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INTRODUCTION 

In this paper the eigenvalues and the eigenvectors of a singular 

matrix, A, are investigated.  Present techniques for determining the 
eigenvalues of a matrix require that the matrix be nonsingular or that 
some iterative procedure such as root searching techniques be applied to 
the characteristic equation. Here, a computational (non-iterative type) 
algorithm is given to construct a (smaller) nonsingular matrix, Q, that 
has exactly the same nonzero eigenvalues as A and only these eigenvalues. 

2 
Thus, a standard technique such as the QR algorithm can be applied to 
the matrix Q to evaluate the eigenvalues and eigenvectors of Q. 

The algorithm given in this paper yields the eigenvectors of the 
nonzero eigenvalues of A, which are obtained from the eigenvectors of 
Q, and the rank of the matrix A. The eigenvectors associated with the 
zero eigenvalues of A are an immediate consequence of the algorithm. 

II.  MOTIVATION OF THE ALGORITHM 

Let A = (a..) be an nxn matrix and U an nxn nonsingular matrix. 
-1 ^ 

Define W = U AU.  Let X  and X be an eigenvalue and an eigenvector, 
respectively, of A, then 

AX = AX 

U"1A(UU"1)X = XU X (1) 

W(U"1X) = A(U"1X), 

that is, X and U X are an eigenvalue and eigenvector of W. Conversely, 
if y and Z are an eigenvalue and an eigenvector of W, then y and UZ are • 
an eigenvalue and an eigenvector of A. 

Suppose A is of rank r and there exists a U such that W can be 
partitioned into the following form: 

The algorithm given in this paper was developed by the author in 
response to a problem posed by H. McCdy, TRASANA, to obtain the 
eigenvalues and eigenvectors of a special singular matrix. 

2 
Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, 
Oxford, 1965. 



-1    /Qr 0l\ W = U AU = (     M , (2) 

where Q is an rxr matrix, 0, and 0 are rx(n-r) and (n-r)x(n-r) zero 

matrices, respectively, and B is an (n-r)xr matrix. Let X ^ 0 be an 
eigenvalue of W, and of A, and Z be the associated eigenvector.  If the 
vector Z, as a matrix, is partitioned into Z , a rxl matrix, and Y, a 

(n-r)xl matrix, then we can write the following matrix equation 

(3) c- X) ■ ■« 
as 

and 

Q Z = XZ (4) xr r    r 

BZr = AY, (5) 

that is, X  and Z are an eigenvalue and eigenvector of the matrix Q . 

Thus, the nonzero eigenvalues of W, therefore for A, are the eigenvalues 
(nonzero) of Q . The associated eigenvectors of A are given by 

uCr) ■ iv) X = UZ = Ul ^ = Uf  / ], (6) 

which are determined from the eigenvectors of Q . 

Conversely, if X ^ 0 is an eigenvalue of Q and Z the eigenvector, 

then it follows that X, which is defined by (6), is an eigenvector of A 
and X  is the eigenvalue. 

The eigenvectors of A associated with the zero eigenvalues are 
immediate.  Define the column vectors 

•6l,r+i> 

i 

,6' 
n,r+i 



where 6... is the Kronecker delta function.  Then WE. = 0, that is. E. . 

i = i, 2, . . ., n-r, are the associated eigenvectors for the zero 
eigenvalues of W. Thus, UE., i = 1, 2, . , ., n-r, are the eigenvectors 

of the zero eigenvalues of A; but these eigenvectors are just the column 
vectors represented by the last n-r columns of the matrix U. 

Since the rank of A is r, it follows that {UE.} is the total set 

of (distinct) eigenvectors associated with the zero eigenvalue.  If Q 

is singular, this implies that the characteristic equation has a zero 
of multiplicity greater than n-r; but no greater collection of eigen- 
vectors. The process would then be applied to Q to determine a matrix 

of smaller order that has the same nonzero eigenvalues as A. 

