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FOREWORD

The Naval Weapons Center is conducting a continuing program to
determine the geology, geophysical signature, and geothermal potential
of the region known collectively as the Coso geothermal area. The in-
vestigation reported in this publication was conducted for NWC by
Hydro-Search, Inc., Reno, Nevada, as that company's Project 1151-78,
under contract N62474-77-C-6727.

This publication is a facsimile of the contractor's final report.
It is published in facsimile to make readily available to other workers
involved with the Coso geothermal area the data, conclusions, and
interpretations developed by Hydro-Search in the course of their
investigation.

The investigation, conducted October 1977 through January 1978,
was funded under Task S$0362-SL.
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1.0 FINDINGS

Principal rock units which occur within the area are: granitic in-
trusives, Tertiary volcanics, Coso Formation, Quaternary volcanics,
and Quaternary alluvial deposits.

Based on widespread areal distribution and overall favorable hydro-
geologic characteristics, Quaternary alluvial deposits constitute
the most important geologic units with respect to recharge and
occurrence of ground water within the local, shallow ground-water
flow system of the Coso Hot Springs sub-basin.

Although no on-site precipitation records are available, precipita-
tion-elevation relationships for nearby climatological stations indi-
cate a long-term average precipitation of 5.2 inches at Coso Hot Springs.

Recharge to the local ground-water system within the Coso Hot Springs
sub-basin is derived from infiltration of intra-basin precipitation

and probably subsurface underflow from Upper Cactus Flat ground-water
basin on the north. Local ground water moves to the south from intra-
basin recharge areas, ultimately discharging to Coso ground-water basin.

Average recharge to shallow ground water is estimated to be 390 acre-
feet per year.

Deep regional ground water, with primary recharge areas along the Sierra
Nevada on the west, flows from west to east through the Coso Hot Springs
sub-basin. The quantity of subsurface regional ground-water flow through
the sub-basin is estimated to be approximately 2800 acre-feet per year.
Ground water in the regional flow system increases in temperature as a
result of deep convective circulation, including heating by the magma
body which underlies the Coso area. The circulating ground water may
also receive thermal fluids which rise from the magma.

In the immediate vicinity of Coso Hot Springs, a pervious north-south
trending fault allows deep-seated geothermal fluids to rise to shallow
depths. Cold ground water of local origin moves laterally and inter-
mingles with rising high temperature fluids.

Field inspection of the spring indicates that considerable man-related
modification has occurred. Past activities probably have increased
thermal manifestations at Coso Hot Springs by increasing communi-
cation between local ground water and geothermal fluids.

Available hydrologic data indicate that the regimen of Coso Hot
Springs, including temperature, water level, and discharge charac-
teristics, is variable over time. This variability is largely
determined by variations in the contribution of local ground water

e AT
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which in turn is determined by recharge of precipitation and surface
runoff within the Coso Hot Springs sub-basin.

Extraction of geothermal fluids for a 50 megawatt generation plant
within the anticipated area of geothermal development to the west
of Coso Hot Springs is not expected to cause a major change in the
regimen of Coso Hot Springs. Factors which indicate a relatively
minor, or negligible, change in regimen include:

a. absence of pervious cross-tying geologic structures which
could afford easy hydraulic communication between Coso Hot
Springs and the proposed area of geothermal development,

b. a projected quantity of net removed geothermal fluid less than
the estimated deep regional ground-water flow through the area,
and

(o the apparent principal dependence of Coso Hot Springs on local,

shallow ground—-water contribution.

In the event that it is necessary to minimize possible impact on
Coso Hot Springs, preventative measures could include:

a. limitation of geothermal production wells to the extreme
western portion of Coso Hot Springs sub-basin,

b. selective reinjection of degraded geothermal fluids between
the geothermal development and Coso Hot Springs, and

& limiting removal of geothermal fluids to the deepest aquifer
zones.

Geothermal development exceeding 50 megawatts could require large
scale selective reinjection of degraded geothermal fluids to main-
tain the regimen of Coso Hot Springs.

AN i
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2.0 RECOMMENDATIONS

Collection of data on the hydrologic regimen of Coso Hot Springs should

be initiated prior to regionwide geothermal development. This would

provide baseline information for eventual evaluation of the effects of

geothermal development. In addition, such information could lead to

an improved understanding of the hydrology of the springs.

The monitoring program should include the following elements.

1

Modification of existing spring discharge features to chan-
nelize all major discharge to a centralized outflow point.

This would permit accurate determination of total surface dis-

charge of the spring and aid in water chemistry sample collection.

