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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Issues

A broadcast channel ia a communications channel where a signal generated

by one transmitter can be received by many receivers. Some examples of these

channels are: a satellite channel where a satellite acts as a transponder;

a. ground radio network where a number of terminals have access to c~~~on freq-

uencies; and coaxial cables where a number of terminals use a single cable for

communicating by time multiplexing. When a number of spatially isolated inde-

pendent sources have access to a common broadcast channel , a problem usually

arises in allocating the channel capacity to the various users. This is so

because the only means these independent users have of communicating their

requests for channel capacity is through the channel itself.

There are three main issues that are involved in multi—accessing a

c~~~on channel: a) the percentage of the capacity used in accessing, b) the

time it takes to access the channel, and c) the stability of the multi—accessing

system, i.e., how likely is it for the system to be in a state wher e many

sources are attempting to access the channel and very few are actually

succeeding. These three properties (throughput , delay, and stability) will

be defined more precisely later on; however, it should be clear at this point

tha t a desirable multi— accessing system is one that is stable , has high

throughput and low accessing delay . *s we will see in Section 1.3, when the

number of sources is large and the message lengths short, present multi—

accessing schemes suffer in at least one of these attribute.. In this thesis,

—10—



n
therefore, we will be mainly concerned with the development of stable multi—

accessing techniques that have high throughput and low delay.

More specifically, we will be concerned with the time domain multi—

accessing of a common broadcast channel by having the sources transmit

their data in packet form. A packet is a block of fixed length digital data

that contains the information to be transmitted, along with the source and

destination addresses and any other overhead information that might be

necessary, such as error correcting and error detecting bits. We will

assume that if more than one transmitter transmits simultaneously, then, they

will interfere with each other, and all the packets will be received

incorrectly. If, on the other hand, no packet collisions occur, then we

assume that error free transmission results.

It is important for each transmitter (also to be referred to as a

source) to be able to determine whether there are zero, one, or more than

one packets in the channel at any one time. More than one packet corresponds

to a collision, i.e., a channel contention. This channel state information

may be obtained directly by listening to the channel or by some other means

such as a central observer along with an auxiliary feedback channel. How

the transmitters obtain this information is not important for our work. Once

it is determined that a collision occurred, then the sources must take action

to resolve this conflict. The resolution of this conflict is the hee~ t of the

multi—accessing problem, and it is here that we will focus our attention by

developing and analyzing a new class of confict resolving algorithms. What

makes this problem interesting is that, when an initial collision occurs,

each of the contending sources knows that its packet collided; however, it

does not know the identities or the number of the other contending sources.

—11—



The multiple access system to which our work is directly applicable

is the so called packet switching broadcast network where the packets might

contain data from such sources as computers, teletype terminals, or vocoders.

The results of this thesis, however, are equally applicable to the various

dynamic reservation multi—accessing systems in which there are two channels ,

a data channel and a reservation channel. In this system the reservation

channel is used to make reservation requests for the data channel. Here the

channel contention difficulties arise in the reservation channel and again

one must resolve the conflicts between simultaneous requests on this channel.

Our results, however, need not be restricted to communication systems.

They may be extended to more general systems in which a central facility is

accessible by a number of independent users. If the number of users that

the facility can service simultaneously is less than the aaxiaim that can

place demands upon it, then contentions will arise that might be solvable

with the techniques developed here.

Pro. the preceding discussion, we see that a multi—access system may

be decomposed into three major components : the sources and messages, the

channel and the multi—accessing protocol. These are discussed in more detail

in the following sections . In Sect ion 1.2 we present the channel and source

models that will be used in this thesis and in Section 1.3 we consider the

multi—accessin g algorithms . In Section 1.4 we present an outline of the

thesis , the ana lysis , and th. main results. Finally in Section 1.5 we present

the histor y and the work conducted by others in this field.

—12—
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1.2 Channel and Source Models

In this section we will present the channel and source models that

will be used in this thesis.

1.2.1 Channel Model

The channel is assumed to be slotted, that ii, the channel time is

divided into equal segments called slots. The length of each slot equals

that of a packet, and it is assumed that a source, which is synchronized to

the channel time, transmits a packet within only one slot. Furthermore,

the channel is such that the sources can determine whether there are zero,

one, or multiple packets in any one slot. Multiple packets per slot

correspond to a collision and under such circumstances no one gets through .

If, however, a packet does not collide with other packets, then it is assumed

tha t the S/N is high enough or enough forward error correction is applied so

that the packet is successfully transmitted. This last assumption is made so

as to allow us to focus on the multi—access properties of the channel.

1.2.2 Source Models

We will consider two source models in this thesis. They will be

designated as the Poisson and the finite source models. -

j. Poisson Source Model

The Poisson source model assumes the existence of an infinite number of

independent sources that collectively generate k packets per slot, where k

is a Poisson random variable with constant mean A . A source can have at
‘--I
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most two packets, one tha t has undergone a collision and is in the process

of being retransmitted and one that may have arrived since the collision

of the first packet occurred. If a second packet arrives, it is not trans-

mitted until after the first is successfully transmitted. This last assump—

tion will be discussed in more detail in Section 1.3 where the algorithms

are considered.

ii. Finite Source Model

Here we assume that there are 2N independent sources. This model is

similar to the Poisson in that a source can have at most one packet in the

process of being transmitted or retransmitted and at most one waiting to be

processed. If a source has at most one packet then the probability that it

will receive a packet in th. next round trip interval is constant and it

is given by p . It can be shown that the Poisson source model is the

limiting case of the finite source model. That is, if we let ~2N — constant

and let N~~ then the finite model approaches the Poisson model.

—14—
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1.3 Conflict Resolving Algorithms

Here we will consider the third component of the multiple access system,

the conflict resolving algorithm. This section is organized into four

subsections as follows. In Subsection 1.3.1, we first consider the TI~(A and

Aloha protocols, the two algorithms presently in use, and then present

a third alternative, the tree algorithm. In Subsections 1.3.2 and 1.3.3

we expand upon the tree algorithm and in 1.3.4 we present an information

theoretic discussion of the multiple access channel.

1.3.1 TDMA. Aloha and the Tree Algorithm

There are three basic techniques for accessing a communications

channel in the time domain , the T1~(A , the Aloha and the tree algorithm. In

the TDMA scheme, contention is avoided by allocating a portion of the channel

to each of the sources . Although TDMA is effective in situations where the

number of sources is small and the message lengths are long , it suffers from

low throughput and large delays when the number of sources is large and the

duty cycle i. short.

In the Aloha algorithm, when a source has a new packet, it transmits

it , and then listens to the channel to determine whether or not the packet

collided with packets fro. other sources. If a packet collision is detected,

then the source retransmits the packet at a randomly selected time. The

retransmission takes place at a randomly selected time so that conflicting

packets will not surely collide again. It has been shown (see Section 1.5)

that when the sources satisfy the Poisson source model , then the maximum

throughput for the Aloha system is 1/s. Ibwever, a multi—access Aloha type

syst is unstable, and it eventually overflows. Therefore, although the

—15—
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delay and throughput properties might be satisfactory in the short term

they are quite poor when observed over a long interval of time.

There are numerous of dynamic reservation schemes in the literature

(see Section 1.5). Most of these schemes use two channels; a reservation

and a data channel. Before data can be transmitted, the data channel is

reserved by TTMA in Aloha techniques on the reservation channel. It follows

t hen , that the disadvantages of the TDMA and Aloha algorithms apply to the

reservation channel .

The tree algorithm that we are about to introduce has (when used in

conjunction with Poisson source model) a maximum average throughput of

.430 packets/slot, is stable in that all the moments of the delay are finite

if the arrival rate is less than .430 packets/slot and it has good delay

properties. (The results of the analysis are presented in more detail in

Section 1.4.) Below in Table 1.3.1.1 we present a qualitative comparison

of the three algorithms when the number of sources is large and the

message lengths are short.

TDI4A Aloha Tree Algr.

