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BASIC OPTIMAL ESTIMATION AND CONTROL PROBLEMS
*IN HILBERT SPACE

De Santis~ RJ4 . , Saeks ’ R. ,  Tung~ L.J.

0. ABSTRACT

The recently developed mathematical framework of Hu bert

resolut ion space valued random processes is used to foruaslate

and solve an abstract quadratic optimization problem . By parti-

cularizing the description of the operators appearing in the

statement and solut ion formula of this problem one rediscovers

and generalizes most of the classical estimation and control

theory problem statements and results. These results include,

among others, the Wiener smoothing predict ion filter , the lCalaan ’

regulator , the Kalman-Bucy filter, the stochastic control separation

principle and the more recent Youla-Jabr-Bongiorno optimal servo

problem solution.

~ 1
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BASIC OPTIMAL ESTIMATION AND CONTROL PROBLE?.~
IN HILBERT SPACE#

1. INTRODUCTION

Most of the classical [Wi 1] and modern [Yo ii, Wiener-

Kolmogoroff linear least square optimization methodology is

based upon frequency domain and analytic function theory proce-

dures. As a consequence, most of its applications traditionally

focus on the realm of stationary , lumped parameters and infinite

time interval systems [Ne 1), [Ch 1]. As Bode and Shannon [Bo 1]

observed , however, the computational steps involved in these

procedures have a direct physical interpretation in terms of

causality related operations and random signal representations

whose meaningfulness does not depend on any one of these special

properties. Thus, it is perfectly natural to look for extensions

of the Wiener-Kolmogoroff methodology so as to make it applicable

to systems of a more general type. More specifically, the following

questions are of interest: can the Wiener-Kolmogoroff methodology

generalize to a form which is independent of analytic function theory?

can this potential generalization encompass multivariate cases and

related frequency domain results which utilize the algebraic Riccati
I ?~ equation? can nonstationary systems, finite time interval, and in-

finite dimensional state space problems be solved using the genera-

lized solution?

# By De Santis, RJ4., Saeks, R., and Tung , J.L.

1* 1 
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The objective of the present paper is to show that, on the

basis of recent developaent~ about causality [De i), [De 4],

[Sa 1], [Sa 2], state [Sa 6], fSch 13, [St 1] and stochastic

signals representation [Kai 1], [Kai 2], [Sa 3], [Ba 2], the

answer to the above questions is an affirmative one. It is

indeed now possible to develop a generalized Wiener-Kolmogoroff

methodology which while encompassing classical optimal estimation

and control results is also applicable to nonstationary, finite

time interval, and distributed parameters systems. The advantages

of such a generalization are multiple: a better perspective of the

relations among a number of different problems and techniques; a

clarification of the role played by causality, state and related

system theoretic concepts; a wider range of application of the

available results.

We do this by combining the classical Wiener-Kolmogoroff

ideas and techniques [Wi] with the novel framework of abstract

Hu bert resolution spaces [Go 23. We start by formulating and

solving two simple optimization problems, (statements P1 and P2,

Theorems 1 and 2). Subsequently we show that by appropriately

specializing the description of the operators appearing in the

statements knd related solution formulas of these problems, one can

rediscover and generalize the solutions of most of the optimal esti-

mation ~ind control problem of interest, namely: the Wiener smoothing

and prediction filter, (Theorem 3), the Youla-Jabr-Bongiorno optimal

servo compensator , (Theorem 4), the Porter basic optimization
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formula, (Theoremi 5), the Kalman optimal regulator and the principle

of optimality, (Theorem 6), the Kalman-Bucy filter , (Theorem 7),  and

the separation principle, (Theorem 8).

The development inherits t uvh from the previous work on the

~ubject. The questions under consideration were first formulated

and studied by Porter [P0 1]. The mathematical setting is based on

the Nonseif-adjoint Volerra operators techniques developed by

Gohberg and Krein [Go 1], [Go 2] and on the more recent Hilbert space

valued random processes fr amework proposed by Balakrishnan [Ba i j .

In regard to the results , the solution of our basic optimization

problem uses ideas and techniques fr om Porter [Po 1], Bode and Shannon

[Bo 1], Kailath [Kai 1], Balakrishnan [Ba 1], and Youla [Yo 1]. A

significant role in the proofs of the state estimation and control

results has been played by the abstract state space realization work

by Steinberger, Schumitzky and Silverman [St 1].

J r .

1~
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__________________________________________.~~ MATHEMATICAL BACKGROUND

The reader will be assumed to be familiar with those standard

notions which are usually associated with the concepts of Banach and

Hu bert space [Po 2, chp i], [Ba 2, chp 1]. In addition to these we

will also use the concepts of Hilbert resolution space which are dis-

cussed in [Go 1, chp 1], [Sa 2], plus the concepts of Hu bert space

valued random variables [Ba 2, chp 6], [Sa 3]. These latter concepts

will be briefly reviewed in the following paragraphs.

A bounded linear operator P on a Hilbert space H is called an

or-thoprojector if for all pairs x, ycH one has that <Px, p — <x, Py>

and P(Px) — Px. Given a linearly ordered set v with minimum and

maximum elements to and t~, , we will say that a family of orthoprojec-

tors, R — (Pt: t€v}, is a resolution of the identity if it enjoys the

following two properties:

t t
i) P °H — 0, p 40

F1 — H and PkH P&H whenever

ii) if (P’} is a sequence of orthoprojectors in R and ther e

exists an orthoprojector P such that {P’x} -
~~ Px for each

xcii, then PcR.

A Hilbert space H equipped with a resolution of the identity

R — (Pt: tev} is called a Hilbert resolution space and is denoted by

the symbol [H, p]. Given an orthoprojector pt~j~ the orthoprojector

I_Pt is often denoted by the symbol P~ .

4

______ 

-. -. ... —
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We will use the triple (H, Z, P) to denote a probability space

of Hilbert space valued random processes with Hilbert space, H, family

of Borel sets, Z, and probability measure,~~. Recall that CBs 2, chp 6],

with each random process, pc(H, E, ~), with a finite first and second

moment, one finds associated an element, m~cH~ (the mean value of p)

and an operator , Q :  H -‘ H, (the covar iance of p ) ,  such that:

E(x , p) — Cx , m ) ,  VxeH

and E(x , ~-ni~) (y, ~_m~) — (x , Q~) ,  Vx, ycH

where the symbol “E f ( p )”  denotes the expected value of the scalar

valued random variable f(p)  with respect to the probability space

underlying p. Similarly, with each pair p, ire (H , E,I~) one finds

associated an operator , Q ,  (tue cross covariance) with the property
that: -

E(x , ~_m~) (y, n-rn ) — (x , Vx , yell.

In the sequel we will not explicitely use the E family of Borel set s

or the specific nature of the probability measure I’. Thus , for more

background about these concepts we simply refer the reader to

[Ba 2 , chp 2]

The mean values and the covariance and cross covariance operators,

however, will be used extensively. While the theory associated with

these concepts is again well documented in [Ba 2, chp 6], for our par-

poses it will be helpful to list a few of their most Important properties

namely:

(i) m (p÷~) m + r n ;

_ _  -~~-~~~~~-—..~~~~~~~--, —~~~-.- - --—- -,- -
~~

,--
~~~

.-— ---- --- 
~~~~-
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(ii) ~m~ I ~ E ( i~1};

(iii) — Lm~ for any bounded linear operator L;

(iv ) 
~(Lp) (Tn ) 

— LQ0~ T for bounded linear operators L and T;

(v) — Q + Q + +

(vi) Q —

(vii) E (~ p~ I is finite if and only if Q is nuclear in which
2 

p

case E ( Iø( I tr ( Q ) ;

(viii) If E ( Ipi I is finite, then is Hilbert-Schmidt for

all random processes ii with a finite second moment.

