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BASIC OPTIMAL ESTIMATION AND CONTROL PROBLEMS
IN HILBERT SPACE'

1. INTRODUCTION

Most of the classical [Wi 1] and modern [Yo 1], Wiener-
Kolmogoroff linear least square optimization methodology is
based upon frequency domain and analytic function theory proce-

dures. As a consequence, most of its applications traditionally

focus on the realm of stationary, lumped parameters and infinite
time interval systems [Ne 1], [Ch 1]. As Bode and Shannon [Bo 1] {
observed, however, the computational steps involved in these
procedures have a direct physical interpretation in terms of
causality related operations and random signal representations | 1
whose meaningfulness does not depend on any one of these special
properties. Thus, it is perfectly natural to look for extensions

of the Wiener-Kolmogoroff methodology so as to make it applicable

to systems of a more general type. More specifically, the following
questions are of interest: can the Wiener-Kolmogoroff methodology
generalize to a form which is independent of analytic function theory?

can this potential generalization encompass multivariate cases and

related frequency domain results which utilize the algebraic Riccati
equation? can nonstationary systems, finite time interval, and in-
finite dimensional state space problems be solved using the genera-
lized solution? ]

# By De Santis, R.M., Saeks, R., and Tung, J.L. ;
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The objective of the present paper is to show that, on the
basis of recent developments about causality (De 1], [De 4],
[sa 1], [sa 2], state [Sa 6], [Sch 1], [St 1] and stochastic
signals representation [Kai 1], [Kai 2], [Sa 3], [Ba 2], the

answer to the above questions is an affirmative one. It is

indeed now possible to develop a generalized Wiener-Kolmogoroff
methodology which while encompassing classical optimal estimation
and control results is also applicable to nonstationary, finite
time interval, and distributed parameters systems. The advantages
of such a generalization are multiple: a better perspective of the
relations among a number of different problems and techniques; a
clarification of the role played by causality, state and related
system theoretic concepts; a wider range of application of the

available results.

We do this by combining the classical Wiener-Kolmogoroff
ideas and techniques [Wi] with the novel framework of abstract
Hilbert resolution spaces [Go 2]. We start by formulating and
solving two simple optimization problems, (statements Pl and P2,

Theorems 1 and 2). Subsequently we show that by appropriately

specializing the description of the operators appearing in the
statements and related solution formulas of these problems, one can
rediscover and generalize the solutions of most of the optimal esti-
mation and control problem of interest, namely: the Wiener smoothing
and prediction filter, {Theorem 3), the Youla-Jabr-Bongiorno optimal

servo compensator, (Theorem 4), the Porter basic optimization




formula, (Theorem 5), the Kalman optimal regulator and the principle
of optimality, (Theorem 6), the Kalman-Bucy filter, (Theorem 7), and

the separation principle, (Theorem 8).

The development inherits ruch from the previous work on the
subject. The questions under consideration were first formulated
and studied by Porter [Po 1]. The mathematical setting is based on
the Nonself-adjoint Volerra operators techniques developed by
Gohberg and Krein [Go 1], [Go 2] and on the more recent Hilbert space
valued random processes framework proposed by Balakrishnan [Ba 1].

In regard to the results, the solution of our basic optimization
problem uses ideas and techniques from Porter [Po 1], Bode and Shamnnon
[Bo 1], Kailath [Kai 1], Balakrishnan [Ba 1], and Youla [Yo 1]. A
significant role in the proofs of the state estimation and control
results has been played by the abstract state space realization work

by Steinberger, Schumitzky and Silverman [St 1].

D s it e b e i




2. MATHEMATICAL BACKGROUND

The reader will be assumed to be familiar with those standard
notions which are usually associated with the concepts of Banach and
Hilbert space [Po 2, chp 1], [Ba 2, chp 1]. In addition to these we
will also use the concepts of Hilbert resolution space which are dis-
cussed in [Go 1, chp 1], [Sa 2], plus the concepts of Hilbert space
valued random variables [Ba 2, chp 6], [Sa 3]. These latter concepts

will be briefly reviewed in the following paragraphs.

A bounded linear operator P on a Hilbert space H is called an

orthoprojector if for all pairs x, yeH one has that <Px, y> = <x, Py>

and P(Px) = Px. Given a linearly ordered set v with minimum and
maximum elements t, and t_ , we will say that a family of orthoprojec-

tors, R = {Pt: tev}, is a resolution of the identity if it enjoys the

following two properties:

to tq, ¢
i) P " H=0, P H=H and PkHQ P"H whenever

k >

ii) if (P*} is a sequence of orthoprojectors in R and there
exists an orthoprojector P such that {P'x} + Px for each

xeH, then PeR.

A Hilbert space H equipped with a resolution of the identity
R = {P%: tev} is called a Hilbert resolution space and is denoted by
the symbol [H, Pt]. Given an orthoprojector PteR, the orthoprojector

1-P® is often denoted by the symbol P




We will use the triple (H, I, ®) to denote a probability space

of Hilbert space valued random processes with Hilbert space, H, family
of Borel sets, I, and probability measure,®. Recall that (Ba 2, chp 6],
with each random process, pe(H, I, #), with a finite first and second
moment, one finds associated an element, mpeH, (the mean value of p)

and an operator, Qp: H -+ H, (the covariance of p), such that:

E(x, p) = (x, mp)s ¥xeH

and E(x, p'mp) (y, D-mp) = (x, Qp): ¥x, yeH

where the symbol "E £(p)" denotes the expected value of the scalar
valued random variable f(p) with respect to the probability space
underlying p. Similarly, with each pair p, me (H, Z,®) one finds

associated an operator, Qpﬂ_, (the cross covariance) with the property

that:
E(x, p-mp) (y, m-m_) = (x, Qp"}'). Vx, yeH.

In the sequel we will not explicitely use the I family of Borel sets
or the specific nature of the probability measure . Thus, for more
background about these concepts we simply refer the reader to

[Ba 2, chp 2].

The mean values and the covariance and cross covariance operators,
however, will be used extensively. While the theory associated with
these concepts is again well documented in [Ba 2, chp 6], for our pur-

poses it will be helpful to list a few of their most important properties

namely:

(i m(pﬂ) -mp + m




(ii) Impl < E {|o|};

(iii) an - me for any bounded linear operator L;

(iv) Q(Lp) (Tr) G LQp - T. for bounded linear operators L and T;
| v) Qp.,.,, 'Qp = Qp" * Q,,p + Q.

P (vi) Q, = Q. ;

(vii) E {Iplz} is finite if and only if Q_ is nuclear in which

2
case E {|p] } = tr(Q,);

2
(viii) If E {|p| } is finite, then prr is Hilbert-Schmidt for

all random processes m with a finite second moment.
Note that given an operator, T: H -~ H, the trace of T is defined by:

tr(T) -i (Tei, ei)

where (ei} is any orthonormal basis in H. A useful property of the

trace is that for Tl‘ T,: H+ H one has
tr(T,T,) = tr(T,T,).

The random processes p and me (H, I, @) will be said to be sta-
tistically independent if Qp" = 0. In the course of our development
we will use the fact that linear transformations of independent random
processes are independent, plus the fact that if p and n are indepen-

dent then Qp P Qp * Q- Unless otherwise specified we will only

consider zero mean valued random processes.

e
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3. CAUSALITY AND STATE CONCEPTS

The concepts of causality and state will play a fundamental
role in the development of the following sections. While a full
treatment of this subject can be found in a number of references,
(among others [De 1], [Sa 2], [Ssa 6], [Sch 1], and [St 1]), it is

helpful to review some of the basic definitions and results.

3.1 Basic Definitions and Properties

An operator T: [H, P'] » [H, P%] is said to be causal if
P'x = P'y implies P*Tx = P*Ty. T is strictly causal if it is causal
and for any given € > 0 one can find a partition {to ot ™ El’ oty

En = t_} ev such that

sup [A.TA,| < €
roles B

where Ai =p 'p T is called anticausal (strictly anticausal) if

£,

i-1
T. is causal (strictly causal). T is memoryless if it is simultaneously
causal and anticausal. The validity of the following results is easily

verifiable.

