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Preface

Two-dimensional digital filtering is a new discipline

that has developed only in the past several years. When I

expressed an interest in studying in this field, Prof.

Gary Lamont suggested that I attend a Rennselaer Polytechnic

Institute short course being offered in July on two-dimensional

signal processing. The course was very worthwhile . While

discussing my thesis topic with Prof. Sanjit Mitra, of the

University of California , I received some wonderful ideas.

Additionally, Prof. Mitra suggested I write Prof. Russ

Mercereau of Massachusetts Institute of Technology, who

had done some similar work in two-dimensional filter

design. I wrote Prof. Mercereau, now of Georgia Institue

of Technology , and he very kindly sent me several unpublished

papers which I found very useful. I also want to acimowledge

the many people in the local area who helped me so much :

Dr. Phil Pourier, for help with cataloged procedures and

DISSPLA ; Dr. John Hines, for time on the Avionics Laboratory

graphics equipment; Lt. Stan Larimer and Lt. Steve Enke,

for countless programming suggestions; Mrs. Diana Hake,

for highly professional typing; and my wife, Randi, for

being a model of patience and understanding.

Richard B. Brown

H
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Abstract

This investigation develops an interactive computer

aided method for designing lowpass or highpass two-

dimensional finite impulse response digital filters. Filters

designed us ing this method will have linear phase and an

equiripple error in the transmission and attenuation bands.

The essence of the method is that it transforms an

optimal one-dimensional digital filter into a close approxi-

mation of an optimal two-dimensional digital filter. The

amplitude characteristic of the one-dimensional filter

is preserved in the sense that each point of the one-

dimensional frequency response is mapped to a contour in

the two-dimensional plane. This transformation was first

proposed by James H. McClellan, and is now called McClellan

Transformation.

By controlling the mapping of a specified one-

dimensional frequency to a desired contour shape in the

plane , two-dimensional filters of fairly arbitrary specifi-

cations can be designed; that is, their frequency response

can be determined , and the associated two-dimensional

impulse response coefficients calculated.

I
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INVESTIGATION OF OPTIMAL
V

LINEAR SHIFT- IN VARIANT

TWO-DIMENSIONAL DIGITAL FILTERS

I. Introduction

This investigation concerns an interactive computer

aided method for designing two-dimensional finite impulse

response (FIR) digital filters. A spectral transformation

technique , suggeste d by McC lellan (Re f 1) , is extended to

permit the design of two-dimensional filters within a

special class. Through this transformation , an optimal one-

dimensional FIR filt er is trans formed into an equiri pple,

though sub-optimal, two-dimensional digital filter. The

amplitude characteristic of the one-dimensional filter is

preserved in the sense that each point of the one-dimensional

frequency response is mapped to a contour in the two-

dimensional frequency plane.

Digital Filters

Digital systems deal with signals that are discrete in

both amplitude and time. Digital filtering , sometimes calle d

digital signal processing, is involved with operations on

such signals, using either genera l purpose computers or

special purpose hardware. In the early years of digital

filtering, the required processing could not always be done

( in real time. However , advances such as the Fas t Fourier

1
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Transform algorithm now permit processing times several

orders of magnitude faster (Ref 2:3). Although digital

f i l t e r s  are often used as mere s imulations of  ana log filters , 
-

their most significant value is when they are used to create

f i l te rs  with characteris tics unobtaina ble us ing analog

methods.

To permit the use of well-known linear system theory,

only linear shift-invariant (LSI) digital filters will be

considered in this investigation. LSI filters can be

divided into two classes depending on the duration of the

f i l t e r’s impulse response; infinite impulse response (IIR )

filters (or recursive filters), and finite impulse res ponse

(FIR) filters (or nonrecursive filters). h R  filters were

originally more popular than FIR filters, because the

traditional approach to digital filter design involves the

transf orma tion of an ana log h R f i l t e r  into a digital h R

filtez’ with some prescribed specification (Ref 2:197).

However , FIR filters have two attractive properties. First,

there is the possibility of designing exact linear phase,

required in many applications (Ref 7:76). Second , the

FIR filter is never unstable. These qualitites are often

important in digital signal processing applications. For

1 many years , efficient methods for designing optimal 1-D FIR

filters were not available ; however, in 1972, Parks and

McClellan published a very efficient algorithm for the

design of optimal l-D FIR filters (Ref 3 Ref k).

With this problem solved , attention turned to the design

of filters of higher dimensions, especially two-dimensional

2



— (2-D) digital filters. 2-D filters find applications in

areas where signal specification requires spatial coordi-

nates, such as in image processing (Ref 5) or seismic

analysis (Ref 6 ) .  A digital filter must be designed (that

is , the frequency response must be specified and the impulse

response coefficients must be determined), and then the

filter is implemented. To permit the proper amount of detail

in this investigation , only the design of the digital filter

will be considered. Recognizing that implementation is

certainly just as important as design, a short listing of

implementation references has been included as a supplemen-

tary bibliography.

The Design Problem of 2-D Filters

A design goal for a l-D filter might be to minimize

the error over the interval [_ rr,ir] between a desired

frequency response D(~i) and the obtainable frequency re-

sponse H(w), according to some error criteria. It is

assumed that the frequencies of interest have been normal-

ized to the interval [_ .r~,n]. This is the case if the

sampling time T is equal to unity. Alternatively, one

maps the sampled frequencies via the complex exponential

mapping z = exp(sT) and deals with the set of angles, repeating

on the Z-plane unit circle (Ref 2 :199-200).

The design goal in two-dimensions is analogous , where

the interval [-ir , rr] is replaced by the region [_n ,rr] x [_1r , Tr]

(

3



in the spatial plane.’ 2-D FIR filters can be designed by

multiplying~ the infinite-extent ideal frequency response by

an NxN sample point rectangular window. This amounts to a

truncation of the infinite duration impulse response sequence.

However , as in l-D, the rectangular window produces a large,

undesirable ripple in the frequency response , due to the

Gibb ’s effect. By using better windows , the ripple can be

reduced somewhat, but the resulting filter is never optimal,

since the required convolution “smears” the frequency

response (Ref 7:239—250).

Rabiner and others have designed optimal 2-D FIR filters

by using linear programming. While the resulting filters were

excellent, the design method was very costly and inefficient .

The highest order filter designed (9x9 sample points) in-

volved thousands of constraint equations and required more

than one hour of computation time on a high speed computer

system (Ref 7sk7l).

Effort has been made to generalize McClellan and Park’s

1-D algorithm to higher dimensions despite an assertion by

McClellan that the algorithm could not be extended directly

(Ref 1:30). Both Kamp and Thiran (Ref 8) and Hersey and

Mercereau (Ref 9) recently published algorithms for the

design of optimal 2-D FIR filters based on variations of the

Parks-McClellan method. Despite use of efficient numerical

techniques , no dramatic decrease in execution time was

( 
-

14



achieved in comparison with linear programming. Addition-

ally, these methods are restricted to low order filters

(Ref 10:240).

In 1973, McClellan propose d that a more efficient method

of-designing optimal 2-D filters would be by a “spectral

transformation” , a complex mapping that carries a stable

rational transfer function into another stable rational

transfer function. The change of variables McClellan sug-

gested, to be referred to as the McClellan Transformation , is

cos o = F(cu1,ø2) t1 + t~ cosco~ + t
3
coscu

2 + t4eosco1 cosw2 (1)

Using this transformation, with the values t1 = - .5,

t2 = t
3 

= t4 = 0.5, McClellan was able to design circularly

symmetric 2-D filters by transforming a suitable l-D optimal

filter (Ref 1). The magnitude of each frequency in the

interval is mapped to an w1-cu2 contour in the square

region [_ r , TT]x [_lri , 1rJ . Several such contours are shown in

Fig. 1, and the resulting 2-D frequency response in Fig. 2.

(The design program developed in this investigation was

used to obtain these figures.) Because there are many 2-D

applications that either require or can tolerate a

circularly symmetric filter, McClellan ’s method has been

widely praised (Ref 9:1-2).

Because these filters are obtained using a transform

method , they are generally sub-optimal . However, they do

5
, - 
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closely approximate the true optimal filters designed by

any of the previous methods . Using McClellan Transforma-

tions , filters of large orders can be designed in a matter

of seconds on a general purpose computer . Filters of

l27xl27 sample points have reportedly been designed (Ref

10:240), although the memory requirements would be consid-

erable.

Approach of this Investigation

This investigation develops a computer-aided design

program which extends the capability of the McClellan

Transformation to design 2-D FIR filters with a single

transition band of a fairly arbitrary shape. Included with-

in the admittable class of shapes are low pass and high pass

filters that are symmetric about both the and 
~2 

axes ,

and whose single transition band is bounded by smooth , mono-

tonic curves defined by the functional relationship w2 =

in the region [O , rf]x[O , Tr] of the 0~1~~ 2 plane . Additionally , -

it is required that the attenuation and transmission bands

be of constant magnitude.

The algorithm to be implemented consists of four major

steps:

1. Define the 2-D frequency response by specifying

admittable contours in the w1-w2 plane that will approx-

imate the desired transition band of the 2-D filter.

2. Using an error criteria, determine the values t1,

t2, t3, t4 that will produce the closest mapping of

l-D transition band frequencies to 2-D transition band8



contours.

3. Design an optimal l-D FIR prototype, with an appro-

priate frequency response , that will be transformed into

the desired 2-D filter.

4. Calculate the impulse response coefficients and

the frequency response of the designed 2-D filter.

The complete details of the method, until now unavailable,

- are logically developed.

The Seciuence of Problem Development

Chapter II reviews the McClellan-Parks algorithm for

designing optimal LSI FIR l-D digital filters. This chapter

is included for two reasons: first, the Parks-McClellan

algorithm is used to design the l-D prototypes required for

the 2-D transformation; second , the principles in the algo-

rithm serve as an essential introduction to some of the

concepts of the later chapters. In Chapter III the mathe-

matics of 2-D sequences is reviewed , and the required tools

for 2-D design are developed. Although methods for design-

ing non-optimal 2-D filters exist, the optimal 2-D filter re-

mains a stubborn problem . The reasons that make true

optimal filter design in two dimensions so difficult are

examined. This motivates the ultimate selection of a sub-

optimal method for the 2-D filter design algorithm.

In Chapter IV the rationale behind the McClellan Trans-

formation is discussed, and the nature of the complex mapping

required in the contour design is examined. It is shown that

9



the method cannot design transition band contours of all

shapes , but can design arbitrary contours within a very

useful class. To produce a non-trivial mapping, the re-

quirements for constrain ts on the elements t1, t2, t3, t4
of Eq (1) is shown necessary.

A method for calculating the 2-D frequency response

and the 2-D impulse response coefficients is outlined in

Chapter V. Additionally , the optimality of filters designed

using the McClellan Transformation is considered. Chapter

VI illustrates a few typical design problems . Chapter VII

draws conclusions on the investigation , and makes

recommendations for future related research .

Several appendices are included. Of particular

interest are Appendix C, a discussion of the computer pro-

gram developed in this investigation and Appendix D , a user ’s

guide to this program.



II. l-D Optimal FIR Filters

This chapter begins with a brief review of finite-

extent sequences and the nature of a linear phase l-D FIR

filter. Finite duration sequences possess certain very

useful properties for filter design. Such problems as

stability and implementation , which might affect h R  filters ,

do not arise with FIR filters (Ref 7~75-76). Additionally ,

FIR filters can be designed to have exact linear phase. This

is often important for applications where frequency disper-

sion due to non-linear phase is harmful (for example , speech

processing and data transmission) (Ref 7~76). For many

years no efficient method for the design of l-D optim al FIR

filters was available. The Parks-McClellan algorithm, to be

described , effectively solved this problem.