Note that given an operator , 1: H • H, the trace of T is defined by:

tr (T) — r (Tei, e~)

where {e
~
} is any orthonormal basis in H. A useful property of the

trace is that for T1, 12: H + H one has

tr (T1T2) — tr (T2T1).

The random processes p and ire (H, E, ‘) will be said to be ~~~~~~~

tistically indeEendent if Q~ 
0. In the course of our development

we will use the fact that linear transformat ions of independent random

processes are independent, plus the fact that if p and ii are indepen-

dent then 
~~~ 

— + Q,~. Unless otherwise specified we will only

consider zero mean valued random processes.

_ _  
_ -. -i .
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3. CAUSALITY AND STATE CONCEPTS

The concepts of causal ity and state will play a fundamental

role in the development of the following sections. While a full

treatment of this subject can be found in a number of references,

(among others [De 1), [Sa 2], [Sa 6], [Sch 1], and [st 1]), it is

helpfu l to review some of the basic definitions and results.

3.1 Basic Definitions and Properties

An operator T: [H, P
t
] [H ptj is said to be causal if

Ptx — pty implies PtTx — P Ty. T is strictly causal if it is causal

and for any given c ‘ 0 one can find a partition {t0 
— ~~ F~~, . . . ,

— t~~} cv such that

sup L~~
Th
~

j < c

where — P ‘P~ . T is called anticausal (strictly anticausal) if
r *

T is causal (strictly causal). T is memoryless if it is simultaneously

causal and anticausal. The validity of the following results is easily

verifiable.

L e a  1: The following statements are equivalent : T is causal ;

Ptx — 0 implies PtTx — 0, Tp — P T P ; pt.r — ptI~ p
t ; T is anticausal.

L~~~a 2: Suppose that T1 is causal and T2 is strictly causal1 Then

T1T2 and T2T1 are strictly causal.

Our definition of strict causality even though most convenient from

Z a technical point of view is in general more restr ictive than what It will,

be r ea lly need ed . Inde ed, in most of our results the requirement that

sup I A~TA~ c £ could be replaced by sup I~i
TAixI c, where the partition

i i

-

~ 

.~~~ - .~~~~~~~ .. . .~~~~~~~~~~~~~~~ . . _:_ _
~~~~~~~._ _ _

~~~~~~~~~ _~~_~~~~~_~~~~~~~~~~
_±._ _ .~~~~~ _~~~~~~~~~~~~~~~~~~~J
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is chosen in correspondence with a given (x, c) pair. A notable

exception to this is given by the following lemma whose validity

requires the restrictive form of our definition.

Lemma 3: Suppose that T is a strictly causal operator. Then I ~ T

is invertable with (I + T)~~ — I + K, where K is strictly causal and

such that K — 2 (-1)” r’~.n

Given a strictly causal , (strictly anticausal) , T: [H , P~l • [H, P~ l

a state realization, (costate realization) , of T is given by a triplet

~ ~~( )  H.1,(t) , ~~(t) ) such that for each tev one has that

111 (t) is a Hilbert space’

~T (t) . ptIf~44T (t) ,

~~.(t) : H.r (t)+PtH ~ (H.i,(t) IIP H) ,

and , for each udft , ~~~~ ~~(t)u — I~tTI~
t
~ , (

~ PtTP u) . The term state

realization is suggested by the fact that for every tcv one has that

— ~~~(t) x(t) + P~TPtu

where x(t) — Y1(t)u. Thus, the element x(t), the state of T at t,

possesses all the information which is necessary to determine the

inf luence of the past values of the input over the future values of

the output. In (Sch 1] it is shown that every strictly causal operator

admits a state realization.

Giv en a strictly causal , (strictly anticausal), T: [H , P~] • [II , p~]

with state realization, (costate realization), (YT(t), H~,( t ) ,  ~T(t) ), the

pair (k..~, ~~ 
is called a state trajectory realization, (costat e traj ectory

realizatio.!~), i f T gT k..f and

r 
_ _ _

~~~~~~~~~~~~~~~~~~~~ _ _ _ _  _ _ _  _ _ _
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k..1.: [H, ~~ X.1 k..1. strictly causal, (strictly anticausal);

LT: XT [H, p
t], 

~T 
memoryless, and

X..1.: (L2 [v, H
,1.], p

t
], where H.1. — Span H,1.(t).

Here the term state traj ectory is justified by the fact that the element

x — k.1.u, the state traj ectory associated with u , can be viewed as a

• mapping, x(•) :  ‘u . H,.1,(t ) ,  where x (t) — YT(t)u represents the state of T

at t. The trajectory space X.1. is built from v and H,1. by following the

procedure outlined in [Ba 2 , section 3.5] ; in doing this the linearly

ordered set v is tacitly assumed to be a measurable subset of the real

line. For an exhaustive discussion about this concept the reader is

addressed to [St 1]. Among other things, this ref erence proves that

every strictly causal I has a state trajectory realization.

In working with the above causality and state concepts it will be

useful to make use of the alphabetic code A — (A, C, M, A , ~, Co , St}

which is defined as follows

A — ant icausal — strictly causal

C — causal Co — costate

M — memoryless St — state

— strictly anticausal

A first application of this code is given by the following

principle of causal duality .

* 
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Lemma 4: Let a statement or equality by phrased using relations

involving concepts associated with the alphabet A — (A, C, M, A, e,
St, Co) and the family of projection oper ators {pt} and Then

the statement or equality remains valid if the following interchange

in symbols occurs:

pt 4p p~~4p~, e-~A , A + e ,

C + A  , A ~~C , St -” Co , Co + St .

3.2 Causality Additiv e and Multiplicat ive Decompositions

An operator T is said to admit a causality additive decomposition

[De 1], [Sa 2] if T can be viewed as given by the sum of a causal plus

an anticausal component; T is said to admit a canonical causality

decomposition if it can be represented in terms of the sum of a strictly

causal , a strictly anticausal and a memoryless component. The following

lemma establishes the uniqueness of such a decomposition plus a usefu l

property relating the causality decomposition of I with those of FT and

IF , where F is a memoryless system.

Lemma 5: Suppose that the operator T has a canonical causality (addi-

tive) decomposition , T — TA + T~ 
+ TM • Then the elements T0, ~e (A , ~, MI are

uniquely defined. Moreover, if F is memoryless and T — TA + T~ + TM, then

— IF and 12 — FT are such that

— T~~ + Ti~ 
+ T~~, i — 1, 2

where Ti~ — T F  and — PTaI at (A, ~, M}.

~

.  