Lemma 1: The following statements are equivalent: T is causal;

P'x = 0 implies P°Tx = 0, TP, = P TP,; P'T = P*TP%; T is anticausal.

Lemma 2: Suppose that 'l‘l is causal and 1‘2 is strictly causal, Then

1'11'2 and ‘l'.‘,‘l‘1 are strictly causal.

Our definition of strict causality even though most convenient from
a technical point of view is in general more restrictive than what it will

be really needed. Indeed, in most of our results the requirement that

sup |A11'A1| < ¢ could be replaced by sup IAiTAixI < ¢, where the partition
i i




is chosen in correspondence with a given (x, €) pair. A notable
exception to this is given by the following lemma whose validity

requires the restrictive form of our definition.

Lemma 3: Suppose that T is a strictly causal operator. Then I + T
is invertable with (I + 'l')'1 = I + K, where K is strictly causal and

such that K= ¢ (-1)" T .
n

Given a strictly causal, (strictly anticausal), T: [H, Pt] + [H, Pt].
a state realization, (costate realization), of T is given by a triplet

( \!T(t), H.I.(t), E.l.(t) ) such that for each tev one has that
H.l.(t) is a Hilbert space:
vo(t): PUHRHL(E) , (P HRHL(Y)),
ET(t)= HT(t)"PtH ’ (H-r(t)"l’tﬂ).

and, for each ueH, £(t) ¥o(t)u = PtTPt'u, (= PtTPtu). The term state

realization is suggested by the fact that for every tev one has that
P.Tu = £.(t) x(t) + P,TPu

where x(t) = \P.r(t)u. Thus, the element x(t), the state of T at t,

possesses all the information which is necessary to determine the

influence of the past values of the input over the future values of
the output. In [Sch 1] it is shown that every strictly causal operator

admits a state realization.

Given a strictly causal, (strictly anticausal), T: [H, Pt] + [H, Pt].

with state realization, (costate realization), (YT(t), H.r(t), ET(t) ), the

pair 0‘1” z.r) is called a state trajectory realization, (costate trajectory
realization), if T = £ k.r and




ke (H, pt] Xps ky strictly causal, (strictly anticausal);
8r* XT + [H. Pt]. 8r memoryless, and

X [Lz [v, HT]’ Pt], where Hy. = Span H(t).

tev

Here the term state trajectory is justified by the fact that the element
X = kpu, the state trajectory associated with u, can be viewed as a
mapping, x(*): v =+ H.l.(t). where x(t) = !T(t)u represents the state of T
at t. The trajectory space )Lr is built from v and H‘l‘ by following the
procedure outlined in [Ba 2, section 3.5]; in doing this the linearly
ordered set v is tacitly assumed to be a measurable subset of the real
line. For an exhaustive discussion about this concept the reader is
addressed to [St 1]. Among other things, this reference proves that

every strictly causal T has a state trajectory realization.

In working with the above causality and state concepts it will be
useful to make use of the alphabetic code A = {A, C, M, A, C, Co, St}

which is defined as follows

A = anticausal € = strictly causal
C = causal Co = costate
M = memoryless St = state

K = strictly anticausal

A first application of this code is given by the following
principle of causal duality.
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Lemma 4: Let a statement or equality by phrased using relations
involving concepts associated with the alphabet A = {A, C, M, A, C,
St, Co} and the family of projection operators {P*} and {Pt}' Then
the statement or equality remains valid if the following interchange

in symbols occurs:

3.2 Causality Additive and Multiplicative Decompositions

An operator T is said to admit a causality additive decomposition
[De 1], [Sa 2] if T can be viewed as given by the sum of a causal plus
an anticausal component; T is said to admit a canonical causality
decomposition if it can be represented in terms of the sum of a strictly
causal, a strictly anticausal and a memoryless component. The following
lemma establishes the uniqueness of such a decomposition plus a useful
property relating the causality decomposition of T with those of FT and

TF, where F is a memoryless system.

Lemma S: Suppose that the operator T has a canonical causality (addi-

tive) decomposition, T =T; *+ Tz + Ty. Then the elements T , ac {A, C, M} are

uniquely defined. Moreover, if F is memoryless and T = TR + TE + TM’ then

T, = TF and ’rz = FT are such that

1

Ty ™ tye * Toa*T

T g T hgp tlige A%, 2

where T, =TF and T, = FT, ae (R, G, M}.
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In view of lemma 5 , in general it makes sense to talk about
the causal (strictly causal, anticausal, ...) component of an
operator T: [H, Pt] + [H, Pt] . For example, given T =Tz + Tz * Ty,
the causal component of T, usually denoted by 'I‘c or ['I‘] C is given by
'l‘(-: * TM' The causal component of an operator T, (as well as the
other strictly causal, memoryless, ... etc., components) does not
always exist. General necessary and sufficient existence conditions
plus a number of interesting causality decomposition related properties
can be found in [De 1], [Sa 2] and [De 3]. One of these properties
will be of a particular interest later on in the development. To

characterize it, consider a partition Q = {Eo =t & e B t } ey,

o’

and associate with it the operator valued function

2 i
() =z 4,TP
i=1

where 4, = pei _ Pu'l; pt =p5, 1 ['r]c is well defined then given
any € > 0 one can find a partition ne such that for every 5 ] ne one

has that

| [T]g - e < e
where the norm can be intended either in the uniform or in the strong
operator topology. This property can be expressed using the following

symbols
(z a,T P4} » (0 sape® » [1]..

In the particular case of Hilbert-Schmidt operators a canonical
causality decomposition is always well defined. Moreover the components
of this decomposition are mutually orthogonal. All this is established

by the following lemma.

e A ot S SO S AR
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i Lemma 6: Causality and Hilbert-Schmidt operators

i) the class of causal, (anticausal, memoryless), Hilbert-Schmidt,

operators is a Hilbert space;

ii) in the Hilbert-Schmidt inner product topology one has

< T,» Tg > = 0 whenever a # B¢ {A, C, M};

8
iii) if T is a Hilbert-Schmidt operator then

T=T, +Ta + T,

where the T, ae {A, C, M}, are well defined Hilbert-Schmidt

operators such that

min -
tie= T fl = = L~ T 1
a
where %Q is any other a operator and the symbol || || denotes

the Hilbert-Schmidt norm.

Equal in importance to the concept of a causality additive decom-
position is that of causality multiplicative decomposition also
referred to as causal factorization. An operator Q: [H, Pt] > [H, Pt]
admits a causal factorization if Q can be represented in terms of the
cascade composition of a causal (anticausal) operator followed by an
anticausal (causal) component. In the sequel we will mainly be con-
cerned with operators Q which are positive Hermitian (<Qx, x> >0, Q = Q*);
and with causal factorizations of the type considered in the following

lemma [Sa 3],

ittt et b it
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If Q: [H, P'] + [H, P%] is positive Hermitian then

Lemma 7:
i) there exists a causal and causally left invertable one-to-one
a: [H, P*] + [H, P%] such that
*
Q==0a
ii) there exists a causal and causally right invertable one-to-one
A: [H, P*] » [H, P%] such that

N
Q™=AK

3.3 Causal Decomposition and State Realization

The following two lemmas generalize two well known linear time
invariant results ([Bar 1], [Ma 1]). They unveil some key relations
concerning a special multiplicative causality decomposition, the
causal part of a related operator and the concept of state trajectory.
It is precisely by virtue of these relations that we will be able to
elucidate the connections between a plant causality and state structure
on the one hand, and thé structure of the optimal filter and/or
compensator on the other. The proof of the first part of these lemmas
can be found in [St 1]. The second part follows by involving the prin-
ciple of causal duality. In stating these lemmas, the symbols F and B
will denote two memoryless operators, while G will represent a strictly
causal system. We will suppose that (GB, F) is a state trajectory
realization of FGB and (G*F*, B*) is a costate trajectory realization

. A *
of BGF .
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Lemma 8:

i) Suppose that there exists a strictly causal Vi such that
* *
1+B8GF FGB = (I + V)) (I +V,)
then (t)
[aa+vH™ 8"6'F'FeB) . = v
1 ¢

ii) If there exists a strictly causal V2 such that
_2

* % %
I + FGBB G F -(I+V2) (I+V2)

then

FGBB'G F (I + V) !]. =v
[FGBB G F (I L Tl

Lemma 9:

i) Suppose that there exists a strictly causal V1 such that

* * * *
I*BGFFGB-(I+V1) (I+V1)
then there exists a well defined memoryless MR such that

V1 > MRGB.

ii) If there exists a strictly causal V2 such that

*

2)

then there exists a well defined memoryless "e such that

* * n
I + FGBB G F -(I‘VZ) (I +v
e e e
V2 MQGF.

