task to task.
Such effects were not observed in a previous experiment (Sheppard, Borst, &
Love, 1978) which involved understanding, as opposed to modifying programs. The
failure of random assignment of presentation order to counterbalance the effects of
program di fferences does not permit a clear interpretation of the learning effect

Control flow complexity was marginally related to the accuracy of the modifi—

19

L. ~~
———- --

cation, but not to the time spent making it. This effect only occurred in the
two programs~~e~ performance was most easily predicted. Structured code tended
to produce more accurate modifications.

It was anticipated that the incl usion of documentation, either global or
in— if ne coments, would sign i ficantly impro ve performance on a modification task.
No such improvement occurred on the programs used in this experiment. This is
counterintuitive ; however, it concurs wi th the lack of a signifi cant effect from
our previous study (Sheppard , Borst, & Love , 1978) for a related cognitive programming
aid , mnemonic variable names . This lack of effect for cogniti ve programming aids
may have occurred for one of two reasons. First, in the experiment where levels
of vari able mnemonicity were manipulated, global comments were provided wi th all
programs. In the current experiment where types of coments were manipulated,
mnemonic vari able names were provided across all types of comments in all programs.
Thus , the existence of one type of cogniti ve programming aid may have reduced the
additional information availabl e from the type of aid being experimentally manipulated ,
reducing its impact on performance.

A second possibility is that these cogniti ve programing aids do not contri-
bute signi ficantly to performance for programs of the modular size (approximately
50 lines) employed here. In large systems with many modules and the thousands
of lines of code cognitive programing aids may have more impact on performance
because of the increased amount of information to be processed. Thus , it may be
that program size moderates the relationship between cognitive programming aids
such as documentation or mnemonic variabl e names and perfo rmance on various programi ng
tasks.

As expected from previous work (Sheppard, Borst, & Love , 1978) , this experi-
ment showed extremely high correlations among the metrics used; length of the
program, Halstead ’s E, and McCabe ’s ~jG). Since Halstead ’s theory of software
science applies primarily to programs in final form rather than programs under
development, both the original and modified programs were examined for correlations
with the complexity metrics. In every case, there was a higher correlation with
perfo rmance for complexity metrics computed on the modified programs than
had been observed for those computed on the original programs. Nevertheless , the

correlations observed are not as high as those reported by Haistead (1977) In other
verifications of his theory. The size of the programs employed here may have been

20

• ~~ •--0— • •-~~~~~~~~~~~~~~ •• —— ~~~~~~-~~~• ~~~~~~~~~

a limiting factor in the results obtained. The range of va Ries for the complexity
metrics may not have been sufficient to allow correlational tests to detect the
strength of relationships that have been reported in other contexts (Fi tzsimmons &
Love , 1978). When used with small programs , the metrics were equally productive;
when used m a larger system, it may be that one of the metrics will prove superior.

Relating the metrics to performance under conditions distinguished by type
of comments uncovered the interesting result that the metrics appeared to predict
performance better when there was no documentation presented than when ei ther in-
line or global comments appeared. Since the metrics are based on the code , comments
of either type add information which the metrics do not evaluate. In this experi-
ment that additional or possibly redundant information neither improved nor hindered
the programmer’s performance in any way. This suggests that coments are not
ignored but that their effect on the programing tasks may be more complex than 0

can be explained by simple effects on performance.

Di fferences among programs played an important role in this experiment , as
they had done in a previous study (Sheppard, Borst, & Love , 1978). The complexity
metrics provided one source of information about program differences , but there
were other factors within the programs which were not assessed by these metrics.
Such factors may invol ve the complexity of the task performed by the program.
Thus , the cognitive difficulty of the program to the programmer may involve an
interaction between program characteristics and individual differences, such as the
progranrier’s experience with similar programs. Further research on complexity
metrics should evaluate ways of assessing the complexity of the task performed
by the program, in addition to the factors currently assessed by the Haistead and
McCabe metrics .