Establishment of an on-site climatological station.

Meteorclogical data collected at the station should include pre-
cipitation, atmospheric pressure, and air temperature. This
would assist in evaluation of ground-water recharge and con-
fined aquifer effects.

Establishment of a hydrologic monitoring network.

This would include temperature, water level, and discharge

measurements and sampling/analysis for major and trace chemical
parameters on thermal water points in the vicinity of Coso Hot
Springs.

Simple peak runoff gages should be installed on major ephemeral
stream channels near the hot springs.

As appropriate, data collections would be both monthly and by continuous

recording.

12 months.

Results of the data program would be evaluated at the end of

Required changes to increase the effectiveness and to redirect

the purpose of the program could be made at that time.

o F
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3.0 INTRODUCTION

3.1 SETLING

Coso Hot Springs area lies within the Coso Hot Springs sub-basin (a
division of Coso ground-water basin) in southeastern Inyo County,
California (Figufe 1). Fumarole and hot spring manifestations occur
primarily within Sec. 4, T.22S., R.39E. Coso Hot Springs is approxi-
mately 28 miles northwest of China Lake, California and 12 miles south-
east of Haiwee Reservoir. Access is by U.S. Highway 395 to Coso
Junction, California, and thence eastward by gravel road to the hot

springs area,

The climate is hot and arid. Long-term average precipitation at nearbv
Haiwee and Inyokern, California is 6.50 and 3.64 inches, respectively.
Most precipitation occurs during winter and early spring. No perennial

streams occur within the area investigated.

From a geologic standpoint, Coso Hot Springs is located along the west-
ern margin of a down-faulted graben structure. Thermal activity occurs
along the base of a geologically youthful, north-south oriented fault

scarp.
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3.2 BACKGROUND AND OBJECTIVES

Hydro-Search, Inc. is under contract to the Naval Facilities Engineering
Command, San Bruno, California to perform a hydrologic investigation of
Coso Hot Springs and vicinity, Naval Weapons Center, China Lake, Califor-
nia. Objectives are tn determine the effects on Coso Hot Springs of
anticipated geothermal development in the Coso Known Geothermal Resource
Arca (KGRA) to the west of the hot springs and to determine how close
geothermal development can be conducted without adversely affecting the

hot springs.

Content of this investigation included:

) review of existing geologic, geophysical, and hydrologic
information,

2. field examination of geologic rock units and springs and
other features of hydrologic significance and sampling of
waters for chemical analysis,

3. determination of the local Coso Hot Springs and regional ground-
water hydrology, including consideration of recharge, discharge.

movement, and water quality: and

4. determination of the possible impact of geothermal development
on Coso Hot Springs.

The methods of analysis used in this investigation and the results ob-

tained are appropriate to the quality and quantity of data available.

This investigation was undertaken during the period October 1977 through
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January 1978. Personnel of Hydro-Search, Inc. who participated in this
investigation include Frank A. Spane, Jr. and Dale C. Bugenig, hydro-
geologists, John V.A. Sharp, principal hydrogeclogist, and Paul R. Fenske,

hydrologic consultant.

3.3 SOURCES OF INFORMATION

Information congerning Coso Hot Springs is contained in reports of pre-
vious investigations (Chapter 8.0). For the most part, these examined
the geologic, geéphysical, and hydrologic settings from a regional
standpoint. Investigations of particular pertinence to the current

investigation are mentioned below.

Local geology and structure are covered by regional geologic maps by
Jennings (1958), Stinson, et al (1975), and Duffield and Bacon (1977).
Lithologic descriptions of geologic materials are contained in reports
by Fraser, et al (1942), Chesterman (1956), Austin and Pringle (1970),
Babcock and Wise (1973), and Roquemore (1976). Information concerning
depth and areal extent of the geothermal reservoir in the vicinity of
Coso Hot Springs is included in geophysical studies by Teledyne Geotech
(1972), Combs (1975, 1976a-c), Combs and Jarzabek (1977a, b), and Jackson,
et al (1977). Basic hydrologic data concerning locations of wells and
springs, depths to ground water, and water quality are contained in
reports by California State Department of Water Resources (1963, 1964,

1969), Kunkel and Chase (1969), and Moyle (1977).

=
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4.0 GEOLOGY

Plate I shows the regional geology surrounding Coso Hot Springs. Man-
ping presented in Plate I is a compilation of previous work by Jennings
(1958), Stinson, et al (1975), and Duffield and Bacon (1977) and work

of the current investigation.

