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Abstract

This paper examines the fundamental problem areas and the available solutions
in seismic signal processing. Topics considered include seismic signal modeling,
spectral matching and the ARMA model, parameter estimation, homomorphic versus
predictive deconvolution, Kelman filtering, and the measurement of the first

arrival time.
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An Introduction to Seismic Signal Processing
C. H. Chen

1. Introduction

In recent years, computers have played an increasingly important role in
seismic studies such as the petroleum exploration, nuclear detection, earthquake
research and marine seismic studies. Computers are needed to process large
volumes of seismic data from which useful information must be extracted accurately.
A number of signal processing algorithms have been developed in recent years many
of which are very useful for seismic data. Although the processing techniques
vary with the nature of seismic data, an important problem in seismic signal
processingﬂis deconvolution. The received seismic data can be considered as the
result of convolution between the source signel and the transmission medium plus
the additive instrument noise. This paper will be concerned mainly with the
deconvolution of such convolved signal as well as other seismic signal processing
algorithms. This discussion 1s preceded by a study of seismic signal modeling
as a good understanding of the seismic signal generation is much needed for
effective signal processing.
2. Seismic Signal Modeling

Figures 1, 2, and 3 depict simplified transmission processes of seismic
waves. Figure 1 shows an inhomogeneous earth excited by a deep source. The
earth is bounded by two homogeneous infinite half-spaces, the air and the
basement rock. Here the earth is a distributed parameter system governed by
partial differential equations. For digital processing, the originally continuous
velocity profile can be quantized and, as a result, the earth can now be modeled
as a lumped paramter system. If the time of signel propagation through a layer
is short compared with the duration of the signal, then the lumped parameter
assumption is valid. By choosing the depth of each layer to be very small, i.e.
considering many layers, we can satisfy the lumped parameter conditions.

To simplify the analysis, we can assume that the system of Fig. 1 is linear

and time-invariant. Let a's represent the constant parameters associated with the
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N layers. Each layer causes a unit delay for the seismic wave. We can expect

the input x, and the output Y, to satisfy the iinear difference equation,

+ =
Yn ¥ 8 Vna +"'+ahyh-N *n (1)
Taking z-transform on both sides of Eq. (1) we obtain the ratio,
Yiz) _ 1 -
X(z ) = el (2)

4 1+ alz-l tayz t.o.tapz
vhich represents the transfer function of an all-pole filter. Our physical claim
that the lumped parameter model represents a stable system is equivalent to the
mathematical condition that the transfer function contains no poles outside the
unit circle. Equation (1) also represents an autoregressive model for the
digitized seismic signal.

Figure 2 describes the transmission of teleseismic waves. A more appropriate
model is given by Fig. 3 which shows internal primary reflections caused by a
downgoing unit impulse Gn applied at the surface. For clarity, ray paths are
drawn at oblique incidence but wave-motion analysis is for normal incidence. Let
bn be the response of a single layer with respect to the unit impulse input Gn.

By linearity property, & delayed impulse in-m gives rise to bn-m and Cf; gives
rise to Cbn where C is a constant. By superposition principle, the total impulse

response can be written as

hy=eb , +eb ottt egdb L=e #b (3)

where "#*" denotes convolution and;:és are the hypothetical sources of strength
glven by the reflection coefficients r, et various layers. Taking the z-transform

of Eq. (3) we have

elz’l + e2z'2 ..+ eNz'N
(%)

H = E(z)B =
] s 1+ alz_l + aaz-e 4ot anz-N

which gives the transfer function of a normal-incidence reflection seismogram

and is the ARMA model used in reflection seismology.
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Since the layered system is assumed to be both linear and time invariant,
then the reflection seismogram yn due to an arbitrary source pulse s, is

Yn

“hla. =gty »e¥Doa)n e *u (5)
where w, = bn*sn is defined as a composite wavelet consisting of the reverberation
wavelet b and source pulse s - Thus Eq. (5) describes the normal incidence
reflection seismogram, where bn represents the autoregressive component and
sn*en the moving average component. The basic deconvolution problem is to filter
such that we can best recover the reflection coefficient sequence €,
3. Spectral Matching and the ARMA Model

The ARMA model as derived in the previous section is the most general linear
seismic signal model. Theoretically speaking, the spectrum of any physical signal
can be matched, i.e. fitted, perfectly by an autoregressive model with an
arbitrarily high order. For a typical set of teleseilsmic waveforms, a good
spectral matching based on the autoregressive, i.e. all-pole, model has been
reported [1]1[2]. If the ARMA, i.e. pole-zero, model is used, a better spectral
matching is expected. The degree of spectral matching can be measured by the
meen squared error between the actual and the modelled signals. Figure L
illustrates spectral matching by pole-zero model which has lower mean squared
error. Again the spectral matching is good. However, the problems associated
with the ARMA model are quite obvious: (1) The order of the model must be finite
in practice. The linear model is limited in its capability not only in spectral
matching but also represents only a first order approximation to the original
signal. (2) Computationally the order of the model and the coefficients in both
numerator and denominator must be determined. This is far from being a simple

task. In fact there has not been a satisfactory solution to the problem of

determining the numerator polynomial and the order of the model.
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bl
4. Parameter Estimation and Computation
In this section we first consider the all-pole linear prediction analysis
We assume that the signal s(n), 0 < n < N - 1, can be approximated as a weighted

linear sumation of past samples, denoted as

s = - kgl e (6)

where a; are the predictor coefficients which are the coefficients of the AR model,
and p is the order of the filter. The method of least squares is most often used
[3] to estimate a; by minimizing the total mean squared errors where the error is

~

defined as e -8 There are two distinet methods for estimating the
parameters. The autocorrelation method minimizes the error e, over an infinite
duration. Since the signal is of finite duration in practice, the infinite
duration signal can be windowed to become finite duration. The autocorrelation
matrix is a Toepliz matrix whose special properties lead to efficient Levinson

and Durbin recursion algorithms for estimating e The second method is covariance

g
method which considers a finite duration signal only so it minimizes the error

over a finite interval. The covariance matrix is symmetric but the diagonal

yterms are not equal. The assumption of zero values for data outside the finite
duration is not valid. This is the main source of inaccuracy in both methods.

