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Preface

Two-dimensional digital filtering is a new discipline
that has developed only in the past several years. When I
expressed an interest in studying in this field, Prof.

Gary Lamont suggested that I attend a Rennselaer Polytechnic

Institute short course being offered in July on two-dimensional

signal processing. The course was very worthwhile. While
discussing my thesis topic with Prof. Sanjit Mitra, of the
University of California, I received some wonderful ideas.
Additionally, Prof. Mitra suggested I write Prof. Russ
Mercereau of Massachusetts Institute of Technology, who

had done some similar work in two-dimensional filter

design. I wrote Prof. Mercereau, now of Georgia Institue

of Technology, and he very kindly sent me several unpublished
papers which I found very useful. I also want to acknowledge
the many people in the local area who helped me so much:

Dr. Phil Pourier, for help with cataloged procedures and
DISSPLA; Dr. John Hines, for time on the Avionics Laboratory
graphics equipment; Lt. Stan Larimer and Lt. Steve Enke,

for countless programming suggestions; Mrs. Diana Hake,

for highly professional typing; and my wife, Randi, for

being a model of patience and understanding.

Richard B. Brown
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Abstract

This investigation develops an interactive computer
aided method for designing lowpass or highpass two-
dimensional finite impulse response digital filters. Filters
designed using this method will have linear phase and an
equiripple error in the transmission and attenuation bands.

The essence of the method is that it transforms an
optimal one-dimensional digital filter into a close approxi-
mation of an optimal two-dimensional digital filter. The
amplitude characteristic of the one-dimensional filter
is preserved in the sense that each point of the one-
dimensional frequency response is mapped to a contour in
the two-dimensional plane. This transformation was first
proposed by James H. McClellan, and is now called McClellan
Transformation.

By controlling the mapping of a specified one-
dimensional frequency to a desired contour shape in the
plane, two-dimensional filters of fairly arbitrary specifi-
cations can be designed; that is, their frequency response
can be determined, and the associated two-dimensional

impulse response coefficients calculated.
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INVESTIGATION OF OPTIMAL
LINEAR SHIFT-INVARIANT
TWO-DIMENSIONAL DIGITAL FILTERS

I. Introduction

This investigation concerns an interactive computer

‘aided method for designing two-dimensional finite impulse

response (FIR) digital filters. A spectral transformation
technique, suggested by McClellan (Ref 1), is extended to
permit the design of two-dimensional filters within a
special class. Through this transformation, an optimal one-
dimensional FIR filter is transformed into an equiripple,
though sub-optimal, two-dimensional digital filter. The
amplitude characteristic of the one-dimensional filter is
preserved in the sense that each point of the one-dimensional
frequency response is mapped to a contour in the two-

dimensional frequency plane.

Digital Filters

Digital systems deal with signals that are discrete in
both amplitude and time. Digital filtering, sometimes called
digital signal processing, is involved with operations on
such signals, using either general purpose computers or
special purpose hardware. In the early years of digital
filtering, the required processing could not always be done

in real time. However, advances such as the Fast Fourier




Transform algorithm now permit processing times several
orders of magnitude faster (Ref 2:3). Although digital

. filters are often used as mere simulations of analog filters,
their most significant value is when they are used to create
filters with characteristics unobtainable using analog
methods.

To permit the use of well-known linear system theory,
only linear shift-invariant (LSI) digital filters will be
considered in this investigation. LSI filters can be
divided into two classes depending on the duration of the
filter's impulse response; infinite impulse response (IIR)
filters (or recursive filters), and finite impulse response
(FIR) filters (or nonrecursive filters). IIR filters were
originally more popular than FIR filters, because the
traditional approach to digital filter design involves the
transformation of an analog IIR filter into a digital IIR
filter with some prescribed specification (Ref 2:197).
However, FIR filters have two attractive properties. First,
there is the possibility of designing exact linear phase,
required in many applications (Ref 7:76). Second, the
FIR filter is never unstable. These qualitites are often
important in digital signal processiﬁg applications. For
. many years, éfficient methods for designing optimal 1-D FIR
filters were not available; however, in 1972, Parks and
McClellan published a very efficient algorithm for the
design of optimal 1-D FIR filters (Ref 3, Ref 4).

With this problem solved, attention turned to the design

of-filters of higher dimensions, especially two-dimensional

2
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(2-D) digital filters. 2-D filters find applications in
areas where signal specification requires spatial coordi-
nates, such as in image processing (Ref 5) or seismic
analysis (Ref 6). A digital filter must be designed (that
is, the frequency response must be specified and the impulse
response coefficients must be determined), and then the
filter is implemented. To permit the proper amount of detail
in this investigation, only the design of the digital filter
will be considered. Recognizing that implementation is
certainly just as important as design, a short listing of
implementatioh references has been included as a supplemen-

tary bibliography.

The Design Problem of 2-D Filters

A design goal for a 1-D filter might be to minimize
the error over the interval -w,w] between a desired
frequency response D(w) and the obtainable frequency re-
sponsé H(w), according to some error criteria; It is
assumed that the frequencies of interest have been normal-
ized to the interval -w.ﬁ]. This is the case if the
sampling time T is equal to unity. Alternatively, one
maps the sampled frequencies via the complex exponential
mapping z = exp(sT) and deals with the set of angles, repeating
[-w.ﬂ] on the 2-plane unit ciréle (Ref 2:199-200).

The design goal in two-dimensions is analogous, where

the interval -ﬂ.n] is replaced by the region [}n.w] x[}w.n]




in the spatial plane.' 2-D FIR filters can be designed by
multiplying the infinite-extent ideal frequency response by
an NxN sample point rectangular window. This amounts to a
truncation of the infinite duration impulse response sequence.
However, as in 1-D, the rectangular window produces a large,
undesirable ripple in the frequency response, due to the
Gibb's effect. By using better windows, the ripple can be
-reduced somewhat, but the resulting filter is never optimal,
since the required convolution "smears" the frequency
response (Ref 7:239-250).

Rabiner aﬁd others have designed optimal 2-D FIR filters
by using linear programming. While the resulting filters were
excellent, the design method was very costly and inefficient.
The highest order filter designed (9x9 sample points) in-
volved thousands of constraint equations and required more
than one hour of computation time on a high speed computer
system -(Ref 7:471).

Effort has been made to generalize McClellan and Park's
1-D algorithm to higher dimensions. despite an assertion by
McClellan that the algorithm could not be extended directly
(Ref 1:30). Both Kamp and Thiran (Ref 8) and Hersey and
Mercereau (Ref 9) recently published algorithms for the
design of optimal 2-D FIR filters based on variations of the
Parks-McClellan method. Despite use of efficient numerical

techniques, no dramatic decrease in execution time was




achieved in comparison with linear programming. Addition-
ally, these methods ;fe restricted to low order filters
(Ref 10:240).

In 1973, McClellan proposed that a more efficient method
of -designing optimal 2-D filters would be by a "spectral
transformation", a complex mapping that carries a stable
rational transfer function into another stable rational
transfer function. The change of variables McClellan sug-

gested, to be referred to as the McClellan Transformation, is

cosw = F(wl'“b) = t; + t,cosw, + t300swb + t,cosw; “cosw, (1)
Using this transformation, with the values tl = =5,
t2 = t3 = tu = 0.5, McClellan was able to design circularly
symmetric 2-D filters by transforming a suitable 1-D optimal
filter (Ref 1). The magnitude of each frequency in the .
interval -w,w] is mapped to an wy-w, contour‘in the square
region -w,w]x[}n.w]. Several such contours are shown in
Fig. 1, and the resulting 2-D frequency response in Fig. 2.
(The design program developed in this investigation was
used to obtain these figures.) Because there are many 2-D
applications that either require or can tolerate a
circularly symmetric filtér. McClellan's method has been
widely praised (Ref 9:1-2). |

Because these filters are obtained using a transform

method, they are generally sub-optimal. However, they do
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closely approximate the true optimal filters designed by
any of the previous methods. Using McClellan Transforma-
tions, filters of large orders can be designed in a matter
of seconds on a general purpose computer. Filters of
127x127 sample points have reportedly been designed (Ref
10:240), although the memory requirements would be consid-

erable.

Approach of this Investigation

This investigation develops a computer-aided design
program which extends the capability of the McClellan
Transformation to design 2-D FIR filters with a single
transition band of a fairly arbitrary shape. Included with-
in the admittable class of shapes are low pass and high pass
filters that are symmetric about both the @) and w, axes,
and whose single transition band is bounded by smooth, mono-
tonic curves defined by the functional relationship w, = F(wi)
in the region [O,ﬁ]x[p,w] of the w;-w, plane. Additionally,
it is required that the attenuation and transmission bands
be of constant magnitude.

The algorithm to be implemented consists of four major
steps:

1. Define the 2-D frequency response by specifying

admittable contours in the wi-w, plane that will approx-

imate the desired transition band of the 2-D filter.

2. Using an error criteria, determine the values t

t2. tj, tu that will produce the closest mapping of

1-D transition band frequencies to 2-D transition band

8




contours.
3. Design an optimal 1-D FIR prototype, with an appro-
priate frequency response, that will be transformed into
the desired 2-D filter.
4. Calculate the impulse response coefficients and
the frequency resﬁonse of the designed 2-D filter.

The complete details of the method, until now unavailable,

-are logically developed.

The Sequence of Problem Development

Chapter II reviews the McClellan-Parks algorithm for
designing optimal LSI FIR 1-D digital filters. This chapter
is included for two reasons: first, the Parks-McClellan
algorithm is used to design the 1-D prototypes required for
the 2-D transformation; second, the principles in the algo-
rithm serve as an essential introduction to some of the
concep?s of the later chapters. In Chapter III the mathe-
matics of 2-D sequences is reviewed, and the required tools
for 2-D design are developed. Although methods for design-
ing non-optimal 2-D filters exist, the optimal 2-D filter re-
mains a stubborn problem. The reasons that make true
optimal filter design in two dimensions so difficult are
examined. This motivates the ultimate selection of a sub-
optimal method for the 2-D filter design algorithm.

In Chapter IV the rationale behind the McClellan Trans-
formation is discussed, and the nature of the complex mapping

required in the contour design is examined. It is shown that

. A — T ————




the method cannot design transition band contours of all
shapes, but can design arbitrary contours within a very
useful class. To produce a non-trivial mapping, the re-
quirements for constraints on the elements tl' tos t3, ty
of Eq (1) is shown necessary.

A method for calculating the 2-D frequency response
and the 2-D impulse response coefficients is outlined in
Chapter V. Additionally, the optimality of filters designed
using the McClellan Transformation is considered. Chapter
VI illustrates a few typical design problems. Chapter VII
draws conclusiéns on the investigation, and makes
recommendations for future related research.