The detailed geology shown in the vicinity of Coso Hot Springs is an
improvement over previous regional-scale information. As a result of
field inspections and examination of aerial photographs, improvements
have been made with respect to location of contacts between Quaternary
geologic units and location of areas of hydrothermal alteration. In
addition, fiela inspections have resulted in improved information on

lithologic and hydrogeologic characteristics of geologic materials.

4.1 GEOLOGIC STRUCTURE

The geologic structural history has had a profound influence on forma-
tion of valleys, depositional patterns of sedimentarv materials, drainaye
development, and location of hot spring - fumarole areas within the

Coso Hot Springs sub-basin. The region is dominated by prominent north-
south trending fault structures. The location of faults shown in Plate

[ was taken primarily from Stinson, et al (1975).
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Faulting appears to have been active into Recent time. A consnicuous
fault scarp marks the eastern limit of hot spring - fumarole activity
at Coso Hot Springs. The fault scarp is youthful in appearance with

little evidence of dissection by erosion.

4.2  STRATIGRAPHY

Geologic units e#posed in the Coso Hot Springs area range from Jurassic
(?) to Quaternary, in age. They are in chronologic order, i.e., oldest
to youngest, granitic intrusives, Tertiary volcanics, Coso Formation,
Quaternary volcanics, and Quaternary alluvial deposits. The Quaternary
units are, in part, contemporaneous in age. Location and distribution

of units described below are shown on Plate 1.

4.2.1 Granitic Intrusives
This unit consists of igneous intrusive rocks of Jurassic (?) age,
ranging from granite to quartz diorite in composition. Granitic intru-
sives (Jg) are characterized by porphyritic texture, phenocrysts of
quartz, biotite, plagioclase, and orthoclase, and commonly contain mafic
inclusions. Granitic intrusives crop out primarilv in the mountainous

region west of Coso Hot Springs.

The granitic intrusives are cut by numerous younger felsic and basic
dikes. A conspicuous glassy basic dike, which ranges in thickness from

3 to 12 feet, crops out along the base of the mountain front immediately
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west of Coso Hot Springs.

4.2.2 Tertiary Volcanics
Tertiary volcanics (TB) consist primarily of undifferentiated volcanic
flows, breccias, and pyroclastic deposits of basaltic to andesitic com-
position. Rocks of this unit crop out on the flanks of Coso Peak north
and east of Coso Hot Springs. Tertiary volcanics may underlie surficial

Quaternary alluvial deposits within the sub-basin.

4.2.3 Coso Formation
The Coso Formation (Tc) includes conglomerates, volcaniclastic sediments,
and tuff deposits. The tuff deposits, which are rhyolitic to andesitic
in composition, exhibit both lacustrine and air-fall characteristics.
On the basis of radioactive age-dating, tuff members within the Coso
Formation are reported by Roquemore (1976) to be 2.3 million years B.P.
Duffield and Bacon (1977) report dates of 2.5 to 3.1 million years B.P.

for similar units.

A composite thickness of approximately 500 feet is exposed along the
flanks of Coso Mountains, primarily north and east of Coso Hot Springs.
The Coso Formation probably underlies a substantial portion of the’ val-

ley east of Coso Hot Springs.

=10«
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4.2.4 Quaternary Volcanics
Quaternary volcanics consist of undifferentiated volcanic flows, breccias,
and tuffs of rhyolitic to dacitic composition (Qr) and basaltic to ande-
sitic composition (Qb), perlite domes and rhyolite vent sites (Orv),
and basalt and andesite vent sites (Qbv). The Quaternary volcanics cron
out in the mountainous regions surrounding Coso Hot Springs., and may

underlie Quaternary alluvial deposits within the sub-basin.

4.2.5 Quaternary Alluvial Deposits
This unit consists of Coso alluvial fan deposits (Oaf) and Recent allu-
vium (Qal). Coso alluvial fan deposits consist of intercalated lavers
of unconsolidated sand, gravel, boulders, and clay. These deposits
are characterized by their poorly-sorted nature and boulder-strewn sur-
faces. Coso alluvial fan deposits contain materials of local origin
which were deposited by ephemeral streams near the base of mountain

areas within the Coso Hot Springs sub-basin.

Recent alluvium (Qal) consists of unconsolidated gravels, sands, and
clays deposited in fluvial and lacustrine environments within the valley
floors. These deposits are well-sorted and generally contain less coarse
materials in comparison to Coso alluvial fan deposits (Qaf). Outside
Coso liot Springs sub-basin, alluvial fan deposits are included within

the Recent alluvium designation (Flate 1).