Delay Poor Fair Good

Throughput Poor Good Good

Stability Good Poor Good

Table 1.3.1.1. A Qualitative Comparison of Ta1A, Aloha and Tree Algorithm
when the number of sources is large and the message lengths
are short.
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It is easiest to introduce the tree algorithm by an example. However,

before we do this, we need to make the following definitions. Figure 1.3.1.1

should be helpful

Root node — the initial node of a tree; in Fig. 1.3.1.1 it is n00.

Depth of a node — correponds to the tier at which the node is found.

The root node is at depth zero.

Degree of a node — is the number of branches that emanate from a node.

Subtree ~~~ — the subtree whose root node is fl j j .

Note that in a binary tree, j  corresponds to the particular

- node of depth i, and that there are nodes of depth I.

Symmetry — a tree is symnetric if all nodes of equal depth have equal

degrees.

Example: The Binary Tree Algorithm

Let there be 16 sources (Se, S1, ... , 

~l5~ 
and let each correspond to

a leaf of a 16-leaf binary tree as shown in Fig. 1.3.1.1. The tree may be

considered as an addressing procedure, in which each source has a 4—bit

address depending on its location on the tree. In Fig. 1.3.1.1 we also

present the slotted satellite time. For convenience, we assume tha t the

round trip delay is zero; the effect of a nonzero round trip delay is

considered in Section 1.3.3. Note that the slots are paired and that a slot

pair is designated by There is a relationship between the subscripts of

the nodes and those of the slot pairs; as we will see, ~~ transmits it.

packets in ~~~~

Now assume that no collisions have occurred until the beginning of SL~~,

when sources ~~ ~2’ S4~ S8, and S10, each has a packet to transmit . Then

-•17—
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n32~,_® ~

/N~-®fb i’ S3

A ~~~® S4
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channel
time

52 3e~~o f  ~ 
f 5 e f t

~4 I~l0 S2~ S4 ~OI~2 S~~j — I I ...
- 

SLo0 SL~~ SI..20 SI..11 SL22 sL~~1 -
.

Figure 1.3.1.1 An Exampl. of the Binary Tree Algorithm
—18—
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beginning with SL~~, where the first contention arises, the tree algorithm

takes the following steps in the designated slot pairs.

SL00 Sources in T10 transmit their packets in the first slot of

SL~~, and the sources in T11 transmit theirs in the second

slot. This results in two collisions, one among S0, S2, and

S4 and the other between 5~ and $10. Since there was at

least one collision in SL~~, any new packets that arrive are

not transmitted until that contention is resolved.

~~lO Since there was a collision in T10, the sources in T~~ are

divided in half and the packets in T~~ and T21 are transmitted

in the first and second slots of SL](), respectively. This

results in a collision between S~ and ~2 
and to a successful

transmission by S4.

~~2O Since there was a collision in T20, T30 and T31 transmit

their packets in the first and second slots of

respectively. This results in two successful transmissions

by 
~o 

and

~~ll 
Since ther e was a collision in T11, T22 and T23 transmit

their packets is succession. This results in a collision

between S~ and $10 in the first slot and no transmission

in the second .
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~~22 Since there was a collision in T 22~ 
T34 and T35 transmit.

This results is two successful transmissions by S8 and

SL~~ Since all the sources were involved in some transmission in

which no collisions occurred , we know that the original

contention has been resolved. Any new packets t~iat may have

arrived to T10, during this conflict resolution interval, are

transmitted in the first slot of SL8O, and packets that arrived

to T11 are transmitted in the second slot. The process

continues on, as described above.

Note that in this example we used 10 slots to transmit 5 packets. Next we

will state and discuss the binary tree algorithm.

The Binary Tree Algorithm

Let each source correspond to a leaf in a binary tree. If the number

of sources is infinite, then the tree extends to infinity. The slots are

paired into odd and even slots, and until a collision occurs the sources in

transmit their packets in the odd slots, whereas, the sources in T11

transmit theirs in the even slots.

Now let T
~j 

and T
~2 

be two variables and assume that no collision occurred

up to the beginning of the present pair of slots. Thus, the binary tree algor—

ithms is as follows:

1. T
~i 

— T10; T
~2 

— Tll.

—
, 2. T

~i 
transmits in the first slot of the present pair of slots, and T 2

transmits in the second.
-20-
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3. If any collisions occur in the preceding step, then

a. Until they are resolved, no new packets are transmitted.

b. Resolve the first collision before resolving the second.

A collision in T 1 (i — 1,2) is resolved by dividing T
~i 

in two halves

(say A and B), letting T 1 — A , T 2 — B and then repeating steps 2 and 3.

This algorithm is equivalent to the following tree search. Beginning

with the root node and at each succeeding node, one asks whether there are

zero, one, or more than one packet in each of the two emanating branches.

If the answer for any of the branches is more than one, then proceed to the

base nodes of those branches and repeat the question. This continues until

all the leaves are separated into sets such that each set contains at most

one packet. Note that the number of slots used in a conflict resolution

interval equals twice the number of nodes visited.

The tree search may be carried out in one of two ways, serially or in

parallel. In the serial search, two branches transmit their packets in two

consecutive slots, and the results of those two transmissions are resolved

before another two subtrees are allowed to transmit. In the parallel search,

all the branches at some depth, whose parents have had a collision, transmit

their packets in consecutive slots. It should be clear that the number of

slots needed to process any particular set of sources is the same for both

schemes .

The question arises as to whether some other tree besides the binary

tree might not be more efficient , in that it requires fewer slots to resolve

a conflict. The determination of the optimum tree is one of the major problems

—21—
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that is solved in this thesis . More specifically, we will develop the

optimum dynamic tree algorithm, in which the tree that is used to process

a conflict is that which minimizes the average number of slots used , given

the history of the transmission process ; more will be said about this in

Section 1.4.

The control for the tree algorithm may be centralized or distributed.

If a central control is used , then an observer observes the transmission

process and notifies, via a feedback channel, the sources that may transmit

in the next slot. If , on the other hand, a distributed control is used,

then all the sources must observe the channel and each must execute the

algorithm by itself.
- 

We will present an interesting variation to the above algorithm, before

concluding this section. Step 3a of the algorithm may be changed somewhat,

so that some packets that arrive after a collision occurs may be transmitted

bef ore that initial contention is resolved . In the example above , for

instanc e, packets , that arrive to T23 before SL11, could be transmitted in SL~~
and they would be treated similarly to the way they would have been , had they

arrived in SL~~ . This variation to the binary tree algorithm appears to be

more efficient then the original algorithm itself. However, it is more

complicated and we have not analyzed it.

1.3.2 Deterministic and Random Source Addressing

In the tree algorithm, as it is given in the preceding section, each

source is preassigned detsrainistically an address, i.e., a position on the

tree. A variation to the deterministic addressing which has certain imple—
~1
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mentation advantages, is the random address assignment scheme. Here, the

sources are not preassigned addresses on the tree. However, when a collision

occurs, a contending source conducts the tree search by independently and

with equal probability deciding to take the upper or the lower branch that

emanate from each node, beginning with the root node. In general, if any

collisions occur at nodes at one tier , the contending sources move to the next

tier by randomly deciding which branch to take. This process continues until

no collisions occur. As can be seen, the objective of this search is the same

as that of the deterministic addressing scheme; it is to divide the sources

into sets such that each set contains at most one active source.

Note that in the random addresssing scheme, the tree is infinite whether

the number of sources is finite or infinite. Therefore, it can be shown that

when the number of sources is finite, random addressing is slightly inf er ior

to deterministic addressing in terms of delay and throughput. However, when

the number of sources is infinite, such as in the Poisson model, then the two

schemes are identical. To see this, note tha t in random addressing, the

sequential random choice decisions that each contending source makes are

equivalent to allowing each of the contending sources to choose an infinite

dimensional address, and then to execute the tree algorithm as it is given in

the preceding section. The only difference, therefore , between the two

schemes is the way the addresses are chosen. Note , however, that the statistics

of the addresses of the contending sources are the same under both schemes.

This is so because in one scheme, the contending sources randomly choose then

and in the other the addresses are preassigned but the sources are chosen

randomly. Since the address statistics are identical and since the algorithm

- --I
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is the same in both cases, we conclude that in the Poisson source model the

throughput, delay and stability properties are the same for both addressing

procedures.