III.  EXISTENCE OF THE MATRIX U 

We will now show the existence of the matrix U.  Let A.. 
i 

i = 1, 2, . . ., n, denote the column vectors represented by the columns 
of the matrix A. The definition and notation for the inner product of 
any two vectors is given by 

n 
(A. ,A.) = Y] a. .a. . 

1 3 frl '^^ 
(8) 

where a denotes the complex conjugate of a. 

We will now apply the Gram-Schmidt orthogonalization process 
(see [3]) to the set of vectors {A.}.  If A is the zero vector, then 

interchange A and A .  Let LL be the elementary matrix that interchanges 

column one and column n, when post matrix multiplication is applied 
(this is the identity matrix with the first and nth columns interchanged), 
If, after this interchange, A is zero, then interchange A and A ., 

where U is the appropriate elementary matrix.  Continue until A is 

not the zero vector.  Define V = A and 

3 
Berberian, S. K.,  Introduction to Hilbert Space . Oxford University 
Press, New York, 1961. 



V2 = A2 - a21Vl   , (9) 

where a. 21  CV^) 

If V- is the zero vector, interchange A and A, , where A, 1 was 

the last vector interchanged; and U. the appropriate elementary matrix. 

Define U. . to be the elementary matrix that adds -ou.. times the second 

column to column k. This is given by appending to the identity matrix 
-ou, in row 2 and column k. Construct a new V-. If V„ is not the zero 

vector, then continue in the construction until a zero vector is 
generated, that is, define 

i-1 
V. = A. - Ect,,V,, (10) y>..v.. 

(A.,V.) 
where a...   =   .,, , J   ,  j = 1, . . ., i-1.  If V. is the zero vector, 

ij   (V.,V.) >     J > > -L 
j j 

interchange A. with the last vector not interchanged, say A , and assign m 
an appropriate elementary matrix U, .  Since V., j = 1, . . ., i-1, can 

be written in t 

following form: 

be written in terms of A,, . . ., A., then A. can be written in the 
1'     ' j'     i 

A. = g.^ + . . . + 6^.^.! • (ID 

Furthermore, let U, •, j = 1, • • ., i-1, be the elementary matrices 

which adds -B.. times column i to column m.  Continue this construction 

for V. until A. , was the last vector interchanged. 

Define U to be the product of the elementary matrices generated 
above, that is, 

U = U1U2 . . . Ut. (12) 

Then AU has the form: 

AU =     M . (13) 



For example, if V. is the zero vector, then 
i 

i-1 
A. = yv .A. . 

1   j-1 ^ 3 
(14) 

The product of the associated elementary matrices, say U, , . . •» U, . ,, 

would interchange column i with column m and substract 3-• times column 

j, j = 1, . . ., i-1, from column m. This would result in a zero column 
in column m. 

If U interchanges column i with column j, then premultipliction 
-1  ^ by U  would interchange row i with row j; and if U would add -3 
P -1 q 

times column i to column j, U  would add g times row j to row i. Thus, 

U-1 = U"1 . . . U^Uj1 (15) 

would result in row operations.  Therfore, U AU would have the same 
form as (13), that is, 

-1    /Qr 0l\ U AU = ( r  ) 
VB o / 

(16) 

The resulting collection of nonzero vectors. A.., . . ., A , under 

the Gram-Schmidt process, is the largest collection of independent 
vectors represented by the columns of A; therefore, r is the rank of A. 

IV.  CONSTRUCTION OF THE MATRIX U 

In this section we will develop a computationally feasible algorithm 
for the construction of the matrices U, Q and B.  It should be noted 

-1     r that the actual construction of U  will not be required to obtain the 
final result. 