To best understand the Chebychev ( optimal ) approxima-

tion problem, certain nec essary mathematica l theor ems are

reviewed. It is then shown that the Parks-McClellan algo-

rithm is a natural extension of earlier efforts to apply

this Chebychev approximation theory. However, the resource-

ful adaptation of the efficient 2nd Remez Exchange algorithm

gives the Parks-McClellan method far more power than any

previous method.

Finite-Extent Seciuences and Linear Phase

If ~h(nfl is a causal finite duration sequence defined

( over the interva l O~~n~~2N-1, then the z-transform of

11



{h(n)} is 
-

2N-l
H ( z )  = ~ h (n ) z~~’ (2)

n=0

and the Fourier transform of {h(n)), with period 21f, is

2N-l
H(w) = ~ h(n)exp(-jwn) (3)

n=0

The condition for linear phase,

H(cu) = G(w)exp(j(A + Boi)), G(w ) Real ( Li. )

will be achieved if (Ref 7:77-78)

£ 
h(n) = h(2N - 1 - n), 0~~n .~ 2N-l (5)

Parks and McClellan showed that one of four possible cases

for linear phase is a positive-symmetric , odd-length impulse

response with , in Eq (ii.), A = 0, B = -(2N-l)/2. (Ref 1:10).

Because the term exp j(A + Bw) contributes only to phase,

{h(n)} can be assumed centered at the origin with length

N + 1 in each direction. Fig. 3 illustrates a typical case.

If ~is assumption is made , the frequenc y res ponse can

be rewritten as a sum of cosine functions (Ref 7:81-82):

N
= h(O)  + 2 ~ h(n)cos~in (6)

n=l -

N
= ~ a(n)co&un (7)
n=O

(

12



where

a(O) = h( 0) (8)

a(n) = 2h(n), n ~ 0 (9)

Chebychev Approximation Problem

By defining a desired frequency response D(~i) , and a

weighting function W ( w ) ,  then the wei ghted approximation

error E(w) is

- E(ø) W( co )  [D(w) - G(w) ] (10)

The Chebychev approximation problem amounts to finding the

coefficients ~a(n)} that minimize the maximum absolute

error E(cu) over the frequency band of interest.

To proper ly develop the Chebychev approxima tion

problem , a certain amount ox mathematical background is re-

quired. It is useful to extend the well-known concept of a

polynomial approximating function by considering some linear -

combinations of prescribed functions g1, g21....,g~ 
continuous

on a fixed space X. Their linear combinations Ec~g~ are

termed generalized polynomials (Ref 11:72). The Existence

Theorem guarantees that to each f e X there exists at least

one generalized polynomial which best approximates f(Ref

11:20).

For certain types of generalized polynomials, the

characterization of the best approximation can be stated

very conveniently. The functions 
~~~~~~~~~~~~ are sai d to

13
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satisfy the Haar Condition if each g1 is continuous and

if every set of n vectors of the form

x = [g1(x ) ,  g2~~~) ,  ..., ç~( x ) J  (1].)

is independent (Ref 11:45). For systems satisfying the

Haar Condition , the following theorem holds (Ref 11:75)

Alternation Theorem. Let g ~~~~~~~~ be a
system of elements of C [a,~~ satis~ying theHaar conditi on, and let X be any closed sub-
set of [a,b]. In order that a certain gener-
alized polynomial P = ~~~~ shall be a best
approximation on X to a g±v~n f e C [x] it isnecessary and sufficient that the error function
r = f - P exhibit on X at least n + 1 alter-
nations. Thus r(x1) =

This theorem is very important in numerical determina-

tion of the best approximations. To illustrate the theorem ,

it might be desired to approximate the function sin(TTx/2)

by a first degree polynomial P(x) = c0 + c1x over [o,lJ

(Fig. 4). By the theorem , the error function must alter-

nate at least three times. The points of alternation are

0 and 1, which can be determined by inspec tion , and ~~~,

which is not known. This situation is typical: if the

location of the extrema of the error function were known,

the approximating polynomial could be determined by solving

some linear equations. To determine the location of the

extrema, however , usually involves solving some non-linear

equations (Ref 11~75-76).

If Eq (10) is applied to the design of an optimal
( bandpass filter, the number of extrema of E (w ) will be the

15



H((J) - -

I

1-i-op ‘ / / / -

* 

-

_ _  

*

Fig. 5. An Equiripple Low Pass Filter 
.

( 
. 

- 
.

-

. 

- 16



sum of extrema of G(w) plus the mandatory extrema associ-

ated with a constraint at each band edge (Fig. 5). In

general , the extrema at the band edges ( except a t w =  0 and

w= n) will not be extrema of G (w)  (Ref 7 :129). “Extra-

ri pple” may therefore be present, since more than n + 1

alternations might exist.

Development of an Efficient l-D Desi~~i Method

By specifying N and 61 (.62 1(8
1
) and allowing 

~~~ 
and

to be free variables , Hermann designed extraripple

optimal FIR filters. He was restricted to designs of fairly

low-order filters because of an inefficient method for

solving the non-linear equations which locate the extremal

frequencies (Ref 2:258).

Using a method of polynomial interpolation “reminis-

cent of the Remez Exchange algorithm” , Hofstetter et al

provided an efficient method for determining these extremal

frequencies (Ref 12). This avoided the restriction on the

filter or der , but still left and as free variables.

Parks and McClellan completed the solution by develop-

ing a method where N , and are fixed , and 
~l ~ ~2 ~~

6l)

is allowed to vary (Re f 3, Ref 4). By properly interpreting

the Alternation Theorem , they developed an algorithm capable

of designing optimal FIR filters with the minimum number of

error alternations. Following on Hofstetter’s work, they

incorporated the very efficient 2nd Remez Multiple Exchange

( algorithm (Ref 13) to provide their method with great speed.

17



For example, a 100 sample point filter can be designed in

about 20 seconds (Ref 4:97). If must meet some tolerance ,

the Parks-McClellan method can be repeated with adjustments

in one of the parameters.

The source listing of Parks and McClellan ’s FORTRAN

program for designing optimal FIR filters , as well as an

excellent discussion of the 2nd Remez algorithm, is avail-

able in Rabiner and Gold’s text (Ref 7:187-204). With

certain minor modification , this program was used to pro-

vide the l-D prototypes for use in the design of the

transformed 2-D filters.

Summary

The Parks-McClellan algorithm provides a very fast

method for designing l-D optimal FIR digital filters. Be-

cause this was one of the last remaining major l-D filter-

ing problems , it is not surprising that research in the past

several years has centered on higher-dimensional filtering ,

especially the two-dimensional case. The insights gained in

considering the l-D optimal design problem prove useful in

the discussion of 2—D optimal filter design .

I
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III . Design of Qptimal 2-D Filters

Techniques for designing l-D digital filters are now

fairly well established in the literature. Very few of

these techniques , however , have been exten ded to two or more

dimensions. Since there is no lack of interest in 2-D

signal processing, it is worth investigating those design

techn iques that can be extended to two-dimensions .

Of special interest in this investigation is the design

of 2-D optimal filters. In this chapter, the design methods

currently avai lable are reviewed , each being evaluated in

term s of its optimalit y , computational efficiency, and ease

of understanding. It is shown that no optimal method meets

all three criteria. This justifies the selection of a “sub-

optimal” design method.

Basic Concepts of 2-D Discrete Signals

Be~cause 1-D LSI systems represent a special case of

multi-dimensional systems , it is not surprising that many

of the concepts encountered in 2-D filtering seem familiar.

However , certain useful properties are unique to the l-D

case. -

Discrete 2-D signals are functions of two integer

variables (m,n). A discrete function ~ (m ,n) *j~ not de-

fined unless both m and n assume integer values. In

*The “ha t” symbol is used to maintain consistency with
the FORTRAN program in Appendix C, where two-dimensional
arrays are identified with a “ MAT ” suffix.
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practice , 2-D discrete signals will often be sampled values

from a 2-D continuous signal, and appropriate 2-D sampling

theorems exist (Ref 14).

As in l-D, two dimensional LSI systems can be complet ely

specified by their impulse response ~ (m ,n ) .  The output

~ (m, n) of a 2-D LSI system is the convolution of the input
A A

sequence x(m,n) with h (m ,n):

A ~~ 
CO A

y(m ,n) = ~ x(k ,I)h(m-k, n-I) (12)
k=-.o 1=-oo

The complex expon entia ls z~ and z~ are the eigenfunctions

of ISI systems . Thus ,

A A
y(m ,n) = ~1

m 
~~~ H ( z 11z2) (13)

where ~ (z 11 z2) is called the system function.

The z-transform of ~(m,n) is

= 

~ 
~~~~(m ,n)z1

_m 
z2~~

’ (hi.)

and the system function can be shown to be the z-transform

of the impulse response (Ref 10:231). If the z-tranaform

is evaluate d on the surface z1 = exp(jw1), z2 = exp(jw2),

the 2-D Fourier Transform can be evaluated

20
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+ u~n)) (15)

which is periodic over [-1T,11~J in both dimensions.

As in 1-D,

A A A
= X(w11co2) H(w11

ø
2) (16)

The 2-D discrete Fourier Transform (DFT) is defined to be

A
* 

- X(k ,1) = ~~ x(m ,n)exp(-j(2irmk/M + 2rrnl/N)) (17)
m=0 n=0 -

As in l-D, the 2-D DFT has proven to be an extremely useful

tool in implementing digital filters, especially when an

efficient Fast Fourier Transform (FFT) is used. Although

direct convolution can be used to implement filters of low

order, it become s worthw hile to use an FFT for or ders of

roughly l0xlO sample points or more (Ref 15:405).

The 2-.D Design Objective

The normal objective of 2-D filtering is to alter the

frequency spectrum of some input function by operating on it

with a filter function H(w1,w2). The digital filter design

problem amounts to the determination of the impulse response
A

coefficients h (m ,n) which will produce a filter capable of

( performing the desired operation. Of course, after the

filter is designed, it still remains to be implemented.