Several appendices are included. Of particular
interest are Appendix C, a discussion of the computer pro-
gram developed in this investigation and Appendix D, a user's

guide to this program.
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II. 1-D Optimal FIR Filters

This chapter begins with a brief review of finite-
extent sequences and the nature of a linear phase 1-D FIR
filter. Finite duration sequences possess certain very
useful properties for filter design. Such problems as
stability and implementation, which might affect IIR filters,
do not arise with FIR filters (Ref 7:175-76). Additionally,
FIR filters can be designed to have exact linear phase. This
is often important for applications where frequency disper-
sion due to non-linear phase is harmful (for example, speech
processing and data transmission) (Ref 7:76). For many
years no efficient method for the design of 1-D optimal FIR
filters was available. The Parks-McClellan algorithm, to be
described, effectively solved this problem.

To best understand the Chebychev (optimal) approxima-
tion problem, certain necessary mathematical theorems are
reviewed. It is then shown that the Parks-McClellan algo-
rithm is a natural extension of earlier efforts to apply
this Chebychev approximation theory. However, the resource-
ful adaptation of the efficient 2nd Remez Exchange algorithm
gives the Parks-McClellan method far more power than any

previous method.

Finite-Extent Sequences and Linear Phase

If {h(n)) is a causal finite duration sequence defined

over the interval 0<n <2N-1, then the z-transform of

1l




{h(n)} is

2N-1
H(z) = ¥ h(n)z™" (2)
n=0

and the Fourier transform of {h(n)}, with period 27, is

2N-1
H(w) = Y h(n)exp(-jwn) : (3)

n=0
The condition for linear phase,

H(w)

G(w)exp(j(A + Bw)), G(w) Real (4)
will be achieved if (Ref 7:77-78)
h(n) = h(2N - 1 - n), O=<ns2N-1 (5)

Parks and McClellan showed that one of four possible cases

for linear phase is a positive-symmetric, odd-length impulse-

response with, in Eq (4), A = 0, B = -(2N-1)/2. (Ref 1:10).

Because tﬁe term exp j(A + Bw) contributes only to phase,

{h(n)} can be assumed centered at the origin with length

N + 1 in each direction. Fig. 3 illustrates a typic;l case.
If 2is assumption is made, the frequency response can

be rewritten as a sum of cosine functions (Ref 7:81-82):

" N
G(w) = h(0) + 2 ¥ h(n)coswn (6)
n=1 ;
N
= ¥ a(n)coswn : (7)
n=0
12




where

a(o0)

h(0) (8)

a(n) = 2h(n), n# o0 (9)

Chebychev Approximation Problem

By defining a desired frequency response D{w), and a
weighting function W(w), then the weighted approximation

error E(w) is

E(@) = w(®) [ D(e) - G(a) ] (10)

The Chebychev approximation problem amounts to finding the
coefficients {a(n)} that minimize the maximum absolute
error E(w) over the frequency band of interest.

To properly develop the Chebychev approximation
problem, a certain amount or mathematical background is re-
quired. It is useful to extend the well-known concept of a
polynomial approximating function by considering some linear -
combinations of prescribed functions 811 Eoreeeery continuous
on a fixed space X. Their linear combinations Zc;g; are
termed generalized polynomials (Ref 11:72). The Existence
Theorem guarantees that to each f e X there exists at least
one generalized polynomial which best approximates f (Ref
11:20).

?or certain types of generalized polynomials, the
characterization of the best approximation can be stated

very conveniently. The functions 811810018, are said to

13
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Fig. 3. Positive Symmetric Impulse Response of Zero-Phase
FIR filter

Fig. 4. Equiripple Error for Function sin(wx/2)

14




satisfy the Haar Condition if each 8, is continuous and

if every set of n vectors of the form

x = [g(x), gy(x), ..., g (x)] (11)

is independent (Ref 11:45). For systems satisfying the
Haar Condition, the following theorem holds (Ref 11:75)

Alternation Theorem. Let S be a

system of elements of C [a,b] satisfying the

Haar condition, and let X be any closed sub-

set of [2,b]. In order that a certain gener-

alized polynomial P = Zc.g. shall be a best

approximation on X to a givén f e C[X] it is

necessary and sufficient that the error function

r =f - P exhibit on X at least n + 1 alter-

nations. Thus r(x.) = -r(x: ).

i i-1

This theorem is very important in numerical determina-
tion of the best approximations. To illustrate the theorem,
it might be desired to approximate the function sin(mx/2)
by a first degree polynomial P(x) = c, ¥ ¢ X over [o0,1]
(Fig. 4). By the theorem, the error function must alter-
nate at least three times. The points of alternation are
0 and 1, which can be determined by inspection, and ¢,
which is not known. This situation is typical: if the
location of the extrema of the error function were known,
the approximating polynomial could be determined by solving
some linear equations. To determine the location of the
extrema, however, usually involves solving some non-linear
equations (Ref 11:75-76).

If Eq (10) is applied to the design of an optimal
bandpass filter, the number of extrema of E (w) will be the

15




HW)

1+6pq_
1-6

.g:.._-..--_-_-_-_..--_..'..

Fig. 5. An Equiripple Low Pass Filter
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sum of extrema of G(w) plus the mandatory extrema associ-
ated with a constraint at each band edge (Fig. 5). 1In
general, the extrema at the band edges (except atw= 0 and
w= 1) will not be extrema of G(w) (Ref 7:129). "Extra-
ripple" may therefore be present, since more than n + 1

alternations might exist.

Development of an Efficient 1-D Design Method

By specifying N and &, (ﬁz = xal) and allowing wg and
v to be free variables, Hermann designed extraripple
optimal FIR filters. He was restricted to designs of fairly
low-order filters because of an inefficient method for
solving the non-linear equations which locate the extremal
frequencies (Ref 2:258).

Using a method of polynomial interpolation "reminis-
cent of the Remez Exchange algorithm", Hofstetter et al
provided an efficient method for determining these extremal
frequencies (Ref 12). This avoided the restriction on the
filter order, but still left wg and “y as free variables.

Parks and McClellan completed the solution by develop-

ing a method where N, w_, and w_ are fixed, and &, ( 65 =K61)

s

is allowed to vary (Ref 3, Ref i). By properly interpreting
the Alternation Theorem, they developed an algorithm capable
of designing optimal FIR filters with the minimum number of

lerror alternations. Following on Hofstetter's work, they

incorporated the very efficient 2nd Remez Multiple Exchange
algorithm (Ref 13) to provide their method with great speed.

17
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For example, a 100 sample point filter can be designed in
about 20 seconds (Ref 4:97). If 61 must meet some tolerance,
the Parks-McClellan method can be repeated with adjustments
in one of the parameters.

The source listing of Parks and McClellan's FORTRAN
program for designing optimal FIR filters, as well as an
excellent discussion of the 2nd Remez algorithm, is avail-
able in Rabiner and Gold's text (Ref 7:187-204). With
certain minor modification, this program was used to pro-
vide the 1-D prototypes for use in the design of the

transformed 2-D filters.

Summary
The Parks-McClellan algorithm provides a very fast

method for designing 1-D optimal FIR digital filters. Be-
cause this was one of the last remaining major 1-D filter-
irg problems, it is not surprising that research in the past.
several years has centered on higher-dimensional filtering,
especially the two-dimensional case. The insights gained in
considering the 1-D optimal design problem prove useful in

the discussion of 2-D optimal filter design.




[

III. The Design of Optimal 2-D Filters

Teéhniques for designing 1-D digital filters are now
fairly well established in the literature. Very few of
these'techniques, however, have been extended to two or more
dimensions. Since there is no lack of interest in 2-D
signal processing, it is worth investigating those design
techniques that can be extended to two-dimensions.

Of special interest in this investigation is the design
of 2-D optimal filters. In this chapter, the design methods
currently available are reviewed, each being evaluated in
terms of its optimality, computational efficiency, and ease
of understanding. It is shown that no optimal method meets
all three criteria. This justifies the selection of a "sub-

optimal" design method.

Basic Concepts of 2-D Discrete Signals

Because 1-D LSI systems represent a special case of
multi-dimensional systems, it is not surprising that many
of the concepts encountered in 2-D filtering seem familiar.
However, certain useful properties are unique to the 1-D
case.

Discrete 2-D signals are functions of two integer
variables (m,n). A discrete function ﬁ(m,n)'*is not de-

fined unless both m and n assume integer values. In

*

The "hat" symbol is used to maintain consistency with
the FORTRAN program in Appendix C, where two-dimensional
arrays are identified with a "HAT" suffix.
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practice, 2-D discrete signals will often be sampled values
from a 2-D continuous signal, and appropriate 2-D sampling
theorems exist (Ref 14).

As in 1-D, two dimensional LSI systems can be completely
specified by their impulse response ﬁ(m,n). The output
9(m,n) of a 2-D LSI system is the convolution of the input

A
sequence Q(m,n) with h(m,n):

fmn) = § ¥ £k, Rk, n-1) (12)

=— f[=-o

The complex exponentials zT and zg are the eigenfunctions

of LSI systems. Thus,

§(m.n) = zlm z;;l ﬁ(zl.zz) (13)

A
where H(zl,zz) is called the system function.

The z-transform of Q(m,n) is

f[(zl.zz) = § i ;\c(m.n)zl'm zz'n (14)

m==e IN==00

and the system function can be shown to be the z-transform
of the impulse response (Ref 10:231). If the z-transform
is evaluated on the surface 2, = exp(jwl). Z, = eXp(jwb),

the 2-D Fourier Transform can be evaluated




X0 =5 § Rmn)exp(-jl@ym + wyn)) (15)

. ==—00 N=-—00

which is periodic over [-w,%] in both dimensions.
As in 1-D,

A A A
Y(0p,0,) = X(0,0,) Ho,0,) (16)

The 2-D discrete Fourier Transform (DFT) is defined to be

M-1 N-1

Xk 2) =F 3 %(mn)exp(-j(2vmc/M + 2mmi/N)) (17)
m=0 n=0 ;

As in 1-D, the 2-D DFT has proven to be an extremely useful
tool in implementing digital filters, especially when an
efficient Fast Fourier Transform (FFT) is used. Although
direct convolution can be used to implement filters of low
order, it becomes worthwhile to use an FFT for orders of

roughly 10x10 sample points or more (Ref 15:405).