The sutocorreltion method guarantees filter (model) stability while the covariance
method does not.

Computationally the parameters can be determined without major computational
load. The estimation of autocorrelation or covariance from data points may take
most of computation time when the number of data points far exceed the order of
the filter, as is often the case.

The maximum entropy method states that the least assumptions should be made
about the unobserved data points. This may be restated by saying that the spectrum
estimated should be maximally random (maximum uncertainty). The maximum entropy
solution for parameters should be the same as that of the AR model except for

details of the algorithm.
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After the parameters of the AR model are determined we shall then use the
ARMA model by incorporating the numerator polynomials. Let the denominator be

now fixed, we can determine the numerator polynomial, from Eq. (i) by examining

the ratic,
B(z) _ 1 (1)
H(z) -1 -2 =N
elz + e2z *ooot eNz
where the coefficients ei can be determined by the methods which are used for the

AR model as the inverse z-transform of B(z)/H(z) is now available. Obviously one

iteration may not be enough. We can hold €,'s constant and ngust a

1
i =

i
repeating the above procedure. This method is much simpler in computation than
direct estimation [3] of the parameters of the ARMA model. We have tested this
method on short length artificial data sequence to verify the convergence of the
recursive procedure. Convergence is verified experimentally. For real data such
as of length 1024 points, it will be difficult, however, to determine the
coefficients if the order of the filter is high.

Recently the lattice structures have been developed which offer a convenient
visual realization of the Levinson recursion. For applications where the short-
term spectrum changes as a function of time, the lattice offers a simple, fast-
converging adaptive structure that has given results superior to the traditional
adaptive transversal filter [4][5].

In this section we have briefly discussed techniques related to data modeling
by least squares, especially the estimation of ARMA model parameters. The
application to seismic signal processing is not limited to spectral estimation
and data compression. There are good physical interpretation of parameters and
related quantities such as the reflection coefficients. The parameters are
potentially useful features for classification of teleseismic events. Good
spectral estimation leads to accurate computation of spectral ratio which is
another useful features in sesimic discrimination. Some recent articles on

spectral analysis ih seismic data are [6]([7].
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5. H&momorphic Versus Predictive Deconvolution

In determining the source pulse by using the deconvolution method, both
predictive and homomorphic deconvolution methods have been extensivley studied.
They represent two important but quite different approach to the problem. In
Eq. (5) the theoretical reverberation wavelet bn is minimum phase, while the
source pulse s, is not. For given autocorrelation, only the minimum phase pulse
corresponsding to s, can be determined. The problem in predictive deconvolution
is thus to determine an all-pass filter to obtain a source pulse with correct
rhase characteristic. To do so an assumption about the phase characteristic of
the source pulse is required. For the homomorphic deconvolution [8][9], the
cutoff quefrencies that produce proper pulse estimate actually also requires an
assumption about delay (or phase) properties of the source pulse. However,
such phase assumption is less critical in homomorphic deconvolution than in
predictive deconvolution. In homomorphic deconvolution an exponential weighting
of the data sequence is usually necessary to remove computational instability due
to the nomminimum phase source pulse. Figure 5 shows some results of cepstral
analysis on the teleseismic records.

In the homomorphic deconvolution the reflection coefficient sequence can be
determined once the complex cepstrum corresponding to the source pulse and
reverberation is removed. For the predictive deconvolution, one assumes that
the reflection coefficients are a random uncorrelate@,sequence to be estimated.
6. Kalman Filtering Approach :

The Kalman filtering approach can be,uééé to obtain optimal smoothed estimates
of the reflection coefficient seq?s ze from seismic traces with noise [10]. The
seismic trace can be 1nterpffted/;s the sum of additive noise and the output of
a linear system, with rgsﬁSABe w, given by Eq. (5), excited by white noise
corresponding to the/;eflection coefficient sequence. So the estimation of

reflection coéfficient is now the same problem as estimating the random
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disturbance in a state equation. Assumption is made that basic composite wavelet
is known a priori, and that the both additive noise and the white noise for the
reflection coefficient sequence have known covariance matrices, either of which
may be time varying. The Kalman filtering approach permits a more flexible
modeling assumption than the Wiener filtering to the predictive deconvolution.
T. Measuring the First Arrival Time

In microearthquakes and in explosive events, for example, it will be necessary
to measure accurately the first arrival time. The ambiguity associated with the
measurement of the first arrival time is due to the facts that the signal is
contaminated by noise and the wave shape of the first arrival is unknown. Thus
the methods of "beam forming" end "maetched filtering" are not acceptable.
However, the first arrival does occur in a context, the features of which can be
determined more reliably. Anderson [11] developed a simple but robust algorithm
for automatic analysis of microearthquake date to pick the first arrival with
good accuracy. The algorithm uses informetions from multiple levels such as &
tentative location, detection of the event, arrival time residuals, and the
features which represent physical measurements of the seismic wave including the
first and second zero crossing, the first maximum in the half cycle, etc. Syntactic
pattern recognition should be & useful approach to improve the algorithm.
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