~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _
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In view of lemma 5 , in general it makes sense to talk about
4.

the causal (strictly causal , anticausal , ...) component of an

operator T: [fl , pt] 4. [ii, pt) For example, given T — TA + T~ ~ TM,

the causal component of T, usually denoted by T~ or [T) c is given by

Te ~ TM. The causal component of an operator T, (as well as the

other strictly causal , memoryless , ... etc., components) does not

always exist . General necessary and sufficient existence conditions

plus a number of interesting causality decomposition related properties

can be found in [De 1], [Sa 2] and [De 3). One of these properties

will be of a particular interest later on in the development. To

characterize it, consider a partition fl — — t0, F~~, 
~~~
‘ 

— t I  cv ,

and associate with it the operator valued function

•(fl) — z A ,TP~
iI—l~~~

where 
~i 

— ~Ci - pU l ; pi — p~1. If [TJC is well defined then given

any c ~ 0 one can find a partition ~~ such that for every fl. ’ one

has that

— •(‘~)I < £
where the norm can be intended either in the uniform or in the strong

operator topology. This property can be expressed using the following

symbols

S {z ~~~ p1} 4. (M)IdPTPS .

In the particular case of Nilbert-Sclaidt operators a canonical

causality decomposition is always well defined . Moreover the components

of this deccmposition are mutually orthogonal . All this is established

by the following leii a.

I .
L 

_ _  
_ _ _ _ _ _  — I 

~~~~~~~~~~ -,.- -~~~~ -——— - - , - ~~~—-~~~~ .- . -~~~~ -~~~~-— .—~~~—.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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L~~~a:~~ Causality and Hilbert-Schmidt operators

i) the class of causal , (anticausal , meioryless) , Hilbert-Schmidt ,

operators is a Hilbert space;

ii) in the Hu bert-Schmidt inner product topology one has

< T~, I8 
— 0 whenever a ~‘ Bc (A , ~ , M };

iii) if T is a Hilbert-Schmidt operator then

T T- + T -+ TA C N

where the I ,  as (A , ~ , MI , are well defined Hilbert-Schmidt

operators such that

mm
H T - T I 1 —  

~a~~~
T _ T

c~
11

where I is any other a operator and the symbol denotes

the Hilbert-Schmidt norm.

Equal in importance to the concept of a causality additive decom-

position is that of causality multiplicative deccsnposi~ion also

referr ed to as causal factorization. An operator Q: [H , pt ] -. fit , pt ]

admits a causal factorization if Q can be represent ed in terms of the

cascade composition of a causal (anticausal) operator followed by an

anticausal (causal) component. In the sequel we will mainly be con-
*cerned with operators Q which are positive Hermitian (cQx , x> >0, Q — Q );

and with causal factorizations of the type considered in the following

lemma [Sa 3].

(

~~~

_ _ _ _ _ _  _ _  -~~ - --- ,— --
~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Lemma 7: If Q: [H ~t 1 + [H, ~ is positive Hermitian then

i) there exists a causal and causally J4ft inver table one-to-one

Q: [H ~~ such that

ii) there exists a causal and causally r ight invertable one-to-one

A: [H p~] .‘ [H, p~J such that
*Q A  A

3.3 Causal Decomposition and State Realizat ion

The following two lemmas generalize two well known linear time

invariant results ( [Bar 1), [Ma 1]). They unveil some key relat ions

concerning a special multiplicative causal ity decomposition, the

causal part of a related operator and the concept of state traj ectory.

It is precisely by virtue of these relations that we will be able to

eluc idate the connect ions between a plant causality and state structure

on the one hand , and the structure of the opt imal filter and/or

compensator on the other. The proof of the first part of these lemmas

can be found in [St 1). The second part follows by involving the prin-

ciple of causal duality. In stating these lemmas, the symbols F and B

will denote t~~ memoryless operators, while G will represent a strictly

$ causal system. We will suppose that (GB , F) is a state trajectory

realization of FGB and (G*T* 1*) is a costate traj ectory realization

of B G F .

S
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Lemma 8:

i) Suppose tha: there exist: a strictly causal V1 such that

I~~~B G F F G B — ( I + V 1) (I + V 1)

then (t)

* * *[( I + V1) B G F FGB]c 
— V1.

ii) If there exi:ts a strictly causal V2 such that

I ~ FGBB G F — (I + V2) (~ 
+ V2)

then

[FGBB G F  (I + V;)
1
~)c V2 .

Lemma 9:

i) Suppose that there exist: a strictly causal V1 such that

I~~~ B G F F G B — ( I + v 1) ( I + v 1)

then there exists a well defined memoryless M.~ such that

V1 — M~GB.

ii) If there exi:t: a strictly causal V2 such that

1 ~ FGBB G F — (I V 2) (1 ‘ V 2)

then there exists a well defined memoryless Me such that
— P 4 G P .

The next lemma provides the key to the stochastic control prin-

ciple of separation (section 6).

Ct) Recall that the symbo l [TI C denotes the causal component of T.

___________________ _______ 

( L
.

- 

~~~~~~~ 
— —~..
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Lemma 10: Suppose that there exists strictly causal V1 and V2 such

that

I + B G F F G B  — (I + V1) (I + V1)

and

I + FGBB F — (
~~ 
+ V~) (I + V;) H

Then one has that

* * *  * t *[ci + V1) B G F FGBB G F (I + V2) 3 c —

where MR and Me are memoryless and such that

I 
~~ V1 

— MRGB and V2 
— FGM .

Proof: From the strict anticausal ity of G~P~ (I + V Y~ one has

I-

* .l * * *  * * *[( I + V1) B G F FGBB G F (I + V2) 1C 
—

p * _
~~ * * *  * * *

i [(I ‘ V1) B G F FGB] c B G F (I + V2) 1C

Moreover , from lemma 8i)

[Ci + V1)~~ B G P F G B I C 
— V1

and, from lemma 8ii)

*4[FGBB G F (I + V2) ic — V2

Using these equalities and applying leimia 9, it folJ~ows that

[(I + V1)4 B G F F G B I C 
— MRGB

and

$ 
EFGBB G*F* (~ 

+ y*)l
] — Fc24~ .

S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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This leads to

‘-1 * * *  * * *[ [(1 + V1) B G F FGB]C B G F (I + V2) ]
~ 

—

MR’~
4 [FGBB*G*p* (I + V21’]c MR~~e~

where F 1 has been used to denote the pseudo inverse of F.

LL~ ~~:IT. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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4. TWO FUNDAMENTAL PROBLEMS

In the course of the development it will be shown that many of

the quadratic optimal control problems considered in the technical

literature can be viewed as special cases of a “basic stochastic

optimal control problem”; a key step in the solution of this problem

will in turn be provided by the solution of what we will call a

“best causal approximant problem”. With this in mind we find it

convenient to proceed as follows. We start by stating and solving

the best causal approximant problem. Subsequently we discuss the

basic stochastic optimal control problem. In the forth coming sections

we will show how these preliminary results allow us to solve a variety

of other problems of interest.

4.] The Best Causal Ap~roximant Problem

The best causal approximant problem can be stated as follows

(see Figure 1).

Statement P1: The best causal approximant problem.

Given a not necessarily causal U: [H, p
t
] -~~ fit , pt ] and a random

process is (H , E , 
~~), 

with covariance operator Q~
, determine a causal h

such that for any other causal I one has that

— J(I ) < .7(I)

where
2 *

J(I) — E  ( I J (
~~ 

- 1t )zJI I — tr ((I  - “~~ Z ~~ - U) I .

The following theorem gives us a sufficient condition for the

solut ion of the best causal approximant problem.