The 2-D Design Objective

The normal objective of 2-b filtering is to aiter the
frequency spectrum of some input function by operating on it
with a filter function ﬁ(wl.wz). The digital filter design
problem amounts to the determination of the impulse response
coefficients ﬁ(m,n) which Qill produce a filter capable of

performing the desired operation. Of course, after the

filter is designed, it still remains to be implemented.
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2-D IIR Filters. For a 2-D IIR filter, the system

function will take the form of a ratio of finite-degree

polynomials (Ref 10:233)

. :
A A(zlrzz) L © A o 13 18
H(zl!ZZ) = m' = 2 z h(m’n)zl m 22 n ( )

where

A ) ;l ?% ) 5K 5
B ;8. ) = a(k,t) z, e (19)
1’72 =0 120 1 2

M N

A 2 _2

B(z,,2,) = b(k,t) z,°¥ 2 -1 (20)
=D kz% ;;o 1 2

then a recursive partial difference equation exists:
o S

1 A a(k, )X (m-k,n-1)

y(m-1,n-j)
m-l,n- L e
- TR & %o

[
=
N

Bk, 2)§(m-k,n-1) (21)

o'
~ .
num =
[eN e} n

5z

The order of recursion in Eq (21) is important, for of the
many possible schemes of recursing on the variables, only a

few will be causal. As a simple illustration, consider the
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following partial difference equation:
A A
¥(m,n) = by(n-1,n) + X(m,n)

where several possible recursions will be considered. In
Fig. 6 a few discrete points near the origin are labeled

and the boundary condition
A
y(m,n) = 0, m<0orn<o0

is indicated. Causal relations would be described by any

of the following possible recursive paths:

ABC.'. mF.l. GHI."
ADG... BEH... CFI...
A DB GEC ...

However, other paths can be selected that prevent a causal

relation:

ABC... ...FED GHI...
AEI.O. BFI‘. DHO‘.
AB ED GHI FC ...

A 2-D IIR filter can be implemented from a causal partial
difference equation, provided the reqﬁired boundary
conditions are known (Ref 16).

While IIR filters offer a much richer set of system
functions than do FIR filters, there are disadvantages

which make recursive filters unattractive. For any filter,

23
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a prerequisite for stability is that the impulse response

be bounded (Ref 16)
°0 ] A
$ 5 |ram|<- (24)
m==e N==x

FIR filters are always absolutely summable, due to their

finite extent, so they are always stable. IIR filters must

be tested for stability.

€
N

S PR

$D of of o

C

/?A//'}B/7/OC//“1

Boundary Conditions =

Fig. 6. An Example of Possible 2-D Recursions
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In 1-D, an IIR filter of the form

A
ﬁ(z) = %{-Z—;— (25)

can be tested for stability by factoring the functions A(z)
and B(z) into cascades of first and second order terms. The
Fundamental Theorem of Algebra (Ref 17) guarantees that this
can be done. Unfortunately there is no analogous theorem
for polynomials of two or more variables. Stability must
be tested in a more indirect way.

The most practical IIR stability test is due to Huang
(Ref 18). The test can be summarized as follows:

Huang's Test. A recursive filter ﬁ(z y2,) is stable

if and only if the image of the unit tiréle 1Z,l=1

when mapped into the z plane by B(z,,2z,) = 0 does not
intersect the region |z;| = 1 and, In &addition, no
point in the region |21) = 1 maps into the point

Z, = 0.

Theoretically, this test would require the mapping of the
entire 21-22 hyperspace. In practice, only a discrete
number of points can be mapped. Improvements on Huang's
Test have been published, but the test remains a major
computational problem (Ref 10:235).

Even if a stability test is available, more important
problems remain: first, how the designer determines the
filter coefficients (of a stable filter) to meet a bre-
scribed frequency response specification; second, how an un-
stable filter can be stabilized without adversely affecting

magnitude response.
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Complex cepstrum* techniques suffer because they yield
infinite degree denominator polynomials which must be
approximated by finite degree polynomials, sometimes
altering the frequency response significantly (Ref 10:235).
A stabilization conjecture due to Shanks (Ref 19), that the
double planar least-squares inverse (PLSI) of an unstable
filter would yield a stable filter with the desired
characteristics, has been used to design many IIR filters.
For years, no counter-example appeared. However, very
recently, Kamp and Genin provided a counter-example (Ref 20)
and then disproved the conjecture (Ref 21).

2-D FIR Filters. Because of these problems with 2-D

IIR filters, most 2-D designs have used FIR filters. If
the desired 2-D filter either requires or can tolerate
circular symmetry, fhen several design techniques for FIR
filters are available. By circular symmetry, it is meant
that any slice of the filter that passes thru the origin
will be identical (Fig. 7).

The most straight-forward FIR design technique is the
direct extension of the windowing method to two-dimensions.
Using windows, the infinite-extent 2-D Fourier coefficient
ﬁ(m,n) are multiplied by a finite-extent 2-D window function

#(m,n) to produce the coefficients

ﬁ(m,n) = ﬁ(m.n)-a(m,n), -M<m<M, -N<n<N ' (26)

*
Defined as the inverse Fourier transform of the complex
logarithm of the Fourier transform of a sequence.
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The approximated frequency response becomes (Ref 16)

m_——M n_——N

Huang has shown that "good" 2-D windows can be obtained

from "good" 1-D windows by the relation

wim,n) = Q(,/mz +n® )

where w(e) is a continuous 1-D window (Ref 22). Using
windows, circularly symmetric filters with a great variety

of shapes can be designed.

- 1

(27)

(28)

Fig. 7. Slices from a Circularly Symmetric Filter
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There are drawbacks to windowing, however. First, in
the design of a 1-D prototype window, a closed form

expression for the Fourier series coefficients is required:
3 o :
h(n) = 2—"[0 H(w)exp( jon)dw (29)

If this integral proves cumbersome to evaluate, the design
ﬁrocess may stop (Ref 7:101). Second, window designed
filters cannot meet prescribed frequency cutoff specifica-
tions because the convolution process "smears" the frequency
response near the ideal response's discontinuities. Although
there may exist a "best" window, it woﬁld not produce an
optimum filter (Ref 7:90).

Rabiner and others have used linear programming to
design 2-D FIR filters. This approach can be considered
a natural extension of the 1-D frequency sampling technique
(Ref 7:105-123), except that all the frequency samples are
considered as variables., If B(wl,wz) is the desired ideal

response, then the constraints
A A
H(w),0,) < D(w),0,) + & (30)
A A

can be applied to a grid of points in the w,-w, plane.

A
Linear programming adjusts h(m,n) while minimizing 6.
Optimal 2-D filters have been designed using linear pro-

gramming, but the method proved computationally costly.
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Rabiner reports that the most ambitious design he attempted
(a 9x9 sample point filter with circular symmetry) required
more than one hour of execution time on a high speed com-
puter (Ref 7:461-471). Since thousands of constraint
equations can be involved in the design of a 2-D optimal
filter, linear programming (which is a single-exchange

algorithm) would be expected to be an inefficient design

‘method.

Efforts have been made to extend the design method of
Parks and McClellan to two-dimensions. McClellan considered
the problem, but stopped after realizing that the 2nd Remez
algorithm could not be extended to the 2-D case. Recently,
in independent efforts, XKamp and Thiran (Ref 8) and Hersey
and Mercereau (Ref 9) developed 2-D design techniques
similar to the Parks-McClellan approach but based on the
1st Remez Multiple Exchange algorithm (Ref 13). Since a
multiple exchange algorithm was used, an impressive speedup
in comparison with linear programming was hoped for. How-
ever, the speedup was not dramatic, because the bulk of the
execution time was spent in the evaluation of the error
function, rather than in optimization of parameters (Ref
101240). |

Analysis of these methods reveal that the Chebychev
approximation of 2-D FIR filters is fundamentally more
difficult and slower than the 1-D case. There are three
reasons. First, there is the impossibility that any set of

functions defined on a 2-D domain can satisfy the Haar
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condition, thus weakening the Alternation Theorem consider-
ably (Ref 9:8). Second, it would not be possible to order
the extremal frequencies, as in 1-D, where increasing order-
ing guarantees that the error sign alternates from point to
point. Third, the size of the problem would approach the
unmanageable as the number of optimization parameters is
increased (Ref 1:30). In the absence of the Haar condition,
the 1lst Remez algorithm must be used, and convergence may
not occur unless suitable perterbations are introduced

(Ref 8:262). Lack of a simple alternation in the error
complicates the rules for exchanges, at times preventing
multiple exchange, the very procedure that makes the Remez
algorithms efficient.

As with all the design techniques presented so far,
Kamp and Thiran limited their designs to circular symmetry.
Hersey and Mercereau improved on this by requiring only
octagonal symmetry*. Although they were able to design
filters with a more arbitrary frequency response, computa-
tional considerations limited their filters to 15x15 sample
points or fewer (Ref 9).

Because these methods design truly optimal filters,
they have definite value. However, their costly execution
time confines their use to relatively small impulse responses.
This, coupled with their mathematical sophistication,

probably prevents them from being widely accepted.

. 2
Symmetry about both axes and the line v, = wl‘
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Summary

Until optimal methods become computationally competitive
with non-optimal methods, most 2-D filters will probably
be designed non-optimally. Fortunately, a new method pro-
posed by McClellan is capable of improving significantly on
previous non-optimal methods. It designs filters that are
equiripple, although not quite optimal. As such, they have
ﬁeen called "sub-optimal" (Ref 9:1). This new method is

discussed in the next chapter.




IV. The McClellan Transformation

A new method for designing 2-D digital filters, due
to McClellan (Ref 1), has been cited as the design method
of choice for most applications today (Ref 9:1-2).
The essence of the method is that it transforms an optimal
1-D FIR filter into a sub-optimal 2-D FIR filter. These
filters are termed "sub-optimal" because they retain the
equiripple characteristic of true optimal filters, yet they
are inferior to optimal filters when judged very strictly.
As mentioned in Chapter I, McClellan has designed circularly
symmetric bandpass filters. However, he proposed that his
method could be used to design filters with a much less
restrictive symmetry (Ref 1:42-43). The important features
of the method are that it is not limited to the design of
small filters (127x127 point filters have been designed);
that it is fast, efficient, and simple to understand; and,
surprisingly, in many cases the resulting filters are almost
indistinguishable from true optimal filters (Ref 24:93-97).
This last point will be considered again in detail in

Chapter V.

Spectral Transformation Mappings

McClellan's method can be considered a spectral
transformation mapping. Mitra provides this definition
of a spectral transformation (Ref 25:905):

By a spectral transformation, we mean a complex map

that carries a stable rational transfer function
into another stable rational transfer function
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exhibiting a different frequency response, at the
same time maintaining some desirable characteris-
tics... In general, a spectral transformation must
have the following characteristics: 1) it must
produce a LSI stable transfer function from an ISI
stable transfer function; 2) it must transform a
real transfer function into a real transfer function;
and 3) it must preserve some basic characteris-
tics of the magnitude response (e.g. the ripple
magnitude in the transmission and attenuation
domain) . '

The spectral transformation that McClellan adopted was

first stated in Chapter I and is repeated here:
cosw = t; + t,coswy + t3008w2 + t,c0Sw, "cosw, (1)

where w, w, and w, are restricted to the interval [-w,n],
as discussed in Chapter II. Egq (1) is referred to as the

McClellan Transformation.