21

References

Boles, 5.3. , & Gould, J.D. Syntactic errors in computer programing. Human
Factors, 1974, 16 , 253—257.

Bulut, N., & Haistead, M.H. In~urities found in algorithm implementation (Te h.Rep. CSD-TR—lll). West Lafayette, IN .: Purdue Un iversity,Computer Science
Department, 1974.

Campbell , D., & Stanley, J.C. Experimental and quas i-experimental design for
research. Chicago: Rand McNally, 1966.

Carlson , W.E., & DeRoze, B. Defense system software research and development plan.
Unpublished manuscript, Arlington, VA : Defense Advanced Research Projects
Agency, September 1977.

Cornell, L., & Haistead, M.H. Predicting the number of bugs expected in a program
• ~ dule (CSD-TR-205). West Lafayette, IN :Purdue University,Computer Science .

Department, October 1976.
DeRoze, B. Software research and development technology in the Department of

Defense. Paper presented at the AIIE Conference on Software, Wash ington, D.C.:
December 1977.

Dijkstra, E.W. Notes on structured programing. In O.J. Dahl , E.W. Dijkstra,
& C.A.R. Hoare (Eds.) Structured programming . New York: Academic Press,
1972.

Elshoff , J.L. Measuring commercial PL/l programs using Haistead’s criteria. SIGPLAN
Notices, 1976, U, 38—46.

Fitzs innons , 4.8., & Love, L.T. A review and evaluation of software science.
ACM Computing Surveys, 1978, 10, 3-18.

Funami, Y., & Halstead, M.H. A software physics analysis of Akiyama ’s debugging
data (Tech. Rep. CSD—TR-l44). West Lafayette, IN : Purdue University, Computer
Science Department, May 1975.

Gordon, R.D. A measure of mental effort related to program clarity. Unpublished
doctoral dissertation, Purdue Un iversity, ~g77, • : -

Gordon, R.D., & Halstead, M.H. An experiment comparing FORTRAN progralTmiing times
with the software physics hypothesis (Tech. Rep. CSD-TR-l67). West Lafayette,
IN .: Purdue Unl versity,Computer Science Department, 1975.

Hahn,, G. J., & Shapiro, S.S. A catalogue and computer program for the design and
analysis of orthogonal symmetric and asymmetric fractional factorial experi-
ments (Tech. Rep. 66—C- l65). Schenectady, NY: General Electric, May 1966.

Halstead, M.H. Natural laws controlling algori thm structure. SIGPLAN Notices,
1972, 7, 2. (a)

22

_~~~~~~~~~~0~

- ~~~~~~~ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~

- - •
~

Haistead , 11.11. A theoretical relationship between mental work and machine
language programming. (Tech. Rep. CSD-TR-67). West Lafayette, IN: Purdue
(Jn iversity~Computer Science Department, May 1972.(b)

Halstead, M.l-f. An experimental determination of the “purity” of a trivial algorithm(Tech . Rep. CSD-TR—73). West Lafayette, IN: Purdue University ,Computer ScienceDepartment, 1973.

Haistead, M.H. Software physics: Basic principl es (Tech. Rep. RJ-1582). YorktownHeights , NY: IBM, 1975.
-

Haistead, M.H. Elements of softwa re science. New York: Elsevier North-Holland,
1977.

Kerlinger , F.M., & Pedhazur , E.J. Multiple regression in behaviora l research.
New York : Hold, Rinehart & Winston , 1973.

Lucas, H.C., Jr., & Kaplan , R.B. A structured programming experiment. The
Computer Journal, 1974, 19, 136-138.

McCabe, T.J. A complexity measure. IEEE Transactions on Software Engi neering,
1976, SE—2, 308—320.

Musa, J.D. An exploratory experiment with “foreign” debugging of programs. In
Proceedings of the symposium on computer software engineering . New York:
Polytechnic Institute of New York, 1976.

Newsted, P.R. FORTRAN program comprehension as a function of documentation.
Program information Abstracts: Second Annua l Computer Science Conference.
Detroit, MI: 1974.

Ottenstein , K.J. A program to count operators and operands for ANSI—FO RTRAN
modules. (Tech. Rep. CSD-TR-l96). West Lafayette, IN: Purdue University ,
Computer Science Department, June 1976.

Poole, P.C. Debugging and testing. In F.L. Bauer (eds) Advanced course in
software engineering., New York : Springer-Verlag, 1973.

Rabin, M.O. Complexity of computations. Communications of the ACM , 1977, 20,
625-633.

Sheppard, S.B., Borst , M.A., & Love, L.T. Predicting software comprehensibility (Tech .
Rep. TR—78—388l00—2). Arlington , VA: General Electric/ISP, 1978.

Snheiderman, B.. Measured computer program quality and comprehension. International
Journal of Man-Machine Studies, 1977, 9, 465-478.

lenny, 1. Structured programming in FORTRAN. Datamation, 1972, 20 , 110-115.
The Military Software Market (Rep. 427). New York : Frost & Sullivan , 1977.

23

~
~~

- -
~~~~~~~

