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ABSTRACT

EDGE DISLOCATION IN NONLOCAL
HEXAGONAL ELASTIC CRYSTALS*

by
A. Cemal Eriagen
and
F. Balta

Princeton University

The solution is presented for the problems of edge
dislocation in hexagonal crystals with long range
interatomic interactions. The field equations of
nonlocal elastic solids are employed to determine
the stress fields and the elastic energy for an
edge dislocation in the basal plane. Classical
stress and energy singularities are found not present
in the nonlocal solutions. Stress distribution

is calculated and maximum shear stress is given for
various hexagonal materials. Theoretical shear
stress to initiate a dislocation having a Burger's
vector of one atomic distance is calculated and
found to be in the acceptable range known from the
lattice dynamic calculations.

1. INTRODUCTION

It is well-known that the classical elasticity solution of the

edge dislocation contains stress and energy singularities in the

"core region", cf. [1]. 1In several previous papers (e.g., (2],

[3], [4]) we have shown that the solutions of various Volterra

dislocations based on the nonlocal elasticity theory do not contain

*

The present work was supported by the Office of Naval Research
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these singularities. This recent theory [5,6] models the elastic
materials much more satisfactorily in that the effect of long range
interatomic interactions are taken into account. It seems that no
artifice such as introducing various at-mistic models to estimate
the stress and energy in the core region is necessary. Moreover, as
a continuum theory all problems can be reduced to boundary-initial
value problems.

The discussion of the dislocation problems in anisotropic
solids is not a trivial extension even in its classical frame of
reference. Moreover because of the orientational effects the state
of stress and elastic energy are affected considerably. Consequently
the criteria for failure or the generation of dislocations need new
investigations. The raison d';tre of the present paper stems from
these considerations. In Section 2 we present a brief summary of
the field equations of the nonlocal elasticity theory. Tn Section
3 we obtain the solution of the edge dislocation problem leading
to stress and energy fields and in Section 4 we specialize these results
to the isotropic crystals. In Section 5, some results of computer
calculations are presented and maximum stresses that cause a single edge
dislocation in several hexagonal crystals (Mg. Apatite, Cd, Zn) are
calculated. The distribution of normal and shear stresses alone radial
line r, 8=0, and as a function of the polar angle 8 for a fixed r are
calculated. Since no stress and energy singularity occur, the maximum
stress hypothesis may be used to calculate the theoretical (cohesive)

stress. The results are in the accepnted range known from the atomic

theory. iﬁslill
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2. FORMULATION

In previous papers [2,4] we have shown that, under some very
general conditions, the solution of elastostatic problems in linear
nonlocal elasticity can be reduced to the solution of the classical

Navier's equation, however the stress field is calculated by

21) 0 = [ alexe, xavix)
)

where Oyg is given by the classical Hooke's law which for the

hexagonal crystals can be arranged into the form, cf. Fig. la,

- e
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(2.2) %1 %11 S5e %3 Sy
9o Clo Co Cpp €0
99 | = | 513 B S €33
Oo3 Qchh €03
| 2Css 3
12 2Cy| | €12
o = e Gl
Here €xe is the linear strain tensor given by
_—
(2.3) ep = 5 (i o * g )

where uk’gzauk/axz. Since for the hexagonal crystals 2CSS=Cll—Cl3’

the number of independent elastic constants are five.




The attenuation function a(x'-x) suggested in our previous work

is of the form
(2.4) o = a expl=(k; /a)® (x=xg) (x3=xg )= (ks /a) (x3-x,)°)

where B is summed over R=1 and B=3. Here a is the lattice parameter

kl and k2

the interatomic attractions. The constant ao is determined from the

are two constants which govern the range of attenuation of

normalization condition on a:

(2.5) J a(x'-x) dv(x') =1
Vv
so that
o 3/2 3
(2.6) " k1k2/" sl

Now a problem in nonlocal elasticity is reduced to determining the
displacement field uk(x) by solving the Navier's equation obtained

by combining (2.2) and (2.3) with the Cauchy's equation

(2.7) T 0 ’ k2 = 1,2,3

where as usual repeated indices are summed over (1,2,3). Once uk(x)
is determined one can then calculate strain from (2.3) and the stress
field t,, by using (2.2) in (2.1). We now apply this program to solve

the problem of the edge dislocations.