The Change of Variables

In Chapter II it was shown that a 1-D linear phase

filter of length 2N x 1 has the form
H(w) = G(w)exp(j(A + Bw)) (32)

where the term exp Jj(A + Bw) contributes only to phase
and can be disregarded. (Otherwise it would be carried along
unaltered through each transformation to be described.) It

followed that

N
G(w) = ¥ a(n)coswn (33)

n=0
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The change of variables in Eq (1) depends on G(w) being
expressable by a suitable choice of coefficients {b(n)} as

the following linear combination of cosine functions:

N N
G(w) = Y a(n)coswen = ¥ b(n)- (cosw)™ (34)

n=0 , n=0

To calculate {b(n)}, let x = cosw. Then

Tn(x) = cos[n cos'l(x)] = coSwn (35)
where Tn(x) is the nth order Chebychev polynomial of the

first kind. Thus,

N N N
G(w) = (n)coswn = (n)T _(x) = b(n)x" 6
w ggo a(n)coswn g;oa n)T (x nég n)x (36)

and by expanding each equation in Eq (36)

H(w)

a(O)To(x) + a(l)Tl(x) + .. + a(n)Tn(x)

5(0)x° + b(1)xt + ... + b(n)x® (37)
and then using the Chebychev recursion formula

T (X) = 2xT (x) - T, _;(x) (38)

one can solve for xo. xl, x2,...,xn (the method to do this

is described in Appendix A):
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x9 SR G S T (x)
xt P el e G e 7, (x)
| G S T, (x)
HPl=10 .75 o .25 || 750 (39)
xn{ ] Tn(X)
or
X=Ur (40)

By substituting for xo, xl,...,xn and grouping common

factors of To(x), Tl(x),....Tn(x) in the right half of Eq (37),

one can equate coefficients of To(x), Tl(x),....Tn(x) to

yield
Ta(o) 1 0 .5 0 b(0)
la(1) 0 1 > S | R b(1)
a(2) ¢ 0 45 0 b(2)
a(3)| =] o 0 0 .25 b(3) (41)
a(n) b(n)
or
A=uT3B | (42)
Thus
B=(uH)ta (43)
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which allows b(0), b(1),..., b(n) to be solved whenever QT

is non-singular.
By substituting Eq (1) into the very convenient form
of Eq (34),

A N
G("’l""z) = n§=:0 b(n) [tl + t2c05wl + t3008w2

+ tucoswlcos wz]n (44)

and completing the expansion, G(wl.wz) can be expressed in

this form:

Glay,0,) = g g A(m,n) (cosw,m) (coswyn) (45)
m=0 n=0

where the impulse response coefficients are directly related
to &(m,n) . The methods that take Eq (44) into the form of
Eq (45) are involved and will be described in Chapter V.

It is noted that Eq (45) is the desired form for a 2-D.
FIR zero-phase digital filter (Ref 15:406). This is what
makes McClellan's particular spectral transformation so
useful. In fact, it is possible to show that there is an
entire set of suitable spectral transformations

cosw = %(P,q) (cospwi) (COSqwz) (46)

T
'ﬂbdz:

0 0
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of which Eq (1) is the special case P =1, Q = 1. Eq (46)
has been called the "generalized McClellan Transformation"
(Ref 24:20-24). To limit the scope of this investigation,

only the case P = 1, Q = 1 has been considered.

The Range of the Mapping

The McClellan Transformation defines a mapping of the
interval [-w,%] of the 1-D frequency axis to the square
region [-w,w]x[-m,%] of the 2-D frequency plane. The map-
ping is certainly not one to one, and the range of the
mapping may not include the entire square region in wy-w,.
If quadralateral symmetry*is imposed, the problem can be
equivalently stated as the mapping [0,7]— [0,7] x[0,7],
since the information in the first quadrant of w,-w, is
repeated in the other three quadrants.

If w, is a one-valued function of w,, then Eq (1) can

be solved for w,t

cosSw - t, - t,cosw
w, = cos'l[ 1 < l] (47)

2 t3 + t,_,_coswl

For each fixed value of w; e [0,%] there exists some
corresponding contour Ci in the w; -w, plane. Along this
contour, the magnitude of the 2-D frequency response is
identical to the 1-D frequency response at w,. By allowing

w to vary from 0 to ﬁ, a complete family of contouré is

*
Defined to be symmetry across the @y and w, axes,
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generated describing the 2-D frequency response over some
portion of the region [0,v]x[0,7]. For example, in the
original McClellan transformation, the values tl = -.5,
t2 = t3 = tu = 0.5 produced the circularly symmetric
contours shown in Fig. 1. For frequencies below 0.7,

-

the contours are very close approximations to circles. How-

ever, as w—- 1, the contours become more squarelike.

This is still a very desirable mapping, because it

maintains the desired contour shape over a large area of the

2-D region, and yet there is a correspondence between every
point in [0,7] x [0,%] and the 1-D interval [0,~]. Actually,
forcing the mapping to have this range will almost always
force some distortion in the contour shape. But, if the
mapping is not so defined, the resulting frequency response
of the 2-D filter will be ill-behaved. This is discussed

in detail later in this chapter.

The Design Strategy

The design strategy and its limitations are now fairly
clear. A 1-D filter such as shown in Fig. 5, with transi-
tion band frequencies wy and ws,is mapped into a 2-D filter
filter with transition contours Cp and Cs' The magnitude
response in the transmission and attenuation domains is
carried unaltered from one dimension to two dimensions. If
the 1-D prototype filter was an equiripple optimal filter, then

the 2-D transformed filter will also be equiripple. How-

evér, it will only be optimal along the slice w2'= 0.
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Everywhere else it will be slightly sub-optimal (Ref 24:
93-97). Because this is usually a small trade-off in
comparison with the relative ease and flexibility of design,
the McClellan transformation is a very attractive method
for designing 2-D FIR filters.

There are limitations on the types of contours that
can be mapped using the method. This can be seen by letting

X = coOSw, U= cosw,, and v = coS w,, then Eq (47) becomes

v = (48)

If x is held fixed and a partial differentiation is per-

formed (Ref 1:36-38)

-t2t3 + tlt4 = tux

2 o
(ty + tuu)z

2 (49)

it is seen that v is monotonic, since the sign of the
derivative does not change as u varies from -1 to 1. This

requires that the contours in w)-w, must also be monotonic.

The Contour Approximation Problem

In order to design 2-D filters with arbitrary contour
shapes within the admissable class, some method must be
developed that maps prescribed 1-D frequencies to a speci-
‘fied 2-D contour. As a first cut at the problem, it is
assumed that only one of the 1-D transition band frequencies
must be mapped to a particular contour. Hopefully, the

contour shapes in the neighborhood of the designated
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contour will not be greatly changed. Let the 1-D frequency
be @, and the desired contour be Co' where Co is defined

by the single valued relation
wz = Fo(wl) (50)

Then for some value of t

I+
I
ot

2 : (51)

w, must be made to map to Co' In general, this is impossi-
ble, so a best approximation according to some error criteria
is selected. Two of the possible criteria are to minimigze
the maximum absolute error (minimax criteria) and to mini-
mize ‘¢ sum of the squared errors (least-squares criteria)."
Because of the relative ease of implementation, the least-
squares criteria was selected. Empirical evidence indicates
that the two methods lead to equivalent filters, at least
for the case P = 1, Q = 1 in Eq (46) (Ref 2:407-408).

By considering the constant cosw, to represent a set

of identical sample values, the classical least-squares

formulation for fitting a set of data points can be used.
Let

S(wl) = thl(wl) + tzcz(wl) - t3G3(wl) + tuGu(“l) (52)
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where

S(w;) = cosw, = constant (53)
G (wg) = 1.0 (54)
G,(wy) = coswy (55)
G3(w;) = cos( Flwy) ) (56)
Gy (@) = cos(w;) cos( F () ) (57)

A requirement that each of the approximating functions (in
this case, they are generalized polynomials) be linearly
independent is satisfied. The least-squares formulation
provides four equations to solve for the four unknowns t.
Because an explanation of the least-squares formulation
is lengthy and might be unnecessary for many readers, the
details of this method as applied to the contour approxi-
mation problem are outlined in Appendix B. References on the

method are included in the bibliography (Ref 27, Ref 28).

Constraints on the Mapping

This much accomplished, the contour approximation
problem still remains only half solved. For example, if %
is free to take on all values, the trivial solution
t, = cosw, 1, - t3 = S will result in a zero error.
This would also result in the frequency @ mapping to the
entire 2-D region [O,ﬁ]x[b,w] as well as Co' Evidently,
some reasonable constraints must be placed on t to reach a

useful solution.




A possible set of constraints that seems intuitively

satisfactory for the mapping [0,7] — [o,'ﬁ]x[o,ﬂ] might be

o - (0,0) (58)
* — (w,x) (59)
Bloy,wy) = Bluy,my) (60)

where the second two constraints imply a redundant constraint
* ~ (v, ) | (61)

Applying the first constraint to the McClellan Transforma-

tion yields
1=1)+1t,+ T+ Yy (62)
while the second constraint yields

-1

t, - t3 + (t, - ty)cosw; (63)

Because Eq (63) must be true for every w; € [0,n], it is

also true that

-1 = %) - tg (64)

o
1
ck
N
!
ct
T

(65)

Finally, the constraint of Eq (60) requires that

ty =ty (66)

as seen by inspection of the symmetry of Eq (1). Solving
E 62)- (66 i = - - -
gs (62)-(66) for t yields t, 50 t, = t3 = t,= 0.5,
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which is recognized as the original McClellan transformation
for circular symmetry.

A problem with this set of constraints is that it
leaves no free variables. To design arbitrary contours, a
less restrictive set of constraints is needed. Mitra's
paper on spectral transformations provides two theorems
that are helpful (Ref 25:910), but a superior technique has
been introduced by Mercereau et al (Ref 15:408-409) and is
recommended for most contour designs. Their suggestion
is to initially perform the contour approximation subject
to a single constraint, 0 - (0,0). This produces a map-
ping to an intermediate domain (91,92). A second mapping
will produce the final result: a mapping in the (”1'“2)
plane that approximates the desired contour Co and has a
range that includes the entire region [0,m]x[0,].

As an example, if the elliptical contour

) = wb\/f - (wy/a)? (67)

€
|

where

@, = ,50r (68)

b

w, = «2m (69)

wg = 50 . (70)
L3
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.

is desired, the least-square formulation subject to

constraint (explained in Appendix B) yields

t, = -2.584 (71)
t, = 2.586 (72)
t3 = 0.166 (73)
t, = 0.832 (74)

with a mean error of 0.0003. However, the range of the
contour mapping is inadequate, as shown in Fig. 8. The
significance of the cross-hatched area can be understood by
considering Eq (1). To stay within the realm of real

numbers, the following double inequality must hold:

-1.0 < cosw < 1.0 (75)

or equivalently

A
-1.0 s t; + t,cosq; + t300892 + tucosﬂlcosn2 < 1.0 (77)

The cross-hatched area of Fig. 8 corresponds to values of
( 91,92) where Eq (77) does not hold. The magnitude of the
frequency response grows rapidly, since it corresponds to
complex values of w (Ref15:408).