To start the construction, set U = (u. .) = (6..)> the identity 

matrix. If there exists a vector V. equal to the zero vector, then 

from (14) 



i-1 

j-i 
A.   -   E/ijA.   • (18) 

Assume A    ,  was the last column interchanged.     If u..   =  1,  set u..   =0, 
m+1 ii ii 

u.  ■ 1, U . ■ 1 and u  =0.  If u.. = 0, set u   . = 0, u     = 1, 
im     mi        mm        ii        m+l,i     m+l,m 

u . = 1 and u  =0. This interchanges column i and column m. 
mi        mm 
Simultaneously, replace column i with column m in matrix A. Note that 
column m need not be replaced by column i, for this column is assumed 
to be the zero vector.  In order to accomplish this, add -3.., 

j = 1, . . ., i-1, to column m in the U matrix, where the ith row is 
determined from the one and only one nonzero element in the jth column 
of the U matrix. This nonzero element is unity. This construction is 
continued for i until i+1 was the last column interchanged. Thus, A 
has been reduced to the form of (13). 

In order to obtain Q and B, similar operations must be done on 

rows of the reduced matrix A. An accounting must be kept on the column 
operations, for the row operations must be done in the same order, that 
is, if A has been postmultiplied by U U . . . U , then A must be pre- 

-1      -1-1 
multiplied by U  . . . U- U, .  Note that the row operations only in- 

volve the first r columns, for the remaining n-r columns are assumed to 
be zero vectors. Therefore, if a column operation involved interchanging 
column £ with column m, then the row operation would interchange row £ 
with row m.  Similarly, if a column operation adds -3 times column £ to 
column m, then the row operation would add P times row m to row £. 

In order to construct 0.., the vectors, V., must be generated, 

from which B.. can be obtained recursively.  From (10) 
ij 

V. = A. 
i   i E'iA ■ (19) 

k=l 

where aik= TvV"'  Suppose 

k-1 
Vk = Ak - £ 3kj

Aj . k = 2, . . ., i-1, (20) 

where V = A .  Then from (19) and (20) 

10 



V. = A. 
i   i 

i-1      k-1 
ailAl " feaikCAk " ^kjV 

= A. 
i-1      i-1 k-1 

a.-iA, - ZJCX.TA. + 22    y]a.131.A. 
11 l      k=2 lk^  fe j-l lk kJ J 

A. 
l 

i-1      i-2 i-1 

j = l ^ 3  j-1 k-j+l 1K ^ ;, 

i-2 i-1 
= A. 

i 
a.   ,A. . - /! fa. . - j]     a., 3, .)A. . 1,1-1 i-l  ^  ij   k^j+1 ik kj

J j C21) 

Therefore, 

i-2 

6ij 
a. . 
ij 

, j = i-1 

, i-2 

C22) 

V.  SOME ILLUSTRATIVE EXAMPLES 

A. Example 1. 

Let 

Then 

1 2 0 0 

1 1 1 0 

2 3 1 0 

0 0 0 1 

which is not the zero vector. 

11 



where 

V    = A    -  a    V    = 
2 2 21  1 

"l "l " .5* 

1 3 
2 

1 = -.5 

3 2 (J 

0_ 0 0 

421 

(A2'V1) 2  +  1  +  6  +  0  ..  3_ 
1  +  1+4  +  0       2 

and $ 
21 

A3 " 031V1 

where 

a    V 
32  2 

V 1 .5 0 

1 i 
7 

1 
-   (-1) 

-.5 = 0 

1 2 0 0 

0 _0_ 0_ 0_ 

*31 

(A3'V 0  +  1  +  2  +  0 
2 

32 (v2>v2] 
0  +  0  +   (-.5)   +  0  . 
.25  +   .25  +  0  +  0 

and 

^1  = a31 

e 32 

a,.3 

32 

32"21 

1. 

Now V, is the zero vector 

in A. 

Therefore, replace column 3 with column 4 

We will assume column 4 is the zero column.  For in theory, -3 
31 

times column 1 and -3,9 times column 2 are added to column 4.  Hence, 

the reduced A matrix is 

AU 

I 2 0 0 

1 1 0 0 

2 3 0 0 

0 0 

12 

1 0 



If the same column operations are applied to U, which was initally set 
to the identity matrix, then 

U = 

Since V_ was the zero vector, A_ is renamed (interchange columns). A 

new V_ is generated, namely. 