The implementation advantage of the random addressing scheme is due to

the fact that the addresses are not preassigned. Therefore, sources may enter

or leave the system with much greater ease. Note that the tree search for

the random addressing scheme may be carried out serially or in parallel, and

that the tree need not be binary.

1.3.3 Sample Transmission Process and Definitions

Her e, we will define some of the quantities that we will be using,

and we will consider the effects of the round trip delay by presenting a

sample transmission process for the serial search binary tree (SSBT) algorithm.

In the execution of the SSBT algorithm, two branches transmit their

packets in a pair of consecutive slots; following this, no action is taken

until the results of these two transmissions are received, when two more

branches ar e allowed to transmit • An example of such a transmission process,

in which the round tri p delay equals four slots , is illustrated in Fig.

1.3.3.1. In this example , since one algorithm uses only 1/ 3 of th . channel

capacity , one may either divide the sources into three groups and process

each group independently on 1/3 of the channel by a tree algorithm or use

one tree algorithm on 1/3 of the channel to reserve the other 2/3 ’ s in a

dyn ic reservation scheme.

In any case , we will focus our attention on one algorithm. Therefore ,

we will assome that our channel consists only of those slots that are used

_ _ _ _  _ _ _ _  -
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arrival slots

S14 SL~ S%4 SL~ SI.’5 SL~

II Ill III III III III
time —~~

1

transmission slots I

SI. SI.2 SL3 SI SI SI I SI

III 
~ ll1~~~1I I $ III ~J)I , Iii

on algr. step an epoch

Figure 1.3.3.1 A Sample Transmission Process

/

—25—

-
~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

— -- 

-~~~~~~~~



by that algorithm. In Fig. 1.3.3.1 the channel that we are interested in

is that composed of SL1, SL2, SL3, ... , etc.

At this point, we will make several definitions.

Algorithm Step — It consists of the transmissions taken in a pair of

slots, the observation of the results of those transmissions, and

the decision as to what action to take in the next pair of slots .

The time span of a step, therefore, equals the round tr ip delay

plus the length of two slots. In Fig. 1.3.3.1, a step equals all

the actions taken from the beginning of St1 to the beginning of St2.

Epoch — an interval of conflict resolution, if a conflict exists; other-

wise, it is a pair of slots. In Fig. 1.3.3.1, (SL1, 51.2, SI.)], [SL4],

~~~ ~~~ 
are three consecutive epocha.

— the length of the j’th epoch in algorithmic steps.

— the number of slots used in the j ‘th epoch. This equals 2L~ .

A — the avera ge of the total number of packets arriving in one slot.

— the averag e number of packets arriving in the j ‘th epoch. In the

text , it is shown that for the Poisson source model 111 
— Ah

1
.

6 — packet delay; i.e., the time spent in the syste. by a packet.

Normally we viii express th. delay in terms of algorithm steps.

average delay — the delay of a randoml y chosen packet.

average throughput — the fraction of the slots, over a very long interval,

that contain exactly one packet each.

stab ility — the system is K’th order stabl. if the K’th moment of the

delay is finite.

—26—
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In terms of the preceding definitions, in packet switching networks,

packets that arrive in one epoch are transmitted in the following epoch.

Note , however , that since only a portion of the channel is used by the algor-

ithm, only those packets arriving in slots corresponding to those used by

the algorithm in one epoch will be processed by the same algorithm in the

following epoch. In the example of Fig. 1.3.3.1, the packets that arrive in

slot pairs SL~ S14, and SL are transmitted in St4. Those that arrive in

are transmitted to St5 and those that arrive in SL~ and SL~ are transmitted

in SI.7.

An interesti ng and a very useful property of the transmission process

is that under the finite, as well as the Poission source model, £1 is an

embedded Markov chain. That is, L~ can be considered to be the state of a

Markov chain after the j’th transition. To see this, first note that

given v1, is independent of the transmission process up to the end of the j ‘th

epoch . (V
1 

is the number of packets arriving in the j ‘th epoch.) This

observation coupled with the following probabilities (which are developed

in the text) prove the Markovian property.

v —(2A1 )
(2AL )1 e

— 1 for the Poisson model.

— p(V1~
L
1
)

p(a packet arrives to a particular source in the j’th epochlt1,L1_ 1,...)

&
— 1 — (l—p) for the finite model.

—27—

-

~

. ~~ .--~~~~~~ -~~-~~~~~~~~~~~~~~~~~ -- — — —--~~~~~~~ 
-



1.3.4 An Information Theoretic Approach to Multi—Accessing

As we will see, the maximum average throughput of the optimum dynamic

tree algorithm is .430 packets/slot when the sources satisfy the Poisson

model; whereas, the maximum throughput for the Aloha system is lie — .368 .

Since the performance of these two algorithms is different, the question

arises as to whether there are any other algorithms which are better, or,

more interestingly, what is the maximum possible throughput to a particular

multiple access system under all possible algorithms. We have attempted to

answer these questions but were unsuccessful. However, our approach to this

problem offers some insight into the multi—accessing problem and since it might

be the basis for further research, we outline it here.

We have pointed out in the preceding section that the basic problem

in a multiple access system is the resolution of the conflicts. So, let us

examine this a little more carefully. Let us assume that we have a set of

independent sources, and V of them are active, i.e., have packets to transmit.

Furthermore, let the probability measure on V be p(v) .

Now, note that the conflict is resolved if f the sources are subdivided

into sets such that each set contains at most one active source. Therefore,

this partitioning of the sources must be the objective of any conflict

resolvin g algorithm , whether it be the Aloha, the tree , or any other that might

be prop osed in the future. In other words , the execution of the algorithm

must supply enough information so that one can partition the sources into

sets such tha t each set contains at most one active source. Let H
~~~

(aource)

be the minimum avera ge informa t ion required to do this.
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Next, by observing the contents of a slot, we lear~ whether there are

zero, one, or more than one active sources in the set that is transmitting in

that slot. Let Hmax (trans.) be the maximum average information (maximized

over all partitions) that can be obtained from any one slot; certainly,

Hmax(trans.) < log2(3). Therefore, the minimum average number of slots

required to resolve the conflict under any algorithm must be equal to or

greater than H~~~(source)/H (trans.).

We did not proceed beyond this formulation because we were unable to

obtain good bounds to Hmjn(source).
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1.4 Thesis Outline and Results

The thesis is organized into four chapters. Chapter 1 is this intro-

duction. The analysis is carried out in Chapters 2, 3 and 4 and In the

appendices that accompany these chapters. Here we will consider the

objective s and results of each of these chapters.

In Chap t er 2 , we analyze the serial sear ch binary tree algorithm when

it is used in conjunction with the Poisson source model. There are two

main results in this chapter. The first concerns the average delay vs.

average throughput trad e—off; we obtain upper and lower bounds to the

average delay , as a function of A. These bounds are given in Eqs. (2.2.4.2)

and (2.2.4 .6) and they are illustrated in Fig . 2.2.4. 1. It is shown that

these results may be interpreted as average delay vs. average throughput,

and we show that the maximum average throughput is .347 packets/slot.

Furthermore, we show that it is possible to obtain a throughput of up to

.430 packets/slot, but only for a limited time.

The second main result of Chapter 2 concerns the stability of the binary

tree algorithm. Here, we prove that if A < 1/3 packets/slot, then all the

moments of the delay are finite. However, we observe that this is an overly

conservative result , and point out that indications are tha t all the moments

of the delay are finite for A < .347 packets/slot.

In Chapter 3 , we determine and analyze the opt imum dynamic tree algorithm

and examine a suboptimum algorithm that has certain implementation advantages.

This algorithm is called optimum dyna mic , because the tree is allowed to vary

from epoch to epoch optimally depending on the traffic . The source model

tha t is assumed in this chapter is the Poisson.

—30—
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More specifically, we show that the tree which minimizes the expected

number of slots needed to process v packets, where V is a Poisson random

variable, is binary everywhere except for the root node whose degree g0

depends on ~ and is given by Eq. (3.1.0.2).