- -
~~~~~~~~~~~~~~

Wilkes, M.V., Wheeler, D.J., & Gill , S. The preparation of programs for an
electronic digital computer. Reading, MA : Addison-Wesley, 1951.

Yasukawa, K. The effect of comments on program understandability and error
correction. Unpublished paper, 1914 .

j 24

-

APPENDIX ~
INSTRUCTIONS TO PARTICIPANT

GOOD MORNING! U 0

Today we are going to ask you to participate In an experiment wMch~ we
hope will be both. entertaining and challenging,

This work, sponsored b~ the Office of Naval Research, is being done to
make computer programs easier to modify. To do this , we will give you three
separate programs and modification slips and ask you to make the required modifi cation
to each, program.

Our purpose is to evaluate characteristics of programs which make them easier
to modify. It is not to evaluate computer programmers. Your performance on a program
will be compared only to your performance on other programs. Your only competi tion
is yourself. All programs and papers that you will be handed are carefully numbered
so It is not necessary for you to put your name on any of these.

~e would like you to answer the following questions for our research purposes:

1. How long have you been programming in FORTRAN professionally?

_years _________months

- 2. Please circle one of the following: Hasyour primary experience been with
Engineering, Stattsttcal ,Non—Numeric, or Other programs?

Also, please brie-fly describe your specific areas o-f programing experience.

3.. Approximately how many source code instructions were in the longest FORTRAN
program that you have ever written? Please exclude blank lines and comments

During this experiment , each of you will be working on a different program.
If someone else seems to finish earlier than you, don ’t be concerned. They will have
been working on something else entirely which mi ght not require as much time.

We will begin this morning with a short test program. We will ask you to make
the modification as accurately as possible , and to raise your hand as soon as you are
through. Because of the concentration required for this task, we ask you to make
an extra effort to remain quiet so that others will not be distracted.

If there are any questions, please ask them at this time.

A-i


~~~~~~0 - — -—- -~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- -

~~~~~~~~~~

-

+

LU

LI.. I—
I — -‘~~~ i i I

(_.)— -~~I—
LU LU LU

I— —
f_I, 0 •~~~~
(/,

LU .‘~~~

LU
-J _ _ _ _ _ _ _0. — — — —,

0 0
C..) - LU
0 uJ
Cl) 0 :
-J 0 - ._j

_J _j
LUs - -I C/) -

0 0
:L&i LU — ~~~~ .JLU

~~ I— _i
LU I—

I- L) ~~ LU
~~ C.D~~~~LU U

0 I-
— I- cn~0 s O..~~~~

-
~~~ W Z

~~ z — I—~~~~LU ~~
. Cl) 

~~ U U —
C ~~ I.— O . .<  I—
lU 0.
~ ~~~~~~~

.-

:~ 

ST



-~~

APPENDI.X C

SELECT, UNSTRUCTUR~~,NO COMMENTS

SUBROUTINE S ECT(N,S1 ,E1u(,N1 . N2)
EXTERNAL fiND
INTEGER STRC N) , MIX 26) • RCBR. ERR. STO. ALP ( 26)DATA A P ~~1fl A, 1RN, IflC , i~~~,1~~~. l~~~,1HC .1RR , 1HI 1gj