The next lemma provides the key to the stochastic control prin-

ciple of separation (section 6).

(+) Recall that the symbol ['r]c denotes the causal component of T.
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Lemma 10: Suppose that there exists strictly causal V1 and V2 such
that
* * * *
I+BGFFGB-(I+V1) (I+V1)

. -
I +FGBBF = (I *‘Vz) (1 "'Vz)

Then one has that

*

[a+v]

"1 86" F reBB G F" (1 + VD)1 =M oM
) (F+ ¥ "le =AM
where MR and Me are memoryless and such that

Vl - MRGB and V2 = FGMe.
* o

Proof: From the strict anticausality of G*F* (0 Vz) . one has

i-l * % % * * * *-1
(@+ V)" BGFFGBBGF (I+V,) e ™
* ] * k% * * * L |
[ [a+v BGFFGB].BGF (I+V,) ],

Moreover, from lemma 8i)

[cx +v)! 8°6"F'FeB
(I+V) " BG ]c v

and, from lemma 8ii)

*® * * * .,1 e
[FBB G F (I + V) Tl =V,
Using these equalities and applying lemma 9, it follows that

[cx + v 8% FeB], = M cB

FGBB'G F (I + V) 1], =
[ (I +Vy) "], = FaM,.
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This leads to

[ la+vp!

MF! [FeBBG R (1 + v;)'l]c - MoGM,_.

where F!

'.*FG] th* +*-1 =
BGFFGB].BGF (I+V,) "],

has been used to denote the pseudo inverse of F.

e,
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4. TWO FUNDAMENTAL PROBLEMS

In the course of the development it will be shown that many of
the quadratic optimal control problems considered in the technical
literature can be viewed as special cases of a ''basic stochastic
optimal control problem”; a key step in the solution of this problem
will in turn be provided by the solution of what we will call a
"best causal approximant problem'". With this in mind we find it
convenient to proceed as follows. We start by stating and solving
the best causal approximant problem. Subsequently we discuss the
basic stochastic optimal control problem. In the forth coming sections
we will show how these preliminary results allow us to solve a variety

of other problems of interest.

4.1 The Best Causal Approximant Problem

The best causal approximant problem can be stated as follows

(see Figure 1).

Statement P1l: The best causal approximant problem.
Given a not necessarily causal I: [H, P'] + [H, P'], and a random
process ze (H, I, P), with covariance operator Qz’ determine a causal

oo such that for any other causal ¢ one has that
J(0,) < I

where

2 *
J@) =E{[[(® - mz|| }=1tr {(0 - MQ, (¢ -1 L

The following theorem gives us a sufficient condition for the

solution of the best causal approximant problem.

17
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Theorem 1: A sufficient condition for a causal Qo to be a solution

of the best causal approximant problem is that
o = [nq] -
where Q is causal and such that
*
Q, = m .

Proof: Let us first consider the case where Q =1, that is the case
where z is a white noise random process. For any partition

{Eo =t By e By T t_} ev one has

2
J(@®) =E {|(n - &)z] }

N i 2

=IE{]a (P - o)z + AiHPizl }
i=]

where pl = Pgi and Ai - PlPi_

1 From here, taking into account the

statistical independence of P'z and Piz, it follows

N i . o N 2
J(®) = E {|a;, (WP* - ®)z| } + £ E {|a,P.z] }

i=1 1~
PPN
Recalling that by a partition refining process we have that I AinP
1=

converges to [l‘l]c, it follows
2 2
30 =k t|([n]; - oz + B (@ - [n]z]")

Since the second term of this sum is independent from ¢, it follows

that the problem of minimizing J(®) is equivalent to that of mini-

mizing the first term. This is obviously done by choosing Qo - [II]C.

*
Let us consider the more general case where Q, = M 7 I, that is

the case where z is a colored random process. This case can be

reduced to the special white noise case by regarding z as given by

i i i e i i ahmasdid
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the output of the causal filter Q driven at the input by a white
noise random process w. Using the notations N' == IIQ and ¢' = ¢Q

this leads to

2
J@) = {|(m - ®)aw]| }

=-E {{@ - o')ulz}

From here one can repeat the white noise argument to conclude that

J(#) is indeed minimized by ¢' = ¢0 = [nq) c

Note that Theorem 1 does not imply that J(oo) <o, If J(9)

k is not finite, however, no other ¢ will make J(®) finite. These
difficulties may be alleviated by assuming that certain operators
are Hilbert-Schmidt. Using these assumptions Theorem 1 can also be
proved in a more direct and mathematical more transparent fashion.
As this alternative fashion puts in a better perspective the role
played by Hilbert-Schmidt operators and their spccial properties it

is in order to introduce the following alternative proof.

An alternative proof of Theorem 1: Assume that ¢ and Il are Hilbert-

Schmidt and observe that

J(®) =E {|( - n)zlz} =tr {(o - MQ, (¢ - m"}

From Qz o sm', with Q causal, and denoting by {ei}, a complete

orthonormal set in H, it follows that

J(®) =tr {(® - Mmaa’ (¢ - M)}

= {2 < (¢ - MAe,, (¢ - Mae, >}
i

2
=] - mal|

where the symbol || || denotes the Hilbert-Schmidt norm. Observing
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now that 22 is causal, and recalling that the causal and strictly

anticausal parts of a Hilbert-Schmidt operator are well defined and

mutually orthogonal, (lemma 6), it follows that
2 2
J(@) = [[ea - [ma] || + || [ma]zll.
2

From here, observing that || [nn]xll is independent of ¢, one can
conclude that a sufficient condition for 00 to be the desired solution
is

¢.@ = [ng].

The following corollary considers an important special case of

the best causal approximant problem.
Corollary 1: Suppose that for a given P°eR one has that
Q =PG (I +pP°QP% G'P
z o Qm 0
with G causal. Then a sufficient condition for 00 to be a solution
of the best causal approximant problem is
® PG = [npoc]c.
Proof: Observe that in this particular case one has
J(9) -Jl(ol) + Jz(oz)
with

2
Jye) = [l - mepgGl|

300, = tr {(0, - M) pocp°pr°c'p° (0, - M}
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The proof can then be completed by verifying that a sufficient con-
dition for these two latter functionals to be simultaneously minimi-

zed is

0,16 =8 6= [m>oc]c p

This is done by observing that

2 2 2
30 = |lp, (2,p G - [P GlI]" + [[P® [np Gl II" + || [np ]zl

and |
J,(0,) =tr {P_ (0P G - [P G].) P°Q P%"P (o, - P.M)" |
2(%; o (#2P oldg) FQFGP, (8 -5 |
o 0. 0% % 0
+ tr {P°NP GP'Q P°G P NP},
The last equality follows from .

o o
P,IPGP" =P [P G] P
and the fact that
tr (P°mp GP°Q P%G'P_ (8 - P.M)P } =0
(o) w o o o

tr (P_ (¢, - P.M) P_GP°Q P°G'P N P°} = 0
o 2 o (o] Qﬁ) (o] s

4.2 The Basic Stochastic Optimization Problem

The following problem is inspired from the ''basic" deterministic
problem studied by Porter in [Po 1]. In the spirit of this reference
we will retain the "basic" qualifier because as we shall see in the
later sections, this problem includes as a special case many other
fundamental problems such as the Wiener filter, the Kalman optimal

regulator, the optimal Kalman-Bucy state estimation problem.
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Statement P2: The basic stochastic optimization problem (Figure 2),
o (1 2] > [m, P,

i=1, 2, 3, 4; and two random processes a, Be (H, I, #); determine

Given four not necessarily causal systems L

a causal controller, Do’ such that for any other causal D one has
J(,) < J(D)

where
2 2
JO) =E {{e] + |r|}
and

& - L3D (Lla + B - Lzu

X - L4D (Llc + 8).