3. EDGE DISLOCATION
The straight edge dislocation in a hexagonal crystal is possible
. in the basal plane y=const. in the x-direction Fig. la. We vision
such a dislocation by cutting a cylinder along a radial plane and
pulling lower surface by a constant amount b (called Burger's vector)
relative to the upper surface and welding the two surfaces, Fig. 1b.

The solution of this problem in classical elasticity is well-known

(ef. [1]), p. L22). The displacement field (ux.uv.ﬂ) satisfying Navier's

equation, is given by

Xy
(3:1) PR [arctan (_3_—ET?5) + u22n(q/t)] .
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all other components of okl and u, vanish. Here we used (x,v.z)

for subscripts (1,2,3) and set
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the cylindrical coordinates by (Fig. 2),
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we have for the components of o in cylindrical coordinates:
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The physical components t () of the stress tensor in the nonlocal
: . (x),, \
theory are given in terms of those of the classical stresses o &

and shifters Skk' by

5} e
(3.6) (.\k (¢) = Ja(x'—x’o(k \(i")ﬁ\( Skk‘ dv(x")
v

of. [2]. In cylindrical coordinates the shifters have the following

values
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where we used the abreviation o! Eoij(x'). Using the relations
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The attenuation function q(x'-x) in cylindrical coordinates acquires

~

the form
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We now substitute (3.4) into (3.2), the result and (3.11) into (3.10).

This, for each of the stress components, leads to a triple integral

over the domain (0<r'<w, 0<8'<2m, -w<z'<w), The integrations over r'

and z' are tedious but can be carried out, however the integration over

8' will have to be done numerically. Leaving the details of these

calculations we give the results:

on
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where L is the length of the cylinder and R is the radius. Substituting

for e.r* Sgo and €9 calculated from (2.3), in the same way as in the
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Using these values in the expressions of (3.12), (3.13), (3.15) and

(3.16) we obtain
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These results are in complete agreement with those given in (3].

5. DISCUSSION

Components of the stress tensor are plotted in Fig.

}

.

3 as a function

of the polar angle 8 for a fixed radial distance. It i{s observed that

t and ton have the same shape with their extrema occurring at the same

rr

angle. The extremum values of tre

of the normal stresses. For the fracture calculations the state of

stress at 0=0 and n/2 are important.

differ by an angle n/2 from those

It 18 known that the cleavage

atress

T
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of the crystals is at least twice the maximum shear stress (Kelly [T7],
p. 17). Of the two state of stress investigated it is found that
the one at 6=0 plane is the most important. In Fig. 4 the shear stress
is plotted as a function of p=kr/a for a few hexagonal crystals (Zn,
Cd, Apatite, Mg). The elastic constants of these materials listed in
Table 1 are taken from ref. [8]. The shear stress for an isotropic
crystal (with v=0.3) is also plotted in Fig. 4. The ratio of the
shear stress in hexagonal crystals to that of the isotropic solids may
be useful from the point of view of technological applications. This
is given in Fig. 5 for the same crystals. Finally we give a plot of
the elastic energy as a function of the radius of the cylinder, Fig. 6.
Of course as the radius of the cylinder R increases the elastic energy

also increases. We note however that no singularity is present either

in the stress field or in the energy. The usual singularities present

in the classical elasticity solutions however appear when the lattice
parameter a>0. This is the classical continuum limit. In Table 1 we
give the material moduli,the maximum shear stress and its radial
location. The ratio of the attenuation constants « is taken, by an

anology to the wave propagation [10, ch. 6], as K=2022KC In

11*Co0)-
Table 2 the energy ratio of the hexagonal crystals to the isotropic
solids is listed for various radii of the cylindrical specimens.
Finally, the maximum value of the ratio trelchh may be used to estimate
the theoretical shear strength of the crystal. To compute this we need

to estimate the attenuation constant k in a(x'-x). This function

decreases to its one percent value at n lattice parameter distance if

k = 2.146/n .