21
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2-D h R  Filters. For a 2-D IIR filter, the system

function will take the form of a ratio of finite-degree

polynomials (Ref 10:233)

- 

~
(z l ,z2 ) = 

m=-~ ~LO ’ 
Z

2~~~ 
(18)

where

M N

~(z1,z2) k~O I~ O 
~~~~~~~~~~~ ~~,

_k 
z2~

1 (19)

M N  
-

~(z1,z2) 
~~~ 

2 
~(k ,I) ~~

—k 
~~2

1 (20)

then a recursive partial difference equation exists :

M N

~(m-i ,n-j) = . .
~ 

~~~ 

~~~(k , (m-k,n-i)b~i,j, k=0 1=0

M N  -~~~~

- b(i 
~~~2 ~~~2 

~(k,I)~~(m-k,n-I) (21)
- ‘a k=0 1=0

1 =0

The order of recursion in Eq (21) is important, for of the

many possible schemes of recursing on the variables, only a

few will be causal. As a simple illustration , consi der the
(
~ 

. . *

- 
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following partial difference equation:
1.

~ (m ,n) = b~ (m-l,n) + ~ (m ,n) (22)

where several possible recursions will be considered. In

Fig. 6 a few discrete points near the origin are labeled
and the boundary condition

Ay (m ,n) = 0, m ~ 0 or n ~ 0 (23)

is indicated. Causal relations would be described by any

of the following possible recursive paths:

ABC... DEF... GHI...

ADG... BEH... C F I . . .

A D B GEC

However , other paths can be selecte d that prevent a causal

relation:

ABC... ...FED GHI...

AEI... BF... DH...

AB ED GHI FC

A 2-D h R  filter can be implemente d from a causal partial

difference equation , provided the required boundary

conditions are known (Ref 16).

While IIR filters offer a much richer set of system

functions than do FIR filters , there are disadvantages
which make recursive filters unattractive. For any filter,

23



a prerequisite for stability is that the impulse response

be bounded (Ref 16)

~f l - C O  fl _aO 
Ih (m ,n)I  < CO (214)

FIR filters are always absolutely summable , due to their

finite extent , so they are always stable. IIR filters must

be tested for stabi lity .

(a 2

V
V

0 0 0

0 H I

/~ 
0 0 0

/
/~~D o~

’ 0

/
/

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Boundary Conditions = 0
I-

( , Fig. 6. An Example of Possible 2-D Recursions

211.
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In l-D, an IIR filter of the form

A

- 

~(z) = (25)

can be tested for stability by factoring the functions A(z)

and B(z) into cascades of first and second order terms. The

Fundamental Theorem of Algebra (Ref 17) guarantees that this

can be done . Unfortunately there is no analogous theorem

for polynomials of two or more variables . Stability must

be tested in a more indirect way.

The most practical h R  stability test is due to Huang

(Ref 18). The test can be summarized as follows :

Huang’s Test. A recursive filter ft(z,,z ) is stable
if and only if the image of the unit ~ir~ le fZ~ I= 1
when mapped into the z plane by ~(z1,z2) = 0 does not
intersect the region izii ~ 1 and, in addition , no
point in the region z11 ~ 1 maps into the point
z2 =O .

Theoretically , this test would require the mapping of the

entire Z1-Z2 hyperspace. In practice , only a discrete

number of points can be mapped. Improvements on Huang’s

Test have been published, but the test remains a major

computational problem (Ref 10:235).

Even if a stability test is available, more important

problems remain: first, how the designer determines the

filter coefficients (of a stable filter) to meet a pre-

scribed frequency response specification ; second, how an Un-

( stable filter can be stabilized without adversely affecting

magnitude response.
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Complex cepstrum* techniques suffer because they yield

infinite degree denominator polynomials which must be

approximated by finite degree polynomials, sometimes

altering the frequency response significantly (Ref 10:235).

A stabilization conjecture due to Shanks (Ref 19), that the

double planar least-squares inverse (PLSI) of an unstable

filter would yield a stable filter with the desired

characteristics, has been used to design many h R  filters .

For years, no counter-example appeared. However, very

recently, Kamp and Genin provided a counter-example (Ref 20)

and then disproved the conjecture (Ref 21).

2-fl FIR Filters. Because of these problems with 2-fl

IIR filters, most 2-fl designs have used FIR filters. If

the desired 2-D filter either requires or can tolerate

circular symmetry , then several design techniques for FIR

filters are available . By circular symmetry , it is meant

that any slice of the filter that passes thru the origin

will be identical (Fig. 7 ) .

The - most straight-forward FIR design technique is the

direct extension of the windowing method to two-dimensions.

Using windows, the infinite-extent 2-D Fourier coefficient

~(m,n) are multiplied by a finite-extent 2-fl window function

~(m,n) to produce the coefficients

~(m,n) = ~(m,n).~~(m,n), -M~s m ~~M , -N~~n~~N 
- 

(26)

*Defined as the inverse Fourier transform of the complex
logarithm of the Fourier transform of a sequence.
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The approximated frequency response becomes (Ref 16)

A M N A
• H(cu1,cu2) = 

~~~ 
k(m,n)exp(-j(co1m + cu2n ) )  (27)

m=-M n=-N

Huang has shown that “good” 2-D windows can be obtained

from “good” l-D windows by the relation

~(m,n) = ~~(~Jm
2 
+ ~2 ~ (28)

where w(.) is -a continuous l-D window (Ref 22). Using

windows, circularly symmetric filters with a great variety

of shapes can be designed.

(

• 

-

0)
1

( Fig. 7. Slices from a Circularly Symmetric Filter
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There are drawbacks to windowing, however. First, in

the design of a 1-fl prototype window , a closed form

expression for the Fourier series coefficients is required:

1 
2n

h(n)  = H(co)exp(jwn)dco (29)
0

If this integral proves cumbersome to evaluate, the design

process may stop (Ref 7:101). Second , window designed

filters cannot meet prescribed frequency cutoff specifica-

tions because the convolution process “smears” the frequency

response near the ideal response ’s discontinuities. Although

there may exist a “best” window, it would not produce an

optimum filter (Ref 7:90).

Rabiner and others have used linear programming to

design 2-D FIR filters. This approach can be considered

a natural extension of the l-D frequency sampling technique

(Ref 7:105-123), except that all the frequency samples are

considered as variables. If D(w1,w2) is the desired ideal

response, then the constraints

~ ~(w1, o2) + 6 (30)

~ ~~
“l’~ 2~ 

- 6 (31 )

can be applied to a grid of points in the 
~~~~~ 

plane.
A

Linear programming adjusts h(m,n) while minimizing 6

Optimal 2-D filters have been designed using linear pro-

gramming , but the method proved computationally costly .

28
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Rabiner reports that the most ambitious design he attempted

(a 9x9 sample point filter with circular symmetry ) required

more than one hour of execution time on a high speed com-

puter (Ref 7:461-471). Since thousands of constraint

equations can be involved in the design of a 2-fl optimal

filter, linear programming (which is a single-exchange

algorithm) would be expected to be an inefficient design

method.

Efforts have been made to extend the design method of

Parks and McClellan to two-dimensions . McClellan considered

the problem, but stopped after realizing that the 2nd Remez

algorithm cou] d not be extended to the 2-D case. Recently ,

in independent efforts , Kamp and Thiran (Ref 8) and Hersey

and Mercereau (Ref 9) developed 2-D design techniques

similar to the Parks-McClellan approach but based on the

1st Remez Multiple Exchange algorithm (Ref 13). Since a

multiple exchange algorithm was used, an impressive speedup

in comparison with linear programming was hoped for. How-

ever, the speedup was not dramatic, because the bulk of the

execution time was spent in the evaluation of the error

function, rather than in optimization of parameters (Ref

10:240).

Analysis of these methods reveal that the Chebychev

approximation of 2-D FIR filters is fundamentally more

difficult and slower than the 1-fl case. There are three

reasons. First, there is the impossibility that any set of

functions defined on a 2-D domain can satisfy the Haar

29 -
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condition, thus weakening the Alternation Theorem consider-

ably (Ref 9:8). Second , it would not be possible to order

the extremal frequencies , as in 1-fl, where increasing order-

ing guarantees that the error sign alternates from point to

point. Third , the size of the problem would approach the

unmanageable as the number of optimization parameters is

increased (Ref 1:30). In the absence of the Haar condition ,

the 1st Remez algorithm must be used , arid convergence may

not occur unless suitable perterbations are introduced

(Ref 8:262). Lack of a simple alternation in the error

complicates the rules for exchanges , at times preventing

multiple exchange , the very procedure that makes the Remez

algorithms efficier~:.

As with all the design techniques presented so far,

Kamp and Thiran limited their designs to circular symmetry .

Hersey and Mercereau improved on this by requiring only

octagon~al symmetry*. Although they were able to design

filters with a more arbitrary frequency response , computa-

tional considerations limited their filters to l5xl5 sample

points or fewer (Ref 9).

Because these methods design truly optimal filters,

they have definite value. However, their costly execution

time confines their use to relatively small impulse responses.

This , coupled with their mathematical sophistication,

probably prevents them from being widely accepted.

_________________________________

Symmetry about both axes and the line w 2 =
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Summary

Until optimal methods become computationally competitive

with non-optimal methods , most 2-fl filters will probably

be designed non-optimally. Fortunately , a new method pro-

posed by McClellan is capable of improving significantly on

previous non-optimal methods. It designs filters that are

equiripple , although not quite optimal. As such , they have

been called “ sub-optimal” (Ref 9:1). This new method is

discussed in the next chapter.

(_

- ~1



IV. The McClellan Transformation

A new method for designing 2-fl digital filters, due

to McClellan (Ref 1), has been cited as the design method

of choice for most applications today (Ref 9 :1-2).

The essence of the method is that it transforms an optimal

1-fl FIR filter into a sub-optimal 2-fl FIR filter. These

filters are termed “ sub-optimal” becaus e they retain the

equiripple characteristic of true optimal filters , yet they

are inferior to optimal filters when judged very strictly.

As mentioned in Chapter I, McClellan has designed circularly

symmetric bandpass filters. However , he proposed that his

method could be used to design filters with a much less

restrictive symmetry (Ref 1:42-43) . The important features

of the method are that it is not limited to the design of

small filters (127x127 point filters have been designed);

that It is fast , efficient , and simple to understand; and,

surprisingly, in many cases the resulting filters are almost

indistinguishable from true optimal filters (Ref 24:93-97).

This last point will be considered again in detail in

Chapter V.

Spectral Transformation Mappin~~

McClellan ’s method can be considered a spectral

transformation mapping. Mitra provides this definition

of a spectral transformation (Ref 25:905):

By a spectral transformation, we mean a complex map
‘ that carries a stable rational transfer function

into another stable rational transfer function
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exhibiting a different frequency response , at the
same time maintaining some desirable characteris-
tics.., In general, a spectral transformation must
have the following characteristics: 1) it must
produce a LSI stable transfer function from an LSI
stable transfer function ; 2) it must transform a
real transfer function into a real transfer function ;
and 3) it must preserve some basic characteris-
tics of the magnitude response (e.g. the ripple
magnitude in the transmission and attenuation
domain). 

-

- The spectral transformation that McClellan adopted was

first stated in Chapter I and is repeated here :

cos~ = t1 + t2cos~1 + t3cosw2 + t4
cos~1 cosw2 (1)

where w , and 
~2 

are restricted to the interval [_i~,i~J,

as discussed in Chapter II. Eq (1) is referred to as the

McClellan Transformation.

~~~ Change of Variables

In Chapter II it was shown that a 1-fl linear phase

filter of length 2N x 1 has the form

H(0)) G(~ )exp(j(A + Bc$) (32)

where the term exp j(A + Bw) contributes only to phase

and can be disregarded. (Otherwise it would be carried along

unaltered through each transformation to be described.) It

followed that

N
0(w ) = ~ a(n)coswn (33)

n=O

- 
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The change of variables in Eq (1) depends on G(w) being

expressable by a suitable choice of coefficients lb(nfl as

the following linear combination of cosine functions:

N N
- 0(0) = ~~ a(n)coswn = ~ b(n).(cosw)nl (34 )

n=0 n=0

To calculate ~b (n)~ , let x = cosw. Then

T~(x) = cos[n cos ’(x)] = COSwfl (35 )

* 
where Tn(X) is the nth order Chebychev polynomial of the

first kind. Thus, -

N N N
• 0( w) = ~~ a (n )cosun  = ~~ a(n)T~ (x) = ~ b (n )x ~ (36)

n=0 n=0 n=0

and by expanding each equation in Eq (36)

H (w)  = a(0)T0(x) + a(l)T1(x) + ... + a(n)T~ (x)

= b(0)x0 + b(l)x1 + ... + b(n)x” (37)

and then using the Chebychev recursion formula

T~~1(x) = 2xTn(x) - Tni(x) (38)

one can solve for x°, x1, x2 , . . . , x~’ (the method to do this

is described in Appendix A):
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1 0 0 0 T0(x)

0 1 0 0 ... T1(x)

0 .s o T2 (x)

= 0 .75 0 .25 T
3

(x) (39)

. .