The next theorem, the key result of the overall development, says
that under some appropriate hypotheses the basic optimization problem
is equivalent to an associated best causal approximant problem; its

solution can then be obtained by using Theorem 1.

Theorem 2: Suppose that there exists causal and causally invertable

Q and A such that
* & & . *
Q=LpQuly * Qg * 1yQp * Uty =W
* ¥ * *
L3L3 L4L4 AA.

Then the basic optimization problem is equivalent to a best causal

approximant problem with

el

- ‘.-1 * * . -1
T=Aa " Ly (LQL; *LQq) Q.
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A solution of the basic optimization problem is given by

W e . ol oK
D =47 [A 7Ly (LQuky * LyQue)® "]

Proof: Observe that

2 2
J(@) =E {|(LDL, - L,)a + LyDB| +E {|L,0L,a + L,DB| }

2)

=tr X, +tr X

1 2
where
’t+ * * * * *
Xl L DL Q LID L + L3DQB L3 L DLIQuBD L3 SDQBaLID L
* * *
+ L4DL1QGLID L4 + L4DQBD L + L DLIQuBD L +L DQsaL D L
and

* *
=.L DLIQQL QuL D L QuBD L3 LSDQsaLz + L2QuL2 :
Observe also that
*
tr X, =tr {(LSL +L L4)DQD }
where
* " i *
LiQLy * Qg * LyQp * Qgly -
Taking into account that
* * * *
le.3 L4L4 AA
it follows that J(D) can be rewritten as
* *
J(D) = tr {ADQD A + X,}.

From here, using some straightforward algebraic manipulations plus a com-

pletion Oof the square argument similar to that used in [Bo 1] one obtains

J(0) =3, (@) + tr {1QN, *+ L,Q,L,}
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where

= * 1 * * + - 1
o =4 Ly (LpQly * L3Qyp)Q
and

3 (0) = tr {(AD - T )Q (AD - no)*}.

Observing now that the term tr {-nano + LZQQL;} is independent of D,

it follows that the problem of minimizing J(D) is equivalent to that

of minimizing JO(D). The noncausal solution of this problem is

obviously given by D = T

I,. The causal solution corresponds to the !
solution of a best causal approximant problem with ¢ = AD, Qz = Q, and

o= IIO. This solution can then be obtained by applying Theorem 1.

The following corollary is interesting in that it provides a useful |
relation between the best causal approximant problem and a special ver-
sion of the basic optimization problem. This result will be applied

é in the study of the Kalman optimal regulator problem (Theorem 5).

Corollary 2: If a = B, L1 = 0 and there exists a causal and causally

invertable A such that

*

Ly

it *
L3 L4L4 AA

then a sufficient condition for D  to be a solution of the basic opti- ;

mization problem is that
ADO .

where ¢ . is a solution of the best causal approximant problem with

1

*.
Q, =Q and T =4 "Lyl




Remark 1: Using lemma 7 one can see that the invertibility require-
ments on L;L3 * L:L4, Q and A are not essential to the validity of

F Theorem 2, nor to that of Corollary 2. They are merely used to sim-

plify notations. If these requirements are not satisfied one would
have to replace AY with AR (right inverse) and A"~} with A""L (left

inverse).




S. OPTIMAL INPUT-OQUTPUT ESTIMATION AND CONTROL

In this section we will exploit Theorems 1 and 2 to obtain the
solution of three fundamental optimal estimation and control problems
of the input-output type. For a physical motivation of these problems
and related classical background we address the reader to [Bo 1],

[Yo 1] and [Po 3].

5.1 The Wiener Filter Problem

The following statement provides a generalized version of the

Wiener filter problem.

Statement 3: The Wiener filter problem (Figure 3).
Given two not necessarily causal systems L;, L,: [H, P%], and two
random processes a, Be (H, I, ®), determine a causal filter Do such

that, for any other causal D one has J(Do) < J(D), where
2
J0) =E {|Lya - D (Lya + B)| }.
The following theorem gives a sufficient condition for the solution
of the generalized Wiener filter problenm.
Theorem 3: Suppose that the operator
* > *
Q= LyQ.Ls * Qg * LyQyp * Qg,ly
is invertable. Then the noncausal solution of the Wiener filter problem

is given by

bl . -1
My =L, QL * QQ .

26




A causal solution is given by
o * i_l _1
Dy = [Ly QL) * Q0 "0
where Q is causal, causally invertable and such that Q -nn'.

The proof of Theorem 3 follows directly from Theorem 2 by
recognizing that the Wiener filter problem can be viewed as a
specialized version of the basic optimization problem with

L3 = 1 and L4 = 0.

Note that just as in the classical case, ([Bo 1], p. 424), the
solution procedure of the generalized Wiener filter is implemented

in terms of the following physical steps:

i) calculate a prewhitening filter which reduces the
colored noise problem to a white noise problem; let

this be Q;

ii) calculate the optimal noncausal filter associated
with the white noise problem; this is
- " B ?
n (LZQQL1 ch)n -
iii) calculate the best causal approximant of II; let it be
(n] s
iv) construct the optimal causal filter in terms of the

cascade composition of the inverse of the prewhitening
filter ', followed by [N] ; that is D, = [1] ™.

Thus our abstract Hilbert space generalization of the Wiener filter
enjoys the same engineering interpretation which characterizes the

classical transfer function development.
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An additional point of interest in regard to Theorem 3 is that
by setting L1 = 0 and Lz- 1, it also gives an immediate solution to
the following optimal estimation problem (Figure 4): Given o and B,
determine a causal Do so as to minimize E {|DB - alz}. This latter
problem was formulated and studied in [Sa 3]. The following corollary

rectifies the incorrect solution given in that reference.

Corollary 2: If QB is invertable then a sufficient condition for D°

to be a solution of the optimal estimation problem is
i *~1q -1
Do [Qasﬁ ]Cn 2

*
where Q is causal, causally invertable and such that QB'- QQ .

5.2 The Optimal Servo Problem

We will now consider an extended version of the optimal servo
problem which has been studied among others by Newton, Gould and

Kaiser [Ne 1], Chang [Ch 1], and Youla [Yo 1]. Our formulation and

result are formally identical to those which can be found in this
latter reference (compare our Theorem 4 with Corollary 1, in [Yo 1,

part II]). A formal statement of the problem is as follows.

Statement P4: The optimal servo problem (Figure 5).

Given the statistically independent random processes, d, 2, m, and
ue (H, Z,®), and the causal systems F, Fo' Ls Lo’ T, To' and Ts’ all
mapping [H, P®] + [H, P’]. Determine a causal feedback controller N,

such that
i) No is causal;

ii) (I + FTNO) admits a causal bounded inverse;
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iii) For any other causal controller N satisfying i) and ii)

one has

JINJ < J(N)

where

2 2 2
JIN) =E{Jlu-y|l +x |yl

y =TN (1+FN)" [u+L2-Fm+ (L-FT)d]+Tgd
r =TN@+FMN fu+ig-Fa+ (L-Fr)d.
The following lemma establishes the equivalence between the optimal
servo problem and the basic optimization.

Lemma 11: Suppose that Do is a solution of the basic optimization pro-

blem with

B-Loz-Fom*u*'(L-F‘ro)d
a—u-Tod

L, =0

1

L, ™1

2
I‘S-T

L "k'l's

4

Then a sufficient condition for a causal No to be a solution of the
Optimal Servo Problem is that (I + P'I‘No) admits a causal bounded
inverse and

(I - mo)No = Do.

S
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Proof: From Figure 5 one has

=1 X
y=TN (I+FN)" [u+Le-Fm+ (L-FT)d] + T d
o «3 5 i
r=TN (I +FIN) [u+ Lot - Fom + (L F'l‘o)d]

Using the notation

B=u + Loz - Fom + (L - FTo)d
a™=u - Tod ?
it follows
¢~u-y=g-TN (I= FTNO)'IB
r=TN (1+FN) s
Letting now D_ = (I + N_FT)'N_ we have {
Mgl B L A0 1='rno)'1
hence

-1 f,
N, (I + FTN.) D,

From here we obtain
2 2 2 2 2
J(N) =E {|e|] +k |r| }=E{|a-T| + |kt D8] } =J(D,)
Suppose now that D, is a solution of the basic optimization problem and

that No is not a solution of the optimal servo problem. Using the

above equations this would imply that there exists an N such that

IN) <IN =I0,)-

RS s s: s st o s 2 e ———
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Setting D=N (1 + FTI.&)'1 we would then have

I0) =IM) < IO,

which is a contradiction to the hypothesis that Do is a solution of

the basic optimization problem.