1 1~~~, iW.. , 1~~i, IRS , 1Kb, 1UP , 1HQI IUR . iRS , JET, IBU . 1KV, 1KV,
2 1HX, 1EY, 1BZ,

IF(N—25) 90,90,70
TO 5flj~=99 0CO TO 500 

090 ERR2G
1 2 0

92 I 2 1 + 1
IF ( 1  — 26) 95, 95 , 100

95 MI X( 1)2ALP ( 1) 0

GO TO 92
100 I s O
102 I~~~~I + i

IT (I — 25) 115, 115. 120
115 RCBR=RIW(I.26,Ni ,N2,

STO~?flX(RCHR)PIIX(RCffl~~spf~~(~~)
I’1IX(1)~ STOGO TO 102

120 1 2 0
122 1 2 1 + 1

IF ( I  — 5) 125 , 125 , 500
125 STR(I)~ 1tIX(I)

GO 1~) 122500 RETURN
END
FUNCTION RND(L1, L2, NI • N2)
INTEGER Li. 1.2, NI, 52
IF (L2—Li) 10,20.20

10 tNDF~~~L2
1.2 2 Li
Li 2

20 S1Z~~~L2-L i + i
0 

~ RAN (NI. 52)
fiND ~ IFIX (R * SIZ + FLOAT (Li))
END

Cr1



- 

UNIQUE, STRUCTURED, GLOBAL COMMENTS

SUBROUTINE UNIQUE
PURPOSE

TO STRIP ADJACENT DUPLICATE I1~~~~FOR EXAMPLE , TO ELI MINATE DUPLICATES IN A PRE-SORTED M~ ILIN G
LIST , OR HOPIOCRAPUS ( WORDS WI TH 1~~~ SAME SPELLING BUT
DIFFERENT MEANINGS ) FROM A DICTIO NARY.

USAGE
CALL UNIQUE( ARR , N, ID

DESCRIPTION OF PABAIIETF.RS
ABR - ARRAY OF I1t!~N - NUIIBER OF ITEP~~ IN ARRAY
N - IIAXIMUN LENGTH OF AN ITEM
ALT1 - BUFFER FOR ALTERNATE ITENS
*1.12 - BUFFER FOR ALTERNATE ITEMS
I I  - ITEM NUMBER IN ORIGINAL LIST
12 - ITEZI NUMBER IN STRIPPED LIST

FUNCTION SUBPROGRANS REQUIRED
NONE

0 SUBROUTIITE UN IQUE(ARR,N,N)
I NTEGER ALT! (N) , ALT2( N) • ABR( N, IDI1 ~~1
I2~~1DO 10 L~~I , I !
AL Ti(L )~~ARR ( I 1 .L )

II CONTINUE
DO 90 LP~~i, N
DO 20 L~ i . M
ARR ( 12. 1.) ~ALT 1(L)

20 CONTINUE
I2~ 12+ 1
DO 40 XTR~ 1.11
!1~~1i+ 1
IF ( I I  .CT . N) CO TO 100
00 30 L ’1.I~ALT2(L)~~ABR( I1,L)

30 CONTINUE - - 0

DO 40 L~ 1.N
IF ( AL TI (L ) .NE . *1.12( L) ) GO TO 50

40 CONT I NUE
50 DO 60 L~ 1,I1

ABR( I2 .L )~~ALT2( L)
60 CONTINUE -

I2~ 12+ 1
DO 80 rrR~1,N
I1~~I 1+ i
IF ( I I  .GT . N) CO TO 100
DO TO L~ 1,i1
AL T 1(L)~~ABB (I1 ,L )