. . S
S S .

- 

T~~(x)

or

(40)

By substituting for x°, x1,...,x~’ and grouping common
factors of T0(x) , T1(x)~~...~T~(x) in the right half of Eq ( 3 7) ,
one can equate coefficients of T0(x) , T1(x ) 1 . . . 1 T~ (x) to

yield

a(0) 1 0 .5 0 b(0)

a(l) 0 1 0 .75 ... b(l)

-a(2) 0 0 .5 0 b(2)

a(3) = 0 0 0 .25 b(3) (41)

S
S . .

S .

a(n) b(n)

or

A _ U T
B (42 )

Thus

(_ 
- B = (UTY1 A (43) *
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which allows b(O), b(1),..., b(n) to be solved whenever uT

is non-singular.

By substituting Eq (1) into the very convenient form

of Eq (34),

= 

n~O 
b(n) [t1 + t2cosw1 + t3cosw2

+ t4coswicosw2]~ (44 )

and completing the expansion , G(u 1, (
~2 ) can be expressed in

this form : -

- N N A
0(01,0)2) = 

~ 
a(m ,n) (cosco~m) (cosw2n) (45 )

where the impulse response coefficients are directly related

to g(m,n) . The methods that take Eq (44) into the form of

Eq (45) are involved and will be described in Chapter V.

It is noted that Eq (45) is the desired form for a 2-D

FIR zeio-phase digital filter (Ref 15:406). This is what

makes McClellan ’s particular spectral transformation so

useful. In fact, it is possible to show that there is an

entire set of suitable spectral transformations

P Q A 
-

cosw = ~ t(p,q) (cospcü1
) (cosqw2) (46 )

p=0 q 0
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of which Eq (1) is the special case P = 1, Q = 1. Eq (46 )

has been called the “generalized McClellan Transformation”

(Ref 24:20-24). To limit the scope of this investigation ,

only the case P = 1, Q = 1 has been considered.

The Range of the Mapping

The McClellan Transformation defines a mapping of the

interval [~n ,rr] of the 1-fl frequency axis to the square

region [_it,ir]x [-ir,it] of the 2-fl frequency plane. The map-

- ping is certainly not one to one, and the range of the

mapping may not include the entire square region in

If quadralateral symnietry’is imposed, the problem can be

equivalently stated as the mapping [o ,ir] — [o , in x [0, it] ,

since the information in the first quadrant of w
1
...w

2 is

repeated in the other three quadrants.

If is a one-valued function of Oil, then Eq (1) can

be solved for

1rcosw - t - t coso
= cos 

~ + t4cosw1 
1] (47)

For each fixed value of e [O,it] there exists some

corresponding contour C1 in the t&i
1

W
2 
plane. Along this

contour , the magnitude of the 2-D frequency response is

identical to the 1-fl frequency response at w1. By allowing

w to vary from 0 to in , a complete family of contours is

( ‘Defined to be symmetry across the and Cd
2 

axes ,
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generated describing the 2-fl frequency response over some

portion of the region [0,it]x[O,ir]. For example, in the

original McClellan transformation , the values t1 = -.5,

t2 = t
3 

= t4 = 0.5 produced the circularly symmetric

contours shown in Fig. 1. For frequencies below 0.7rt,

the contours are very close approximations to circles. How-

ever , as oi— in, the contours become more squarelike.

This is still a very desirable mapping, because it

maintains the desired contour shape over a large area of the

2-D region, and yet there is a correspondence between every

point in [o,rrJ x [O ,rr] and the 1-fl interval [o,rrJ. Actually ,

forcing the mapping to have this range will almost always

force some distortion in the contour shape. But, if the

mapping is not so defined , the resulting frequency response

of the 2-fl filter will be ill-behaved. This is discussed

in detail later in this chapter.

The De~ign Strategy

The design strategy and its limitations are now fairly

clear. A l-D filter such as shown in Fig. 5, with transi-.
tion band frequencies w~ and w55 is mapped into a 2-fl filter

filter with transition contours C~ and C5. The magnitude

response in the transmission and attenuation domains is

carried unaltered from one dimension to two dimensions. If

the 1-D prototype filter was an equiripple opt imal filter , then

the 2-D transformed filter will also be equiripple. How-

( ever, it will only be optimal along the slice 0. 
-

38
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Everywhere else it will be slightly sub-optimal (Ref 24:

93-97). Because this is usually a small trade-off in

comparison with the relative ease arid flexibility of design,

the McClellan transformation is a very attractive method

for designing 2-D FIR filters.

There are limitations on the types of contours that

can be mapped using the method. This can be seen by letting

x = c o w ,  u = cos w1, and v = cos 
~2’ 

then Eq (47) becomes

x - t 1 - t 2uv =  t (48)
~~~~

+ 4u

If x is held fixed and a partial differentiation is per-

formed (Ref 1:36—38)

-t t + t t, - t,xav 2 3  l-r
(t
3 
+ t4u)

it is seen that v is monotonic , since the sign of the

derivative does not change as u varies from -l to 1. This

requires that the contours in W1~02 must also be monotonic.

The Contour Approximation Problem

In order to design 2-fl filters with arbitrary contour

shapes within the adinissable class , some method must be

developed that maps prescribed l-D frequencies to a speci-

‘ fled 2-fl contour. As a first cut at the problem , it is

assumed that only one of the l-D transition band frequencies

must be mapped to a particular contour. Hopefully , the

contour shapes in the neighborhood of the designated
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contour will not be greatly changed. Let the 1-fl frequency

be w~ , and the desired contour be C0, where C0 is defined

by the single valued relation

= F0(w1) (50)

Then for some value of t

-- tl

~~~~= t2 — (51)

t
3

tll.

must be made to map to C0. In general, this is impossi-

ble , so a best approximation according to some error cri teria

is selected. Two of the possible criteria are to minimize

the maximum absolute error (minimax criteria) and to mini-

mize ~~~~ sum of the squared errors (least-squares criteria).

Because of the relative ease of implementation , the least-

squares criteria was selected. Empirical evidence indicates

that the two methods lead to equivalent filters , at least

for the case P = 1, Q = 1 in Eq (4 6) (Ref 2:407-408).

By considering the constant cosw0 to represent a set

of identical sample values, the classical least-squares

formulation for fitting a set of data points can be used.

Let

S(w
1

) = t
1
0
1(oi

1
) + t2G2(w1

) + t
3
G
3
(w1) + t4G4(w1) (52)
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where

= cosw0 = constant (53 )

01(011) = 1.0 (54 )

- 0
2
(0
1
) = 0080)1 (55~

G3
(w1) = cos( F(w1) ) (56 )

04 (01) = cos(w1) cos( F0(w1) 
) (57)

A requirement that each of the approximating functions (in

this case, they are generalized polynomials) be linearly

independent is satisfied. The least-squares formulation

provides four equations to solve for the four unknowns t.

Because an explanation of the least-squares formulation

is lengthy and might be unnecessary for many readers , the

details of this method as applied to the contour approxi-

mation problem are outlined in Appendix B. References on the

method are included in the bibliography (Ref 27, Ref 28).

Constraints on the Mapping 
- -

This much accomplished , the contour approximation

problem still remains only half solved. For example , if t

is free to take on all values , the trivial solution

t1 = cosw~, t2 = t
3 

= t4 = 0 will result in a zero error.

‘ This would also result in the frequency w
~ 

mapping to the

entire 2-fl region [o ,r-r]x [o,nJ as well as C0. Evidently ,

( some reasonable constraints must be placed on t to reach a

useful solution.
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A possible set of constraints that seems intuitively

satisfactory for the mapping [O ,tt] — [0,1r]x [0,it] might be

0 — (0,0) (58)

it -. (rr , r t )  (59)

= ~(W2,w1) (60)

where the second two constraints imply a redundant constraint

it -.- (w , 2 ) 
- 

(61)

Applying the first constraint to the McClellan Transforma-

tion yields

1 = t ~~+ t ~~+ t 3 + t4 (62)

while the second constraint yields

—1 = t1 - t3 
+ (t~ - t4) cosw1 (63)

Because Eq (63) must be true for every e [O ,it], it is

also true that

- l = t l - t
3 

(64)

0 = t 2 - t4 (65)

Finally , the constraint of Eq (60) requires that

= t
3 

(66)

as seen by inspection of the symmetry of Eq (1). Solving

Eqs (62)— (6~ ) for ~ yields t1 = -.5, t2 = t
3 

= t4= 0.5,

112



which is recognized as the original McClellan transformation

for circular symmetry .

A problem with this set of constraints is that it

leaves no free variables. To design arbitrary contours , a

less restrictive set of constraints is needed. Mitra’s

paper on spectral transformations provides two theorems

that are helpful (Ref 25:910), but a superior technique has

been introduced by Mercereau et al (Ref J.5:408-409) and is

recommended for most contour designs. Their suggestion

is to initially perform the contour approximation subject

to a single constraint, 0 — (0,0). This produces a map-

ping to sri intermediate domain 
~~~~~~ 

A second mapping

will produce the final result: a mapping in the

plane that approximates the desired contour C0 and has a

range that includes the entire region [O,in]x[O ,ir].

As an example , 1±’ the elliptical contour

= 0)b 
- 

~~~~~~~~ 
(67 )

where

= .50in ( 6 8 )

.25in (69)

= .50 in - (70)

1~
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is desired, the least-square formulation subject to

constraint (explained in Appendix B) yields

= -2.5814. (71)

= 2.586 (72)

= 0.166 (73)

= 0.832 (74)

with a mean error of 0.0003. However , the range of the

contour mapping is inadequate , as shown in Fig. 8. The

significance of the cross-hatched area can be understood by

considering Eq ( 1). To stay within the realm of real

( numbers, the following double inequality must hold:

-1.0 ~ coso -s 1.0 (75)

or equivalently

-1.0 
~ ~l’~ 2~ 

1.0 (76)

-1.0 ~ t1 + t2CoE~21 + t3cosQ2 + t4cosc21cosc~2 ~ 1.0 (77)

The cross-hatched area of Fig. 8 corresponds to values of

where Eq (77) does not hold. The magnitude of the

frequency response grows rapidly , since it corresponds to

complex values of w (Ref 15:408).

Two of the basic operations of complex variable mapping

theory are translation and expansion (or contraction).

( These operations do not alter the shape of a given contour,

_
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only its orientation and relative size (Ref 17:73). The

following mapping should be considered;

- cosoi0
’ 

= 
~

‘ (w i,o
~~

) = k1F( c21,~l2 ) - Ic2, k1 -> 0 (78)

The usefulness of this second mapping stems from considera-

tion of Eq (77) and Fig. 8. Because the filter is either

lowpass or highpass , the only contours of importance are C0
and its immediate neighbors , since they control the mapping

of the transition band. It is desired that the range of the

second mapping include the entire square region , for then

* Eq (77) would be satisfied. Due to the nature of the second

mapping , the contour shapes themselves will be unaffected;

however , a new 1-fl frequency will be associated with each

contour in 
~l~~2’ 

the ultimate mapping domain .