-~11~
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4.3 HYDROGEOLOGIC CHARACTERISTICS

Rock types within Coso Hot Springs sub-basin can be assigned to one of
two general groupings based on similar hydrogeologic characteristics.
Group I includes: granitic intrusives (Jg), Tertiary volcanics (Tb),
and Quaternary volcanics (Qr, Qb). Group II consists of the Coso Forma-

tion (Tc) and Quaternary alluvial deposits (Qaf, Qal).

Rocks of Group I are of igneous origin. The intrusive and volcanic flow
rocks do not contain intergranular openings. Consequently, the ability of
these rocks to accept, transmit, and store water is largely a function of
the degree of jointing, fracturing, and faulting present. The deep geo-
thermal reservoir is probably contained in well-fractured and well-jointed
Jurassic intrusive rocks (Jg). Breccia and pyroclastic rocks of Group 1
are fragmental and, thus, contain intergranular pore space. However, these
rocks are generally impervious because of unfavorable grain size, sorting,
and roundness characteristics. As a whole, Group I rocks possess a rela-
tively low degree of permeability and storage capacity as compared to

Group Il rocks.

Rocks of Group 11 are unconsolidated to semiconsolidated, sedimentary
and volcaniclastic deposits of Tertiary and Quaternary age. These de-
posits possess intergranular openings for the accommodation of ground
water. The grain-size distribution and degree of sorting present,
however, exert a strong influence on the relative permeability of these

rock types and, thus, on the ability to accept and transmit water. Due

“]Z=
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to the diversity in grain size and sorting, differences in permeability

are evident between rock types of Group 1I.

The Coso Formation is of variable permeability due to the diversity in
rock types. Coarse clastic sedimentary members, e.g., conglomerates and
sandstones, appear to be moderately permeable. Tuffs and tuffaceous
sedimentary membérs probably are only slightly permeable due to the

preponderance of clay- and silt-sized particles.

The preponderance of coarse, well-sorted sediments within Quaternary
alluvial deposits indicates that these materials are pervious. Because
of their widespread distribution and apparent thickness, these materials
constitute the most important hydrogeologic unit within Coso Hot Springs
sub-basin. Poorly-sorted units within alluvial fan deposits and fine-
grained lacustrine materials of Recent alluvium are expected to be of

low permeability.

Locally, hydrothermal alteration (Qca) of geologic materials reduces
permeability. Fraser, et al (1942) and Austin and Pringle (1970) attribute
the hydrothermal alteration to reactions of rising acid-sulfate corro-

sive fumarolic fluids with geologic materials. Localized areas of altera-
tion are particularly prevalent within Group I rock types exposed along

the mountain front west of Coso Hot Springs (Plate I). At this locality,

«i3=
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granitic intrusive rocks (Jg) have been largely converted to opaline
silica, alteration clay, native sulfur, and sulfate minerals. Areas
of hydrothermal alteration away from Coso Hot Springs (e.g., Devils

Kitchen, Nicol) have not been delineated in Plate I.

o
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5.0 REGIONAL HYDROLOGY

5.1 PRECIPITATION

Long-term precipitation records are not available for the area of in-

vestigation. Data for selected nearby climatological stations, however,

indicate a lnng-ivrm average precipitation of 1.82 to 7.52 inches per

: vear (Table 1). For stations with short period of record, long-term
average precipitation was projected utilizing a relationship described

by Linsley, Kohler, and Paulhus (1949),

Ly = Ke @)

where

Lg = the computed long-term average precipitation at the
¥ station,

Rg = the observed short-term average precipitation at the
station,

L. = the long-term average precipitation for a set of repre-
sentative surrounding stations, and

|
[

the observed short-term average precipitation observed
for the set of surrounding stations during the time
period represented by Rg.

Precipitation is not distributed uniformly throughout the year. The

.y
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monthly distribution of long-term precipitation indicates that nearly

73 percent of the annual precipitation occurs between November and March.

Because rainfall within the region is largely controlled by orographic
features, areal variation in precipitation is related to differences

in elevation. Figure 2 shows the association of long-term average pre-
cipitation and eievation for climatological stations listed in Table

1. Average precipitation values for higher elevations were adapted from
Rush (1968). Average precipitation at Coso Hot Springs, based on a
precipitation-elevation relationship, is estimated as 5.2 inches per

year.

5.2 GROUND-WATER FLOW

Ground water migrates from areas of recharge to areas of discharge.