1~~~

18

Theorem 1: A sufficient condition for a causal to be a solution

of the best causal approxilnant problem is that

a.0 —

where Q is causal and such that

—

Proof: Let us first consider the case where — I , that is the case

where z is a white noise random process. For any partition

{ t0, F~ , 
~~~~ 

— t,,} sv one has

2
J($) — B {I ( ” - •) z~ }

N . 2
— E E {J ~. (TIP1 - + ~.JIP.zj Ii—i :1. 1 1

where Pci. and P1P J 1
~ FDom here, taking into account the

statistical independence of P1z and P1z, it follows
N • 2 N 2

J(~) — E E {i A ~ (UP 1 
- •) z I  } + Z E ( J iTP~zJ I

i—i i l
N

Recalling that by a part ition refining process we have that ~
i—i

converges to [nj~ , it follows

.7(I) — B 
~~

[n]
~ 

- o)z I } + E { I(n -

Since the second term of this sum is independent from I, it follows

that the problem of minimizing J(I) is equivalent to that of mini-

mizing the first term. This is obviously done by choosing •~ — tn]~.
Let us consider the mor e general case where — 7~ I , that is

the case where z is a colored random process. This case can be

reduced to the special white noise case by regarding z as given by
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the output of the causal filter a driven at the input by a white

noise random process w. Using the notations U’ 1I~2 and I’ —

this leads to

2• J(O) E { I ( I I - I ) a w I I
2

E ( kit ’ - l ’)w (  I

From here one can repeat the white noise argument to conclude that

.7(1) is indeed minimized by I’ — — t1U2]C.
Note that Theorem 1 does not imply that J(I

~
) c ~ . If J(l)

is not finite, however, no other I will make J(O) finite. These

difficulties may be alleviated by assuming that certain operators

are Hilbert-Schmidt. Using these assumptions Theorem 1 can also be

— proved in a more direct and mathematical more transparent fashion.

As this alternat ive fashion puts in a better perspective the role

played by Hilbert-Schmidt operators and their sp~cial properties it

is in order to introduce the following alternative proof.

An alternative proof of Theorem 1: kssume that I and U are Hi].bert-

Schmidt and observe that 

2 *J(I) — B (1(1  - 1I) z~ I tr ((I  - 11
~~ Z 

(I - II) I

From — aa , with Q causal , and denoting by {e j J~ a complete

orthonormal set in H, it follows that
• I

* *J (I) — tr ((I - U)Qa (I - II) I

— (Z < (I - TI):ei. (I - U) ae~ >
~

— H CI - n)a II

where the symbol I I I I denotes the Hilbert-Schmidt norm. Observ ing 

- - .~~~ - — _ _ _
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now that ~n is causal , and recalling that the causal and strictly

anticausal parts of a Hilbert-Schmidt operator are well defined and

mutual ly orthogonal , (lemma 6), it follows that

2 2
J (I) — lion [nn]

~II + J~
From here, observing that ~J 

~~~~ 
1
2 

is independent of I, one can

conclude that a sufficient condition for I~ to be the desir ed solution

is

— [iin]~~.

The following corollary considers an important special case of

the best causal approximant problem.

Corollary 1: Suppose that for a given P0cR one has that

— P~G ([ + P°Q~P°) G P 0

with G causal. Then a sufficient condition for 00 to be a solution

of the best causal approximant problem is

I0P G  — [nP Gi c.

Proof,: 3bserve that in this particular case one has

J (I) — J
1(11) 

+ j 2 (12)

with

— II(°l - U) P0G 11
2

and

— tr ((02 - IT) P0GP°QJ°G P 0 ~~2 - 
*1

I 

_________  _ _ _ _

. .~.~~i
_i_1i

~ i .~
____
~

_ ___
~
______ ____________ _ _ _ _  _ _ _ _
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The proof can then be completed by verifying that a sufficient con-

dition for these two latter functionals to be simultaneously minimi-

zed is

- 101G — 002G — tUP0GIc

This is done by observing that

— II~’~ (I~P~G - [flPoGlc) 11 2 
+ l l i’

° [ITPOG]C i I + II [flP~,G1j i I
2

and

— tr (P (I2P0G - [ITP0GJ c) P°QWP°G P  (02 -

+ tr {p OUP GP OQ p OG*p f l *pO }

The last equal ity follows from

P0IIP0GP° — P0 EIIP0GI cP°

and the fact that

ti {P0IIp
0GP0Q P 0G

*
P0 (0 - P011) P0} — 0

tr ~~‘
° ~~2 - P011) POGP°QWP°G P011 P°} — 0

4.2 the Basic Stochastic Optimization Problem

The following problem is inspired from the “basic” deterministic

problem studied by Porter in [P0 1]. In the spirit of this reference

we will retain the “basic” qualifier because as we shall see in the

later sections, this problem includes as a special case many other

fundamental problems such as the Wiener filter, the Kalman optimal

S regulator , the optimal Kalman-Bucy state estimation problem.
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Statement P2: The basic stochastic optimization problem (Figure 2).

Given four not necessarily causal systems Li: [H, p~] + [H, ~)t]

i — 1, 2 , 3, 4; and two random processes ~~, 8€ (H , £, P); determine

a causal controller , D0, such that for any other causal D one has

J(D0) c J (D)

where
2 2

J (D) E {~~~~ 
+ Iii I

and

e — L3D (L1ci + 8) - L2~

r — L~D (L 1u +

The next theorem, the key result of the overall development , says

that under some appropriate hypotheses the basic optimization problem

is equivalent to an associated best causal approximant problem; its

solution can then be obtained by using Theorem 1.

Theorem 2: Suppose that there exists causal and causally invertable

a and A such that

and 

Q_ L1Q~~ + Q~
+ L~Q~8 + Q~~L1 

—

L L  ~~L L  A A .3 3  4~~

Then the basic optimization problem is equivalent to a best causal

approximant problem with

Qz
_ Q  (

and
* * —lII — A L3 (L2Q~L1 + L2Q~Ø) 

~

C
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A solution of the basic optimizat ion problem is given by

—l * 1 *  * * ]  ]— A [A L3 (L2QaL1 + L2Q~8
)Q ]~a

Proof: Observe that

.7(D) E {I(L3DL1 - L2)~ 
+ L3DBI + E {1L4DL1Z + L4DBI }

trX1~~~trX2

where
* *  * *X1 

— L3DL1Q L1D L3 + L3DQ
8
D L3 + L3DL1%8D L3 + L3DQ

8 
L1D L3

* *  * *+ L4DL1Q L1D L4 + L4DQ
8D L4 + L4DL1

Q~ 8D L4 
+ L4DQ80L1D L4

and

X 2 -L3DL1Q~L2 - L2QaL;D L; - L2%6D
*L - L3DQ~~L; +

Observe also that

ti X1 — ti (( L L 3 
+ L L 4) DQD*}

where

Q — L1%L + Q8 + L1~~8 
+

Taking into account that

L;L3 
+ L L 4 — A*A

it follows that J(D) can be rewritten as

.7(D) — tr ( * *  
+ x21.

From here, using some straightforward algebraic manipulat ions plus a corn-

pletion of the square argument similar to that used in (Bo i] one obtains

J CD) — J0 CD) 
+ tr (U0Q11 

+ L2Q~L;}

L _ _ _ _ _ _ _
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where
*4 *  * —llI~ — A L3 (L 2Q L 1 + L2Q~8)Q

and

J0 (D) — ti ( (AD - U0)Q (AD - ll~)*}.

Observing now that the term tx {-110QU0 + L2Q~L2} is independent of D,

it follows that the problem of minimizing J(D) is equivalent to that

of minimizing J0(D) . The noncausal solution of this problem is

obviously given by D — A 1110. The causal solution corresponds to the

solution of a best causal approximant problem with I — AD, — Q, and

II — III,. This solution can then be obtained by apply ing Theorem 1.

The following corollary is interesting in that it prov ides a useful

relation between the best causal approximant problem and a special ver-

sion of the basic optimization problem. This result will be applied

in the study of the Kalman optimal regulator problem (Theorem 5).

CorollaZy 2: If ci — 8, L1 
— 0 and ther e exists a causal and causally

invertable A such that

L;L3 + L4L4 — A A

then a suff icient condition for D0 to be a solution of the basic opti-

mization problem is that

AD0 00

where is a solution of the best causal approxinant problem with

— Q and II — A~~~L3L2. (

L . . ~~~~~L ~~~~~~~~~ 

TIi__ 
-
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Remark 1: Using lemma 7 one can see that the invertibility require-

ments on L3L3 + L4L4, ~2 and A are not essential to the validity of

Theorem 2, nor to that of Corollary 2. They are merely used to sim-

plify notations. If these requirements are not satisfied one would
-l — R *4have to replace A with A - (right inverse) and A with A (left

inverse).