We point out that ~i — hA; therefore, by observing the number of slots

in the preceding epoch, we can determine ~i and hence from Eq. (3.1.0.2)

determine the optimum tree to be used in the next epoch. In order to

simplify the analysis, we restricted the degree of the root node to be 2r.

Thus, the root node corresponds to r algorithm steps and each of the other

nodes corresponds to one step. For this dynamic algorithm we have obtained

upper and lower bounds to the average delay as a function of A. These results

are given in Eqs. (3.3.2.13) and (3.3.2.14) and displayed in Pig. 3.3.2.2.

We also show that the maximum average throughput is .430 packets/slot, and

we prove that all the moments of the delay are finite for A < .430 packets/

slot.

In Chapter 3, we also consider the more easily implemented algorithm in

which the root node degree is restricted to be 2K (K > 0), and all other nodes

*are binary. Subject to the above constraints, first, we determine K , the IC

which minimizes E(h141tu1,K}; this is given in Eq. (3.1.0.3). Next we

determine upper and lower bounds to the average delay vs. A; these are

given in Eqs. (3.4.2.13) and (3.4.2.14) and displayed in Fig. 3.4.2.1. The

max imum average throughput is shown to be greater than .420 but less than

.430 packets/slot .

/
,
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In Chapter 4 we consider the static and dynamic tree algorithms when

they are used in conjunction with the finite source model. For the static

binary algorithm we obtain an average delay upper bound vs. average through-

put lower bound curve. This is shown in Fig. 4.2.2.2 for 64 sources. The

maximum throughput for the 64 source model is .507 packets/slot.

The dynamic tree was restricted to be binary everywhere except for

the root node whose degree was restricted to be g0
_2K~ This algorithm

was optimized, as before, over IC and the results are given by Eqs. (4.3.1.1)

and (4.3.1.6). An interesting observation, on the optimum dynamic algorithm,

is that , under low traffic, it is identical to the binary tree algorithm.

However , as the traffic increases this algorithm adaptively changes to a tree

that has only one node with 2N branches, which is recognized to be the TDM&

protocol. ~1ote ~~ equals the number of sources.)

The delay—throughput characteristics of this optimum dynamic tree are

determined, and are illustrated in Fig. 4.3.2.5 for 2N — 64. The maximum

average throughput for this algorithm is one packet/slot. Chapter 4 is

concluded with a theorem proving that the avera ge delay of the opt imum dynamic

tree is less than or equal to that of the TDMA protocol .
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1.5 History

The types of multiple access problems that have been considered by

others fall into two main categories, circuit switching and packet switching.

A third category contains the various dynamic reservation techniques, but

this can be considered to be a hybrid of the first two classes.

With circuit switching, the channel is partitioned and allocated (leased)

before hand. The sharing of the channel this way has been accomplished

either by FDMA (Frequency Domain Multiple Access), or by TDMA (Time Domain

Multiple Access ) or by a combination of FDMA and TDMA . These techniques

have been the only ones that were in use up to about 1970 [1] and they were

quite effective for the cosmunication needs of that time. If, however, there

is a large number of sources that do not require continuous full use of the

channel or if the data is bursty, i.e., the ratio of peak data rate to

average data rate is high, then circuit switching can lead to long transmission

delays and inefficient use of the channel.

In recent years attention has shifted to packet switch ing form s of

multiple access . With this form of accessing , as was pointed out earlier ,

the transmitter formats the data into a packet of constant length along

with source and destination addresses and error detecting bits. The source

then transmits the packet to all the receivers including the desired one.

If a packet is destroyed in transmission, the originating source learns

about it either through a feedback channel or by listening to its own

t ransmission. When a source determines that its packet has been destroyed

It retransmits that packet at a randomly selected time. Most of the work

/-
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that has been done to date on packet switching broadcast systems assumes

that the channel is noise free and that all the packets involved in a

collision are destroyed.

There have been two approaches to packet switching broadcast systems ;

pure Aloha and slotted Aloha. In pure Aloha , packets are transmitted or

retransmitted asynchronously; in slotted Aloha the sources are synchronized

so that packets are transmitted in phase. In dynamic reservations the

sources first dynamically reserve the channel capacity via an Aloha or a

TItIA channel and then transmit their data .

Pure or classical Aloha has been studied by Abramson (1]. He assumed that

1) the starting times of the packets that are offered to the channel for the

first time from all the sources comprise a Poisson point process, and 2) the

starting times of all the packets (new plus retransmitted packets ) comprise

another Poisson point process • Given these two assumpt ions which taken together

imply an equilibrium condition, he proves that the capacity of the system is

or approximately .184.

Roberts (2] pointed out that considerable improvement can be made in the

capacity of the Aloha channel by synchronizing the sources so tha t all the

packets arr ive at the channel in phase. He proposed that the channel time be

divided into slots and sources be allowed to use at most one slot per packet.

By doing this he showed that capacity of the slotted system for the Poisson

source model is or twice that of pure Aloha .

Metcalf [3] considered Aloha systems with blocking (that is a source may

not generat. a second packet until the first is successfully transmitted) and

examined several random retransmission policies . More important he showed

—34—
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tha t Aloha channels may be unstable in that the number of blocked sources can

become very large. He also proposed control techniques by varying the retrans-

mission probabilities .

Kleinrock and Lam (4], (5] quantified and extended Metcalf ’s results .

They modeled the slotted Aloha system with blocking by a Markov Cha in whose state

corresponded to the number of blocked sources . They showed that the slotted

Aloha channel with an infinite but independ ent population (i.e. , the Po isson

source model) is unstable. They further showed tha t if the number of sources is

finite then the Aloha system may be bistable in that it is possible to have two

stable operating points — one with a small number and one with a large number of

blocked sources. Random perturbation in the channel traffic will cause the

system to vacillate between these two stable points. They also proposed con-

trolling the system through the retransmission probabilities and derived an

optimum control policy based on exact knowledge of the state of the channel.

Carleial and Hellman (6] also modeled the Aloha system as a Markov chain and

examined its bistable behavior.

Several dynamic reservation schemes have been proposed. Basically, these

teci niques use either slotted Aloha or TDMA to make the reservations. Two

protocols tha t use Aloha techniques to reserve the channel are Reservation—

Aloha introduced by Crowther et .al. (7] and Interleaved Reservation—Aloha sug-

gested by Roberts (8]. In Reservation—Aloha the channel slots are grouped into

f rames that are at least a round— trip delay long. A source that has success-

fully used a particular slot in one frame has access to that slot in the fol-

lowing frame. If a slot is unused then it is up for grabs and any one can con—

tend for it by random Aloha techniques . In the Interleaved Reservation—Aloha
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the channel is divided into two states. Reservation and Aloha. On the Reser-

vation state the sources attempt to reserve the Aloha state through slotted

Aloha techniques. As traffic increases the percentage of the channel being in

the Aloha state increases allowing for greater utilization of the channel. In

the Interleaved Reservation Aloha as the ratio of message length to reservation

packet length increases the maximum throughput approaches 100%. Roberts also

showed (in an example where the average message length was 27 times that of

the reservation packet) that the transmission delay for this scheme is better

than slotted Aloha at large throughput but not as good for throughput less than

20%. Crowther , et.al. do not present an analysis of their scheme but one would

expect a behavior similar to Robert’s algorithm. Stability is not considered in

either paper but as long as random accessing techniques are used for the reserva-

tion, stability is an issue.

Binder [9] offers a dynamic reservation scheme that uses TDMA techniques.

Essentially what he proposes is that the slots be grouped into frames and each

source be allocated a slot to which it has first priority. If a slot is not

used by its owner then it is available to the other sources on a round—robin

basis. Unfortunately, here again there is no analysis. Limited simulations

indicate that this protocol is better than slotted Aloha at high traffic and

worse at low traffic.

In the work that has been discussed up to now the authors assumed that if

more than one packet is transmitted simultan eously then a collision occurs and

all the packets are destroy ed . Roberts (2] points out, however, that this need

not be the case . PM receivers will track the strongest of many signals as long

as the next strongest is down by 1.5 to 3 dB. He examines the problem where

one receiver is surrounded by an equal density population of equal power crane—
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mitters and shows that it Is possible for the capacity to increase to .60 with

FM capture. His example is for ground radio systems, but one should be able to

take advantage of PM capture in satellite systems where the sources are essen-

tially equidistant from the satellite by regulating the power of the various

transmitters.