Two of the basic operations of complex variable mapping
theory are translation and expansion (or contraction).

These operations do not alter the shape of a given contour,
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only its orientation and relative size (Ref 17:73). The

following mapping should be considered:

] A
cosw, = F (wl,a ) = le(Ql,QZ) - kyy, k>0 (78)

The usefulness of this second mapping stems from considera-
tion of Eq (77) and Fig. 8. Because the filter is either
lowpass or highpass, the only contours of importance are Co
and its immediate neighbors, since they control the mapping
of the transition band. It is desired that the range of the
second mapping include the entire square region, for then
Eq (77) would be satisfied. Due to the nature of the second
mapping, the contour shapes themselves will be unaffected;
however, a new 1-D frequency will be associated with each
contour in ®,-w,, the ultimate mapping domain.

To find the necessary values of kl and k, in Eq (78),

one applies the second mapping to Eq (76) and specifies

the constraint of Eq (75):
A

Solving each inequality separately for its worst case pro-

duces two equations in k1 and k2=
1.0 = k. P
A A
where Fmin(nl,nz) and

Fmax(nl ,92) correspond to»the'least

L6




and greatest magnitudes taken by F(Sll.s12) over a dense
grid of points in [0,%]x[0,~]. By solving Eq (80) and
Eq (81) one finds that

2

17 Fray(92) - Fppyn (9,9)
k, = kKyF (2,2,) -1 (83)
The new 1-D frequency associated with C is found by
solving Eq (78): o
" = cos7! (kycosw - k) (84)
“o 15%5% 2

Because
] ] ] ] L]
F (wl'wé) = tl + t2 cosw, + t3 cosw, + t, cosw; cosw, (85)

a new "scaled" t' also results:

ty =kt -k, (Bg)
t, = k) t, (87)
t3' =k, (88)
by = kit (89)

Using the t', a new contour mapping is shown in Fig. 9.
It is noted that the shapes of the contours remain unchanged
up to the original contour Cﬂ. In wq,-w, the contouf Cr

now corresponds to

b7




1.00

u’, o. S
™~
,L;d' oI
x
A
w
Ll =)
PO
Ga-
g °.8m
w
~N
°0-
8. , -
.
% 0.50 0.75 1.00

Wi-AXIS (x )

- Pig. 9. Elliptical Contours of Eq (67) after scaling.
v

w, = 0.2498w, tT = [-.0482, .7559, .ou82, .2u41],

e = ,0002, constraint: 0-(0,0) with scaling

48




0 = cos'1 (klcosw - k2) = cos'1 (-kl -kz) (90)

The remaining contours spread out over [0,r]x[0,n], giving
the final mapping the desired range. Thus, the final
frequency response is well-defined.

As mentioned, several theorems attributed to Sanjit
Mitra can also be helpful in assuring a well-defined
frequency response. Because the development of these
theorems is extensive, interested readers are referred to
Mitra's paper (Ref 25). In many cases, the resulting con-
straints will produce in the same final mapping as in the
previous section, but this is not always so. To leave
the design program as flexible as possible, either method
of specifying constraints is permitted. The technique of
Mercereau et al is available as a default option; however,
an enlightened user may override the default and supply any

consistent set of constraints.

Summary

The McClellan Transformation is a spectral transforma-
tion that maps 1-D frequencies in the interval [0,7] to
contours in the (w,,w,)-plane over [0,7]x[0,7]. Because the
filter is assumed to have quadrilaterél symmetry, the area
[0,7]x[0,~] actually defines the total behavior over
[-w,] x[-~,%]. Because the mapping is generally imperfect,
an error criteria is established to determine the best
mapping. To insure that the mapping is non-trivial, con-

straints on t are necessary. To insure that the range of
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the mapping includes the entire region [O,w]x[o,rr], the
technique of Mercereau et al can be used. If the equiva-
lence of Eqs(44) and (45) can be established, the filter

design is complete.




V. Determination of the 2-D Impulse

Response Coefficients

As shown in the last chapter, t can be found that
provides a suitable contour mapping. Thus, the frequency

response can be evaluated as a function of (wl,wz)

A N
H(wl.wz) = nng(n)(tl+t2coswl+t3cosa?+tucOSwlcosaé)n (44)

where o, = F(wl). This itself is not enough, since it is
necessary to convert Eq (44) into a form that relates
directly to the impulse response coefficients lﬁ(m,n)}.
They will be needed if the z-transform ﬁ(zl,zz) will bve
used when the filter is implemented.

In this chapter, a method is derived that transforms
Eq (44) into the form of a zero-phase 2-D FIR filter. From
this faorm, the impulse coefficients can be determined by
inspection. The chapter concludes with some comments on

the "optimality" of the McClellan Transformation.

Algorithm for the Expansion

Let x = coswy and y = cosw,, then
?{ ‘ N n N n
(x,y) = A;Ob(n)(tl+t2x+t3y+tuxy) = ngob(n)[.] (91)

The evaluation of Eq (91) can be accomplished by_consider-

ing the following steps:
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ﬁo(x,y) = b(0) (92)
ﬁl(x.y) = ﬁo(x.Y) + b(l)['] (93)
Hy(x,y) = f; (x,y) + o(2)[*][+] (9%)

Hy(x,y) = Hy(ey) + () [+][+]?

ﬁk(xoy) = ﬁk_l(x,y) = b(k)[o][.]k-l

Because the quantity [tl *otyx o+ tay 4 tuxy]k'l is already
known, - the process is recursive. As the order of N gets
large, the memory required for the expansion grows very
quickly. However, if, after each step of the expansion,
all of the coefficients are searched for like terms, the
memory requirements are held down considerably. Empir-

ically, it was found that the expression

(95)

[tl X+ toy + tuxy] [tl + tx by + tuxy:]k_l (97)

would require (k + 1)2 words of memory for coefficient
storage, provided like terms were combined. If the search
for like terms was delayed until the (N + 1l)th step, the
storage required would grow as 4N. Table I compares the
storage required with the two possible approaches.
Obviously, searching for like terms after each step of the
expansion is essential except for very low order filter

designs. The final result of the expansion is




N N

l\ A
H(w,,0,) = b(m,n) (cosw,)™ (cosw,)” (98)
172 mgé Ago 3 o
which involves every possible combination of (COSwl)m(COSwz)n

up tom=N, n=N.

An Analogous 1-D Result

Eq (98) itself still does not present a direct method
of obtaining the impulse response coefficients. Before

progressing, it is instructive to consider the analogous

1-D equation

i N N
H(w) = Y b(n) (cosw)? = Y. a(n)coswn (99)
n=0 n=0

where the coefficients a(n) must be determined. Using
the dual of the argument that led to Eq (43) in Chapter IV,

let x = cosw then Tn(x) = coswn, and

oA i Table I
STORAGE REQUIRED FOR TWO METHODS OF EXPANDING EQ (91)
k. (k + 1)? Lk
0 1 1
‘) L 4
2 9 16
3 16 64
10 121 1,048,576
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N N N
H(w) = 3 b(n) Cosw)™ = ¥ b(n)x" = ¥ a(n)T, (x) (100)
n=0 n=0 n=0

Using Eq (38), the relationship between To(x), Tl(x),...,

0 1 n

Tn(x) and X, X ,...,X can be shown to be

T (x) 1 ¢ & 0 x°
T, (x) 0 RS xt
Tz(x) = } =1 0 2 0 x2 (101)
T, (x) 6 -3 B & x>
n
T, (x) X
or
E=X2X (102)
By substituting for To(x), Tl(x),...,Tn(x) and grouping
common factors of xo, xl....,xn in the right half of
Eq (100), one can equate the coefficients of xo, xl.....xn
to yield
b(0) 1 0o -1 0 a(o)
b(1) 0 1 0 =3 e a(l)
b(2)| = 0 0 2 0 a(2)] (103)
b(3) 0 0 0 4 a(3)
b(n) a(n)




or

B=y'a (104)
Thus

a=(H1ls (105)

which allows {a(n)} to be solved whenever KT is non-

singular.

Extension to Two-Dimensions

This 1-D method for calculating {a(n)} can be exploited

to calculate {aA(m,n)} . Eq (98) is rewritten as
A N N A
H(x,y) = ¥ o(m,n)x"y" ~ (106)
m=0 n=0
where
X = cosw; (107)
y = cosw, (108)
T, (x) = coswm ' (109)
Tn(y) = cosw,n (110)
Thus,
A N N
H(x,y) = ¥ x" [ 2 b(ri.n)yn] (111)
m=0 n=0

where m denotes that m is fixed. By eipanding Eq (111)
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N
ﬁ(x.y) = x° ) B(8,n)y" + x* 2 5(I,n)y"
. n=0

=2

+ oo+ XV S DR, (112)
n=0

where each individual summation now has the form of Eq (99).

One can use the relation defined by Eq (105)*%.

A 0 N * N N *
Hix,y) = x° Fa(@n)T (y) + ... +x' ¥ a(f,n)T (y) (113)
n=0 n=0 4
N N
o * _
= - (m,n)T_(y) 114
égox né% a(m,n)T_(y (114)
B ik
= Y x + ¥ ‘a(m,n)coswyn (115)
= n=0
\ N\
) > 2 m,7)em (116
o ) 11
ngocos%n[mgoa m,n)x ] )

where the term in brackets in Eq (116) is also of the same

form as Eq (99).' Repeating the same sequence of steps yields

N N
H(x,wy) = 3 coswn - 3 a(m,a)T (x) (117)
% 5 a(m,n) (
= cosw.n * a(m,n)cosw,m ) 118
s T “1 )

—
'l‘he notation a(m,n) has no mathematical 51gn1f1ca.nce.
It is used only to emphasize the distinction from a(m,n).
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H( ) )’flzv% ) (119)
H(w, ,0,) = a(m,n)cosw,m-cosw,n 119
£ m=0 n=0 3 -

which is the desired final form.