S

IT ___ 
_  

_ _ _



S. OPTIMAL INPUT-OUTPI.JT ESTIMATION AND CONTROL

In this section we will exploit Theorems 1 and 2 to obtain the

solution of three fundamental optimal estimation and control problems

of the input-output type. For a physical motivation of these problems

and related classical background we address the reader to [Bo 1],

fYo 1) and [Po 3~ .

5.1 The Wiener Filter Problem

The following statement provides a generalized version of the

Wiener filter problem.

S~a~ ement 3: The Wiener filter problem (Figur e 3).

Given two not necessarily causal systems L1, L2: [H, P
t
1 and two 4.

random processes a, 8€ (H, Z, E’), determine a causal filter such

that, for any other causal D one has .7(D0) c .7(D), where
2

J(D) E {~L2a - D (L 1a +8)j I.

The following theorem gives a sufficient condition for the solution

of the generalized Wiener filter problem.

Theorem 3: Suppose that the operator

Q — L1QQL3 
+ Q + L1%8 

.1. QBU L1

is invertable. Then the noncausal solution of the Wiener filter problem

is given by

L2 (QaL + Q
8

)Q~~~

~
L

~~TTTI ~TIIT1 .. 
-- . ..
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A causal solution is given by

* *4 — lD0 — fL2 (Q~L1 + 
~~~~~~~~ 1c~

z *where a is causal, causally invertable and such that Q —

The proof of Theorem 3 follows directly from Theorem 2 by

recognizing that the Wiener filter problem can be viewed as a

specialized version of the basic optimization problem with

L3 l and L4 O.

Note that just as in the classical case, ([Bo 1], p. 424), the

solution procedure of the generalized Wiener filter is implemented

• in terms of the following physical steps:

i) calculate a prewhitening filter which reduces the

colored noise problem to a white noise problem; let

this be Q;

ii) calculate the optimal noncausal filter associated

with the white noise problem; this is

II — (L2%LJ 
+ 

~~~~~~~~~~~~~~

iii) calculate the best causal approximant of II; let it be

iv) construct the optimal causal filter in terms of the

cascade composition of the inverse of the prewhitening

filter Q4, followed by tlt]c that is D0 —

Thus our abstract }Ltlbert space generalization of the Wiener filter

enjoys the same engineering interpretation which characterizes the

classical transfer function development.

*

L_
~~. - ~~~~~ . --~~~~~~~~~ - ..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _- .--~~~~~~~~ — _ . _
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An additional point of interest in regard to Theorem 3 is that

by setting L1 
— 0 and L2 1, it also gives an immediate solution to

the following optimal estimation problem (Figure 4): Given a and 8,
2

determine a causal D0 so as to minimize B (1DB - aj I. This latter

problem was formulated and studied in [Sa 3 j .  The following corollary

rectjfies the incorrect solution given in that reference.

Corollary 2: If Q
8 

is invertable then a sufficient condition for

to be a solution of the optimal estimation problem is

—

where a is causal , causally invertable and such that Q
8 

— an .

5.2 The Optimal Servo Problem

We will now consider an extended version of the optimal servo

problem which has been studied among others by Newton, Gould anu

Kaiser [Ne 1], Chang [Ch 1], and Youla [ Yo 1]. Our formulation and

result are formally identical to those which can be found in this

latter reference (compare our Theorem 4 with Corollary 1, in [Yo 1,

part II]). A formal statement of the problem is as follows.

Statement P4: The optimal servo problem (Figure 5).

Given the statistically independent random processes, d, t, m, and

LiC (H, E,~~),  and the causal systems F , F0, L, L0, T, T0, and T5, all

mapping [H, P~] + [H, PtL Determine a causal feedback controller N0
such that

i) N0 is causal;

ii) (I o FTNQ) admits a causal bounded inverse;

— 
_ - - .

_ _  _
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iii) For any other causal controller N satisfying i) and ii)

one has

J(N0
) c J (N)

where
2 2 2

.7(N) — E {Iu - y l + x

y — TN (I + FTN)~ [U + L~,t - F
0m + CL - FT0)d] + T0d

r T5N (I 4 FTN)~~ [u + L0t - F0m + (L - FT )dj .

The following lemma establishes the equivalence between the optimal

servo problem and the basic optimization.

Lemma 11: Suppose that D0 is a solution of the basic optimization pro-

blem with

B — L0L - F0m + u + CL - FT0)d

- 
. -

L1 — O

L l2

L3 T

L k T4 5

Then a sufficient condition for a causal N0 to be a solution of the

Optimal Servo Problem is that (I + PTN0) admits a causal bounded

* inverse and

(I - PTD0)N0 — D0.

$

_  - - - - .-

_ _  - - - -- --.-—- - --—- .~~- - --~~- ~~~~---~~ -~~~~~-~~~- - --- --- -
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Proof: From Figure 5 one has

y — TN (I + FTN)~~ [u + L02. - F0m + (L - FT0)d) + T0d

r — T N  (I FTN)~
1 [u + L0t 

- F0m + (L - FT0)d]

Using the notation

8 u  + L0L - F0m (L - FT0)d

ci — u - T~,d

it follows

e u - y a  - TN0 (I + FTN )48

r — T5N0 (I + FTN )4$

Letting now D0 
— (I N0FT) ’N0 we have

N0 
— D0 (I - FTD0)

4

hence

N0 (I + ~
•
~N ) ~

1 —

From here we obtain
2 2 2 2 2

J(N) — E  { Ie I + k In } — E  (Ia - + IkT5D0B I  I J(D~)

Suppose now that D0 is a solution of the basic optimization problem and

that N0 is not a solution of the optimal servo problem. Using the

above equations this would imply that there exists an N such that

.7(N) ~ .7(N0) J(D0).

H

_ _ _  - - ~~~~~~ . - -- --------- - —----~--~~
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— Setting D — N (I + FTN) 1 we would then have

J(D) J(N) < .7(D0)

which is a contradiction to the hypothesis that D0 is a solution of

the basic optimization problem.

The next lemma gives a sufficient condition for the solution of

the basic optimization problem which lemma 11 associates with the

opt imal servo problem. Its proof follows directly from Theorem 2.

Lemma 12: Suppose that there exists causal and causally invertable

A andasuch that

/ * 2* *T T + k T 5T5 — A A

— L0QLL0 F0Q~F0 
+ + (L - FT0)Q~ CL -- F10)

* _aa*

Then the basic optimization problem associated with the optimal servo

problem has the following solution

D0 
— A ’ [A* T*

~~ Ba*4)Ca4

where

-‘- T0Q~ (L - PT0).

The next theorem illustrates the conditions under which the val i-

dity of the servo problem formula proposed by Youia, Jabr and Bongiorno

can be extended from the rational transfer function to the more general

Hilbert space setting under consideration. The proof is an immediate

consequence of lemmas 11 et 12.

_  

_ _ _  ~~~~~~--~~~—— -  -
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Theorem 4: Let the hypothesis of lemma 12 be satisfied and suppose

that (I - TFD0)4 admits a causal inverse.

Then a solution of the optimal servo problem is given by

N0 
— D0 (I - FTD0)

4

provided that (I + PTN0) admits a causal bounded inverse
.