Another technique that offers considerable improvement to Aloha systems

that have a small maximum time delay is C~~(A (Carrier Sense Multiple Acceas).

In CSMA a terminal with a packet to transmit first listens for the carrier of

other users to determine whether the channel is busy. If it is busy then the

source refrains from transmitting , vhc~eas if the channel is empty of other

carriers the source will transmit its packet with some probability. A colli-

sion will occur if the time between transmissions of two packets is less than

the time delay between the corresponding sources. In case of a collision the

contending sources retransmit at randomly selected times. Kleinrock and

Tobagi [10] , (11] have examined CSMA and have shown tha t if a) there are no

hidden terminals , i.e., every terminal can hear every other t erminal, b) the

time to detect the carrier is zero, and c) the distance between terminals is

not large than considerable improvement can be made. For example, if the ratio

of the maximum time delay between terminals to packet length is .01 then the

channel capacity is .86. C~ (A can be quite effective in ground packet switching

channels , but it is ineffective in satellite systems.

)
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CHAPTER 2

STATIC BINARY TREE ALGORITII1 WITH POISSON SOURCE MODEL

2.1 Introduction

In this chapter we will examine the delay, throughput and stability

properties of the static binary tree algorithm when it is used in conjunction

with the Poisson source model. We will restrict the analysis to the serial

search and to the deterministic address assignment. As was pointed out in

Chapter 1, under the Poisson assumption, the random and deterministic source

address assignment schemes are identical in terms of delay, throughput and

stability. However, the parallel and serial search algorithms have the same

throughput , but the average delay of the parallel search scheme is less than

that of the serial.

The average packet delay is defined to be the delay that a randomly

selected packet undergoes, and it is the topic of Section 2.2. There, we

obtain upper and lower bounds to the mean packet delay as a function of the

arr ival rate A. These bound s are given by Eqs. (2.2.4.2) and (2.2.4.6) and

are displayed in Fig. 2.2.4.1.

The average throughput is defined to be the fraction of slots over a

very long interval of t ime that contain exactly one packet each. It is

considered in Section 2.3 , wher e we argue that if the average delay is

finite , then the average arriva l rate equals the average throughput . In

that section we also show that the maximum avera ge throughput is .347

packets/slot and that it is possible to attain a throughput of up to .430

packets/slot but only for a limited time.
I

- 
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The system is considered to be k’th order stable if the first k

moments of the delay are finite. Stability is considered in Section 2.4.

There, first, we show that if A < .347 packets/slot, then the system is
first order stable. Secondly, we prove that if A < 1/3 then all the moments
of the delay are finite. This result , however , seems to be overly conserva-

tive , and indications are that all the moments of the delay are finite if

A < .347 packets/slot. Accompanying the main text is Appendix A2 where

some crucial results of this chapter are developed. A detailed outline of

Appendix A2 is given in the following section after several definitions are

made.
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2.2 Average Delay

The objective of this section is to develop a characterization of the

average packet delay in a multi—access coemunicat ion system that uses the

static binary tree protocol . More specifically , we will determine upper and

lower bounds to the average delay , E(~S}, that are functions of the packet

arr ival rate A. (See Eqs. (2 .2.4.2) and (2.2.4.6) and Fig. 2.2.4.1.)

The unit of measure for the delay is the time between two successive

steps of the algorithm. This is constant and it normally equals the round

t rip delay plus the transmission time of two packets. The delay , therefore,

that a packet undergoes is directly proport ional to the number of steps that

are executed by the algorithm from the time when a packet arr ives to the time

when it is received correctly .

The expected delay is defined to be the delay that a randomly chosen

packet will undergo . Note that inherent in the definition of E{6} is the

concept of random incidence , this will play a central role in the analysis.

As has been discussed previously, packets that arrive in one epoch (an

epoch is an interval of conflict resolution if a conflict exists or simply a

pair of slots if there is no conflict ) wait until that epoch ends and are

transmitted in the following epoch. With this in mind, several definitions

are presented below. All lengths are in algorithmic steps.

— the epoch in which a randomly chosen packet arrives.

£2 — the epoch following e~ .

— the length of Cl. This is a random incidence random variable.

L~ — a random variable that equals the length £~~. The probability that

— L is the steady state probability that an epoch of length

L occurs.
—40—
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— upper bound to EU)

Li — lower bound to EU)

— upper bound to ECL 2 }

— lower bound to E{L2)

— the number of slots used by the algorithm in c~ .

Note that h
1 

— 2L~ for the binary tree algorithm.

d1 
— the time spent by a packet in

‘ the number of packets that arrive in c~ .

A — the average number of packets that arrive in any one slot .

— the average number of packets that arrive in given L
1
. Note

that — E{v11L1
} — 2AL

1 
— Ah

1
.

.5 — the packet delay , or the time spent in the system by a packet. This

quantity equals the sum of d1 and d2.

— .ower bound E{6}

— upper bound E( 6}

As we proceed , we will further expand upon some of the relationships of

the above quantities.

Next we will present an outline of the analysis that follows. In

Section 2.2. 1 we develop the relationship between u1, 
~ 

and A. In Section

2.2.2 upper and lower bounds to E{6} are developed that are functions of

EU) and E(L2). In Section 2 .2.3 upper and lower bounds to EU) and EU2 )

are developed that are functions of A. Finally, in Section 2.2.4 we combine

the results of Sections 2 .2.2 and 2 .2.3 to obtain upper and lover bounds to

E{6} that are functions of A.
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In Appendix A2 we prove some of the more tedious but still very crucial

results of this chapter . This append ix is organized into eight sections. In

Section A2.l, we derive an expression for E{11+11U 1
) and in A2.2 some

important properties of E{t~+1I 1z j } are developed. In Section A2.3 an

expression for E {L~+1I U 1
} is derived and its properties are developed in

A2.4. In Section A2.5 it is proved that E{L
1
1
1+1

) > E(L~}E{t
141
). In A2.6

is derived and in A2.7 we develop the relationship between

and E{Lj+11u 1
). Finally in A2.8 we obtain upper bounds to

sL 21
E{e 1

~ 1u } and aEfe

2.2.1 Relationship Among u,~ L~ and A.

As defined above, A is the average number of packets that arrive in

any one slot , is the average number of packets that arrive in C1 and L~ is

the number of steps executed by the algorithm in C1
. For the binary tree

which is being considered here, £

1 

also equals the number of nodes visited by

the algorithm. It follows from the above definitions that the length of Cj

in seconds is given by £

1 

(
~tr + 2r 5) where Tr is the round trip delay and ~L

is the length of one slot .

Another relationship which will be proved here is the following:

p
1 

— 2A1
1 

(2.2.1.1)

To see this, first note that the binary tree algorithm uses two slots for

each step ; therefore

h — 21 (2.2.1.2)
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Next note that the total number of packets that arrive in £

1 

equals the sum

of the packets that arrive in each of the h
1 
slots, and since the expectation

of a sum equals the sum of the expectations, it follows that

— h
1
A (2.2.1.3)

Equation (2.2.1.1) follows f rom Eqs. (2.2.1.2) and (2.2.1.3).

2.2 .2 Characterization of E{delay} in terms of EU) and EU2)

In this section we will develop upper and lower bounds to E{.5) that

are functions of EU) and EU2). More specifically if we let and be

the upper and lover bounds to E{6}, respectively, then we will prove that

— 1.05 ~~~~~~~~~~~ + .321 (2.2.2.1)

and

— + EU)] (2.2.2.2)

Now we will begin with the analysis. The total delay that a randomly

chosen test packet will undergo can be decomposed into two parts; d1, the time

spent in Cl (the epoch in which it arrived) and d2, the time spent in £2
( the epoch in which it is transmitted) .

6 — d1 + d2 (2.2.2.3)
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and

E{6} — E{d1
} + E{d2) (2.2.2.4)

Next we will derive expressions for E{d1) and E{d2
}. We begin with E{d1).