The next lemma gives a sufficient condition for the solution of
the basic optimization problem which lemma 11 associates with the

optimal servo problem. Its proof follows directly from Theorem 2.

Lemma 12: Suppose that there exists causal and causally invertable

A and Q such that
* 2 » *
TT+k TsTs AA
** * * *
LonLo FonFo + Qu + (L - FTO)Qd (L~ FTo) a0

Then the basic optimization problem associated with the optimal servo
problem has the following solution

RS L2 T SRR S PO |
B.=4a" [A T Qg 18

where
Qg = * Ty (L - FT).

The next theorem illustrates the conditions under which the vali-
dity of the servo problem formula proposed by Youla, Jabr and Bongiorno
can be extended from the rational transfer function to the more general
Hilbert space setting under consideration. The proof is an immediate

consequence of lemmas 11 et 12.
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Theorem 4: Let the hypothesis of lemma 12 be satisfied and suppose

that (I - TFDO)'I admits a causal inverse.
Then a solution of the optimal servo problem is given by

L& -1
N° D° (I - FTDO)

provided that (I + FTNO) admits a causal bounded inverse .

Remark 2: Observe that using the notation Wo'- Don the solution

proposed by the above theorem can be rewritten as follows

s -1
1 N, =W, (8 - FTW )",

This solution is formally identical to that which can be found in
[Yo 2]. In view of this parallelism it is in order to clarify that
our approach is at one time more general and more particularized than f
Youla's. More general in that it treats infinite dimensional and time
variant systems; more particularized in that it does not allow the

open loop chain to be unstable.

5.3 The Deterministic Basic Optimization Problem

The reasoning underlining the proof of our solution of the basic
optimization problem can also be applied to cases where the invertibi-

lity hypothesis of that result are not satisfied. We will show this

by formulating and solving a slightly more generalized version of the
basic (deterministic) optimization problem studied by Porter [Po 3].

The formulation goes as follows.
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Statement PS: Porter basic deterministic optimization problem
(Figure 6).

Given three causal systems G,: (H, Pt] + [H, Pt], i=1, 2, 3, and
an element zeH such that Poz = z; for some po = (I - Po)eR; determine

a causal controller, Do’ such that for any other causal D one has
J (Do) < J(D)

where
2 2
JO) = |G, - 6;D)z| + lcsnzl a

The following theorem rediscovers Porter's main result, (Theorem 2,

[Po 3]) using the basic optimization problem approach.

Theorem S5: Suppose that there exists a causal and causally invertable

A such that
* o * *
G]'G1 GSGS AA

Then a sufficient condition for Do to be a solution of the deterministic

basic optimization problem is
= _1 t_l *
Doz = AP, [A776,6,2].

Proof: Observe that Porter's deterministic basic optimization problem
corresponds to the special case of our (stochastic) basic optimization
problem characterized by I.1 = 0 and ¢ = 8 = z. This is precisely the
case considered in Corollary 2. Applying this corollary and taking

L

into account the following correspondence of notations Ly, =G =G

2 3
and l.4 -GS’ it follows that if causal Oo is a solution of the best

1’

causal approximant problem with II = A.'IG;GZ, then a solution of the

deterministic basic optimization problem is given by D, = A'leo.
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Observe also that, given Qz -nn*, a sufficient condition for a causal
oo to be a solution of the best causal approximant problem in that

L oon = IQ; (this follows immediately from the second equation in the
proof of Theorem 1). Noting that in our case Qz = (+, 2)z, and that

Q --Li-;-'y- z is such that Qz — m*, it follows that a sufficient con-
dition for a causal oo to be a solution of the best causal approximant

problem is

*_1 *
(e, z)fbaz (s, 2)A Glczz.

In addition to this from the causality of 00 and the hypothesis

that z = Poz one has, (lemma 1),
@oPoz - Poéoz

hence
-p A" 160G
¢°z OA G1 2z

and therefore

-1, -1 *.1 *
A0z = AP [ATU6,6,2].

This last equation implies that a sufficient condition for a causal

D° to be a solution of the deterministic optimization problem is that

-1 *_.] *
Doz = AP, [A 776,G,z].
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6. OPTIMAL STATE ESTIMATION AND CONTROL

In the same spirit of the previous section we will proceed to
apply Theorems 1 and 2 to three fundamental problems of the optimal
state estimation and/or control type. In contrast with the usual
approach, where one looks directly for an optimal state feedback
strategy, and in line with [St 1] we find it more appropriate to
formulate these problems as open loop problems. It will be an inte-
resting consequence of our results that the open loop solution can

be implemented in terms of a memoryless state feedback configuration.

The physical motivation of these problems and related applica-
tions are once again well documented in the classical references

[ka 1], [Kka 2], and [An 1].

6.1 The Optimal Regulator Problem

We will start with a generalized version of the optimal regulator
problem originally proposed and solved by Kalman [Ka 1]. This abstract
formulation and its subsequent solution can be viewed as a natural
outgrowth of similar results by Steinberger, Schumitzky and Silverman
[st 1]; as such, the discussion of these authors about motivations and
advantages of the Hilbert resolution space approach to the problem

apply '"verbatim' to the present context.

Statement P6: The optimal regulator problem (Figure 7).

Given two statistically independent random processes w, we(Hl, 21. F&)

with Qm'- I, and three causal systems
t t
B: [“1' Pil + [H,, P;]
t t
G: [Hz, Pyl + [Hz. Pz]

t t
F: [Hy, P,] + [Hs, Pyl i
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with B and F memoryless and G strictly causal such that (GB, F) is
a state trajectory realization of FGB. Determine a causal optimal
open loop regulator D : [Hs, P§] - [Hl’ P;] such that for any

other causal D one has
J (Do) < J(D)

where
2 2
J@) =E {|y| + ful?

with
y =FGB (v + P°r - u)

u = DP _FGB (w + P°r)
Our solution of the optimal regulator problem is formalized by
the following theorem.

Theorem 6: Principle of optimality and the Kalman regulator.

Suppose that there exists a strictly causal V1 such that
* * & *
I +BGF.FGB-(I+V1) (I+V1)

Then a sufficient condition for Do to be an optimal open loop regulator

is
DF = (I + ukca)‘luk

where MR is a memoryless operator such that V1 ™ MRGB. The optimal
control provided by this regulator can be implemented by using the
following memoryless state feedback law

x =GB (w+P°1r-u)

u"'MRx.

p—— P
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Proof: Using the following correspondence of notations

a =g POFGB (w + P°1r)

| A |

2

Ly = FGBPO

3
-]
Ly
It is easily recognized that the optimal regulator problem is a
special case of the basic optimization problem (Figure 8). Moreover,

by observing that

* * * *
I*‘BGFFGB-(I"VI) (I*‘Vl)

implies
& * * * *
I+PBGF FGBP I+ povl) (1 * VIPO)

one also recognizes that this special case is precisely the one

considered in Corollary 1.

Applying that result we have the following sufficient condition

for a causal D o to be the optimal regulator
AD, = (I + ViP)D, = L

where LA is a solution of the best causal approximant problem with

Qz-Quandngivenby

- a1 o, " * .1 B. tFt - i vt -IB‘G*F*
I A Lst I Povl) Po G ° (1 1)
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To characterize such a 00, observe that from the statistical indepen-

dence of w and 7 one has
- = o o.*t
Qc Qz POFGB (Qm + P Q”P )JGFB Po

From here, applying Corollary 1, one finds that a sufficient condition
for ¢, to be a solution of the best causal approximant problem under

consideration is
¢ FGB = [mP oFGR].
that is
% * _1 * & *
®,FGB = [(I + P.V,)""P B G F P _FGB],.

* -1

& * % *
P, [@+V) BGF FGB] .