To find the necessary values of k1 and Ic2 in Eq (78),
one applies the second mapping to Eq (76) and specifies
the constraint of Eq (75):

-1.0 ~ k1~(~1,c~2) - k2 ~ 1.0 (79)

Solving each inequality separately for its worst case pro-

duces two equations in k1 and Ic2: 
-

-1.0 = k1~min (Ql~~22) - k2 (80)

- 1.0 = ki~m 
(c21,c22) - k2 - 

(81)

A Awhere Fmin(~2i,~22) and Fmax(~1 ‘~ 2~ 
correspond to the least



and greatest magnitudes taken by F( 
~l’ ~~~ 

over a dense

grid of points in [0,rrJx [0,rr]. By solving Eq (80) and

Eq (81) one finds that

2 
8k1 

= Fmax 211c22
) - F . ( c 21,c22) 

C 2)

Ic2 = klFma.x(~i~~
�2) 

- 1 (83)

The new l-D frequency associated with C0 is found by

solving Eq (78):

= cos~
1 (k1cosw0 - k2) (84 )

Because

t1
’ 
+ t2

’cosco1 + t3
1
cosw2 + t4

’coscu1 C03w2 ( 85)

a new “scaled” t’ also results:

t1
’ 

= k
1t1 

- Ic2 (86)

= k
1
t~ (87)

t
3 

= k~t3 
(88)

t
4 = k

1t4 (89)

Using the t ’, a new contour mapping is shown in Fig. 9.
It is noted that the shapes of the contours remain unchanged

up to the original contour 
~~ In the contour C~

now corresponds to
• I
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• Fig. 9. Elliptical Contours of Eq (67) after scaling.
= 0.2498n , tT = [-.0482, . 7559, .014.82, .2441],

= .0002, constraint: 0— (o ,o) with scaling
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01
0
’ 

= cos~~ (k1cosit - k2) = cos~~ (-Ic1 -k2
) (90)

The remaining contours spread out over [0,irJx [o,i~J, giving

the final mapping the desired range. Thus, the final

frequency response is well-defined.

As mentioned, several theorems attributed to Sanjit

Mitra can also be helpful in assuring a well-defined

frequency response. Because the development of these

theorems is extensive, interested readers are ref erred t o

?ditra’s paper (Ref 25). In many cases, the resulting con-

straints will produce in the same final mapping as in the

previous section , but this is not always so. To leave

the design program as flexible as possible , either method

of specifying constraints is permitted. The technique of

Mercereau et al is available as a default option ; however,

an enlightened user may override the default and supply any

consistent set of constraints.

Summary

The McClellan Transformation is a spectral transforma-

tion that maps l-D frequencies in the interval [0,inJ to

contours in the (w1,w2)-plane over [o,nJx[o,ir]. Because the

filter is assumed to have quadrilateral symmetry, the area

[0,rc]x[0,ir] actually defines the total behavior over

[-rn ,i~Jx [-n,n]. Because the mapping is generally imperfect,

an error criteria is established to determine the best

mapping. To insure that the mapping is non-trivial , con- *

straints on ~ are necessary. To insure that the range of

11.9



the mapping includes the entire region [O,it]x[O ,tt], the

technique of Mercereau et al can be used. If the equiva-

lence of Eqs(44) and (45) can be established , the filter

design is complete.

- 
- (_
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V. Determination of the 2-fl Impulse
- Response Coefficients

As shown in the last chapter, t can be found that

provides a suitable contour mapping. Thus, the frequency

response can be evaluated as a function of (011,02)

H(w1,co2) = 
n~O

b
~~~

(t1+t2C050)l+t3
0050)2+t4005C~1

C050)2~~ 
(44 )

where = F(w1). This itself is not enough, since it is

necessary to convert Eq (44) into a form that relates
A

directly to the impulse response coefficients 1h(m ,n)~
They will be needed if the z-trans±’orm H ( z 1,z2) will be

used when the filter is implemented.

In this chapter, a method is derived that transforms

Eq (44) into the form of a zero-phase 2-fl FIR filter, From

this f orm , the impulse coefficients can be determined by

inspection. The chapter concludes with some comments on

the “optimality” of the McClellan Transformation.

Algtorithm for the Expansion

Let x = cosw1 and y = cos o~ , then

~hx,y) = ~~~~~~~~~~~~~~~~~~~~~~~ = X b(n)[.]n (91)

The evaluation of Eq (91) can be accomplished by consider-

( ing the following steps :
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• I~0
(x ,y) = b(0) (92)

~1(x ,y) = ~I0(x y) + b(l) [.] (93 )

~2(x ,y) = ~1(x ,y) + b(2) [.3 [s] (94 )

i~,
(x ,y) = ~2(x ,y) + b(3) [.] [.]2 (95 )

Hk(x ,y) = ~~_1(x~y) + b(k)[.][.]k_ l

Because the quantity [t1 + t2x + t3
y + t4xy]

k
~~ is already

biown,-the process is recursive. As the order of N gets

large, the memory required for the expansion grows very

quickly. However, if, after each step of the expansion ,

all of the coef ficients are searched for like terms, the

memory requirements are held down considerably. Empir-

ically , it was found that the expression

[t1 + t2x + t
3
y + t4xy] [t1 + t2x + t

3
y + t4xy]

k
~~ (~ 7) *

would require (Ic + 1)2 words of memory for coefficient

storage, provided like terms were combined. If the search

for like terms was delayed until the (N + l)th step, the

storage required would grow as 4N, Table I compares the

storage required with the two possible approaches.

Obviously , searching for like terms after each step of the

expansion is essential except for very low order filter

r designs. The final result of the expansion is
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N N A
H(01, co

2) = 
m~0 ~~~~~~~~~ 

(COS0)1)
m (00S02)

n (98)

which involves every possible combination of (COSW1)
m (COSW 2)

nt

up to m = N , n = N.

An Analogous 1-fl Result

Eq (98) itself still does not present a direct method

of obtaining the impulse response coefficients . Before

progressing, it is instructive to consider the analogous

1-D equation

A N N
- H(w) = ~ b(n) (cos0))~ = ~ a(n)cosc&n (99)

n=0 n=0

where the coefficients a(n) must be determined. Using

the dual of the argument that led to Eq (43) in Chapter IV,

let x =. COSC&I then Tn(x) = coswn , and

Table I
STORAGE REQUIRED FOR TWO rV~ THODS OF EXPANDING EQ (91)

k (k + 1) 2

0 1 1
1 L~. L~.

2 9 16
3 16 64
• I I. .
• I

10 121 1,048,576

U : :
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N N N
H(cu) = 

~ 
b(n) 4~050)n = ~~ b(fl)Xn = 

~ 
a(n )Tn(x) (100)

n=0 n=0 n=0

Using Eq (38) ,  the relationship between T0(x ) , T1(x),.

T~ (x) and x°, xl,...,xn can be shown to be

T0(x) 1 0 0 0 x°

T1(x) 0 1 0 0 ...
T2(x) 

= -l 0 2 0 x2 (101)

T
3
(x) 0 -3 0 4 x3

. - , I
I I I

I . .
- T~ (x )

or

(102)

By substituting for T0(x ) , T1(x),...~ T~ (x) and grouping

common factors of x°, xl,...,xn in the right half of

Eq (100), one can equate the coef ficients of x°, xl,...,x1~
to yield

b(O) 1 0 -1 0 a( O)

b(l) 0 1 0 -3 ... a(l)

b(2)  = 0 0 2 0 a(2) (103)

b( 3) 0 0 0 Li. •a(3)

. I I

( b(n) a(n)
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or

- B _ V T A (104)

Thus

A = (vT)~~ ~ (105)

which allows (a(n)I to be solved whenever vT is non-

singular. 
*

Extension to Two-Dimensions

This 1-fl method for calculating ~a(n)} can be exploited

to calculate (~~(m,n)} . Eq (98) is rewritten as

- A N N A
• H(x ,y) = ~ b(m,n)xmj’ (106)

m=O n=O 
-

where

x = CO SCU
1 (107 )

y = COSO
2 

(108)

T (x) = cosw~m (109)

T~(y) = cosw2n (110)

Thus , 
-

~(x ,y) = X xm [ Zb(i~,n)yr~
] 

(ill)

where ~ denotes that m is fixed. By expanding Eq (111)

(
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- 
~(x,y) = x0 

n~ O ~ (ö ,n )y~ + x’ ~~~(~~n)y
fl

N A .+ ... + x ~ b(N ,n)y (112)
n=O

where each individual summation now has the form of Eq (99).

One can use the relation defined by Eq (l05)*.

A N~~ N
H(x ,y) = x° ~~ a(

~
,n ) Tn(y) + •~~~~~ , + ,~N Z ~(~~n)T (y) (113)

n=0 n=O

N
= ~~~~ ~~ ‘ 

~ 
a(fii,n)Tn(y) (114)

m 0  n=0

N
= ~~~~ • ~ 

‘ a(i~i,n)cosw2n (115)
m-O n=O -

= 
n~o

c05
{m
E
o~~

m J mJ (116)

where the term in brackets in Eq (116) is also of the same

form as Eq (99 ) .  Repeating the same sequence of steps yields

N N
H(x ,w2) = ~~~ cosw2n . ~ ~

(m,
~

i )T m(x) (117)
n 0  m=0

N N
= ~ coscu2n ~ ~ (m ,fi)cosw1m - (118)

f l 0  m=0

* -
The notation a(m,n) has no mathematical significance. *

• ( It is used only to emphasize the distinction from a(m,n).
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A N N
H(cu1,w2) = 

m~O ri~0 
m , c05w1m~~osw2n (119)

which is the desired final form.

As in Chapter II, the assumption is made that the

impulse response is centered at the origin. One can now

compute the impulse response coefficients (ci(m,n)J as

follows:

A N N
H(w1,cu2) = ~ (O ,O) + 

~~ ~ (m ,~~)cosw1m + ~~

- m=l n=l

N N -

+ ~ a(m,n)ccsw1m cos~2n (120)
m=l n=l

The first term in Eq (120) is the impulse response at (0,0).

The second and third terms can be recognized as of the

same form as Eq (7) of Chapter II. The fourth term must

be further decomposed:

N N N N
~ ~ (m ,n)cosw1m cosw2n = ~ cosco1m ~ ~

(~i,n)cosw2n (121)
m=1 n=l m=1 n=l

N N -

= 
~ 

COSw1m ~ 2~ (~~,n)cosw2n (122)
m=l n=l

= 2coscu1 Z~~(I,n)cosw2n + ...
N

+ 2cos (Nw1) ~ ~(R ,n)cosw2n (123)( n=l
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N A
= 2cosw~ ~~ 2h(I,n)cosw2n +n=l

N A
+ 2cos(Nw1) ~ 

2h(N,n)cosw2n (124)
n=1

N N A
= I I 4h (m ,n)cosw m coscü2n (125)
m=1 n=1 1

A A
Thus , knowing ~a(m ,n)~~, one cart easily compute h(m ,n)~

~(0,0) = ~(0,o), m=0, n=O (126)

~i(m ,0) = 1/2 ~ (m ,0), m~tO , n=O (127)

~(0,n) = 1/2 ~(0,n), m=0, n~O (128)

i~(m,n) = 1/4 ~(m,n), m~0, n~0 (129)

Comparison of Optimality

It is sometimes claimed that the filters designed by

the McClellan Transformation are truly optimal. McClellan

made this claim for his original circularly symmetric

filters and later extended the claim to include “fan”

filters (Fig.l8). McClellan argued that along any slice

of the 2-D filter, the approximation problem degenerates

into a 1-fl problem . In the case of circular symmetry with

t1 = .5, t2 = t
3 

= t4 = 0.5, one considers the slice 02 = 0.

The 2-fl frequency response then becomes a 1-D frequency

response inw~:

A

( F(w11 0) = -.5 + .50050
1 
+ .5 + .5 cosw1 (130)
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= cosw~ (131)

Since this is exactly the same function that was used to

generate the optimal l-D prototype, the 2-D filter is

claimed to also be optimal (Ref 1:45-46). Rabiner and

Gold have supported this contention (Ref 7 :477-478);

however, several other filtering authorities continue to

refer to the McClellan Transformation as stt~
’-optima1.

Ideally, empirical tests should be conducted to

measure McClellan Transformation filters against known

optimal filters. However, the design algorithm presented

in this investigation would require some modifications .

For a fair comparison, both of the 2-fl transition band

edges should best approximate the desired contour shape

(as is done in true optimal methods).

Table II records data obtained on the design of

several circularly symmetric optimal lowpass filters

designed by Harris and Mercereau (Ref 9:11.2). Each has a

passband radius of 0.4i~ and a stopband radius of O.6i~.

Us ing the original McClellan transformation , the 0.4

radius corresponded to a l-D frequency of 0.4000rr ,

while the O.6ir radius corresponded to a 1-fl frequency

of O.5760TT (recall that the contours become non-circular

as w-.Ti). From Table II, one notes that the McClellan

error is somewhat larger than the optimal error for each

case. If the McClellan Transformation is used with 1-D

frequencies of O.4,r and O.6,~, the error naturally decreases.
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Very surprisingly , it actually decreases to less than the

optimal error. However, this second case is not a fair

comparison: it would be better to design the optimal

filters with respect to the contours resulting from this

particular McClellan Transformation and then compare the

errors. Time has not permitted such an experiment in

this investigation .

The data available suggests that the McClellan

Transformation is sub-optimal , even for circularly

* symmetric filters. However, the absolute difference between

the optimal error and the McClellan error is very slight.

Because of the general design flexibility and significant

savings in computation time , the McClellan Transformation

compares very favorably with optimal methods for designing

2-fl FIR filters.
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VI. Design Results

This chapter presents the results from several typical

2-fl filter design problems using the computer program

developed in this investigation. In the first tests ,

simple , familiar filters were designed to validate the

design program. Gradually , filters with more novel

specifications were designed to explore the limits of the

method.

Circularly Symmetric Filters

To test the design program against a known result ,

circularly symmetric filters were designed. By overriding

the default constraint arid inputting Eqs (62)-(66), the

original McClellan Transformation was duplicated. The

associated contour mapping and frequency response for a

21x21 point filter were shown in Figs. 1 and 2, Chapter I.

Fig. 10 illustrates the periodic nature of 2-fl digital

filters.

Circular symmetry was also obtained using the default

constraint. Before scaling, the range of the mapping was

inadequate (Fig. 11). The scaling algorithm was used to

spread out the contours , arid the resulting mapping is shown

‘ in Fig. 12. Comparing Figs. 1 and 12, it is seen that the

contours are essentially the same for values of w up to about

O.6rr. (Extremely close comparison reveals that the contours
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Fig. 12. Circular Contours After  Scaling. 0c = .43l,T
tT 

= [-.2 840 , .5000 , .5000 , .2 840] , ~ = .00003.
Default constraint with scaling. Prototype :

( N = 21, = .43lry , w~ = .53~
, Wt = 1:1, 6= .064
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of Fig. 12 are actually more circular.) The contours

spread out differently as w— Tr . Essentially identical

frequency responses can be achieved , as shown in Fig. 13.

However , to obtain the same filter specifications , it was

necessary to use 1-fl prototypes of different order. Be-

cause the original filter was designed with a lower order

prototype, the original is judged superior.

As art incidental point , note that the information gained

from the frequency response drawings is also available from

contour mappings of the extremal frequencies of the 1-fl

prototype . These contours precisely define the ripple in

the 2-fl filter.

Other smooth shapes successfully designed included

elliptical shapes (Figs. 14 and 15), parabolic shapes

(Figs . 16 and 17), and hyperbolic shapes (Figs. 31 and 32

of Appendix D).

Fan Filters

Fan filters are used in seismic analysis to filter

unwanted velocity components (Ref 26). An ideal fan filter

is shown in Fig. 18. McClellan developed four constraint

equations and was able to specify t as

= [o.o~ 0.5, -0.5, 0.0] (132)

Fan filters were designed using the default constraint,

however the resulting value of t

( tT = [0.0003 , -0.4992, 0.5008, _O.0003] (133)
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(a)

(

: ,LX~t 11~~X / \l

(b)

Pig. 13. Comparison of Circularly Symmetric Filters .
(a) N 19, w = .5~r , w = .6i-r, Wt = 1:1 , 6=  .081,

= [- .s~ .5 , .5 , .5]~ ~ = .00000. (b)  N = 21,

( = .431ii , cu5 = .53tr , Wt 1:1, 6 .065,

= [— .284, .5, .5, .284], ~ = .00003
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14—AXIS CX P1)
Fig. 14. Elliptical-Shaped Filter Contours. Major axis =

Minor Axis .25r~. N = 19, = .2498i~, w~ =

Wt = 1:2 , = .177, 62 = .087, t~ = [- . 0482 , .7559, 5

.0482, .2440], ~ = .00016.
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0.00 0.25 0.50 0. 75 1.00
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Fig. 16. Parabolic-Shaped Filter Contours. 01

2 
= .8-c-c - 2.4i~rx

2.
N = 15, cu~ = .42i, , cu~ = .32-c-c , ‘~it = 2:1 , 