Remark 2: Observe that using the notation W0 
— D0~ the solution

proposed by the above theorem can be rewritten as follows

N0 
— W0 (~~ - FTW0)

4
.

This solution is formally identical to that which can be found in

[Yo 2~. In view of this parallelism it is in order to clarify that

our approach is at one time more general and more particularized than

Youla’s; More general in that it treats infinite dimensional and time

variant systems; more particularized in that it does not allow the

open loop chain to be unstable.

5.3 The Deterministic Basic Optimization Problem

The reasoning underlining the proof of our solution of the basic

optimization problem can also be applied to cases where the invertibi-

lity hypothesis of that result are not satisfied. We will show this

by formulating and solving a slightly more generalized version of the

basic (deterministic) optimization problem studied by Porter [P0 3].

The formulation goes as follows . 

- --~~
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Statement PS: Porter basic deterministic optimization problem

(Figure 6).

Given three causal systems G
~
: [H, P

t
) + [H, pt], j — 1, 2, 3, and

an element ZcH such that P0z 
— z; for some P0 (I - P0)cR; determine

a causal controller, D0, such that for any other causal D one has

.7(D0) < .7(D)

where
2 2

J(D) — ICC 2 - G1D)zI + I G 3D zI

The following theorem rediscovers Porter ’s main result , (Theorem 2 ,

[PO 3)) using the basic optimization problem approach.

Theorem 5: Suppose that there exists a causal and causally invertable

A such that 
-

G1G1 
+ G3G3 

— A A

Then a suff icient condition for D0 to be a solution of the deterministic

basic optimization problem is

— lD0z — ft P0 [A G1G2zJ .

Proof: Observe that Porter’s deterministic basic optimization problem

corresponds to the special case of our (stochastic) basic optimization

* 
problem character ized by L1 — 0 and a — B — z. This is precisely the

case considered in Corollary 2. Applying this corollary and taking

into account the following correspondence of notations L2 — G2, L3 —

and L4 G3, it follows that if causal is a solution of the best

causal approximant problem with U — A 1G1G2, then a solution of the

deterministic basic optimization problem is given by D0 
—

_ _ _ _ _
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Observe also that , given 
~~ 

— Q~~, a sufficient condition for a causal

to be a solution of the best causal approximant problem in that

— UQ; (this follows immediately from the second equation in the

proof of Theorem 1). Noting that in our case — (., z)z , and that

— ( j j -~ z is such that — an*, it follows that a sufficient con-
dition for a causal to be a solution of the best causal approximant

problem is

*4 *C. , z)$3z — (• , z)A G1G2z.

In addition to this from the causality of and the hypothesis

that z — P0z one has, (lemma 1),

— P0~0z

hence -

*4 *P0A G~G2z

and therefore

-l -l *4 *A •0z — A P [A G1G2Z].

This last equation implies that a sufficient condition for a causal

D0 to be a solution of the deterministic optimization problem is that

-l *4 *D0z — A  P0 [A G1G2z1.
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6. OPTIMA L STATE ESTIMATION AND CONTROL

In the same spirit of the previous section we will proceed to

apply Theorems 1 and 2 to three fundamental problems of the optimal

state estimation and/or control type. In contrast with the usual

approach, where one looks directly for an optimal state feedback

strategy, and in line with [St 1] we find it more appropriate to

formulate these problems as open loop problems. It will be an inte-

resting consequence of our results that the open loop solution can

be implemented in terms of a memoryless state feedback configuration.

The physical motivation of these problems and related applica-

tions are once again well documented in the classical references

[ica 1), [Ka 2], and [An 1).

6.1 The Optimal Regulator Problem

We will start with a generalized version of the optimal regulator

problem originally proposed and solved by Kalman [iCa 1). This abstract

formulation and its subsequent solution can be viewed as a natural

outgrowth of similar results by Steinberger, Schum i.tzky and Silverman

[St 1]; as such, the discussion of these authors about motivations and

advantages of the Hilbert resolution space approach to the problem

apply “verbatim” to the present context .

Statement P6: The optimal regulator problem (Figure 7).

Given two statistically independent random processes w , irc(H 1, 
~~~~‘

with — I , and three causal systems

. r t~ r tB. LH1, P14 + LH2, P2

C: [14
2
, P~ ] + 

~~2’ ~ ]
* F: 

~~2’ ~~ + [H3~ p~]

_____
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with B and P memoryless and G strictly causal such that (GB, F) is

a state trajectory realization of PGB . Determine a causal optimal

open loop regulator D0: [143, P~] -. [
~~‘ 

p~] such that for any

other causal D one has

J(D0) c .7(D)

where
2 2

J (D) — E {Iy ~ + lu l  I
with

y — FGB (w + P01T - u)

u — DP0FGB (w + P°n)

Our solution of the optimal regulator problem is formalized by

the following theorem.

Theorem 6: Principle of optimali-ty and the Kalman regulator.

Suppose that there exists a strictly causal V1 such that

* 
t

I + B G R F G B — ( I + V 1) (I + V 1)

Then a sufficient condition for to be an opt imal open loop regulator

is
• 

D0F — (I + P4~GB)~~)4~

where t4.~ is a a~~~ry1ess operator such that V1 
— ?4RGB. The optimal

control prov ided by this regulator can be implemented by using the

• following memoryless state feedback law

x GB (w + P °w - u )

U M,,~x.

— - - - — —
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Proof: Using the following correspondence of notations

a — B — P0FGB (w + P0w)

L1 0

L2 l

L3 
— FGBP0

L4
1

It is easily recognized that the optimal regulator problem is a

special case of the basic optimization problem (Figure 8). Moreover,

by observing that

*I + B G F FGB — (I + V1) (I + V1)

implies

I + P0B G F FGBP0 — (I + P0V )  (I + v1P)

one also recognizes that this special case is precisely the one

-: - considered in Corollary 1.

Applying that result we have the following sufficient condition

for a causal D0 to be the optimal regulator

— (I + V1P0)D0 
—

where is a solution of the best causal approximant problem with

Q2 and U given by
2 

* 1 * * -l * * * * .1 * * *U — A L3L2 — (I + P0V1) ~~B G p — p (I + V1) B C F

$ 
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To characterize such a observe that from the statistical indepen-

dence of ~ and ii one has

0 0 ~~~~~~— — PØFGB (Q
~1 

+ P 
~-ir~ 

)G F B P0

From here, applying Corollary 1, one finds that a sufficient condition

for to be a solution of the best causal approximant problem under

consideration is

•Q
FGB — EUPOFGB)C

that is

*4  * * *
•
0

FGB — [(I + P0V1) P B  C F P FGB]c

* — l * * *— P0 [(I + V1) B G F FGB]c.

Noting that by applying lemma 8i) one has

* — l * * *[UP FGB] c 
— P + V1) B C F FGB]c 

— P V 1

where, (from lemma 8) , V1 — M.~GB with MR a well defined memoryless

operator. It follows

[UP FGB] C 
— MRP G B

hence a sufficient condition for is

EAP0FGBJc 
— •0FGB — P0MRGB

From these equations one obtains that a sufficient condition for

to be an optimal regulator is

D0F — (I + V1P0) ’~0F — (.1 + M,~GB) 1M,,~
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This formula implies in turn that the optimal control law given

by D0, u, satisfies the following equation

u — (I + MRGB)4MRPOGB ~~ + P°ii)

hence

j U — M~GBu — MI,~P0GB (w + P01i)

From here one obtains the desired memoryless state feedback strategy,

namely

u M ~x

X P 0G8 ( w + P0w - u)

The physical interpretation of this strategy is illustrated by the

block diagram in Figure 9.

It is interesting to observe that according to the above theorem

the solution of the optimal regulator problem can be implemented either

by means of an open loop configurat ion or by a closed loop configuration

using state feedback. In general the optimal closed loop configuration

is characterized by a sensitivity behavior which is better than that of

the open loop configurat ion . To illustrate, observe that if we repre-

sent with ‘
~~~2 the influence of a given perturbation over the state of

the opt imal open loop, then (I + M.~GB~~
1.y will represent the influence

of that same perturbat ion over the stat e of the optimal closed loop

system. Using the notation $ — (I + M,~GB)
4 it follows that the optimal

closed loop system will have a better sensitivity behavior than the

optimal open loop if and only if I l S i l  c 1, that is if and only if

I - > 0, [Po 1]. Note that

*

~~~ _ _  ~_ — i _
~~~~_ __
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From here, using the fact that V1 — H,~GB it follows

* * -1- * * * -lI - $ $ — (I + V1) -(B C P FGB} (I + V1) > 0

One can then conclude that the closed loop configuration of the

opt imal regulator does indeed off er a better sensitivity behavior

than the open loop solution.