If we let y1 be the length 
of the epoch that the test packet entered ,

then y1 is a random incidence random variable. It is well Iu~town (Ref. 12,

p. 1491 that the density of y1 can be 
expressed in terms of the density of L~ as

follows,

Y1P2. (y1)

~~ 
— EU ) 

(2.2.2.5)

Since the slot in which the test packet enters Li can occur with 
equal proba-

bility anywhere in Cl~ 
we have

E{d1} — ~ E{y~} (2.2.2.6)

From Eqs. (2.2.2.5) and (2.2 .2.6) follows

Pt ‘3’i~
E{d1} —

yl.

or

E{d1} — 4 - (2.2.2.7)
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The expectation of d2 can be written as follows :

E{d2
} — ~ E{d21y 1} ~~ (y1) (2.2.2.8)

yl 1

and substituting Eq. (2.2.2.5) into Eq. (2.2.2.8), we have

E{d2} — 
~ y1E{d2~y1) p2. (y1) (2.2.2.9)

Combining Eqs. (2.2.2.4), (2.2.2.7) and (2.2.2.9), we have the following

result.

E{6) — 4 ~~~ + 
~ 

L
1

E{d
2~t1

)p2.
(L
1
) (2.2.2.10)

In Appendix A2.6, the following expression ior E(d2 I L l) is derived.

E{d21p) — 1 + ~ e(p/2t) ( l  + 2j~( / 2 i))  (2.2.2.11)

where

0(p) — 
1—e~~—pe~

’ 
(2.2.2.12)

1—.

D(p) — 

~ 

2i~ (p/ 2i) (2.2.1.13)

~(p) — 1 — e~~ — pe~~ (2.2.2.l3a)
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and

p — 2A11 - (2.2.2.14)

Note that the subscript of p has been dropped for convenience.

Equations (2.2.2.10) through (2.2.2.14) is as far as we can go in

obtaining an exact closed form expression for E{6). Since this expression

of E(6}, as it stands, is quite complex, we will turn our attention to deriving

upper and lower bounds.

In Appendix A2.l, the following expression for EU2~p) is derived.

E{t2jp} — 1 + 2D (p/2) (2. 2.2.15)

and in Append ix A2.7 it is proved that

E{d2~p) < .55 E{&21p } + .321 for p > 0 (2.2.2.16)

But because of Eq. (2.2.2 .14) it follows that

E{d2~L1
} < .55 E{12 111} + .321 (2.2.2 .17)

Now combining Eqs. (2.2.2.10) and (2.2.2.17) we have

E{6} <4 + 
‘~~~~~‘ 

L1E{12 1L1)p(L1
) + .321 (2.2.2. 18)
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It can easily be shown that

~ 2.1E {L 2 1L 1}p ( 11) — E{L112)
1

<4  E{1
1
2} + 4 EU2

2) (2.2.2.19)

But since 2..~~ — L~~ — 2!~ we have from Eqs . (2.2.2.18) and (2.2.2.19)

(~2}E{6} < 1.05 EU) + .321 (2.2.2.20)

This is the desired upper bound. Next we will derive an equivalent lower

bound to

In Appendix A2.7 it is also shown that

E{d2 1p 1} > 4  E{L~ I p ) for p > 0 (2.2.2.21)

Here again, from Eqs. (2.2.1.1) and (2.2.2.21) we have

E{d2111
} > 4 E{L2~L~) for L~ > 1 (2.2.2. 22)

Substituting this into Eq. (2.2.2.10) and then st ing we have

{L2 EU. £2)E{6} >4  
E~~~ + 4 EUF (2.2.2.23)
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In Appendix A2.5 it is proved that

E U19.2 } > E{r1)E{&2) (2.2.2. 24)
t

Substituting this into Eq. (2.2.2.23) we have the following lower bound.

E{6} > 4 ~~~~~~~~~~~~~ + 4 EU) (2.2.2. 25)

Another lower bound to E{6} is

E{6} > ~U} (2.2.2.26)

This follows from Eq. (2.2.2.25) by noting that EU 2) > E2{L}.

This concludes the first part of our analysis. In summary, the main

results up to this point are the derivations of the upper and lower bounds

(Eqs. (2 .2.2.20), (2.2.2.25 ) and (2.2 .2 .26) 1 to E{6) that depend only on

EU.) and EU.2). Our goal , however, as stated above is the characterization

of E{6} in terms of A. Therefore, in the following section , we will

determine upper and lower bounds to EU) and EU.2) as f unctions of A.

2.2.3 Characterization of EU) and EU 2) 
in terms of A

In Appendices £2.1 and £2.3 we derive expressions for E {11+1 1p 1
) and

where 
~~~~ is the length of C

j+i 
and ~J1 is the average number of

packets that arrived in C~ . More precisely , it is shown that ,
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E{L
1~~1Ip)  — 1 + 2D (p/ 2)  (2.2.3.1)

E {t~~1Jp } — 1 + 2D(p/2 ) + (2D(p/2 ) ] 2 + F(p) (2.2.3.2)

where

D(p) — ~ 2i~(p/2i) (2.2.3.3)

iao

F(p) — ~ 2i(2D(p/2i)(l — ~ (p/ 2i)) + ~2(~/2i)1 (2.2.3.4)

i—i

— 1 — e~~ — pe~~ (2.2.3.5)

Note that the above expressions are independent of A. The arrival rate A

enters the analysis through the following relationship.

p — 2AL
1 

(2.2.3.6)

The quantities E{t1+1 (11} and /E(L~~~41hi} are plotted In Figs. A2.2. 1 and A2.4.l.

Equations (2.2.3.1) through (2.2.3 .6) present the first and second

moments of the length of one epoch conditioned on the length of the previous

epoch with A being a parameter. In this section, we will derive upper and

lover bounds to EU) and EU 2), the steady state first and second moments of

in terms of A and the above conditional moments.
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This section is divided into four subsections. In Subsection— i, first

we derive an upper bound to E{L} based on a general set of conditions, next

we demonstrate how these conditions relate to the arrival rate and to the

system parameters and finally compute the upper bound to EU) for various

values of A. In Subsections ii, iii, and iv, we develop a lower bound to

EU) and upper and lower bounds to sU2} respectively. The procedure of the

analysis in these subsections is the same as that of Subsection 1. That is,

first, we develop a bound based on a general set of conditions, next we

relate these conditions to the system parameter s and finally compute these

bounds for various A’ s.

i. Up~per Bound to EU)

Here we will develop an upper bound to EU.) that is a function of A.

We begin by proving the following theorem.

Theorem 2.2.3.1: Let be a positive integer corresponding to the state

of a Markov chain after the j’th transition. Also assume tha t for some

constants b and a , ~ < 1

~
{t J +l I L ~

} < a ( L
1

—1) + b for > 1 (2.2.3 .7)

then

b - a
lim E{L ) < 1 — (2.2.3.8)

I
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Proof: Multiply both sides of Eq. (2.2.3.7) by p(1
1
) and then sum over

to obtain

E{L
J~1

} < ci E{2.
1

) + b — ci (2.2.3.9)

Since 0 < a < 1, Eq. (2.2.3.9) is solved recursively to obtain the following

steady state solution.

b - a
u r n  EU ) 

.5 
~~ 

U (2.2.3.10)
I -a

QED

It can be shown that the above bound is the optimum bound over a class of

bounds. That is, if E{LI+1111
} is nondecreasing, and it is upperbounded as

shown in Fig. 2.2.3.1 then the tightest upper bound over all a occurs at a — 1.

Note that the upper bound to EUI+112.
I
) at a — 1 is given by Eq. (2.2.3.7).

Next we will relate the above theorem to the system parameters.

By applying Property 3C (Appendix £2.2) it can be shown that for any u~ > 0

c l.44(p—p0
) + Z{t

1
~~~

1
~~pu.’p

0
) for ~a > (2.2. 3.11)

Since p — 2AL
1 
and £~ > 1, it follows that minp0 — 2A. Therefore, comparing

Eqs. (2 .2.3.7) and (2.2.3.11) and noting that p — 2A1
1 

we have that

a — 2.88A (2.2.3.12)

and

b — E{2.1+11p ’ 21)
—51—
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E[Aj+i/.tjsl]