As in Chapter II, the assumption is made that the
impulse response is ceﬁtered at the origin. One can now
compute the impulse response coefficients [ﬁ(m,n)} as

follows:

A A N A = g 4=
H(w;,0,) = 2(0,0) + ¥ &(m,0)cosw,m + Y a(0,n)cosw,n
1"2 . i ) 2

% g;A( )

+ a(m,n)cosw,m cosw,n (120)
m=1 n=1 = -

The first term in Eq (120) is the impulse response at (0,0).
The second and third terms can be recognized as of the

same form as Eq (7) of Chapter II. The fourth term must

be further decomposed:

3 3 Atmn) > > 4
a(m,n)cosw,m cosw.n = cosSw-m a(m,n)cosw,n (121)
m=1 n=1 1 2 m§=:l 1 n2=:l 2
> ® finnybonn
= coSw,m 2h(m,n)cosw.n (122)
m=1 1 n=1 2

N*
= 2cosw; Aglh(I.n)COSwzn : HCry

N
+ 2cos(Nwl) z& ﬁ(N,n)cQSwZn (123)
n:
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N A
2cosw; ¥ 2n(I,n)coswyn + ...

n=1
N A
+ 2cos(Nul) g;l 2h(N,n)COSw2n (124)
N N A
= Y Y 4h(m,n)cose m cosw,n (125)
m=1l n=1 5 1

. A S A
Thus, knowing {a(m,n)}, one can easily compute { h(m,n)}:

h(0,0) = 8(0,0), m=0, n=0 (126)
A(m,0) = 1/2 &(m,0), m#0, n=0 (127)
h(o,n) = 1/2 &t0,n), m=0, nsfo (128)
h(m,n) = 1/4 3(m,n), mdo, ngo (129)

Comparison of Optimality

It is sometimes claimed that the filters designed by
the Mc?lellan Transformation are truly optimal. McClellan
made this claim for his original circularly symmetric
filters and later extended the claim to include "fan"
filters (Fig.18). McClellan argued that along any slice
of the 2-D filter, the approximation problem degenerates
into a 1-D problem. In the case of circular symmetry with
tl = ,5, t, = t3 T = 0.5, one considers the slice w, = 0.
The 2-D frequency response then becomes a 1-D frequency

response inaix

A
F(w;,0) = -.5 + .5c08w; + .5+ .5 cosw; (130)
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F(wl) = cosw, (131)

Since this is exactly the same function that was used to
generate the optimal 1-D prototype, the 2-D filter is
claimed to also be optimal (Ref 1:45-46). Rabiner and
Gold have supported this contention (Ref 7:477-478);
however, several other filtering authorities continue to
refer to the McClellan Transformation as suB-optimal.

Ideally, empirical tests should be conducted to
measure McClellan Tfénsformation filters against known
optimal filters. However, the design algorithm presented
in this investigation would require some modifications.
For a fair comparison, both of the 2-D transition band
edges should best approximate the desired contour shape
(as is done in true optimal methods).

Table II records data obtained on the design of
several circularly symmetric optimal lowpass filters
designed by Harris and Mercereau (Ref 9:II.2). Each has a
passband radius of 0.4 and a stopband radius of 0.6w.
Using the original McClellan transformation, the 0.4
radius corresponded to a 1-D frequency of 0.4000,
while the 0.6% radius corresponded to a 1-D frequency
of 0.5760% (recall that the contours become non-circular
as w-r). From Table II, one notes that the McClellan
error is somewhat larger than the optimal error for each
case. If the McClellan Transformation is used with 1-D

frequencies of 0.4w and 0.6w, the error naturally decreases.
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Very surprisingly, it actually decreases to less than the
optimal error. However, this second case is not a fair
comparison: it would be better to design the optimal
filters with respect to the contours resulting from this
particular McClellan Transformation and then compare the
errors. Time has not permitted such an experiment in
this investigation.

The data available suggests that the McClellan
Transformation is sub-optimal, even for circularly
symmetric filters. However, the absolute difference between
the optimal error and the McClellan error is very slight.
Because of the general design flexibility and significant
savings in computation time, the McClellan Transformation
compares very favorably with optimal methods for designing

2-D FIR filters.
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VI. Design Results

This chapter presents the results from several typical
2-D filter design problems using the computer program
developed in this investigation. In the first tests,
simple, familiar filters were designed to validate the
design program. Gradually, filters with more novel
specifications were designed to explore the limits of the

method.

Circularly Symmetric Filters

To test the design program against a known result,
circularly symmetric filters were designed. By overriding
the default constraint and inputting Eqs (62)-(66), the
original McClellan Transformation was duplicated. The
associated contour mapping and frequency response for a
21x21 point filter were shown in Figs. 1 and 2, Chapter I.
Fig. 10 illustrates the periodic nature of 2-D digital
filters.

Circular symmetry was also obtained using the default
constraint. Before scaling, the range of the mapping was
inadequate (Fig. 11). The scaling algorithm was used to
spread out the contours, and the resulting mapping is shown
in Fig. 12. Comparing Figs. 1 and 12, it is seen that the
contours are essentially the same for values of @ up to about

0.6rr. (Extremely close comparison reveals that the contours
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Fig. 10,

Periodic Nature of a 2-D Digital Filter
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of Fig. 12 are actually more circular.) The contours
spread out differently as w —-w. Essentially identical
frequency responses can be achieved, as shown in Fig. 13.
However, to obtain the same filter specifications, it was
necessary to use 1-D prototypes of different order. Be-
cause the original filter was designed with a lower order
prototype, the original is judged superior.

As an incidental point, note that the information gained
from the frequency response drawings is also available from
contour mappings of the extremal frequencies of the 1-D
prototype. These contours precisely define the ripple in
the 2-D filter.

Other smooth shapes successfully designed included
elliptical shapes (Figs. 14 and 15), parabolic shapes
(Figs. 16 and 17), and hyperbolic shapes (Figs. 31 and 32
of Appendix D).

Fan Filters

Fan filters are used in seismic analysis to filter
unwanted velocity components (Ref 26). An ideal fan filter
is shown in Fig. 18. McClellan developed four constraint

equations and was able to specify t as
£T = [o.o, s, 045, o.o] (132)

Fan filters were desighed using the default constréint,

however the resulting value of t

T = [0.0003. -0.4992, 0.5008, -o.oooa] (133)
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* Fig. 13. Comparison of Circularly Symmetric Filters.

= 6w, Wt = 1¢1, &= .081,

(a) N = 19, @, = L5, g

LT = [—-5. 5, 5, .5], e = .00000. (b) N = 21,
w_ = 431w, wg = 53w, Wt = 1:1, &= .065,
;t.g = [_°28L"1 '51 -5. 028“'], é = 000003
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reverses the sense of the regions defined by Fig. 18.
One could remedy this by using a high pass 1-D prototype.
Another method is to use an alternate constraint, 0 —(w,r),
and then scale the result. This produces the values of
Eq (130). The resulting contour mapping and a frequency
response are shown In Figs. 19 and 20.

There are many possible variations of 2-D filters
defined by straight lines. A diamond-shaped filter was

specified by the passband contour

The resulting mapping and a frequency response are shown

in Figs. 21 and 22.

(=,) (rry)

(=, =) (2, =)

Fig. 18. Ideal "Fan" Filter
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Filters with More Complex Contours

To establish the limits of the design program, several
novel filter shapes were designed. The results were
generally disappointing, indicating that the method
cannot deal with complex contour shapes effectively.

Oval-Shaped Contours. The desired contour for an

oval-shaped filter was specified as

. ) < /2 (135)

w/2
/(w/2>2 - (g - w/2)%, @2 /2 (136)

-
Eq (135) describes a circle of radius 0.5v centered on the
wl-axis. The scaled contour mapping is shown in Fig. 23.
As w varies either side of wé' the contours change dramat-
ically. In this particular case, an assumption made in
Chapter IV is clearly wrong: the immediate neighbors of

this contour do not maintain the same shape.

Contour Defined by a Cubic. A contour specificed by

the cubic

w, = b/n? (@ - n/2)3 + w/2 (137)

produced a mapping with a very large average error. The
contour approximation is worst in the vicinity of the

origin. By using a properly weighted least-squares criteria,
the fit might be improved. However, the primary fault is

attributed to the approximating function, Eq (1). The
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14 (- with scaling.
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function does not have enough terms to fit complicated
curves. Adoption of higher order cosine functions in a
generalized McClellan Transformation, Eq (46), would solve

this problem.

Non-monotonic Contours. In Chapter IV, it was proven
that the contour mapping must be monotonic. All empirical
evidence verifies this; a monotonic contour has never been
observed. This does not imply that all contours for a
given transformation will be monotonic in the same direc-
tion. However, each individual contour will be monotonic.
All attempts to specify a non-monotonic contour led to
ill-defined mappings that bore no resemblance to the

desired contour. For example, the semi-circle

w, = %“/2)2 - (wl - Tf/2)2 (138)

resulted in the contour mapping shown in Fig. 25.

Contours not Continuously Differentiable. Several

contours that were not continuously differentiable (non-
smooth) were used to test the design program. Immediately,
problems arose. Fig. 26 shows the contours resulting from

an attempt to specify the right-angle contour

w, /2, w < /2 (139)

w, 0, w; > /2 (140)

When the default constraint was used, the mapping was not

well-defined, even after scaling. By imposing the addi-
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Fig. 26. Right-Angle Contours: Default Constraint. “, = « SOy
4T = [0.0, 0.0, 0.4166, 0.5834 ], & = .1227
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e = .1465. Constraint: 0—(0,0), w—(m,)
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tional constraint w —(w,r), the mapping became well-
defined but the average error was large (Fig. 27). For
non-smooth increasing contours, the best constraints to
use were 0 —(0,%) and w—~(%,0). These constraints were
suggested by McClellan (Ref 1:36-38), but they do not
always guarantee that the range of the mapping will be
adequate. However, the scaling algorithm can still be

used to spread out the contours.




VII. Conclusions and Recommendations

Conclusions

The primary objective of this investigation was to
provide a computer-aided method for designing 2-D digital
filters. Available optimal design methods were rejected
because of their ex<treme inefficiency. The McClellan
Transformation provided an effective method for designing
sub-optimal filters that can meet a wide variety of
specificationé. Design time for the filter varies in
rough proportion with the square of the filter order
(Fig. 28). For filters exceeding 21x21 points, the compu-
tational time increases rapidly. Even still, the design
time compares very favorably with other available methods.
The bulk of execution time is spent calculating the im-
pulse response coefficients; if these are not required,
the design time is shortened considerably (Fig. 28).

The coded and tested FORTRAN program is available to
Air Force Institute of Technology users on the CDC 6600
computer. The structure of the program is outlined in
Appendix C, and the use of the program is explained in
Appendix D. A complete design example is included.

The limitations of the method must be recognized:

l. The algorithm maps a specific 1-D frequency to an

approximation of a desired contour. The "goodness" of the
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contour approximation must be evaluated in each design.
Contours with high curvature or corners generally lead
to unacceptable mappings due to large rms errors.

2. The specified contour must be monotonic in the
region [O,ﬁ]x[o,w], limiting the flexibility.

3. For some contours, the default constraints may

prove inadequate. The suggestions in Chapter VI should

be considered.