6.2 The Optimal State Estimation Problem

The optimal state estimation problem originally proposed by

Kalman [ICa 1], and Kalman and Bucy [Ka 2] is in our present context

formulated as follows.

Statement P7: The optimal state estimation problem (Figure 10).

Given four statistically independent random processes ue (H 1, X 1, ~ l~ ’
~~, irc (H2, ~~ ~~~~ 

ric(H3, E3~ ~3) with — I and Q — I; and three

causal systems

B~ [H1, p~J + 

~~2’ ~

C: 
~~~ 

p
~j • ~~2’

F: [
~2’ P~) + [H3, P~]

with B and F semoryless and G strictly causal such that (GB , F) and
**  *(C F , B ) are state and constate trajectory realizations of FGB and

B G F respectively. Determine a causal filter D0 D01, D02), with

D01: [143, P~] + [H2, p~]

D02 : [al’ ~ ] + 
~~2’ ~21
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such that for any other causal D — (D1, D2) one has

3(D0) < 3(D)

where

-- J(D) — E  {Ix - x l I

with

x G B  ( u + w + P 0ir)
~~~~~

-

• x D 1z + D 2u

and

I ~ - z — P [FGB (u + + P0ir) +

The following theorem is to the effect that the optimal state

estimation problem can be solved via a generalized Kalman-Bucy filter.

Theorem 7: Suppose that there exists a strictly causal V2 such that

I F G B B G F  — (I + V2) (I V;)

Then a solution to the optimal state estimation problem is given by

— 

~~e (I + FGM )~~

-
• 

D02 
— (I - Q4~ (I 4 FQI~) ’F)GB

where N~ is a memoryless operator such that V2 — PGMe The optimal

* state estimation can be implemented by medns of the following state

feedback model

— G [Me [~ - Px] - ul

z FGB (u + i~ + P0ic) +

_______________ _ _ _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~ ---~~-—
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Proof: For simplicity we will treat the case where 11 — 0; the proof

for the case ii ~‘ 0 is obtained by applying Corollary 1 and by using

an argument identical to that developed in the proof of Theorem 5.

- Observe that in this case

J(D) — E  ( I D 1 (FGB Cu + ~) + ~) + D 2u - GB (u -
2

— E  ( J D 1 (FGBw + ii) - GBcu - (D 2 + (D1F - 1)GB)ul I

that is, (from the statistical independence of u, w and ii) ,

2 2
J(D) — E  (ID 1 (FGBw + n) - GB~ J } + E (l (D2+ (D JF - I)GB)uI I

It follows

J (D) c mm J1(D1) + mm JQ (D1, D2)

where
2

J1(D1) E flD1 (FGBw + r~) - GBw ! I

and

J0(D1, D2) — E  1 0 2 + (D1F - I)GB)u I }.

Noting that the functional J 0 (D 1, D2) is minimized by any CD 1, D2)

pair such that

D2 — (I - D1F)GB

one can see that the problem of minimizing J(D1, D2) is equivalent to

that of minimizing J1(D1). This latter problem in turn is .quiv~lent

to a basic optimization problem with — I and L4 
— 0. This given

the hypothesis of the theorem, is precisely the problem considered in

Theorem 3. Taking into account that — I , — — 0, — 0,

_  _
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— FGB and L2 — GB , and applying that result we then have
* * * * -1 — 1— EGBB G p (I + V2) )C (‘ + V2)

From here, using the memorylessness of F one obtains

PD01 — fFCBB *G*F* (I + V;)~
’j c (I + V2)4

and by observing that (see lemma 8)

[FGBB*G*F* (I + V;) -1) C 
— V2

it follows

FD01 
— V2 (I + V2)4.

* * **  H
Applying lemma 9 we have V2 

— MeG F and therefore — 

~~~~ ~
fol lows

FD01 — 

~~~ ~ + PGH )~~

hence

— 

~~e (1 + 

~~~~ 
-1

and

D02 — (I - GM (I + FGM~)4p)GB.

The state feedback realization of the optimal state est imat ion filter
is obtained by first recognizing that the opt imal estimat ion provided
by (D01, D02) is equival ent to that given by the block diagram in

Figure 11. Subsequently one verifies that this block diagram is equi-
valent to that in Figure 12.

_ _  

- 

_  

• •

~~~~

•

~~~
. _ _



6.3 The Stochastic Optimal Control Problem

In what follows we revisit the optimal regulator problem by

considering the case where the output of the system is corrupted

by noise.

Statement P8: The optimal regulator problem in the presence of

measurement noise (Figure 13).

Given three statistically independent random processes, ~~ , iTs (H1, E1, 
~~~

and ~c(H3, E3, ~3)~ with Q — I , and Q~ 
— I; and three causal systems

B: 
~~l’ 

P~J + [H2, P~]

G: [
~2’ P~] + 

~~2’ P2j

F: [H2, p~J + [H3, p~]

with B and F memoryless and C strictly causal such that (GB , F) and
* *  *(G F , B ) are admissable state and costate trajectory realizations

* * *of FGB and B C F respectively. Determine a causal regulator

D0: [143, ~ -P [is, P~] such that for any other causal D one has

.7(D0) < J (D )

where
2 2• 3(D) — E  ( I u I  + il I

with

u — Dz

z — P
0 

[FGB (w + P
0

ii) + r~]

and

y — z - FGBu.

I. - - - - --- - - - ------- — —~--—--— ---- —-- - - - - -----~~-~—.----—- -- --- ---• ----•- --- - —--—--------—-•— - --—— - - - - - -—-- - —~~
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Our next and final theorem establishes that the stochastic opti-

mal control problem can be solved by applying the classical separation

principle: the optimal stochastic controller is given by the cas-

cade composition of the Kalman-Bucy filter followed by the Kalman

regulator.