Plate 11 shows the generalized pattern of ground-water movement for
shallow (local) and deep (regionai) ground-water flow systems. Ground-
water flow patterns were developed from hydraulic potential information
obtained from wells and springs, areal topographic relationships, and
identification of recharge and discharge areas. Ground-water basin

and sub-basin boundaries shown in Plate II were adapted from hydrographic
drainage designations used by the California State Department of Water

Resources.
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Local ground-water flow is strongly influenced by topography, distri-
bution and hydrogeologic characteristics of geologic materials, and
geologic structures. Recharge occurs as a result of infiltration of
intra-basin precipitation and runcff and subsurface underflow from
adjoining basins. Pervious Quaternary alluvial deposits (Qaf, Qal)
along the base of mountain-runoff regions are the primary recharge areas
tor local ground;water flow systems. Local ground-water discharge areas
are characterized by the presence of springs, marshy areas, and playa
lakes. Important local discharge areas within valley bottoms of closed

topographic basins include Owens, Searles, and Panamint Valleys.

The general patterns of deep, regional ground-water iiow are velatively
less influenced by local topographic features and local variations in
hydrogeologic characteristics. Recharge to the deep regional ground-
water flow system within the southern Lahontan drainage occurs primarily
by infiltration of precipitation and runoff along the eastern flank

of the Sierra Nevada. Deep regional flow of ground water appears to be
toward the east with ultimate discharge along the floor of Death Valley.
The structural grain of the basement rocks within which this flow occurs
is north4south. Consequently, west to east flow is difficult except
along structural zones which are both pervious and include a west to

east directional component.

-19-~
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The general eastward direction of regional ground-water flow is dis-
torted by the presence of deep-seated geothermal reservoirs. For ex-
ample, in the Coso Hot Springs area, deep regional ground water inter-
mixes with rising fluids from an underlying body of molten magma and

as a result some of this deep ground water moves to the surface.

<20
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6.0 HYDROLOGY OF COSO HOT SPRINGS SUB-BASIN

The tew data available indicate that ground-water depths within the
valley floor ot the sub-basin range from 60 to 130 feet below land
surface. Recharge to ground water occurs by infiltration of intra-
basin precipitation and consequent runoff and possibly by subsurface
underflow from Upper Cactus Flat ground-water basin to the north.
Ground water flows toward the south, ultimately discharging as inter-
basin underflow to Coso ground-water basin to the south (Plate I1).
Minor quantities of ground water are lost through evapotranspiration

and by spring and fumarole discharge at Coso Hot Springs.

6.1 RECHARGE AND MOVEMENT OF GROUND WATER

A technique employed by the U.S. Geological Survey and applicable to
ungaged basins was utilized to estimate potential recharge. This methoed
utilizes empirical precipitation-potential recharge percentages for
discrete elevation zones. For example, this method was used for esti-
mating potential recharge to Clayton Valley (Rush, 1968) and Amargosa
Desert, Nevada-California (Walker and Eakin, 1963). These areas are

approximately 150 and 60 miles northeast of Coso Hot Springs.

An estimate of potential recharge to Coso Hot Springs sub-basin utilizing

=21~
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this method is given in Table 2. Acreage listed for discrete eleva-

tion zones within the sub-basin was obtained by planimetering U.S.
Geological Survey 1:62,500 scale topographic maps. Assigned esti-

mates of average precipitation and potential recharge percentages for
various elevation zones were taken from Figure 2 and Rush (1968), respec-

tively.

Approximately 375-acre-feei/year of intra-basin precipitation is avail-
able, on average, for recharge to ground water. In addition, one-third

of the average estimated potential recharge within Upper Cactus Flat
ground-water basin, about (1/3 x 45 acre-feet =) 15 acre-feet per vear,

may be transferred to Coso Hot Springs sub-basin by underflow. Accordingly,
Coso Hot Springs sub-basin receives approximately 390 acre-feet per year

of recharge to the shallow ground-water system.

Recharge occurs primarily in pervious Quaternary deposits (Qaf, Qal)
which apron mountain-runoff regions within the sub-basin. Based on

the distribution of Quaternary alluvial deposits and sub-basin hypso-
metric characteristics, most recharge occurs immediately west and north-
ecast of Coso Hot Springs. Local ground water moves to the south from
intra-basin recharge areas, ultimately discharging to Coso ground-water

basin.
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Deep regional ground water flows into the Coso Hot Springs sub-basin
from recharge areas along the Sierra Nevada (Plate II). Based on the
precipitation-recharge relationship previously described (Table 2),
the quantity of regional ground water flow through the sub-basin is

estimated to be approximately 2800 acre-feet per year.