70 CONTINUE
DO 80 L~~1.!1
IF ( ALTI (1.) . NE. ALT2( L) )  GO TO 90

80 CONT I NUE
90 CONT I NUE
10. iIsI2~~1

RETURN
END

C—2



CHISq, QUASI-STRUCTURED, IN-LINE COMMENTS

C CALCULATES DEGRE ES OF FREEDOM AND CR1-SQUARE
C FOR A GIVEN CONTINGENCY TABLE OF OBSERVED FREQUENCIES

SUBROUTINE CHISQ( MAT. N, IT, CS • DEC. ERA. RTOT, CTOT)
I STECER ERR . DEC . PTA
REAL MAT
DIMENS I ON MAT( 100) , RTOT (N) ,CTOT (PI)

C MAXIMUM NUIIBER OF CELLS ALLOWED IS 100
C s O F CELLS~~~~s O F R O W S * . 0 F COLU I1NS

Nfl~N*N
ERRS 0
CS~ 0.0

C FIND DEGREES OF FREEDOM
DEG ( N — i )  *( I l — i)
IF (DEC .GT. 0) CO TO 10

C NUMBER OF DEGREES OF FREEDOM IS ZERO
ERA: 2
RETURN

C COMPUTE TOTALS OF RO WS
10 DO 20 I~~i.NRTOT(I)20.0

PTA: I-N
DO 20 J~~i . M
Pin~RTOT( I ) ~~RTOT( I)+NAT( PTB)

20 CONT I NUE
C COMPUTE TOTALS OF COL UMNS
C PTA POINTS TO CELL IN ARRAY

PTR~ 0DO 30 J :I . M
CTOT(J)~ 0.000 30 I~ 1.NPm:rra+i
CTOT( J ) :CTOT( J ) +IIAT( PTA)

30 CONTINUE
C COMPUTE GRAND TOTAL - - - 0~~ - -.

GTOT~0.0DO 40 1:1.5
GTOT’ GTOT+RTOT( I)

40 CONTINUE
C COMPUTE CE! SQUARE

PTR~0
DO 50 J~~1. N
DO 50 1:1, 1
rra~ rra+ i
~~ Q’~~s RTOT( 1) *CTOT( .1) ‘GlUT

C IS E~(PECTEZ) VALUE LESS ThAN I?
IF ( EXPT .LT. 1.0) EBR~ 1
CS~ GS+( PIAT( PTA) -E~a’T) *( MAT( PTA) -EMPT ) /EMPT

50 CONTINUE
IF (SN .NE . 4) CO TO 70

C COMPUTE CR1 SQUARE FOR 2 BY 2 TABLE ( SPEC I AL CASE)
60 CS~CTO1’4(ABS(11AT( 1)*ftAT(4)-~AT (2)*?I~T(3))—CTOT~2.0)**2

I /(CTOT( 1)*CTOT(2)*RTOT( 1) *RTOT( 2)) 0

70 RETURN
END

C—3

0 - -  -~



OFFICE OF NAVAL RESEARCH , CODE 455
TECHNICAL REPORTS DISTRIBUflON LIST

Di rector, Engineering Psychology Defense Documentation Center
Programs , Code 455 0 Cameron Station
Office of Naval Research Al exandrta , VA 22314 (12 cys)
800 North Quincy Street
Arlington , VA 22217 (5 cys) Dr. Stephen J. Andriole

Acting Di rector , Cybernetics Technology
Col . Henry L. Taylor, USAF Off i ce
OAD (E&LS) ODDRE&E Advanced Research Projects Agency
Pentagon, Room 3D129 1400 Wilson Blvd. 0

Washington , D.C. 20301 Arlington , VA 22209

Di rector, Statistics and Probability Di rector, Information Systems Program ,
Program, Code 436 Code 437

Office of Naval Research Office of Naval Research
800 North Quincy Street 800 North

0 Quincy Street
Arlington, VA 22217 Arl ington , VA 22217

Comanding Officer Coninanding Officer
ONR Branch Office ONR Branch Office
Attn : Dr. J. Lester Attn : Dr. Charles Davi s
Building 114, Sect ion D 536 South Clark Street
666 Suniner Street -‘ Chi cago , IL 60605
Boston, MA 02210