- Theor em 8: Suppose that there exists strictly causal V1 and V2
such that

*I + B G F FGB — (I + V1) (I + V1)

and

I + FGBB G F — (J + V2) (I + V;)

Then a solution of the optimal regulator problem in the presence of

- 
noise is given by

• D0 — (I + MRGB) - ‘MRGM (1 + FGMe) 
-1

where memoryless M,~ and Me are the solutions of the optimal regulator
-

- (~Fheorem 6) and optimal state estimator (Theorem 7) problems respecti-

- vely. The optimal control law provided by this regulator can be
- 

implemented by means of the cascade composition of the optimal state

estimator followed by the optimal regulator;

thet is

x — G 0 4 ( z - P z ) - B u

u M RX

z — F G B (u + w + P 0ir) + ‘~•

-

- 

_  

~~~-- - -- -~ - -t ~~~~~~ ~-±-~~~~-—-- ~~~~•--——--~~~•-- - - -
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Proof: Using the following correspondence of notations

a — P0FGB (w + P°w)

B PØFGB (w + P°ir) +

L1 0 -

•

L2 
— 1

L3 
— FGBP0

L4 — 1

one can once again see that the problem under consideration is

equivalent to our basic optimization problem. For simplicity and

without any loss of generality, we will again confine ourselves to

the case it — 0; (as in Theorems 6 and 7, the proof for the case

11 7’ 0 would require a slightly more involved argument based on

Corollary 1 and similar to that developed in the proof of Theorem 6).

We will then proceed by applying Theorem 2. Note that

I + B G F F G B  — (I + V1) (1 + V1)

and

I + F G B B G F * — (I + V2) ([ + V2)

imply

+ P0B C F P G BP0 — (] + P V 1) (I + V1P0)

and

I ~ P0PGBB*G*F* — (I + V2P0) (I + PØV2)



_____________________________ —----------_--- - --

9
Using these relations and applying Theorem 2 one obtains 

* -l -l— + V1P~) [(I + P V 1) P B  G F P FGG ~ p (~ 
+ P V 2) 1~ 

(J + V2P )

In addition to this, by virtue of lemna 9, V1 
— MRGB and V2 — FGMeI

and from 1~~~a 10

[( I + V1Y 1B G F F G B B G P  (I + V ) 4]c 
— MRGM.

It follows that the optimal regulator is given by

— P0 (I + MRGB)
~
’
~
MRGM (~ 

+ FG?4)~~

The proof that the optimal control law can be implemented in terms

of a feedback loop consisting of the optima l state estimator followed

by the optimal regulator is easily obtained by verifying, by inspec-

tion, that the block diagrams in Figures 14, 15 and 16 are mutually

equivalent.

Remark 3: The statements of the problems and the associated

Theorems 6, 7 and 8 can be made slightly more general by assuming

— Q and Q
~ 

— R with Q and R menoryless and positive definite. To

illustrate how this is done, observe for example that if in the sys-

ten in Figure 7, one has Q — Q 7’ I , and Q
~ 

— R 7’ I then one can

consider the optimal control problem for the equivalent system repre-

sented in Figure 17 where Q- — I , Q~ 
— I and ~ — Q4”2B; ~ — GQV2 ,

P — R 1”2F. Note that ~~, C and P enjoy the same state and causality

properties of the original B, C and F.

*



CLOSURE

Using the Hilbert resolution space valued random processes

fr amework developed in [Sa 3] plus recent causality and state

results [De 1], [St 1], a best causal approximant and a basic

stochastic optimization problems have been formulated and solved.

These solutions provide the key to a better understanding and a

significant generalization of a number of classical estimation and

automatic control theory results. In the context of opt ima l

problems of the input-output type, they yield a generalized version

of the Wi ener filter (compare [Bo 13 and Theorem 3), the Youla-

Jabr-Bongiorno servo problem solut ion procedure (compare Theorem 4

with [Yl, part II, Corollary 1]), and Porter ’s solution to th~
deterministic basic optimal control (compare [P0 1, Theorem 3~ and

our Theorem 5). In regard to estimation and control problems of

- . the state space feedback type, they lead to generalized versions

of the Kalnian optimal regulator (compare [Ka 1, Theorem 4] with

our Theorem 6), the Kalman-Bucy filter ([ICa 2, Theoreml] should be

compared with our Theorem 7), and the stochastic control separation

theorem c [Kw 1, Theorem 5.3, p. 390] should be compared with our Theorem 8).

These generalizations, to the effect that most of the classical

results in optimal estimation and control theory are now extended

to ailtivariable , distributed parameters and time variant systems

are of course not surprising. Most of them have, in fact, in one

form or the other already appeared in the technical literature. In

particular, for example, a generalization of the Kalman-Bucy filter

(~)48 
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has been given by Palb [Pa 1], using the integration theory for

Banach space valued functions of Dunford and Schwartz , by Kailath

fKa i 2) in the context of the innovations approach circle of ideas ,

and by Balakrishnan [Ba 3) in the setting of infinitesimal generators

on strongly continuous groups . Similarly, a det erministic version of

the principle of optimality has been given among others by Porter EPo 1]

and in a yet more comprehensive form by Steinberger, Schumitzky and

Silverman [St 1]. A generalized version of the Wiener filter has been

given by various researchers including Kailath [JCai 2], and Balakrishnan

[Ba 1]. Finally, a generalized separation principle has been offered

among others, by Balakrishnan [Ba i), Wohnam [Wo 1], and Curtain [cu 1).

The main contribution of the paper is in showing that our Hilbert

resolution space approach represents a worth while addition to the

available methods: it allows to obtain all these and more results as

particular cases of one central result; it retains the same physical

:. and intuitive character of the classical developments by Bode and Shannon

[so iJ and Kalman [Ka 1]; it elucidates the connections between the plant

structural properties with respect to such concepts as state, strict

causal ity and causality decomposition and the structural properties of

the optimal controller and/or observer. Last but not least, it opens up

a number of new int eresting questions in the realm of causal factorization,

optimal control and Riccati differential equations.

*

2
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FIGURE 1: The best causal approxiinant problem:

given noncausal 11 and the stochastic process z ,
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find a causal so as to minimize E {je~ }.
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F IGURE 2: The basic optimization problem:

given L 1, a and 8 determine a causal D so as ..
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to minimize E (In + id ).
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FIGURE 3: The Wiener fi l ter problem:

given L1, L2, a and ~ determine a causal D so
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as to minimize B (t e l }.
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d disturbance T — the plant

1, a instrumentation noise P transducer system

r saturation related signal L, ~~~ F0, T0 
— noise related system

u desired output

y — actual output

FIGURE 5: The opt imal servo problem:

given L0, L, T0, T, T 3, F , P~ and u determine a causal N

* so as to minimize B flu - l 4 k in  }•
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e — error signal C1 — the plant

r — saturation related signal G2 
— the desired system

z input

FIGURE 6: Porter’s basic optimization problem:

- given G~, i — 1, 2, 3 and z determine D so as to
• 2 2

minimize E (t e l + tn  }.
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z — influence over the future output of the plant of the past

input, (P0T), and the perturbation, (w); z P0FGB (w + P°ir)

y — output of the plant D — open loop regulator

u control $ the plant

- FIGURE 1: The optimal regulator problem:

knowing $ and z determine D so as to minimize
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F IGURE 8: Establishing the equivalence between the optimal

regulator and the basic optimi-~ation problems.

_ _ _  

[ a ]

i:iJT1:--
~~TGi

L
~~~~~~~

1’
Y

Il_I.e — — S — .11
3

MR ~

FIGURE 9: Kalman opt imal regulator.
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$

u — plant input z available output date
a

- .  perturbat ion x estimated state
0 .P ~r past input D — state esti’~ator

x plant state $ the plant
- .  y — plant input

— measurement noise

• FIGURE 10: The optimal state estimation problem:

knowing $, z and u determine a causal D so as to
a 2

* 

- minimize C {Jx - x l  }.
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z — influence over the future output of the plant of the

past input, (P0w), the perturbation, (w) , and the noise, (ri);
— P0FGB (w + P°ir) +

y — output of the plant D — open ioop regulator

u — control $ — the plant

FIGURE 13: The optimal regulator problem in the noisy case:

knowing $ and z determine D so as to minimizes
- 2 2 •

• C (tul + I~I ).
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FIGURE 17: Equivalent white noise problem associated with an

original coulored noise problem.
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