I C.
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Figure 2.2.3.1 Illustrating the Form of the Upper Bound to
EU

1~1lt1
}
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or from Eq. (2.2.2.15)

b — 1 + 2D(A) (2.2.3.13)

Finally substituting Eqs. (2.2.3.12) and (2.2.3.13) into Eq. (2.2.3.8) we have

the following desired expression,

2D (A) _ E{Lhi — 21} — 2.88A (22314u 1—2.881 1—2.881

An interesting result, that follows from Eq. (2.2.3.13) and the fact that

a < 1, is that if A < .347 then 2. < ~~~. The converse of this statementu u

follows from the work of the next subsection.

ii. Lover Bound to E{t}

Here we will develop a lower bound to EU) that is a function of A. A

by—product to the work of this section is a lower bound to the arrival rate

at which EU) + 
~~~. We begin with the following theorem.

Theorem 2.2.3.2: Let £~ be the state of a Markov cha in after the j’th

transition, and let 
~C~

t
J~ 

be a positive, convex and nondecreasing lower

bound to E{2.
~+~IL~

) . Then if

— 

~C~
t
J~ 

(2.2.3.15)

has only one solution at — and 
~C~

t
J~ 

< £~ for £~ > 1* then
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him EU. ) > £* (2.2.3.16)
I

If , on the other hand, Eq. (2.2.3.15) has two solutions, then there exists an

initial state £~ to the Markov chain such that

Urn EU. } — (2.2.3. 17)

Proof:

EU
1
) — 

~ £ 
£
1
p(t

1~
t1_1)p(t1 1

) (2.2.3.18)

3, 3—1

~I~
’ 

E{t
3~

L
1 1

)p{L
1 1
) (2.2.3.19)

1—1

~ 
f
~
(tj_1)p(&j_1) (2.2.3.20)

£1_I.

.?~ ~c~~~
tj—i~ 

(2.2.3. 21)

Equation (2.2.3.20) follows because ~ 
E and Eq. (2.2.3.2 1)

follows from the convexity of f
~ 
and Jenasen’ s Inequality.

Applying Eq. (2.2.3.21) to ~~~~ t1_2,....,t1 recursively and using

th. fact that f is nond.crsasing yields
C

I-

--.
-
, 

i(t~} ) f~{t0} (2.2.3.22)

-

4 
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where

f~ {L
0) f ( f [. . . [ f  U) ] ] ]  (2.2.3.23)

j times

Now assume that — 

~C~~
2.

J~ 
at only one point, t*, and that f(L

1
) < for

> L~. Then f0(LJ
) is as shown in Fig. 2.2.3.2 and since 

~c ~ 
convex it

follows that

him f1U } — f U~) — (2.2.3.24)
j 4~ 

C C

Now if — f (&~ ) has two solutions and L (& > £ ) ,  then f (L
3
) and

are as shown in Fig. 2.2.3.3. Here, as can be seen from the figure , if

> 2.; then

Urn f1{t} — (2.2.3. 25)c

Equations (2.2.3.22),  (2.2.3.24) and (2.2.3.25) together conclude the proof .

Q~~~~

Our next step will be to relate this theorem to our system, and to obtain

a lover bound to E{t} as a function of A.

It follows from Property 4 (Append ix A2 .2) that f 2.(p) (given below) is

a convex increasing postive lower bound to E{t1+11P).

2D(p/2) for p < 8
f2.(p) — ~. + — (2.2.3.26)

2.88(~ — 4) + 2D (4) p < 8
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- --  Figure 2.2.3.3 Illustrating the Conditions for Divergence of the
Lover Bound to 
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Since p — 212., we have that

— f2.(2At) (2.2.3.27)

Therefore, an equivalent statement to Theorem 2.2.3.2 is the following.

Let p* be defined by

f 2 (p*) — 
~~~~~

. 
- 

(2.2.3. 28)

*then if U is unique and

f 2 (p) < for (2 .2 .3.29)

we have that

EU.) (2.2.3.30)

otherwise

EU.) — (2.2.3.31)

It follows from Eq. (2.2.3.26), that Eq. (2.2 .3.28) has a unique

solution satisfying Eq. (2.2.3.29) for p > 0, iff

> l.44p — .98 (2.2.3. 32)
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Since Eq. (2.2.3.32) holds for all p > 0 1ff 0 < A < .347, we conclude that

if A > .347 then

— (2.2. 3. 33)

and if 0 < A < .347 then 2.t(A) is given by Eq. (2.2.3.30). In suamary, we

have the following hover bound to EU),

X < .347
— (2.2.3.34)

A > .347

iii. Upper Bound to

Here we will derive an upper bound to EU2) that is a function of A.

We begin with the following theorem.

Theorem 2.2.3.3: Let £~ be the state of a Markov chain after the j ’th

transition and assume that

E{t~~1lL1
) < (a t

1 
+ c) 2 for £~ > 1 (2.2. 3. 35)

where

o < a,~ < 
(2.2. 3.36)

and

- lim E{L)—E{t)
1~~~~~~

—59—



then

2a cE{L} +
him EU4

2) 
.5• 2 (2.2.3.37)

1 - a
U

Proof: Expand the right side of Eq. (2.2.3.35), multiply by pU.
1
) and then

sum over all to obtain 
-

E(t~~1) < cs2E{2.~} + 2a cE{2.
3

} + c2 (2 .2. 3.38)

Equation (2.2.3.38) is a difference unequality in E{t
3
2) where 2aucE{tj} + c2

is the driving function. Since from the hypothesis ~~ EU1
) — EU) and

0 
~ 

< 1, it can be solved recursively to obtain the following steady

state solution.

E{t2} < 
2a (2) 4. ~2 (2.2.: :9)

Next we will relate this theorem to our system. In Appendix £2.4 we

proved that E{L21p) 
~ 
(1 + 1.44 p)2. Since, as can be seen from Fig. A2.4.h,

max 
~ir ~~~ 

tj+1 p} — 1.44

this bound can be generalized as in the following expression

< l.44(p—p0
) + /i(L~ 1Ip—p0} for IL ~ (2.2.3.40)

where p0 is an arbitrary parameter u~ > 0
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Nov since U — 2At~ and > 1, it follows that mm p0 — 21. Therefore,

comparing Eqs. (2.2.3.35) and (2.2.3.40) we have that

c — v1~~ t~~ 1Ip”2A — ci (2.2. 3.41)

and

— 2.88A (2.2.3. 42)

Finally substituting Eq. (2.2.3.42) into Eq. (2.2.3.39) we have

EU2) < (1) (2.2.3.43)

where

22 (1) — 
5.76c1 EU) + (2.2.3.44)

U

and c is given by Eq. (2.2.3.41).

This is the desired result. Note that as A -
~~ .347, 2.~, as well as,

and L~ approach infinity.

Next we will turn our attention to the derivation of t~(A). This is

performed in the following subsection.
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iv. Lower Bound to EU 2)

Here we will develop a lower bound to E{2.2 } as a f unction of A.

Since the work here is similar to• that of the previous subsection , the

details will be omitted.

Theorem 2.2.3.4: Let be as given in the statement of Theorem 2.2.3.3

except for

> (a22.1 + c2)
2 (2.2.3.45)

then,

2c a2 EU.) + 
4him EU.2) > 2 (2.2.3.46)

1— a 2.

Proof : This proof is identical to the proof of Theor em 2.2.3.3 with the

inequalities reversed .