- 
Coninanding Officer

Dr. Bruce McDonald ONR Branch Office
Office of Nava l Research ‘

~ Attn: Dr. E. Gloye
Scientific Liaison Group N 1030 East Green Street
American Enbassy, Room A—407 “ Pasadena , CA 91106
APO San Francisco , CA 96503

Di rector, Naval Research Laboratory
Naval Research Laboratory Tethnical Information Di vision
Attn: Code 5707 Code -2627
Wash ington, D.C. 20375 Washin’gton, D.C. 20375 (6 cys)

Office of the Chief of Naval Mr. Arnold, Rubinstein
Operat ions, OP987H Naval Matei~a1 Comand
Personnel Logistics Plans NAVMAT 08T24\
Department of the Navy Depa rtment of’~he Navy
Washington , D.C. 20350 Washington , D.C.\20360

Coninander Coninander
Naval Air Systems Comand Naval Air Systems Comand
Human Factors Programs , AIR 340F Crew Stat ion Des ign, XIR 5313
Washington , D.C. 20361 Washington , D.C. 20361

Mr. 1. Momlyama Coninander
Naval Air Systems Coninand Naval Electronic Systems Coninand

0 Advance Concepts Division , A1R03P34 Human Factors Engineering Branch
Washington , D.C. 20361 Code 4701

Washington , D.C. 20360

- —- - - -



~ ---0 - -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Mr. J ames Jenkins Dr. James Curtin
Naval Sea Systems Command Naval Sea Systems Command
Code O6Hl-3 Personnel & Training Analyses Office
Wash ington, D.C. 20362 NAVSEA 074Cl

Washin gton, D.C. 20362
Di rector
Behavioral Sciences Department Dr. George Moeller
Naval Medi ca l Research Institute Human Factors Engineering Branch
Bethesda, MD 20014 Submari ne Medical Research Laboratory

Naval Submar ine Base
Chief, Aerospace Psychology Division Groton, CT 06340 -

Naval Aerospace Medi cal Institute
Pensacola , FL 32512 Mr. Phi llip Andrews

Naval Sea Systems Command
Bureau of Naval Personnel NAVSEA 0341 0

Spec ial Ass istant for Research Was hi ngton , D.C. 20362
Liaison

PERS-OR Navy Personnel Research and Development
Washington , D.C. 20370 Center

Management Support Department
Dr. Fred Muckler Code 210
Navy Personnel Research and Development San Diego , CA 92152

Center
Manned Systems Des ign, Code 311 Navy Personne l Researc h and Development
San Diego, CA 92152 Center

Code 305
LCDR P.M. Curran San Diego, CA 92152
Human Factors Engineering Branch
Crew Systems Department Code 4021 LCDR W ill i am Moroney
Nav? 1 Air Development Center Human Factors Engineering Branch
Johnsvil le Code 1226
Warm inster, PA 18950 Paci fic Missile Test Center

Point Mugu , CA 93042
Human Factors Section
Systems Engineering Test Di rectorate Dr. John Silva
U.S. Naval Air Test Center Man-System Interaction Division
Patuxent River , MD 20670 Code 823, Naval Ocean Systems Center

San Diego, CA 92152
Human Factors Engineering Branch
Naval Ship Research and Development Naval Training Equipment Center

Center, Annapolis Di vision Attn : Technical Library
Annapol is , MD 21402 Orlando, FL 32813

Human Factors Department Dr. Al fred F. Smode
N215 Tra ining Analyses and Eval uation Group
Naval Tra ining Equipment Center Naval Tra ining Equipment Center
Orlando, FL 32813 Code N-OOT

Orl ando, FL 32813
Dr. Gary Poock
Operations Research Department Dr. A.L. Slafkosky
Naval Postgraduate School Scienti fic Advisor
Monterey, CA 93940 Commandant of the Marine Corps

Code RD-l
Was hington, D.C. 20380

L.