Noting that by applying lemma 8i) one has

-1

* * * *
(np FGB]. =P, [(T +V)"BGF FGB]. =P V,

where, (from lemma 8), v1 -MRGB with MR a well defined memoryless

operator. It follows
(nP FGB] . = M.P GB

hence a sufficient condition for ¢, is
(nP_FGB] . = @ FGB = P_M_GB

From these equations one obtains that a sufficient condition for

Do to be an optimal regulator is

“l -1
DJF = (I + VP 0 F = (I +MGB) My

A5 o e
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This formula implies in turn that the optimal control law given

by Do’ u, satisfies the following equation
u = (I + M;GB) " 'MP GB (u, + P°m)

hence

u = MGBu = MP GB (u + P°m)

From here one obtains the desired memoryless state feedback strategy,

namely
u -'ka
o
x-POGB (Ww+Pw-u)

The physical interpretation of this strategy is illustrated by the

block diagram in Figure 9.

It is interesting to observe that according to the above theorem
the solution of the optimal regulator problem can be implemented either
by means of an open loop configuration or by a closed loop configuration
using state feedback. In general the optimal closed loop configuration
is characterized by a sensitivity behavior which is better than that of
the open loop configuration. To illustrate, observe that if we repre-
sent with 7eH2 the influence of a given perturbation over the state of
the optimal open loop, then (I + MRGB)'IY will represent the influence
of that same perturbation over the state of the optimal closed loop
system. Using the notation § = (I + MRGB)'1 it follows that the optimal
closed loop system will have a better sensitivity behavior than the
optimal open loop if and only if ||$|] < 1, that is if and only if
1-5"$50, [Po1]. Note that

1-§"=s" 5" ..
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From here, using the fact that Vl -MRGB it follows

. - wl

1-§s=a+v) G FFB (1+v)l>o0

One can then conclude that the closed loop configuration of the
optimal regulator does indeed offer a better sensitivity behavior

than the open loop solution.

6.2 The Optimal State Estimation Problem

The optimal state estimation problem originally proposed by
Kalman [Ka 1], and Kalman and Bucy [Ka 2] is in our present context

formulated as follows.

Statement P7: The optimal state estimation problem (Figure 10).
Given four statistically independent random processes ue(Hl, I, 0’1),
w, me(Hy, Z,, @), ne(H;, I, ®;) with Q =1 and Q=L and three

causal systems
B: [H, P[] + [H,, P}]
G: [H,, P3] + [H,, P}]
F: [H,, P;] + [Hy, Pl

with B and F memoryless and G strictly causal such that (GB, F) and

(G'P*, B’) are state and constate trajectory realizations of FGB and

B'G.F. respectively. Determine a causal filter Do — Dol’ D 02). with

t t
Doy: [Hgs P5) + [Hy, P))

t t
Dyp: [Hy» Pyl + [Hy, P)]
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P such that for any other causal D = (Dl. Dz) one has

: J(,) < J(D)

where
~2
JO) =E {|x - x| } ;
with
3
' x-GB(u+m+P°1r)
b4 -Dlz + Dzu
and

z =P [FGB (u +u+P°m) +n].
The following theorem is to the effect that the optimal state
estimation problem can be solved via a generalized Kalman-Bucy filter.
Theorem 7: Suppose that there exists a strictly causal V2 such that

*® * * t
I+FGBBGF = (I+V,) (I*V,)

Then a solution to the optimal state estimation problem is given by

= -1
Dol GMe aI+ FGH‘)

L -1
Dy, = (I - GM_ (I + FGM,)™"F)GB

where “o is a memoryless operator such that v, = FGMe. The optimal

v

state estimation can be implemented by medns of the following state
feedback model

NS T T e S

x=6 M [z-Fx] -ul

z = FGB (u+m+P°w)+n
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Proof: For simplicity we will treat the case where m = 0; the proof
for the case w 7 0 is obtained by applying Corollary 1 and by using
an argument identical to that developed in the proof of Theorem 5.

Observe that in this case

J(D) =E {ID1 (FGB (u + w) + n) + Dzu -GB (u - w)Iz}
= E {ID1 (FGBw *+ n) - GBw - (D2 + (DIF - l)GB)ulz}

that is, (from the statistical independence of u, w and n),

2
J() =E {|D, (FGBw + n) - cnulz} +E { (0, + (O,F - I)GB)u| }

It follows

J) < ;in Jl(Dl) + mig Jo(DI’ Dz)

1 D05
where
J,0)) =E {il)1 (FGBw + n) - GBulz}
and
Jo@;, Dy) =E {|(D, + (DF - I)GB)ulz).

Noting that the functional Jo(Dl, Dz) is minimized by any (Dl’ Dz)

pair such that

D, = (I - D,F)GB

one can see that the problem of minimizing J (Dl. Dz) is equivalent to
that of minimizing J1(Dl). This latter problem in turn is equivalent
to a basic optimization problem with Ly =1 and Ly =0. This, given

the hypothesis of the theorem, is precisely the problem considered in
Theorem 3. Taking into account that Qu e QB -l Que -0 QBo =0,

e t———

e
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L, = FGB and Lz = GB, and applying that result we then have
B |

* * * *_1
nol-[cnncp (I +v,) ]c (I+V,)

From here, using the memorylessness of F one obtains

F - [FG * * ‘.*_1 2 =1
Doy = [FGBB G F (I +V,) le @ +vy

and by observing that (see lemma 8)
* ® & el
[FGBB G F (1 +V,) |
it follows

s -1
FDol Vz I+ VZ) .

*
Applying lemma 9 we have V2 = M;G*F. and therefore V2 - FGMe. It

follows

FD,, = FGM, (1 + FaM )™}
hence

Dy, =@M, (1 + Fau )"
and

45 -1
Dyy = (I - GM_ (I + FGM_)™"F)GB.

The state feedback realization of the optimal state estimation filter
is obtained by first. recognizing that the optimal estimation provided
by (Dol. Doz) is equivalent to that given by the block diagram in

Figure 11. Subsequently one verifies that this block diagram is equi-

valent to that in Figure 12.
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6.3 The Stochastic Optimal Control Problem

In what follows we revisit the optimal regulator problem by
considering the case where the output of the system is corrupted

by noise.

Statement P8: The optimal regulator problem in the presence of
measurement noise (Figure 13).
Given three statistically independent random processes, u, m:(Hl, 21, 01)

and ne(l-ls, 23, 03), with Qm - I‘, and Q'1 = I; and three causal systems
B: [H,, P]] > [H,, P}]
G: (1, P3] ~ [H,, P5]
r: [n,, P3] + [1,, 7]
with B and F memoryless anci G strictly causal such that (GB, F) and
(G*P*, B*) are admissable state and costate trajectory realizations

* * *
of FGB and B G F respectively. Determine a causal regulator

Dy: [Hss Pg] + [H;, P:] such that for any other causal D one has

J(,) < J(D)

where
2 2
JO) =E {|u] + [|y]}
with
u = Dz
z =P, [FGB (w + P°r) + n]
and

y = z - FGBu.




Our next and final theorem establishes that the stochastic opti-
mal control problem can be solved by applying the classical separation
principle: the optimal stochastic controller is given by the cas-
cade composition of the Kalman-Bucy filter followed by the Kalman

regulator.

Theorem 8: Suppose that there exists strictly causal Vi and V2

such that

* * & *
I+BGFFGB-(I+V1) (I*‘Vl)

and

*

* %* %
I+FGBBGF = (I+V,) (I+V,)

Then a solution of the optimal regulator problem in the presence of
noise is given by
- - -1
D, = (I + M;GB) 'M.GM_ (I + FGM,)
where memoryless MR and M o are the solutions of the optimal regulator

(Theorem 6) and optimal state estimator (Theorem 7) problems respecti-

vely. The optimal control law provided by this regulator can be

implemented by means of the cascade composition of the optimal state

estimator followed by the optimal regulator;

that is
p < o
x-G(Me(z-Fx)-B\l
: u-HR;
l o i d
z2=FGB (u+w+Pm) +n.
A




Proof: Using the following correspondence of notations

a = POFGB (w + P°1r)

B =P_FGB (u + P°r) + n

LS - FGBPo

L, =1

one can once again see that the problem under consideration is
equivalent to our basic optimization problem. For simplicity and
without any loss of generality, we will again confine ourselves to
the case m = 0; (as in Theorems 6 and 7, the proof for the case
m 7 0 would require a slightly more involved argument based on ’i

Corollary 1 and similar to that developed in the proof of Theorem 6).