6.2 HYDROLOGY 0% COSO HOT SPRINGS
The hydrology of Coso Hot Springs is characterized by the mixing of
ground waters of deep (geothermal) and shallow (local) origin. Previous
regional geophysical and geothermal investigations by Furgerson (1973),
Combs (1975, 1976a,c), Combs and Jarzabek (1977a), and Jackson, et al
(1977) indicate that the underlying geothermal reservoir is areally
extensive, with the majority of the reservoir occurring west of the
hot springs area. The eastern boundary of the geothermal reservoir
is conjectured to be slightly east of Coso Hot Springs (Combs, 1975,
1976c). In the immediate vicinity, a pervious north-south trending
fault structure allows deep-seated geothermal fluids to rise to shallow
- depths (Plate I). Cold ground water of local origin, moves laterally
and intermingles with the rising hot geothermal fluids. Primary areas
of local ground-water recharge are within alluvial fan deposits (Qaf)

and Recent Alluvium (Qal), immediately west and north of Coso Hot Springs.

Interpretive hydrogeologic cross sections (Figure 3 - A-A', B-B') show
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generalized paths of movement of ground water and subsurface geologic
conditions in the vicinity of Coso Hot Springs. Cross section locations

are shown in Plate 1.

6.2.1 Site Information
Field inspection of Coso Hot Springs suggests that considerable surficial
modification has’occurred. Past man-related efforts have focused on
construction of wells and development of the spring to enhance surface
discharge. These activities appear to have increased thermal activity
of Coso Hot Springs by increasing communication between the shallow,

local ground-water system and the rising geothermal fluids.

During December 1977 surface temperatures for spring discharge and pools
ranged between 31 and 91.2° C. Generally, wells of greater depth con-
tained higher water temperatures. Depths to ground water for wells

at Coso Hot Springs ranged from one to 110 feet below ground level.
Shallow depths to water are attributable to localized perched ground-

water conditions.

6.2.2 Fluctuations in Spring Discharge
Characteristics of the fluid discharge at Coso Hot Springs are determined
by the relative contribution of geothermal fluids and local ground

water. Due to the wide areal extent, deep-seated origin, and current

=36




. ! m’ MR

NWC TP 6025

undeveloped condition of the deep geothermal reservoir, contributions

by rising geothermal fluids to Coso Hot Springs are expected to be rela-
tively constant with time. Local ground-water contribution, in contrast,
would be highly variable with time due to the limited areal extent

of the aquifer and the consequent rapid response of the aquifer to

precipitation-recharge events.

Observations by Austin (personal communication, 1977) indicate that
local precipitation-recharge events have a discernible impact on charac-
teristics (e.g., flow, water levels, temperature) of Coso Hot Springs.
To examine the association of local ground-water contribution to vari-
ation of hot spring activity, a comparison was made of monthly precipi-
tation and available historical water temperature and ground-water

level information. Figure 4 shows the relationship of precipitation

at nearbyv Haiwee, California (Plate II) to temperature and ground-water

depth within a shallow well (22S/39E-4K2M) in Coso Hot Springs (Plate I1).

Interpretation of Figure 4 assumes that:

j precipitation at Haiwee is representative of precipitation
conditions at Coso Hot Springs,

Ze precipitation, recharge, and local ground-water contribution
to Coso Hot Springs have a high degree of association, and

3. the shallow well examined is representative of hydrologic
conditions within Coso Hot Springs.

.
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Figure 4. Relationship of Water Temperature and Ground-Water Depth at Coso
Hot Springs, and Monthly Precipitation at Haiwee, California.
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These are reasonable assumptions from the standpoint of basic hydrologic
relationships and observed hydrogeologic features. From the above, we
may assume that higher water temperatures and lower ground-water levels
are related to decreases in local ground-water contribution; and lower
temperatures and higher ground-water levels are associated with increases

in local ground-water contribution.

Examination of Figure 4 indicates that water temperature and ground-

water levels exhibit:

. a strong seasonal oscillatory pattern,
Fid a strong inverse correlation, and
3 an association with monthly precipitation distribution.

The evident seasonal oscillatory pattern suggests a strong influence

of local ground-water contribution within the Coso Hot Springs regimen.
As expected, low temperatures and high ground-water levels are associated
with and exhibit a lagged response to periods of high precipitation

and recharge, while high temperature and low grouﬁd-water levels follow

periods of low precipitation and recharge.
6.3 GROUND-WATER CHEMISTRY

Water samples were collected during late November-early December from

four locations at Coso Hot Springs (CS-5, 6, 7, 8) and at four nonthermal

=29~
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spring locations (CS-1, 2, 3, 4). Locations of sample sites are shown

in Plate 1I.