04
: e = Calculate Impulse Response Coefficients

e-=e== Calculate Frequency Response Only

20 ¢

seconds
~N

10 4

Fig. 28. Approximate Design Times for 2-D Design
Program
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Recommendations for Future Work

Two-dimensional digital filtering is an open field
for research. This investigation has concentrated on
optimal non-recursive filters. Recursive filter design is
worth a full investigation. Little has been said regarding
practical realization or implementation of 2-D filters. As
an aide to research in this important area, a brief
supplementary bibliography has been prepared. Also of
importance are studies of the practical applications of
2-D filters.

There are several areas of further work directly
related to this present investigation. Each of the
following suggestions would make the 2-D design program
more useful and powerful:

1. It would be advantageous to find t such that two
or more contours are approximated simultaneously, accord-
ing to an error criteria.

2. It would be advantageous to adopt the general-
ized McClellan Transformation, Eq (46), to permit better
approximations of complicated contours.

3. It would be advantageous to calculate the im-
pulse response coefficients by a more efficient method.

An alternate recursion has been described as being faster
than the polynomial expansion used in this investigation

(Ref 26).
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Appendix A

Algorithm to Determine U for Eg (40)

Given the three Chebychev polynomial identities

T (x) =1 (141)
Tl(x) = X (142)
T p1(X) = 2xT (x) - T, (x) (143)

one can write an expression for any Tm(x). Each of these

equations could, in turn, be used to solve for the powers

xo, xl,...,xn. Table III illustrates the first few terms

of such a listing.

A recursive algorithm for determining the coefficients

of To(x), Tl(x),...,Tn(x) in each expression for x9, xl,...xn

has been developed. The algorithm was deduced by writing

the eqdations for x* in matrix form:

x° MRt RS P T_(x)

xt e (R - R s T, (x)

x2 B e e T, (x)

xl=} ¢ 38 o 1B o T, (x)| (144)
x* 38 0 4/8 0 1/8 T, (x)

n

X | Tn(x)
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TABLE III

The Chebychev Polynomials Solved for x

To(x) =1=x° x0 = T,

T,(x) = x xt = T,

T,(x) = 2x% - 1 x° = 1/2['130 + Tz].

T3(x) = bx - 3x X3 = 1/4[3Tl + T3]

Tu(x) = 8x4 - 8x° + 1 xl+ = 1/8[3To + 4T2 - Tu]

If the rows of Eq (144) are partitioned,

X = [l 0 0 0] 0] . ] = Hg I (145)
xt = fo 1 0.8 0 ...]=g$g (146)
= =121 o 1 0-0 cee ] =ggg (147)
Pa1mfo 3 0 1 0 eoo ] =ggg (148)
2«82 € 8 B 1 ]=u T (149)
it is noted that for m>1
T
t—Im & [Um.o Um.l e Umﬂi] (150)
where
Um,0 = Un-1,1 (151)
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Thus, a recursive formula for each expression x

is available:

2Un-1,0 ¥ Un-1,2

Un-1,k-1 ¥ Un-1,k+1 =
1 k=
0 k>m

N

0

,X,nc:

(152)

(153)

(154)

(155)

y» X

(156)




Appendix B

The Method of Least-Squares

Curve Fitting with Constraints

Case I: No constraints on g.

A known (or measured) function y = f(x) is given. It is

desired to approximate y with the function
pm(x) = tlgl(x) + tzgz(x) + .0 + tmgm(x) (157)
where each gi(x) is linearly independent. Defining
6k = pm(xk) L) yk, k = l,2|ooo|N (158)
it is desired to minimize
N 2 N 2

where the coefficients t are unknown and unconstrained. Let

N
“i < %y 2 STy (160)
[all 012 e e W
e L (161)
| ¢ i
N
By = &, Vi8;(x;) (162)
ET & [ﬁl B ] (163)
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It can be shown that (Ref 27:322-323)
at=8 (164)

or

t=e1p (165)

is the best least-squares fit of the approximating function

pm(x) to the data set y, provided that a is non-singular.

Case II: One constraint on t.

The constraint on t has the form

A necessary condition for an extremum is that the total

differential* vanish:

Dy dty + ...+ ptmdtm &= 0 (167)

1

The total differential of the constraint is

h, dt

t 1+ ll.+ht

dt. = 0 (168)
1 m -

If Eq (168) is multiplied by A, a Lagrangian multiplier,
"and added to Eq (167) (Ref 28:169-170)

*
p;_  is shorthand notation for ap/atl.

1
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(A

(pt + Ahy )dtl + el (pt + Ahy )dtm = 0 (169)
1 Al m m

Since Eq (169) is satisfied if

p, + Ah, = 0 (170)
% %
p, + \h, =0 (171)
tm tm
h(t) = 0 (172)

this gives (m + 1) equations in the m + 1 unknowns: t, \.
As in Case I, Eq (159) for A(%t) can be written. If one
multiplies the term in brackets and performs a partial

differentiation with respect to 1,

N
2
Atl = .20(21;1{;1 + 26,818, * oo0 - 2g7Y;) (173)
l=
N 2
at_ = ﬁgo(Ztlglgm * oo+ 268 - 28 y,) (174)

Because Egqs (170) - (172) were determined for any Py, one can

substitute Ay for Py Letting

N
N
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(2%
]

(o
]

Ict
]

results in

By noting that

and that

is an equivalent

1
By

S11 S35 e+ Sy
Sml Sm2 Smm
Cl 02 . cm
R T
e b o ‘
I-@1ti
s = 1/2 skj
By = 1/2 Y,
2hit) = 0

set of constraints, it

(177)

(178)

(179)

(180)

(181)

(182)

(183)

is easily shown that

e alm htl tl
Q h %
2m t2 2
: e (184)
a h -
mm tm m
e Cm 0 X
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or

(185)

* . 3
so long as a is invertable.

Case III: Multiple constraints on t.

If there are n<m constraints on t, there will be n
equations of the form

For each constraint, a Lagrangian multiplier xi is introduced,

resulting in the following set of equations:

Ar + Ah, + ...+ 2 h, =0 (187)
tl 1 tl n tl

A, + M\Mh, + ...+ A.h., =0 (188)
th e, nt

h,(z) =0 (189)

h () =0 (190)

This gives (m + n) equations in the (m + n) unknowns: t,

Xl, X2,..., Xn.

Extending the argument of Case II, it can be shown that

¥




P = —

™

&
(h,) (h )
1t h, ke

i %12 °1m|
' o]
|

\_cnl cn2 PR cnml ]
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Appendix C

Comments on Programming

Program Structure

In structuring this program, the primary goals were that
the program would be understandable and modifiable by subse-
quent users. To permit this, the principles of modern soft-
ware engineering have been followed as outlined in the text
by Yourdan and Constantine (Ref 29).

At the start of this investigation, the program re-
quirements were defined:

1. The program would be interactive. This would
provide maximum user flexibility. Additionally, it would
allow the program to be semi-educational, potentially useful
in a course on digital filtering.

2. The program would design two-dimensional filters
with arbitrary transition band contours. (It was later
discovered that there is an admittable class of contours.)

3. The minimum output would include the array of 2-D
impulse response coefficients and the frequency response of
the filter. There would be an optional provision for a
computer plot of the frequency response.

4. The program would be simple to use, not requiring
a sophisticated knowledge of SCOPE procedures (Ref 32).

A high level structure chart of a first-cut design is
shown in Fig. 29 Each of the modules represents an
independent process.
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Considerations for Interactive Use

Because the program was required to be interactive,
memory management had to be considered. Using Control Data
Corporation INTERCOM, local procedures establish a maximum
field length of 60K octal memory. This prevents a large
program, such as this one, from being loaded. There are
two methods available to circumvent this restriction;
segmentation and overlays (Ref 30:1-12). Although segmen-
tation is a more elegant method, overlays were selected to
permit an eventual interface with a large package of computer-
aided design programs concurrently being assembled (Ref 31).
Overlays may extend three levels deep. To permit an inter-
face with another program, one overlay level must be left
for communication, leaving only two levels to work with.

The main level overlay has been used to serve as a
controller for the design program. It corresponds to the
top box in the structure chart of Fig. 29. The initial plan
was to assign each of the other modules to a separate pri-
mary level overlay. Unfortunately, with this program
division, the 60K restriction could not be met. Thus,
several of the overlays have been artificially divided into
two distinct primary overlays, with a great deal of addi-
tional control passing required. This compromise hurt the
program structure by increasing the dependence of the

modules, but it was necessary to permit interactive use.




Avoiding SCOPE Commands

Another troublesome aspect of the program involves the

"Get Functional Contour" module of Fig. 29. The program
was required to design filters with arbitrary transition
band contours (within the admittable class of contours),
thus it was impossible to develop a list of available
functions for the user. The only realistic approach was
allow the user to create his own subroutine to describe
the contour shape. This subroutine is trivial to write;
however, integrating such a subroutine with the binary co
of the design program is difficult. The subroutine must
compiled and libraried, a tedious task involving a good
knowledge of SCOPE commands (Ref 32).

Fortunately, a method was found that relieves the us

of any undue burden while still permitting him to supply

to

de
be

er

the required subroutine. A "cataloged procedure”, written

using University of Washington Control Language (Ref 33),
performs all the functions associated with compiling and
librarying the subroutine, attaching and executing the
design program (MCLTRN), and routing a hardcopy of the ou
put listing and plots. The user creates his subroutine,
saves it as a local file, and then issues a set of simple
commands. The nature of the subroutine and the required
procedure commands are outlined in detail in Appendix D.
A listing of the cataloged procedure (PROFIL) is attached

to this appendix.
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Program Flowchart

This program was coded with the concepts of structured
programming in mind. Unconditional branching has been
avoided whenever a reasonable alternative existed. Sub-
routine calls are made very freely; however, most subroutines
are short and functional. As a rule of thumb, modules con-
tain between 10 and 50 lines of code. For these reasons,
detailed flowcharts for each module are unnecessary. Fig. 30
shows a top-level flowchart for the design program. The
flowchart has been deliberately held to one page, showing

only the detail required for a quick overall view of the

program.

Program Source Code

The design program source code, PROGRAM MCLTRN; (Ref 35)
involves over 1600 statements, so it has not been included
in this report. Copies of the source listing are available

from the author or from Prof. Gary Lamont, AFIT/EN.

Program PROFIL

The cataloged procedure PROFIL controls Program MCLTRN.
A listing follows:




Program PROFIL

COMPILE (NAME=X)
RETURN, GOGO.
REWIND,NAME.

FTN, I=NAME, L=%, B=G0OGO.

EDITLIB, I=DA,L=LIST.
RETURN,LIST,DA.
LIBRARY,MYLIB.
/DATA DA

LIBRARY (MYLIB,NEW)
ADD(*,G0GO0)
FINISH.

ENDRUN.

RECOMPILE (NAME=X )
RETURN, GOGO .
REWIND,NAME.