Mr. J. Barber Dr. Joseph Zeidner
Headquarters, Department of the Army Acting Technical Di rector
Army, DAPE-PBR U.S. Army Research Institute
Washington, D.C. 20546 500 Eisenhower Avenue

Alexandria , VA 22333

Dr. Edgar M. Johnson Technical Di rector
Organization and Systems Research U.S. Army Human Engineering Labs
Laboratory Aberdeen Proving Ground
U.S. Army Research Lab Aberdeen , MD 21005
5001 Eisenhower Avenue
Alexandr ia, VA 22333 U.S. Army Aeromedical Research Lab.

Attn : CPR Gerald P. Krueger
U.S. Air Force Office of Scientific Ft. Rucker, AL 36362
Research

Life Sc iences Di rectorate, NL Dr. Donald A. Tompiller
Boiling Ai r Force Base Chief, Systems EngineeringBranch
Washington, D.C. 20332 Human Engi nering Di rvision

USAF AMRL/HES
Lt. Col. Joseph A. Birt Wri ght-Patterson AFB, OH 45433
Human Engineering Di vis ion
Aerospace Medical Research Lab . Air Unive rsity Library
Wr ight Patterson AFB, OH 45433 Maxwel l A i r Force Base , AL 36112

Dr. Robert Williges Dr. Arthur I. Siegel
Human Factors Laboratory Applied Psychological Serv i ces , Inc.
Vi rginia Polytechnic Institute 404 East Lancaster Street
130 Whittemore Hall Wayne, PA 19087
Blacksburg , VA 24061

Dr. Robert R. Mackie
0 Dr. Gershon We itman Human Factors Researc h , Inc.

Perceptroni cs , Inc. Santa Barbara Research Park
6271 Variel Avenue 6780 Cortona Dri ve
Woodlan d Hill s , CA 91364 Goleta, CA 93017

Dr. H. Rudy Ramsey Dr. Meredith Crawford
Science Applications , Inc. 5606 Montgomery Street
40 Denver Technological Center West Chevy Chase, MD 20015
7835 East Prentice Avenue
Englewood, CO 80110 Dr. Robert G. Pachella

University of Michigan
0 Dr. Jesse Orl ansky Department of Psychology

Institute for Defense Analyses Human Performance Center
400 Army—Navy Drive 330 Packard Road
Arl ington, VA 22202 Ann Arbor, MI 48104

Dr. Stanley Deutsch Di rector, National Security Agency
Office of Life Sciences Attn: Dr. Douglas Cope
HQS , NASA Code R5l
600 Independence Avenue Ft. George G. Meade, MD 20755
Washington , D.C. 20546

--



Journal Supplement Abstract Service Dr. William A. McClelland
American Psychological Association Human Resources Rearch Office
1200 17th Street, NW 300 N. Washin gton Street
Washington , D.C. 20036 (3 cys) Alexandria , VA 22314

Di rector, Human Factors Wing Dr. A.D. Baddeley
Defense & Civi l Institute of Director, Applied Psychology Unit
Envi ronmental Medicine Medical Research Council

Post Office Box 2000 15 Chaucer Rd.
Downsville , Toronto, Ontario Cambridge, CB2 2EF -

CANADA ENGLAND

Naval Electronics Laboratory Center Capt. Grace M. Hopper
Advanced Software Technology Div. NAICOM/MIS Planning Borad
Code 5200 OP-9l6D
San Diego, CA 92152 Office of the Chief of Naval Operations

Washington , D.C. 20350
Mr. Kin B. Thompson
Technical Director Advanced Research Projects Agency
Information Systems Division Information Processing Techniques
OP-9lT 1400 Wilson Blvd.
Office of the Chief of Naval Operations Arlington , VA 22209
Wash ington, D.C. 20350

Computer & Information Science Lab Center
Stephen Fickas Ohio State Uni versity

0 NOSC Col unbus ,OH 43210 0

0 San Diego, CA 92152