Samples were filtered in the field to remove particulate matter. Chemical
analysis for major inorganic constituents was performed by the Water
Chemistry Laboratory, Desert Research Institute, University of Nevada-
Reno. A compute% printout of analytical results and calculated water-

chemistry parameters is included in Appendix A.

Purpose of the water chemistry investigation was to determine if system-—
atic differences exist between chemistry of thermal and nonthermal waters
and, if so, whether such differences would provide information as to
source and proportional mixing of waters. Nonthermal well sources do

not exist in the area and sampling was limited to springs. Whether the
spring waters sampled are representative of shallow ground waters at

Coso Hot Springs is not known. The nonthermal waters are alkaline with
total dissolved solids concentrations less than 1,000 mg/l. Calcium and
magnesium are the dominant cations. Bicarbonate is the dominant anion.

In one instance (CS-3), sulfate is the dominant anion.
In contrast, three of the thermal waters (CS-5, 6, 7) are acidic. Con-

centration of total dissolved solids increases with decresze in pH.

Sulfate is by far the dominant anion. Calcium is the dominant cation,
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but sodium is relatively more important than in the case of the nonthermal
waters. With increase in temperature, pH decreases and total dissolved
solids and silica increase. Poor anion/cation balances for samples

CS-6 and 7 are only partially compensated for by hydrogen ions. Other

unknown factors contribute to the imbalance.

The waters of saﬁples CS-5 through 7 probably are a composite of waters
of local ground water and deep-seated geothermal origin. As such, their
water chemistry, along with temperature, should vary with proportional
contribution of nonthermal water to the mixture. For example, Pool K-2
(€CS-5) at 31.° C is near the minimum temperature recorded in 1960-62

and almost exactly the same temperature as in November-December 1961
(Figure 4). The chemistry of K-2 water along with the temperature and
potentiometric level should vary as proportion of nonthermal water varies

which in turn responds with lag to precipitation.

The water of Well K-1 (CS-8) appears to be a condensate. The relation-
ship to the other thermal waters is not clear at this time. Wells which
derive waters from deeper zones (i.e., below 220 feet) within Coso Hot
Springs are reported to be of a sodium-chloride type, with neutral to
slightly alkaline pH conditions. The predominance of chloride in deeper
thermal waters is suggested by Austin and Pringle (1970) to be related

to distillation of incoming local ground water to the Coso Hot Springs
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system. These deeper wells are not available for sampling at this time.

In summary, discernible differences in chemistry of major constituents
appear to exist between thermal and nonthermal waters, and within the
group of thermal waters. Investigation over a period of time may dis-
close that sources and proportions of mixing of waters can be determined
from water chem{stry data and water temperature measurements. Such data
would have to be .taken periodically as hydrogeologic conditions vary.
Trace constituents and possibly stable and unstable isotopes (oxygen,

carbon, hydrogen species) possibly also would be useful in this regard.
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7.0 ANTICIPATED IMPACT OF GEOTHERMAL DEVELOPMENT ON COSO HOT SPRINGS

Based on available geophysical investigations and current exploration
drilling operations, the anticipated area for geothermal development

is located between Cactus Peak and Sugarloaf Mountain (Plate 1), approxi-
mately 2.5 mileé west of Coso Hot Springs. Rodgers (personal communi-
cation, 1977) states that planned production well(s) for a possible 50

megawatt generation plant would extract:

Flow Required Discarded or Reinjected
Type of Fluid __(bs/hr) (1bs/hr)
! Steam (saturated) 1,000,000 600,000
Hot Water (20% steam) 2,638,333 2,000,000

Production of geothermal fluids at projected flow rates translates
approximately to the removal of 3360 to 8870 acre-feet per year of
ground water (@ 1 atm. and 100° C), depending on geothermal fluid tvpe.

] Development within the area would be confined to removal of fluids of

deep geothermal origin, rather than of the shallow local ground-water

flow system.

Utilized geothermal fluids would either be reinjected or discarded.

If reinjected, the net removal of fluids for geothermal development

would range from 1345 to 2145 acre-feet per year.
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The impact of geothermal development can be evaluated by looking at
conditions under the worst situation. If the impact on the regimen

of Coso Hot Springs is acceptable under these conditions, it will be
acceptable under all situations of similar production rate. The impact
on Coso Hot Springs would be expected to be the greatest under production
conditions of a hot-water, dominated geothermal reservoir. Steam pro-
duction from a vépor-dominated reservoir is not considered to have as
severe impact because the total amount of water produced is less, and

the demand upon the regional ground-water system would be more dispersed.