~~~~~~~ 
.079,

6
2 = .160 , -t~ = [— .0319, .6249, .3751, .0319] , ~ = .019
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reverses the sense of the regions defined by Fig. 18.

One could remedy this by using a high pass 1-fl prototype.

Another method is to use an alternate constraint , O -’- (~r ,— ),

and then scale the result. This produces the values of

Eq (130). The resulting contour mapping and a frequency

response are shown in Figs. 19 and 20.

There are many possible variations of 2-D filters

defined by straight lines. A diamond-shaped filter was

specified by the passbarid contour

c
~2 = n/2 - 011 (134 )

The resulting mapping and a frequency response are shown

in Figs . 21 and 22.

(-i r , rc ) (~rr , 1~r)

PASS

REJECT REJECT

PASS

(-‘ .-~~) 
(
~ , - - c )

Fig. 18. Ideal “Fan” Filter
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Fig. 19. Fan Filter Contours . 01 = 0
~~~

. N = 21, o = .5002,-f ,
= .6-n , tlt = 1:1, 6= .055, t = [— .0003, .4999,

-.5008, _ .ooo3], ~ = .00007. Constraint : 0— (c ,ii)
with scaling .
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Fig. 21. Diamond-Shaped Filter Contours. = n/2 - 01
1.

N = 21, = .135 r , cti~ .2n , ~iZt = 1:3, 6
~ 

= .214,
6
2 = ~071, tT = [.4039, .5, .5, -.4039], ~ = .0030
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Filters with More Complex Contours

To establish the limits of the design program , several

novel filter shapes were designed. The results were

generally disappointing, indicating that the method

cannot deal with complex contour shapes effectively.

Oval-Shaped Contours. The desired contour for an

oval-shaped filter was specified as

012 = ~-c/2 (135)

012 = ~~~/2)
2 

- (W
i 

- ~/2)
2, °i~ ~

/2 (136)

Eq (135) describes a circle of radius 0.5, centered on the

w1-axis. The scaled contour mapping is shown in Fig. 23.

As o varies either side of cob , the contours change dramat-

ically. In this particular case , an assumption made in

Chapter IV is clearly wrong: the immediate neighbors of

this contour do not maintain the same shape.

Contour Defined ~~ ~ Cubic. A contour specificed by

the cubic

02 4/f 2 (W
i 

- 1T/2)~ + i/2 (137)

produced a mapping with a very large average error. The

contour approximation is worst in the vicinity of the

origin. By using a properly weighted least-squares criteria,

the fit might be improved. However, the primary fault is

attributed to the approximating function , Eq (1). The
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Fig.’ 23. Oval-Shaped Filter Contours. = .502n ,
= [- .0174, .0174, .5121 , .4879 ],

e = .0047. Default constraint with scaling.
I
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Fig. 24. Cubic Contours. = .40774n, tT = [.2314, -.2314,
.6000, .4000], ~ = 0.2292. Default constraint

(_ with scaling.



function does not have enough terms to fit complicated

curves. Adoption of higher order cosine functions in a

generalized McClellan Transformation , Eq (46 ) ,  would solve

this problem.

Non-monotonic Contours. In Chapter IV , it was proven

that the contour mapping must be monotonic . All empirical

evidence verifies this ; a monotonic contour has never been

observed. This does not imply that all contours for a

given transformation will be monotonic in the same direc-

tion. However , each individual contour will be monotonic.

All attempts to specify a non-monotonic contour led to

ill-defined mappings that bore no resemblance to the

desired contour. For example , the semi-circle

02 = ~~~/2)
2 - - ~/2)2 (138)

resulted in the contour mapping shown in Fig. 25.

Contours not Continuously Differentiable. Several

contours that were not continuously differentiable (non-

smooth) were used to test the design program. Immediately ,

problems arose. Fig. 26 shows the contours resulting from

an attempt to specify the right-angle contour

02 = ,i/2, 011< ,r/2 (139)

= 0, 0
1
? n/2 (140)

When the default constraint was used , the mapping was not

well-defined, even after scaling. By imposing the addi-
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Fig. 25. Non-Monotonic Contour Specification. = .40342,-c ,
tT = [.1998, -.1998, .2577, .7423], ~ = .1286 
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ILL DEFIN ED REGI0!~

_0  =- -
_ _ _ _ _ _ _

7
~~S0C C 2 5  C 50 C 75 ‘.00

W 1— P < ’ S  (x~fl

Fig. 26. Right-Angle Contours: Default Constraint. 00 = .50rr ,

tT = [o.o , 0.0, 0.4166, 0.5834] , = .1227
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Fig. 27. Right-Angle Contours : Alternate Constraints.

= ~~~ = [_.~~ 56 , .3399 , .6601, .2 35 6] ,
e = .1465. Constraint: o— (O ,O), r~~~ ( i , ~~ )
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tional constraint ~~~~~~ r , i ) ,  the mapping became well-

defined but the average error was large (Fig. 27). For

non—smooth increasing contours, the best constraints to

use were O — ( 0,-c-r ) and n—( -rc ,0). These constraints were

suggested by McClellan (Ref 1: 3 6-3 8) ,  but they do not

always guarantee that the range of the mapping will be

adequate. However , the scaling algorithm can still be

used to spread out the contours.
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VII. Conclusions and Recommendations

Conclusions

The primary objective of this investigation was to

provide a computer-aided method for designing 2—fl digital

filters. Available optimal design methods were rejected

because of thei~’ e ctreme inefficiency. The McClellan

Transformation provided an effective method fcr designing

sub-optimal filters that can meet a wide variety of

specifications. Design time for the filter varies in

rough proportion with the square of the filter order

(Fig. 28). For filters exceeding 21x2l points , the compu-

tational time increases rapidly. Even still, the design

time compares very favorably with other available methods .

The bulk of execution time is spent calculating the im-

pulse response coefficients ; if these are not required ,

the design time is shortened considerably (Fig. 28).

The coded and tested FORTRAN program is available to

Air Force Institute of Technology users on the CDC 6600

computer. The structure of the program is outlined in

Appendix C , and the use of the program is explained in

Appendix D. A complete design example is included.

The limitations of the method must be recognized:

1. The algorithm maps a specific 1_I) frequency to an

approximation of a desired contour. The “goodness” of the

(
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contour approximation must be evaluated in each design .

Contours with high curvature or corners generally lead

to unacceptable mappings due to large rms errors.

2. The specified contour must be monotonic in the

region [O,rr]x[O,i~], limiting the flexibility.

3. For some contours, the default constraints may

prove inadequate. The suggestions in Chapter VI should

be considered.

(I
— — Calculate Impulse Response Coefficients 

— Calculate Frequency Response Only

20

0
C,a, 

N

Fig. 28. Approximate Design Times for 2-D Design
Program



Recommendations for Future Work

Two-dimensional digital filtering is an open field

for research. This investigation has concentrated on

optimal non-recursive filters. Recursive filter design is

worth a full investigation. Little has been said regarding

practical realization or implementation of 2-D filters. As

an aide to research in this important area, a brief

supplementary bibliography has been prepared. Also of

importance are studies of the practical applications of

2-D filters.

There are several areas of further work directly

related to this present investigation. Each of the

following suggestions would make the 2-D design program

more useful and powerful t

1. It would be advantageoi..is to find ~ such that two

or more contours are approximated simultaneously, accord-

ing to an error criteria.

2. It would be advantageous to adopt the general-

ized McClellan Transformation, Eq (14~6) ,  to permit better

approximations of complicated contours.

3. It would be advantageous to calculate the im-

pulse response coefficients by a more efficient method.

An alternate recursion has been described as being faster

than the polynomial expansion used in this investigation

(Ref 26).
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Appendix A

Algorithm to Determine U for ~g (40)

Given the three Chebychev polynomial identities

T0(x) = 1 (141)

T1(x) x (142)

T
~+i

(x ) = 2xT (x) - Tn 1 (X) (143)

one can write an expression for any Tm(x). Each of these

equations could, in turn , be used to solve for the powers

x°, x1,...,x”. Table III illustrates the first few terms

of such a listing.

A recursive algorithm for determining the coefficients

of T0(x ) , Ti(x),...,Tn (x) in each expression for x°, xl,...xr~
has been developed. The algorithm was deduced by writing

the equations for x1 in matrix form:

x0 1 0 0 0 0 T0(x )

x1 0 1 0 0 0 T1(x )

x2 1/2 0 1/2 0 0 ... T2 (x )

x3 = 0 3/4 0 1/4 0 T
3

(x ) (144)

x4 3/8 0 4/8 0 1/8 T14 (x)

. .
x~” T~ (x )
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TABLE III

The Chebychev Polynomials Solved for x

T0 ( x ) = l = x 0 x°= T 0

T1(x) = x x1 =

T2 (x) = 2x2 - 1 x2 = l/2[T0 + T2]

T
3
(x) = 4x3 - 3x x3 = l/Li.[3T1 ÷ T3]

T4(x) = 8x4 - 8x2 + 1 x4 = l/8[3T0 + 4T2 + T4]

If the rows of Eq. (144) are partitioned ,

( x°= [1 0 0 0 0 ...]=U ~~T (145)

f o  1 0 0 0 .. .J= U ~~T (146)

= 1/2 [1 0 1 0 0 ... ] = !t’~ 
T (147)

X3 = l/Li.[O 3 0 1 0 ... ] = (148)

x4 = 1/8 [3 0 Li. o i ... ] = T (149)

it is noted that for m> l

= [Um o  Ur n l  Um,n] (150)

I where

Ur n o  = Um_l ,l (151)
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Urn ,1 = 2Um_l,O ÷ Um_l ,2 (152)

Um,k = Um...l,k....l + Um_l,k+1 k.cm (153)

Um k  = 1 k=m (1514. )

U
m*k 

= 0 k’m (155)

Thus , a recursive formula for each expression x°, xl,,..,xn

is available:

= 1/2m.~l U~ T (156)

I
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Appendix B

The Method of Least-Squares

Curve Fitting with Constraints

Case I: No constraints on t.

A known (or measured) function y f(x) is given. It is

desired to approximate y with the function

= t1g1(x) + t2g2(x ) + ... + t~g~(x) (157)

where each g1(x) is linearly independent. Defining

= 1’m~~k
) - 

~k’ k = l,2,...,N (15 8)

it is desired to minimize

A() = 

k~0 
6k = 

k~O 
[Pm~~k

) - 
~k] 

(159)

where the coefficients -t are unknown and unconstrained. Let

ak. 
i~O 

~J
(x~)~~ (x 1) (160)

~1l 
‘
~12

= a
21 

a
22 (161)

= 

i~O 
~~~~~~~ (162)