1 0 0 -2 

0 1 0 1 

0 0 0 1 

0 0 1 0 

0 0 

V3 = 
0 

0 

1 

-  O'V    ■ '  0*V2  = 
0 

0 

1 

This "new' V is not the zero vector, Hence, column operations terminate, 

The row operations are the following: 

1. 
2. 

3.   e 

Interchange row 3 and row 4. 
8 .. times row 4 added to row 1, 

j times row 4 added to row 2. 

Thus, 

U"1AU 

5 

-1 

0 

2 

-2 

0 

3 

0 o" 
0 0 

1 0 

0 0 

The rank of A is 3.  The eigenvector associated with the zero eigenvalue 
of A is the fourth column of U.  Since 

5 8 0 

1 -2 0 

0 0 1 

is nonsingular, no further reduction need be applied. 

of Q are X, - 1, X„ ■ ^(3 + /IT) and X, = -7(3 - /IT) 
-r     1 

eigenvectors are the following: 

The eigenvalues 

The respective 

13 



■Q- -i-Ai -7+A7 

h- 0 

_1_ 
• v 1 

2 
2 

_     0     . 
'     h- 

1 
2 

2 

_     0     . 

To obtain the eigenvectors for the nonzero eigenvalues of A, (6) is 
applied, where 

B = [2 3 0] . 

Thus, 

'o -4 -4 

0 

0 
•     X2 

1 
' 4 

-1-A7 

-5-/17 '     X3 
1 

" 4 
-i+Ay 

-5+A7 

1_ 0 o   . 

xl = 

and the eigenvector for the zero eigenvalue is 

■2 

1 

1 

0 

the last column of U. 

B.  Example 2. 

Let 

3 -2 -I s' 
1 0 0 1 

0 1 0 0 

0 0 1 0 

It is easy to see that A., A and A are independent vectors (also V,, 

V and V_) and A = A .  Thus, the only column operation is to add -1 

times column 1 to column 4.  Therefore, 

Qr 

3 -2 0" 

1 0 0 

0 1 0. 

and 

14 



B = [0 0 1], 

where 

U = 

1 0 0 -1 
0 1 0 0 

0 0 1 0 

0 0 0 I 

If we apply the algorithm again to Q , without intermediate calculations, 

we have 

B' = [0 1] 

and U' is the 3x3 identity matrix, where the prime denotes the 
partitioning of Q . The two eigenvalues of Q' are X.= 2 and X 

and the associated eigenvectors are 

1, 

4 ■ 0 
and 

Z' 
^2 ■[11 

The respective eigenvectors of Q are . 

z1 = U' 

Zl 

h  B,Z1-. 
and 

z2 = u' 
Z2 

X2  B,Z2- 

Finally, the eigenvectors of the nonzero eigenvalues of A are 

15 



X   = u 

and 

1 

LX"I1BZIJ 

x2 = u 
LA2lBZ2- 

The eigenvector associated with the zero eigenvalue is 

1 

L1 

that is, the fourth column of U.  Since the rank of A is three, this is 
the only eigenvector associated with the zero eigenvalue. 

VI. CONCLUSION 

In order to apply this algorithm to a computer code, an a priori 
decision must be made for a " zero vector", due to machine round-off. 
In the author's program, which generates the matrices U, A and B, a 

vector, V, is the zero vector if 

(V,V) < e, 

where e is some preassigned value. 

An alternate application of the procedure could eliminate some 
computer code "bookkeeping".  Since matrix multiplication is associative, 
a column operation, U , could be immediately followed by the row 

operation U .  This would, of course, increase the arithmetical 

operations, since the knowledge of the number of zero columns could not 
be totally incorporated. 

16 
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