We will then proceed by applying Theorem 2. Note that

* * * *
I+BGFFG=(I+V)) (T+V)
and
* * ® *
I+FGBBGF = (I+V) (I+V,)
imply
A * ® ® * = p
L+ PBGFFGBP = (I+PV,) (I+VP)
and

*

* * * 3
s POFGBB GF = (I + VzPo) (L * POVZ)

T TSN 0 Wi =
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Using these relations and applying Theorem 2 one obtains

1

D = (I+V,P) +pv)lp 86 FP Fac"FP. (1 + P VM. 1+ v.p )t
o (I 1P°) [(I povl) o o F o ¢ o 2) (o (I 2 o)

In addition to this, by virtue of lemma 9, V1 -MRGB and V2 - FGMe,
and from lemma 10

* -1

-1
1

*
[+ v G FRGBBGF (1 + V)

]C 3 MRGMe'
It follows that the optimal regulator is given by
% - -1
D, =P, (I +MGB) "M, GM_ (I + FGM )

The proof that the optimal control law can be implemented in terms
of a feedback loop consisting of the optimal state estimator followed
by the optimal regulator is easily obtained by verifying, by inspec-
tion, that the block diagrams in Figures 14, 15 and 16 are mutually

equivalent.

Remark 3: The statements of the problems and the associated
Theorems 6, 7 and 8 can be made slightly more general by assuming

Qw = Q and Qn = R with Q and R memoryless and positive definite. To
illustrate how this is done, observe for example that if in the sys-
tem in Figure 7, one has Qm =Q%1I, and Qn =R 7 I then one can
consider the optimal control problem for the equivalent system repre-
sented in Figure 17 where Q; =1, Qz = I and B = /%, & =cql/?,

1/2

F =R "/ “F. Note that B, G and F enjoy the same state and causality

properties of the original B, G and F.




CLOSURE

Using the Hilbert resolution space valued random processes
framework developed in [Sa 3] plus recent causality and state
results [De 1], [St 1], a best causal approximant and a basic
stochastic optimization problems have been formulated and solved.
These solutions provide the key to a better understanding and a
significant generalization of a number of classical estimation and
automatic control theory results. In the context of optimal
problems of the input-output type, they yield a generalized version
of the Wiener filter (compare [Bo 1] and Theorem 3), the Youla-
Jabr-Bongiorno servo problem solution procedure (compare Theorem 4
with (Y1, part II, Corollary 1]), and Porter's solution to th:
deterministic basic optimal control (compare [Po 1, Theorem 3] and
our Theorem 5). In regard to estimation and control problems of
the state space feedback type, they lead to generalized versions
of the Kalman optimal regulator (compare [Ka 1, Theorem 4] with
our Theorem 6), the Kalman-Bucy filter ([Ka 2, Theoreml] should be
compared with our Theorem 7), and the stochastic control separation

theorem ([ Kw 1, Theorem 5.3, p. 390] should be compared with our Theorem 8).

These generalizations, to the effect that most of the classical

results in optimal estimation and control theory are now extended
to multivariable, distributed parameters and time variant systems
are of course not surprising. Most of them have, in fact, in one
form or the other already appeared in the technical literature. In

particular, for example, a generalization of the Kalman-Bucy filter

48
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has been given by Falb [Fa 1], using the integration theory for

Banach space valued functions of Dunford and Schwartz, by Kailath

(Kai 2] in the context of the innovations approach circle of ideas,

and by Balakrishnan [Ba 3] in the setting of infinitesimal generators
on strongly continuous groups. Similarly, a deterministic version of
the principle of optimality has been given among others by Porter [Po 1]
and in a yet more comprehensive form by Steinberger, Schumitzky and
Silverman [St 1]. A generalized version of the Wiener filter has been
given by various researchers including Kailath [Kai 2], and Balakrishnan
[Ba 1]. Finally, a generalized separation principle has been offered

among others, by Balakrishnan [Ba 1], Wohnam [Wo 1], and Curtain [Cu 1].

The main contribution of the paper is in showing that our Hilbert
Tesolution space approach represents a worth while addition to the
available methods: it allows to obtain all these and more results as
particular cases of one central result; it retains the same physical
and intuitive character of the classical developments by Bode and Shannon
(Bo 1] and Kalman [Ka 1]; it elucidates the connections between the plant
structural properties with respect to such concepts as state, strict
causality and causality decomposition and the structural properties of
the optimal controller and/or observer. Last but not least, it opens up
a number of new interesting questions in the realm of causal factorization,

optimal control and Riccati differential equations.




REFERENCES

Al Anderson, B.D.Q., Moore, J.B., Linear Optimal Control,
Englewood Cliffs, N.J.: Prentice-Hall, 1971.

Ba 1 Balakrishnan, A.V., Stochastic Filtering and Control of
Linear Systems: A General Theory, Control Theory of

Systems Governed by Partial Differential Equations,
Academic Press, 1977.

Ba 2 Balakrishnan, A.V., Applied Functional Analysis, Springer-
Verlag, N.Y., 1976.

Ba 3 Balakrishnan, A.V., Lions, State Estimation for Infinite

Dimensional Systems', J. Computer and Systems Sciences,
Vol. 1, pp. 391-403, 1967.

Bar 1 Barrett, J.F., Construction of Linear Quadratic Regulators
Using Spectral Factorization and the Return Difference Matrix,
Techn. Report CN/75/4, The University of Cambridge, May 1975.

Bo 1 Bode, H.W., Shannon, C.E., A Simplified Derivation of Linear
Least Square Smoothing and Prediction Theory, Proc. 1RE,
Vol. 38, pp. 417-425, Apz. 1950.

Ch 1l Chang, S.S.L., Synthesis of Optimum Control Systems, McGraw-
Hill, New York, 1961.

Cul Curtain, R.F., Estimation and Stochastic Control for Linear
Infinite Dimensional Systems, Probabilistic Analysis and
Related Topics, Vol. 1, (Bharucha-Reid Editor), Academic Press
(to appear).

De 1 DeSantis, R.M., Causality Theory in Systems Analysis,
IEEE Proc., 64 (1976), pp. 36-44.

De 2 DeSantis, R.M., Porter, W.A., On the Generalization of the
Volterra Principle of Inversion, J. Appl. Math. Anal,
48 (1974), pp. 743-748.

De 3 DeSantis, R.M., Causality Structure of Engineering Systems,
' SEL Tech, Rep. 67, The University of Michigan, Ann Arbor,
: Michigan, Sept. 72.

De 4 DeSantis, R.M., Porter, W.A., On Time Related Properties of
Non-Linear Systems, SIAM J. Appl. Math., Vol. 24, pp. 188-206,
1973.

De S DeSantis, R.M., On A Generalized Volterra Equation in Hilbert
Space, Proc. AMS, Vol. 38, pp. 563-570, 1973.

50




51

Dul Duttweiler, D., Reproducing Kernel Hilbert Space Techniques
for Detection and Estimation Problems, Ph. D. Thesis,
Stanford Univ., Stanford, 1970.

Fa 1 Falb, P. Infinite Dimensional Filtering: the Kalman-Bucy
Filter in Hilbert Space, Information and Control, Vol. 11,
pPp. 102-137, 1967.

i Go 1 Gohberg, I.Z., Krein, M.G., Theory of Volterra Operators in

Hilbert Space and Applications, (translation), Amer. Math.
Soc., Vol. 18, 1969.

Ka 1 Kalman, R.E., Contributions to the Theory of Optimal Control,
Bol. Soc. Mat. Mexicana, Vol. 5, No. 1, 1960, pp. 102-119.

Ka 2 Kalman, R.E., Bucy, R.S., New Results in Linear Filtering
and Prediction Theory, Trans. ASME, Series D, Journal of

Basic Engineering, Vol. 82, 1961.