= [~~l 1~2 
•. .  ] (163)
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(

It can be shown that (Ref 27:322-323)

(164.)

or

= 1
1 

.~~ (165)

is the best least-squares fit of the approximating function

to the data set y, provided that a is non-singular .

Case II: One constraint on t.

The constraint on t has the form

( h(~ ) c1t1 + ... + cmtm 
- c0 = 0 (166)

A necessary condition for an extremum is that the total

different ial* vanish:

~t dt1 + ... + p-t 
dt = 0 (167)

1 m m

The total differential of the constraint is

ht dt1 + ... + h~tmdtm 0 (168)

If Eq (168) is multiplied by X , a Lagrarigian multiplier ,

‘ and added to Eq (167) (Ref 28:169-170)

U *pti 
is shorthand notation for ap/a-t1.
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r ~~t 
+ )~.h )dt1 + ... 4 

~~t 
+ Xh.~ )dtm 0 (169)

1 1 m m

Since Eq (169) is satisfied if

÷ ).ht 0 (170)
1 1

~t 
+Xh t = 0  (171)

m m

h(~) = 0 (172)

this gives (m + 1) equations in the m ÷ 1 unknowns: ~~~~, X ..

As in Case I, Eq (159)  for ~ (~~) can be written. If one

multiplies the term in brackets and performs a partial

differentiation with respect to ~~~~,

= ~~0
(2ti~1

2 
+ 2t2g1g2 + ... - 2g~y1) (173)

= Z (2t1g1g~ + ,~~ + 2t~~~
2 

- 2g~y~ ) (174)

Because Eqs (170) - (172) were determined for any 
~t’ 

one can

substitute for 
~~~~~

• Letting

S
ki Sjk ~~~~ ~~~~~~~~~~~ 

(175)

N
Yk ~~~~ ~~~~~~~~~~ (176)
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S11 S12 ... S1 ht1

(177)
Sml Sm2 5mm h

-tm

c1 c2 Cm 0

= JY 1 Y2 ~m °~1 V 

(178)

t = t] t2 W tm 1 (179)

results in

= (~ )_1 
~ (180)

By noting that

= 1/2 Ski (181)

1/2 
~k 

(182)

and that

2h(-t) = 0 (183)

is an equivalent set of constraints, it is easily shown that

aim ht
a21 C2m ht t2

= 
S (184)

amm htm 
tm

C0 C1 Cm 0
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or

* * _ 1*
~~~~= (

~
) ~ (185)

so long as is invertable.

Case III: Multiple constraints on t.

If there are n ~ m constraints on t, there will be n

equations of -the form

h
~
(
~
) c~1t1 ÷ ... + C

jm
t - = 0 (186)

For each constraint , a Lagrangian multiplier X1 is introduced ,

resulting in the following set of equations:

A + X h  + ...+~~~h = 0  (187)

Atm 
+ Xlhtm 

+ + X~h 0 (188)

h1(t) = 0 (189)

h~(~ ) 0 (190)

This gives (m + n) equations in the Cm ÷ n) unknowns: ~~~~,

~
‘1’ ‘

~2’~~~ ’ )tnS

Extending the argument of Case II, it can be shown that
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(hn)t

.I :  : —

~
(hl)tm 

(h~~~

C10 = C11 C12 .. , Clml x1 (191)

C 20 j A2

2

C~~ 0 
0nl C~~ 2 

... c~~ x~
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Appendix C

Comments on Programming

Program Structure

In structuring -this program, the primary goals were that

the program would be understandable and. modifiable by subse-

quent users. To permit this, the principles of modern soft-

ware engineering have been followed as outlined in the text

by Yourdan and Constantine (Ref 29).

At the start of this investigation, the program re-

quirements were defined:

1. The program would be interactive . This would

provide maximum user flexibility. Additionally , it would

allow the program to be semi-educational , potentially useful

in a course on digital filtering.

2. The program would design two-dimensional filters

with arbitrary transition band contours. (It was later

discovered that there is an admittable class of contours.)

3. The minimum output would include the array of 2-D

impulse response coefficients arid the frequency response of

the filter. There would be an optional provision for a

computer p1ot of the frequency response.

~~ The program would be simple to use, not requiring

a sophisticated knowledge of SCOPE procedures (Ref 32).

A high level structure chart of a first-cut design is

ç shown in Fig. 29 Each of the modules represents an

independent process.
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Considerations for Interactive Use

Because the program was required to be interactive,

memory management had to be considered. Using Control Data

Corporation INTERCOM , local procedures establish a maximum

field length of 60K octal memory . This prevents a large

program, such as this one, from being loaded. There are

two methods available to circumvent this restriction ;

segmentation and overlays (Ref 30:1-12). Although segmen-

tation is a more elegant method , overlays were selected to

permit an eventual interface with a large package of computer-

aided design programs concurrently being assembled (Ref 31).

Overlays may extend three levels deep. To permit an inter-

face with another program, one overlay level must be left

for communication , leaving only two levels to work with.

The main level overlay has been used to serve as a

controller for the design program. It corresponds to the

top b~x in the structure chart of Fig. 29. The initial plan

was to assign each of the other modules to a separate pri-

mary level overlay. Unfortunately , with this program

division, the 60K restriction could not be met. Thus,

several of the overlays have been artif~ i.afly divided into

two distinct primary overlays , with a great deal of addi-

tional control passing required. This compromise hurt the

program structure by increasing the dependence of the

modules , but it was necessary to permit interactive use.

I
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Avoiding SCOPE Commands

Another troublesome aspect of the program involves the

“Get Functional Contour” module of Fig. 29. The program

was required to design filters with arbitrary transition

band contours (within the admittable class of contours),

thus it was impossible to develop a list of available

functions for the user. The only realistic approach was to

allow the user to create his own subroutine to describe

the contour shape. This subroutine is trivial to write ;

however , integrating such a subroutine with the binary code

of the design program is difficult. The subroutine must be

compiled and libraried, a tedious task involving a good

knowledge of SCOPE commands (Ref 32).

Fortunately, a method was found that relieves the user

of any undue burden while still permitting him to supply

the required subroutine . A “cataloged procedure” , written

using University of Washington Control Language (Ref 33),

performs all the functions associated with compiling and

libraryirig the subroutine, attaching and executing the

design program (MCLTRN), and routing a hardcopy of the out-

put listing and plots. The user creates his subroutine ,

saves it as a local file, arid then issues a set of simple

commands. The nature of the subroutine and the required

procedure commands are outlined in detail in Appendix D.

A listing of the cataloged procedure (PROFIL) is attached

-to this appendix.

C

1014



Program Flowchart

This program was coded with the concepts of structured

programming in mind. Unconditional branching has been

avoided whenever a reasonable alternative existed. Sub-

routine calls are made very freely; however, most subroutines

are short and functional. As a rule of thumb, modules con-

tain between 10 and 50 lines of code . For these reasons,

detailed flowcharts for each module are unnecessary. Fig. 30

shows a top-level flowchart for the design program. The

V flowchart has been deliberately held to one page , showing

only the detail required for a quick overall view of the

program.

Program Source Code

The design program source code , PROGRAM MCLTRN~ (Ref 35)

involves over 1600 statements , so it has not been included

in this report. Copies of the source listing are available

from -the author or from Prof. Gary Lamont, AFIT/EN.