Evidence supportive of the second factor is that in a vapor-dominated
reservoir the relative permeability to ground water is extremely low.
Ground water in the deep regional flow system would be expecied to flow
around the geothermal reservoir. The only water entering the system
would be make-up water required to take the place of the steam produced
by natural discharge of Coso Hot Springs and geothermal energy production.
In a large vapor-dominated geothermal reservoir, this make-up water

would enter over an area the size of the reservoir, and its impact for

any small area would, therefore, be extremely small.

The impact analysis of a worst case, water-dominated geothermal system

includes the following assumptions:

&
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1162 approximately 8870 acre-feet of water will be produced each
year and none of this water will be reinjected to the system,

2. the north-south regional permeability is of the order of twenty-
five times greater than the east-west regional permeability,

3. recharge and regional flow of ground water is approximately 260
acre-feet per year per mile of Sierra Nevada front, and

4. the geothermal development will be localized at a point
approximately 2.5 miles directly upstream of Coso Hot Springs

in the regional flow system, the area of current exploration
test drilling.

The volume rate of hot water production is based upon the requirements

of the hot water geothermal plant given by Rodgers. The presence of
anisotropic permeability is inferred from the geological map, which

shows strong, preferential, north-south trending structural fabric in

the vicinity of the proposed geothermal development and Coso Hot Springs.
The ratio between north-south and east-west permeability is probably

much greater than the value used. Recharge and regional ground-water
flow is based upon the 2800 acre-feet of west to east underflow discussed

previously.

An idealized flow net for this system is shown in Figure 5. The impor-
tant point on the flow net is the projected stagnation point. This
point is on the limiting flow line which separates ground-water flow
toward Coso Hot Springs from flow toward the geothermal development.

Under the conditions assumed, no water would be removed from Coso Hot
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Figure 5. Plan View of Estimated Ground-Water Flow Lines in the Regional
Flow System Prior to and Subsequent to Geothermal Development.
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Springs area to feed the geothermal development. The stream lines,
however, have not completely converged to their original spacing,
indicating a lowering of the flow rate and hydraulic gradient at the
hot springs and for some distance to the east. This lowering of the

hydraulic gradient has two effects:

I2 regional ground water would move to the east away from Coso
Hot Springs at a rate slower than under natural conditions,
and

2 hydraulic head in the deep regional system at the springs
would be expected to be lower.

The impact of these two factors on the local hot spring hydrology is
difficult to evaluate without detailed knowledge of the local hydraulic
gradient in the deep regional ground-water flow system and the nature

of the geothermal reservoir. Hydraulic gradients in the regional flow

systems, however, are expected to be quite low, and the drop in hydraulic
head caused by a local decline in gradient, therefore, would be antici-
pated to be small. Because the discharge of the springs is largely
controlled by the local ground-water flow system, a small lowering of

the hydraulic head in the regional system is probably not of consequence
to the regimen of the spring system. Furthermore, if this impact is
unacceptable, the reduction in hydraulic head could be compensated for

by the injection of a portion of the hot water output of the geothermal

plant into the regional flow system near the Coso Hot Springs' side
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of the stagnation point. Regulated injection at this designated area
would maintain the hydraulic head at Coso Hot Springs at any desired

level, while minimizing recycled water at the geothermal development.

In summary, it appears that the worst conditions of geothermal develop-
ment, a 50 megawatt plant which would require 8870 acre-feet of hot
water per year, Qould have only minor influence on the local hydrology
of Coso Hot Springs. In the event that it is necessary to minimize
possible impact, preventative measures could include:

1z limitation of geothermal production wells to the extreme
western portion of Coso Hot Springs sub-basin,

2. selective reinjection of degraded geothermal fluids between
the geothermal development and Coso Hot Springs, and
3 limiting removal of geothermal fluids to the deepest aquifer

zones.

The above analysis of impact is for a geothermal development of 50
megawatts. Geothermal development usually proceeds in stepwise incre-
ments, and in the present case development exceeding 50 megawatts would
have relatively greater impact on Coso Hot Springs. This greater level
of geothermal development could require large scale selective reinjec-
tion of degraded geothermal fluids to maintain the regimen of Coso Hot

Springs.
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APPENDIX A
CHEMICAL COMPOSITION OF SELECTED SPRING AND GROUND-WATER SOURCES,

COS0 HOT SPRINGS SUB-BASIN, INYO COUNTY, CALIFORNIA.
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