As an example, for zinc we have

(xb/a)™t ¢ = 0.197 10%% dyn/cm2

ro max

If we choose b=a ([9], p. 516) then

4101}
12130 k = 0.050k

i "
3.96 10M1

rd maxlchh .

The maximum value that Kelly ([T], p. 19) gives

tre max/cbh = 0,034 .

Thus by comparing we obtain
k = 0.034/0.050 = 0.68 , n = 2.146/0.68 = 3.1}

The maximum values of tre/chh are shown on Table 3 for various
hexagonal crystals for n=2, n=2.5 and n=3.0. These results are
in the right range as predicted by other methods and atomic
considerations. For example, in the atomic theory of crystal
lattices it is known that one must take into account the interactions
of at least eight closest neighbours to obtain a result consistent
with experiments [11, 12]. For hexagonal crystals eighthneighbours
corresponds to n=2.

While clearly there is one parameter (namely k) which need be
estimated, the range of this parameter can be ascertained from our

knowledge in condensed matter. The detail shape of the nonlocal

X




moduli seems to be less effective so long as it is a candidate to be

a distribution. The flexibility in the choice of a(x'~x) and k

should be considered an asset in the sense that for noncrystalline

materials and imperfect crystals the attenuation function can be |

adjusted for a given material once and for all. Afterward all !

problems for such a solid are reduced to boundary-value problems.
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Table 1.

Maximum Shear Stresses

Elastic Constants xlOlldxn cm2
Material | €12 | %3 | S22 | Cw « | talty| I
Zn 16.5 5.0 3.1 6.2 3.96 |0.546 0.21T 2.30
Mg 5.93 | 2.14 | 2.57 | 6.15 | 1.6k | 1.02 | 0.398 | 1.45
cd k00 | 3.9k | 5,08 1 2.00 | 0.627] 0.235T | 2.05
Apatite 16.7 | 6.6 1.31 | 1k.0 | 6.63 | 0.912| 0.389 | 1.55
Ice(257K) 1.34 | 0.53 | 0.65 | 1.45 | 0.313]| 1.04 | 0.396 | 1.LS
Table 2. Strain Energy Ratio 2/20
p=kr/a
Material
2. b 10 20.
Isotropic(v=.3) 0.ThT 2.000 L.355 6.265 8.199
Isotropic (k=1 0.748 2.001 .35k .263 8.195
v=,3)
7n 0.265 0.889 2.T54 4.563 6.h62
Mg 0.739 1.956 L, 20k 6.021 7.858
cd 0.260 0.846 2.456 3.960 5.522
Apatite 0.845 2.338 5.272 T.679 10.121
Ice 0.675 1.7TTT 3.807 5.448 vl g

17




Table 3. Shear Stress t‘re/chh

n
Material ‘
2.0 2.5 3.0
et
Zn 0.053 0.043 0.036
Mg 0.102 0.082 0.068
cd 0.0T1 0.057 0.0hT
Apatite 0.075 0.060 0.050
Ice 0.112 0.090 0.07%

18




FIGURE CAPTIONS

Figure 1: (a) Hexagonal crystal
(b) Straight edge dislocation

Figure 2: Cylindrical coordinates
Figure 3: Stresses in xy plane versus 8, p=2.30.
Figure h: tre/to versus p, 8=0. (v=0.3 for isotropic case)

] Figure S: tre/t:e , ratio of anisotropic to isotropic

shear stress at 0=0, (v=0.3 for isotropic case)

2
Tigure 6: I£/Lbd° versus p=kR/a

w

Table 1: FRlastic constants and maximum shear stresse
Table 2: Strain energy ratio 2/2o

| % /
Table 3: Shear stress trelchh
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