Kai 1 Kailath, T., Duttweiler, D., An RKHS Approach to Detection
and Estimation Problems - Part III: Generalized Innovations
Representations and a Likelihood Ratio Formula, IEEE Trans.
on Information Theory, Vol. IT-18, No. 6, November 1972,

PP. 730-745.

Kai 2 Kailath, T., An Innovation Approach to Least-Squares Estimation,
Parts I and II, IEEE Trans. on Automatic Control, Vol. AC-13,
No. 6, December 1968, pp. 646-660.

Kw 1 Kwakernaak, H., Sivan, R., Linear Optimal Control Systems,

Wiley-Interscience, 1972.

Le 1 Leake, R.J., Duality condition established in the frequency

domain, IEEE Transactions Information Theory, (correspondence),
Vol. IT-11, p. 461, July 1965.

Ma 1 MacFarlane, A.G.J., Return Difference Matrix Properties.for
Optimal Stationary Kalman-Bucy Filter, Proc. IEEE 1971, Vol. 118,
No. 2, pp. 373-376.

Ne 1 Newton, G.C., Gould, L.A., Kaiser, J.F., Analytical Design of
Linear Feedback Controls, Wiley, New York, 1957.

Po 1 Porter, W.A., A Basic Optimization Problem in Linear Systems,
Math. Systems Theory, 5 (1971), pp. 20-44.

Po 2 Porter, W.A., Modern Foundations of Systems Theory, New York:
MacMillan, 1966.

Po 3 Porter, W.A., Zahm, C.L., Basic Concepts in System Theory,
SEL Tech. Rep. 33, The University of Michigan, Ann Arbor,
Michigan, 1969.




Po 4
Po 5
Sal
Sa 2

Sa 3

Sa 4

Sa S

Sa 7

Sc 1
Sch 1

St 1

N1

B

52

Porter, W.A., Some Circuit Theory Concepts Revisited

Intern. Journal of Control, Vol. 12, pp. 433-448, 1970.

Porter, W.A., Nonlinear Systems in Hilbert Space, Intern.

Journal of Control, Vol. 13, pp. 593-602, 1971.

Saeks, R., The Factorization Problem - A Survey, IEEE Proc.,
64 (1974), pp. 90-95.

Saeks, R., Resolution Space Operators and Systems, Springer-

Verlag, N.Y., 1973.

Saeks, R., Reproducing Kernel Resolution Space and Its
Applications, Journal of the Franklin Institute, Vol. 302,
No. 4, October 1976.

Saeks, R., Causal Factorization, Shift Operators, and
the Spectral Multiplicity Function, Vector and Operator

Valued Measures, (D.H. Tucker Ed.), Academic Press, New

York, pp. 319-335, 1973.

Saeks, R., Causality in Hilbert Space, SIAM Rev., Vol. 12,
pp. 357-383, 1970.

Saeks, R., State in Hilbert Space, SIAM Rev., Vol. 15,
PpP. 283-308, 1973.

Saeks, R., Fourier Analysis in Hilbert Space, SIAM Review,
Vol. 15, pp. 604-638, 1973.

Schumitzky, A., On the Equivalence Between Matrix Riccati
Equations and Fredholm Resolvents, J. Comp. and Systems
Sciences, 2 (1968), pp. 76-87.

Schnure, W.K., System Identification: A State Approach,
SEL Tech. Rys., 80, The University of Michigan, Ann Arbor,
Michigan, 1974.

Steinberger, M., Schumitzky, A., Silverman, L., Optimal Causal
Feedback Control of Linear Infinite-Dimensional Systems,

(SIAM Journal on Control: to appear).

Tung, L.J., Saeks, R., Wiener-Hopf Techniques in Resolution
Space, Proc. of the 2nd OTNS International Symposium, Texas
Tech University, August 1977.

Tung, L.J., Random Variables, Wiener-Hopf Filtering and
Control Formulated in Abstract Space, Ph. D. Thesis, Texas
Tech University, Lubbock, Texas, July 1977.

Wiener, N., Extrapolation, Interpolation and Smoothing of
Stationary Time Series, MIT Press, 1966.




;
i
r
i
]

=

.t

Wo 1

Yo 1

53

Wohnam, W.M., "On the Separation Theorem of Stochastic
Control'", SIAM J. Control, Vol. 6, 1568, pp. 312-326.

Youla, D.C., Jabr, H.A., Bongiorno, J.J., Modern Wiener-
Hopf Design of Optimal Controllers, Parts I and II,

IEEE Trans. on Automatic Control, Vol. AC-21, No. 1,

pp. 3-13, No. 3, pp. 319-337, Feb. and June 1976.




FIGURES CAPTIONS

1. The best causal approximant problem
2. The basic optimization problem

3. The Wiener filter problem

4. The stochastic estimation problem
S. The optimal servo problem

6. Porter's basic opcimization problem
7. The optimal regulator problem

8. Establishing the equivalence between the optimal regulator
and the basic optimization problems

9. Kalman optimal regulator

10. The optimal state estimation problem

11. The optimal state estimator given by the Wiener filter
12. The Kalman-Bucy filter

13. The optimal regulator problem in the noisy case

14. The optimal open loop regulator in the noisy case

15. The optimal closed loop regulator in the noisy case

16. The optimal regulator in the noisy case as given by the
separation theorem

17. Equivalent white noise problem associated with an original
coulored noise problem
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| FIGURE 1: The best causal approximant problem:
given noncausal I and the stochastic process z,

2
find a causal ¢, so as to minimize E {|e] }.

B

FIGURE 2: The basic optimization problem:
given L;, a and 8 determine a causal D so as.

: 2 -
to minimize E {|r| + |e| }.
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FIGURE 3: The Wiener filter problem:
given Ll' Lz, a and B determine a causal D so

; 2
as to minimize E {|e]| }.

FIGURE 4: The stochastic estimation problem:

given'a and B determine a causal D so as to

3 2
minimize E {|DB - a| }.




’f 57
1 8
| d
e L |-
Tf
3 :
: Lo Ts 0
2 +
u N T -y
F|= '
R
F 3
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d = disturbance T = the plant
1, m = instrumentation noise F = transducer system
s r = saturation related signal L, l‘o’ Fo' 'l'o = noise related system
u = desired output
y = actual output
a FIGURE S: The optimal servo problem:
‘ z
!

given [‘o’ L, 'l'o. T, 'l‘s. F, Fo and u determine a causal N

g 2 2 2
3 so as to minimize E {|ju - y] + k |r| ).
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e = error signal G1 = the plant

T = saturation related signal G2 = the desired systenm

z = input

FIGURE 6: Porter's basic optimization problem:
given Gi’ i =1, 2, 3 and z determine D so as to

; 2 2
minimize E {|e] + |r| }.
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w+P°r

P, FGB

z = influence over the future output of the plant of the past
input, (Pon), and the perturbation, (w); z = POFGB (w + P°1r) | 4
y = output of the plant D = open loop regulator

u = control $ = the plant

FIGURE 7: The optimal regulator problem:

knowing $ and z determine D so as to minimize

2
E(lul” + Iy}
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B:P,FGB(w+ P'r)
, L=I |—>r=u
:
. @=FGB(w+Pm) : + 1 + €7y
| L=0 S R Ly FGB g
> L,=1

FIGURE 8: Establishing the equivalence between the optimal

regulator and the basic optimi:ation problems.
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FIGURE 9: Kalman optimal regulator.
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, + . |
E |
!
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D, [
|
|
_____ S i G e s il
u = plant input z = available output date" {
w = perturbation X = estimated state
Por = past input D = state estimator
X = plant state _ $§ = the plant
y = plant input
n = measurement noise
3

i s FIGURE 10: The optimal state estimation problem:
‘i

knowing §, z and u determine a causal D so as to

; - 2
minimize E {|x - x| }.
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z = influence over the future outpu£ of the plant of the
past input, (P°1r), the perturbation, (w), and the noise, (n);
z =P FGB (v + P°r) + n.

y = output of the plant D = open 1loop regulator

u = control § = the plant

FIGURE 13: fhe‘optinnl regulator problem in the noisy case:
knowing $§ and z determine D so”as to minimize~

AR 2
E{Ju] + |y}
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FIGURE 17: Equivalent white noise problem associated with an

original coulored noise problem. |