Program PROFIL

The cataloged procedure PROFIL controls Program MCLTRN.

A listing follows :
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Program PROFIL

COMPILE (NAME=X ) FILES.
RETUR N , GOGO . PLFILE
REWIND , NAME . REWIND, TAPE2.
FTN, I=NAME,L=Ø,B=GOGO . REQtJEST,TETVIP3D, *PF.
EDITLIB , I=DA , L=LIST. COPY , TAPE 2 , TEMP3D.
RETURN ,LIST , DA. V CATALOG , TEMP3D , DATA3DPLOT.
LIBRARY , MYLIB. RETURN , TEMP3D.
/DATA DA IF(—FILE , PLOT3D)
LIBRARY(MYLIB ,NEW ) ATTACH ,PLOT3D ,THESIS , CY=4ØØ, ID=RBB .
ADD(* , GOGO ) REWIND , PLOT3D.
FINISH. BATCH ,PLOT3D ,INPUT,HERE.
ENDRUN. FILES.
RECOMPILE(NAME=X ) 3DPLOT
RETURN , GOGO . IF(-FILE,PLF ILE )
REWIND ,NA!vlE. ATTACH , PLFILE , YOURF ILE .
FTN ,I=NAME ,L=Ø,B= GOGO . IF(-FILE,DISSPLA )
EDITLIB , I=DB,L=LIST. ATTACH , DISSPLA , ID=X65432l.
RETURN ,LIST , DB. LIBRARY , DISSPLA .
LIBRARY ,MYLIB. ONLINE.
/DA.TA DB
LIBRARY(MYLIB ,OLD )
DELETE(*)
ADD(* , GOGO )
FINISH.
ENDRUN .
DES IGN
IF(-FILE ,AFITSUB )
ATTACH ,AFITSUBROUTINES, ID=AFIT .
LIBRARY , AFITSUB , MYLIB .
IF(-FILE,MX)
ATTACH , MX , THES IS , CY=3Ø2 , ID=RBB.
REWIND , MX.
MX .
RETURN , MCL .
ROUTE ( TERM=BB , USER=KJØ )
REWIND , RESULT.
COPYSBF ,RESULT ,RRX .
ROUTE , RRX , DC=PR , T ID=TERM , FID=USER .
RETURN , RESULT.
IF (FILE ,PLOT)
ROUTE , PLOT , DC=PT, TID=TERM, FID=USER .

NOTE : Separate procedures with end-of-record .

C
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Appendix D

User ’s Guide to Program MCLTRN

MCLTRN
15 December 1977

Identification:

MCLTRN - McClellan Transformation Design for Two-
Dimensional (2-D) Digital Filters

FORTRAN Extended (FTN ) Program

Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio

Capt. R. B. Brown, GE-77D

Purpose:

MCLTRN will design 2-D finite impulse response (FIR)
zero-phase filters of the form

N N
= ~ a(m ,n)cos~.1m cos~ 2n (45 )

m=O n=O

The filter will be a very close approximation to an optimal
filter. Program output includes a 2-D frequency response
(optionally plotted), the 2-D impulse response coefficients,
and contour maps. MCLTRN is intended for interactive use.

Control:

ATTACH , PROFIL , ID = T77Ø311+ .

A cataloged procedure (Ref 33) PROFIL is used to
control MCLTRN. There are six commands:

BEGIN , COMPILE.
BEGIN , RECOMPILE.
BEGIN , DESIGN .
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BEGIN, ROUTE.
BEGIN , PLFILE .
BEGIN, 3DPLOT.

Programming Information:

1. MCLTRN requires a user supplied FORTRAN SUBROUTINE
FUNCT(I, N , X , Y), where X, Y are the spatial axes , N is the
number of sample points. (supplied by MCLTRN), and I is the
current sample index (supplied by MCLTRN). The subroutine
defines a smooth monotonic contour in the 2-D region
[o , ].]x[o , iJ. MCLTRN will scale -this contour to the region
[o~ i-i] x I3~
e. g. To describe a quarter circle , centered at (0,0) with
radius 0.5:

SUBROUTINE FUNCT (I , N, X , Y)
C DEFINE VALID X RANGE ON [o,i] AND INCREMENT X

V 

XMAX = 0.5
X = XMAX * (I - 1.0) / N

C CALCULATE CORRESPONDING Y VALUE
Y = SQRT (XMAX** 2 - X**2)
RETURN
END

2. After creating FUNCT (I, N, X , Y ) ,  the edit file
must be saved , without sequencing, as local file X:

SAVE, X, NOSEQ , OVER .

To automatically compilc and library the subroutine , command:

BEGIN, COMPILE.

If there are FORTRAN errors, or if it is necessary to compile
another subroutine , use the alternate command :

V BEGIN, RECOMPILE. S

(If error messages related to your user library MYLIB appear,check that you saved file X and then attempt to use therecompile Command.)

3. To execute MCLTRN , command :
• BEGIN, DESIGN.

4. To obtain a hardcopy of the output listing (RESULT)or contour plots (PLOT), command:
( BEGIN, ROUTE ( ,  ,XX , YYYYY) ,
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where the grouping in parenthesis is optional:

XX = TID code (optional default = BB)

YYYYY = FID code (optional default = USER)

Note: Plots will always have the user identification
code as the banner.

5. To create a DISSPLA file for the 3-D drawing of the
frequency response, command:

BEGIN, PLFILE.

Because DISSPLA (Ref 34) requires over lOOK memory , the
job will be batched to the input queue . After allowing time
for execution, check your output file JJJucxx for errors
(uc is your user identification code):

BATCH, JJJucxx, LOCAL.

EDIT, JJJucxx, SEQ.

Assuming there were no FORTRAN errors*, you may create (or
preview) and dispose a Calcomp plot file by commanding:

BEGIN, 3DPLOT.

DRAW = l-END$

If you are at a graphics terminal, command:

TEKLI.O1O
TEKLS.O1L$. as appropriate
etc .

To dispose your plot , command:

ROUTE, PLOT, TID =XX , FID YYYYY, DC = PT.

*In particular , FORTRAN error 103: No permanent file
( space for plot file -- job killed.
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Method:

MCLTRN maps each frequency of a 1-D bandpass filter to a

contour in the spatial plane by the M~Cle11an Transformation:

coso = t1 + t2 cos(x) + t
3 
cos(y) + t4 cos(x) cos (y) (192)

In particular , the frequency w~, (usually a transition band

boundary) is mapped to the contour defined by SUBROUTINE

FUNCT (I, N, X, Y). MCLTRN optimizes t by the least-squares

criteria. For a non-trivial mapping, constraints on t are

necessary ; however, a default constraint that 0 maps to
(Ø,Ø) is available. An optional contour scaling algorithm

returning a new 1-D frequency cu0, is recommended to

guarantee a well-behaved frequency response. The user may

examine the locus of contours generated by t as a function

of w , in both tabular or plotted form.

Once t is established , a 1-D prototype optimal FIR

zero-phase filter is designed. This filter is normally a

low-pass or high-pass filter with a stopband or passbarid

frequency of cue. At this writing, the filter must be of

odd order not exceeding 21. The error magnitude in the

1-D prototype will be passed to the 2-D filter, where each

1-D extremal frequency maps to a 2-D contour. A plot file

of this mapping is created automatically by MCLTRN .

Finally , MCLTRN calculates the 2-D frequency response.

Optionally , the 2-D impulse response coefficients will be

V .r calculated.
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Special Conventions:

1. The 2-D filter designed using the McClellan

Transformation is symmetric about both the x and y axes.

Thus , only a first quadrant design is considered.

2. All frequencies are normalized to the interval

[o , n ] and must be entered as multiples of tr (Ø.Ø to 1.0).

Design Example~

The following example illustrates the use of PROFIL

and MCLTRN. The desired contour is defined by the

rectangular hyperbola

xy = a2/2 (193 )

( where a = 0.30-IT. The resulting contour mapping is shown

in Fig. 31. The frequency response is shown in Fig. 32.

Note that user entries are shown in lower-case letters, V

programming prompts in upper-case letters.

C
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Appendix E

Use of Advanced DISSPLA

DISSPLA is a software graphics package developed by

Integrated Software Systems Corporation. The DISSPLA

Reference Manual (Ref 34) is augmented locally by prelimi-

nary and post-processing instructions available from the

ASD Computer Center.

One of the features of Advanced DISSPLA is a capability

for projecting three-dimensional (3-D) surfaces and lines

(Ref 34zAdv-C). 3-D surfaces are plotted with “hidden

lines” automatically removed. Any viewpoint not actually

within the surface being drawn is allowed.

The basic plotting subroutine for 3-D surfaces is CALL

SURFUN(ZFUN, IXPTS , XDELTA , IYPTS , YDELTA , WORK), where

ZFUN is the function name for a two-variable
function to be evaluated , producing a
magnitude z.

IXPTS is the number of sample points to be
evaluated in each XDELTA interval.

IYPTS is analogous to IXPTS , but over the YDELTA
interval.

XDELTA is the interval between lines parallel
to the x-axis. The smaller this interval,
the greater the detail.

YDELTA is the interval between lines parallel to
the y—axis.

WORK is an internal array, dimensioned at least
equal to the number of perimeter sample
points plus 4.

I
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The limits on x, y, and z are specified by calls to GRAF3D

and AXES3D. ?or information on these and other calls , the

DISSPLA Advanced Reference Manual , Part C , should be re—

viewed.

A source listing of the FORTRAN program used to generate

the 3-D frequency response drawings of this investigation

has been included as an illustration of 3-D DISSPLA .

Function G evaluates Eq (44) over a grid of points in x-y.

Tape 2 contains ~~ , and the coefficients (b(n)).

JJJ, ‘120, CP~ 1 2O~~o) . -r770314 • IiCLT ~~N USER

A?Y4C14, T.~pEa.~~TAateLor .PE~IIID. TA FE~ .
AT’T.sCH,DISS PL,~. zD- ’(6s43a1.
LilR.R~ .DXSSPL’~.RE QUES T. PLF IL E .  SPF.

~~~ALoG.pLr1LE.~~uRcrL.E.PURGEI TAPEa .
.PROGRM~ PLT3~ ’: IPIPUT ,OUTPUT .TaPE2.PL.F!LEeO)

DINENSION UO RK (650 ) . P U 1) . t L 4 )
COP11’~ON ‘ONU B, NP , T
EXTERNAT . 6
REM D ’2 , I i .’ NP.T

11 c0p114r(L3.4E13.95
REA D’ 2 ,12 ’ ( B ( M .rI.t.NP)

V ~~~~ FORM~T E18.~~ 5E1~ .9.t 18.9)
PRi’ii ILl
PRINT 12, (B~M, .N’1,NP
CALT. COMPRS
CAI.L IGNPL ’V l )
CALL TXlL3D ~I~I •—I. 7.G,~ .e;
CALL UU4SI12.,1$.,t2.
CALL ES3D ’ o.e.O, e.e.e .a.e,a .a.l.s)
CALL GP~J3 D(—1.0.0 . I ,1 .a, —i . e,e. 1,  .0, — .25.0.2,1.25 )
CALL SUPcUN(G. 3..iaS. 3,.125, UCR IC )
CALL ENDPL ~~i VI
CALL DONEPL
STOP

~UHCTION G (Ut.lJ2)COfiNON ‘ONE’ I,NP.T
DIPIENSION B (tl),T”4)
P1.3.1415926536
‘m’l.u.tsPI
1P42’IJ2 ZP I
X.COS( IiI~t )
v.COSuIa)
Z~?( 4 )*XSY

0.I.s
bO 31 N.1,P

31
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