FTN, I=NAME, L=#, B=GOGO.

EDITLIB,I=DB,L=LIST.
RETURN, LIST, DB.
LIBRARY,MYLIB.
/DATA DB
LIBRARY(MYLIB ,0LD)
DELETE (*)
ADD(*,G0GO)

FINISH.

ENDRUN.

DESIGN
IF(-FILE,AFITSUB)

ATTACH,AFITSUBROUTINES, ID=AFIT.

LIBRARY,AFITSUB, MYLIB.

IF(-FILE,MX)

ATTACH, MX, THESIS, CY=342, ID=RBB.

REWIND, MX.
MX.
RETURN, MCL.

ROUTE (TERM=BB, USER=KJZ)

REWIND,RESULT.
COPYSBF,RESULT,RRX.

FILES.

PLFILE

REWIND, TAPE2,

REQUEST, TEMP3D, *PF.

COPY, TAPE2, TEMP3D.
CATALOG, TEMP3D, DATA3DPLOT.
RETURN, TEMP3D.
IF(-FILE,PLOT3D)

ATTACH, PLOT3D, THESIS, CY=48F, ID=RBB.
REWIND, PLOT3D.

BATCH, PLOT3D, INPUT, HERE.
FILES.

3DPLOT

IF(-FILE,PLFILE)
ATTACH,PLFILE, YOURFILE.

IF (-FILE,DISSPLA)

ATTACH, DISSPLA, ID=X654321.
LIBRARY, DISSPIA.

ONLINE.

ROUTE,RRX, DC=PR, TID=TERM, FID=USER.

RETURN, RESULT.
IF(FILE,PLOT)

ROUTE, PLOT, DC=PT, TID=TERM, FID=USER.

Al

NOTE:

Separate procedures with end-of-record.
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Control:

Appendix D

User's Guide to Program MCLTRN

MCLTRN
15 December 1977
Identification:

MCLTRN - McClellan Transformation Design for Two-
Dimensional (2-D) Digital Filters

FORTRAN Extended (FTN) Program ‘
Air Force Institute of Technology )
Wright-Patterson Air Force Base, Ohio

Captc Rt Bo BI‘OWI’I, G’E"??D

Purpose:

MCLTRN will design 2-D finite impulse response (FIR)
zero-phase filters of the form

N N
G(wy,w,) = a(m,n)cosw,m cosw,n (45)
Lo m2=:o o A . :

The filter will be a very close approximation to an optimal
filter. Program output includes a 2-D frequency response
(optionally plotted), the 2-D impulse response coefficients,
and contour maps. MCLTRN is intended for interactive use.

ATTACH, PROFIL, ID = 778314 .

A cataloged procedure (Ref 33) PROFIL is used to
control MCLTRN, There are six commands:

BEGIN, COMPILE.
BEGIN, RECOMPILE.
BEGIN, DESIGN .




BEGIN, ROUTE.
BEGIN, PLFILE.
BEGIN, 3DPLOT.

Programming Information:

1. MCLTRN requires a user supplied FORTRAN SUBROUTINE
FUNCT(I, N, X, Y), where X, Y are the spatial axes, N is the
number of sample points (supplied by MCLTRN), and I is the
current sample index (supplied by MCLTRN). The subroutine
defines a smooth monotonic contour in the 2-D region

0,11x[0,1]. MCLTRN will scale this contour to the region
0,m]x[0,n].

e. g. To describe a quarter circle, centered at (0,0) with
radius 0.5:

SUBROUTINE FUNCT(I, N, X, Y)
C DEFINE VALID X RANGE ON [0,1] AND INCREMENT X
XMAX = 0.5
X = XMAX * (I - 1.0) / N
C CALCULATE CORRESPONDING Y VALUE
Y = SQRT (XMAX**2 - X*¥2)
RETURN
END

2. After creating FUNCT (I, N, X, Y), the edit file
must be saved, without sequencing, as local file X:

SAVE, X, NOSEQ, OVER.
To automatically compils and library the subroutine, command:
BEGIN, COMPILE.

If there are FORTRAN errors, or if it is necessary to compile
another subroutine, use the alternate command:

BEGIN, RECOMPILE.

(If error messages related to your user library MYLIB appear,
check that you saved file X and then attempt to use the
recompile command.)

3. To execute MCLTRN, command:
BEGIN, DES IGN.

4, To obtain a hardcopy of the out isti
or contour plots (PLOT), cog%and: put listing (RESULT)

BEGIN, ROUTE (, ,XX, YYYYY).
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where the grouping in parenthesis is optibnal:
XX = TID code (optional default = BB)
YYYYY = FID code (optional default = USER)

Note: Plots will always have the user identification
code as the banner.

5. To create a DISSPLA file for the 3-D drawing of the
frequency response, command:

BEGIN, PLFILE.
Because DISSPLA (Ref 34) requires over 100K memory, the
job will be batched to the input queue. After allowing time
for execution, check your output file JJJucxx for errors
(uc is your user identification code):
BATCH, JJJucxx, LOCAL.
EDIT, JJJucxx, SEQ.

Assuming there were no FORTRAN errors*, you may create (or
preview) and dispose a Calcomp plot file by commanding:

BEGIN, 3DPLOT.
DRAW = 1-END$
If you are at a graphics terminal, command:
TEK4010
TEK4014 as appropriate
etc.

To dispose your plot, command:

ROUTE, PLOT, TID = XX, FID = YYYYY, DC = PT.

*
In particular, FORTRAN error 103: No permanent file
space for plot file -- job killed.
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Method:

MCLTRN maps each frequency of a 1-D bandpass filter to a

contour in the spatial plane by the McClellan Transformation:

cosw = t cos(x) + t, cos(y) + ty, cos(x) cos (y) (192)

1 + t2 3
In particular, the frequency w, (usually a transition band
boundary) is mapped to the contour defined by SUBROUTINE
FUNCT (I, N, X, Y). MCLTRN optimizes t by the least-squares
criteria. For a non-trivial mapping, constraints on t are
necessary; however, a default constraint that g maps to
(8,8) is available. An optional contour scaling algorithm
réturning a new 1-D frequency W, is recommended to
guarantee a well-behaved frequency response. The user may
examine the locus of contours generated by t as a function
of w, in both tabular or plotted form.

Once t is established, a 1-D prototype optimal FIR
zero-phase filter is designed. This filter is normally a
low-pass or high-pass filter with a stopband or passband
frequency of @ . At this writing, the filter must be of
odd order not exceeding 21. The error magnitude in the
1-D prototype will be passed to the 2-D filter, where each
1-D extremal frequency maps to a 2-D contour. A plot file
of this mapping is created automatically by MCLTRN.

Finally, MCLTRN calculates the 2-D frequency résponse.

Optionally, the 2-D impulse response coefficients will be

calculated.
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Special Conventions:

1. The 2-D filter designed using the McClellan
Transformation is symmetric about both the x and y axes.
Thus, only a first quadrant design is considered.

2. All frequencies are normalized to the interval

[0,v] and must be entered as multiples of = (£.4 to 1.4).

Design Examples

The following example illustrates the use of PROFIL
and MCLTRN. The desired contour is defined by the

rectangular hyperbola
Xy = a%/2 (193)

where a = 0.30n. The resulting contour mapping is shown
in Fig. 31. The frequency response is shown in Fig. 32.
Note that user entries are shown in lower-case letters,

programming prompts in upper-case letters.
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Appendix E

Use of Advanced DISSPLA

DISSPLA is a software graphics package developed by
Integrated Software Systems Corporation. The DISSPLA
Reference Manual (Ref 34) is augmented locally by prelimi-
nary and post-processing instructions available from the
ASD Computer Center.

One of the features of Advanced DISSPLA is a capability
for projecting three-dimensional (3-D) surfaces and lines
(Ref 34:Adv-C). 3-D surfaces are plottéd with "hidden
lines" automatically removed. Any viewpoint not actually
within the surface being drawn is allowed.

The basic plotting subroutine for 3-D surfaces is CALL
SURFUN(ZFUN, IXPTS, XDELTA, IYPTS, YDELTA, WORK), where

ZFUN is the function name for a two-variable
function to be evaluated, producing a
magnitude z.

IXPTS is the number of sample points to be
evaluated in each XDELTA interval.

IYPTS is analogous to IXPTS, but over the YDELTA
interval.

XDELTA is the interval between lines parallel
to the x-axis. The smaller this interval,
the greater the detail.

YDELTA is the interval between lines parallel to
the y-axis.

WORK is an internal array, dimensioned at least

equal to the number of perimeter sample
points plus 4.
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The limits on x, y, and z are specified by calls to GRAF3D
and AXES3D. Eor information on these and other calls, the
DISSPLA Advanced Reference Manual, Part C, should be re-
viewed.

A source listing of the FORTRAN program used to generate
the 3-D frequency response drawings of this investigation
has been included as an iilustration of 3-D DISSPLA.

Function G evaiuates Eq (44) over a grid of points in x-y.

Tape 2 contains t, and the coefficients {b(n)}.

#J 1‘20 CHIEQGOO.‘I’?70314 MCLTRN USER

."MN,T-\PEE DATA3DPLOT.
PEVIND, TAFES

GTTuCH, DI&‘PLQ IDex5S432L.
lli!nﬂ\ DISSPLRA.
REOQUEST,PLFILE, sPF.

LGC.
CATALOG,PLFILE, YOURFILE.
PURGE , TAPE2.

PROGRAM PLT3ID: INPUT,0UTFUT,TAPES,PLFILE=0)

DIMENSION UORK(ESQ),B(11),T(4)
COMMON /ONE.” B,NP,T
EXTERNAL G
READ(2,11! NP, T

11 FORIAT(I3,4E18.9)
READ/2, la\(B(nl Mey, NP)

12 FORMAT (SE18.5 5E12.9-E18.9)
PRINT 12,7
PRINT 12.(8'.H).H-1.NF>
CALL COMPRS
CALL BGNPL:.1)
CALL TITL3UuIM ,~1,7.0,6.9)

CALL VU=B5i12.,10.,12.
CALL AXES3Dr0,0,0,0,0,
CALL GRAF3D(-1.9,0.1,1
caLL SUPFUN(G. 3,.125,
CALL ENDPL‘1

caLL DONEPL

S§TOP

.9,2.9,1.5)
’lo0,0ol.:.O. 0259001 1 5)
.185, WORK

)
]

e
e,
3,

FUNCTION G(ul,u2)
COMMON /ONE- B,NP,T
DIMENSION B(11),Tr4

Ple3.1415926536
Wieyi2Pl
W2=u21P1
XeCOS(WU1)
YeCOS(LU2)
2°T(4)3X2Y

XeT(2)3X
YoT(3i3Y

)

.00
? ” ”.’;”
» oG ¢ B(MIS((T(L)eXeY42)28(N=~1))
RETURN
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