Q~~~~
,

Finally in relating Theorem 2.2.3.4 to the system parameters, first

substitute p — 212. into Eq. (2.2.3.45) to obtain

2 2EU l ii) > (-
~~--+ c2.) (2.2.3.47)

Comparing this to the results of Appendix £2.4 where it is shown that

E{t2Ip) > (l.44p + .25)2 (2.2.3.48)

~~~~~~~~~~~~~ _ _



we have from Eq. (2.2.3.46) that

EU2) l.44E{2. }A + .125 (2.2.3.49)
— 

1 — (2.881)

Note here again that as A + .347 then 
4 

+

2. 2.4 E{delay} versus Arrival Rate

In Section 2.2.2 we derived upper and lower bound to E{5} in terms of

EU) and EU 2 ) and in Section 2.2.3 we determined upper and lower bounds to

EU) and EU2) in terms of A . In this section we will combine these results

to obtain upper and lover bound to E(~S) in terms of A. We begin with the

upper bound to E{~ ). Equation (2 .2 .2.20) which is the upper bound to E{â}

in terms of EU) and EU2) is rewritten below.

EU2)E{6) < 1.05 EU) + .321 (2.2.4 .1)

Now from Eqs. (2.2.4.2), (2.2.3.34) and (2 .2.3 .44) we have

E( 6} < 6 05c1 + l.05c2 
+ .321 (2.2.4.2)— 1 - (2.881) 2 

(1 - (2.881) 2)2.2 (1)

where c and it(A) are given in Eqs. (2.2.3.41) and (2.2.3.34).

Equation (2.2.4.2) is the desired lower upper bound to E{6}. This

upper bound was computed and the result is presented in Fig. 2.2.4.1.

The derivation of the hover bound to E {6) is similar to that of the

upper bound. From Eqs . (2.2.2.25) and (2.2.3 .49) we have
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E{~ } > .721 
+ 

1 
- 

+ ~ EU) (2.2.4.3)
— 1 — (2.881)2 32E{L}(h — (2.881)2) 2

.72A 
2 + 4ç(x) (2.2.4.4)— 1 — (2.881)

Equation (2.2.4.4) is one lower bound to E(5}, another follows from

Eq. (2.2.2.26); that is

E{6) > I&(x) (2.2.4.5)

The best lower bound is the maximum of the two bounds given in

Eqs. (2.2.4.4) and (2.2.4.5). This is given below.

max .721 
2 + 

4 
ç(À) . 1 (X)1 (2.2.4.6)— Li — (2.881) J

Equation (2.2.4.6) has been computed and it is plotted in Fig . 2.2 .4.1 along

with the upper bound.
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~~1o2

0 0.1 0.2 0.3 • 0.4 0.5
0.347

X (packet/slot)

Figure 2.2.4.1 Upper and Lower Bounds to the Average Delay versus
Average Arrival Rate for the Binary Tree/Poisson
Source Sys tem
Note: An algr. step equals one round trip delay

plus two slots
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2.3 Average Throughput

The average throughput of the system is defined to be the fraction of

the time that the channel contains valid data, i.e., exactly one packet per

slot. Now if the average delay is finite, it follows that over a long

interval of time, all the packets that arrive will be successfully trans-

mitted . Therefore, the average throughput equals the average arrival rate

if the average delay is finite. Prom the above discussion, it follows that

the E{delay) vs A results of Section 2.2 may be interpreted as E(delay) vs

E{ throughput), (see Pig. 2.2.4.3.), and the maximum average throughput is

.347 packets/slot.

In the preceding paragraph we defined and determined the maximum

average throughput. It turns out , however , that the system may be operated

at a throughput up to .43 packets/slot but only for a limited time.

In Pig. 2.3.0.1 we have BUIp) versus p. We know from the results of

Section 2.2 that the average delay is f inite for A < .347. However, if

.347 < A < .430 then intersects EUIp} in two places , at p5 and

corresponds to say, t~ and t~ . Now, ii .347 < A < .430 and ~ then

< t~ and

the system will operate around &~. However , statistical perturbations will

eventually cause t~ to become -greater than in which case

E(L
1~1

IL
3
) > L

i

Here, the system is expected to overflow; this is accompanied by an in-

crease in delay and a drop in throughput.
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2.4 System Stability

Heurestically, an unstable multi—access system is one where the

following scenario is possible. Originally, several channel packet

collisions reduce the number of packets being successfully transmitted.

This results in a packet backlog which further increases the number of

channel collisions, this in turn increases the backlog, etc., until a total

breakdown occurs when essentially everybody is trying to get through with

very few actually succeeding.

A more precise definition of stability of a multi—access system is

the following . The system is defined to be k’th order stable if the k’th

moment of the delay is finite. In Section 2.2, we showed that if A < .347,

then the average delay is finite, therefore, our system is at least first

order stable. In the remainder of this section, we will show that if

A < 1/3, then all the moments of the delay are finite. As has been pointed

out previously, this stability result is overly conservative, and ind ications

are that all moments are finite for A < .347 packets/slot. In Appendix £2.8,

a way is suggested for determining a larger lower bound to A max.

From the results of Section 2.3, we know that if E {Lk) < ~ then

E{6k1} < ~~~. Therefore, it is sufficient to show that E(Lk} < for A < 1/3
sL

and for all k. This is accomplished by showing that him E{ e 1
) E{ e t)

exists for 0 < s < 
~~~~~ 

A < 1/3 , s0 > 0. The analysis is carried out by

first obtaining an upper bound to E(e~
2.) under a general set of conditions

(this is accomplished in Theorem 2.4.0.1), and then relating these conditions

to the multi—access system. Note tha t upperbounding a moment generating

function assures its existance.
I
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Theorem 2.4 .0.1: Let L~ be the state of a Markov cha in after the j’th

transition. Furthermore, let

at s(aL + b)
E(e 1+1.12.) < e (2.4.0.1)

where a and b are constant, 0 < a < 1, and 2. , the initial state, is finite

Then

bsL — s
him E{e 1

) < e~~~ (2.4.0.2)

Proof: Multiply both sides of Eq. (2.4.0.1) by p(L
1
) and then sum over

to obtain

sL sat
E{e 1+1) < E{e 1}e~

1’

Solving the above equation recursively, we have

E(e 1} < E{e 0) •
sb (a +...+l) (2.4.0.3)

Since t~ < ~ and 0 < a < 1, Eq. (2.4.0.2) follows by letting j • ~ in

Eq. (2.4 .0.3) .

Q~~~~~

—69—

4 
—_____ — -- .-  — - 

—~~ 
- - - -  - -- - -

~~~-
.- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - -



Next we will show that the conditional generating function of L~ can be

upper bounded as in Eq. (2.4.0.1) where a < 3A. In Appendix A2.8 we proved

tha t

E{e~
tIp} < (l+p)e8~~ — (A/B2 + Ap/B)e~~ + (A/B2)e~~~~~~ (2.4.0.4)

where

• A — 

2 ~~e~
’ ~ — 

(x:1): , 0 < a < s~, 
~ 

> 0 (2.4.0.5)

and x is an arbitrary parameter 1 < x < 3. Since pe~~ and e~
1 < 1 for p > 0,

we have from Eq. (2.4.0.4) that

E{e~
2.Ip} < 2e~ — A/B2 — A/B + (A/B 2)e~

8-
~~ ’ (2.4.0.6)

Now for

a0 > — (2.4.0.7)
s 0

> 0 exists such that

8 — l < a0s f o r 0 < s < s 1

L 
_ _ _ _  

-70-

:~ ~~~~~~~~~~~~~~~~~~~ 

— - -

~~

- 

- 

-

~~~ 

--
~~~~~~~~~~~~ 

- 

~~~~~~~~

-

~~~

-—--- -- -- ______



Therefore, from Eq. (2.4.0.6) we have

aps
E{e5 ~p} < 2e5 

— £/3
2 

— A/B + (A/B2) e 0 (2.4.0.8)

+
< e for b > —

~j ,  0 < s < S
2~ s~ > 0 (2.4.0.9)

Equation (2.4.0.9) follows from Eq. (2.4.0.8 , because at s — 0, both equal 1,

both are continuous and of Eq. (2.4.0.9) is greater than that of

Eq. (2.4.0.8) .

Finally by substituting ~ — ~~~ and p — 2AL~ into Eq. (2.4.0.9) we

obtain

31. s(2a At + b)
E{e 

~~
‘IL~
) < e ° (2.4.0.10)

at
From Theorem 2.4.0.1, we know that for convergence of him ~{e 

1
) we need

2a0

and from Eq. (2.4.0.7)

A < (2.4.0.11)
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Since 1 < x < 3 , we have

A < sup — 4 (2.4.0. 12)
l<x<3 X

This concludes this section.

I
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APPENDIX A2

PROPERTIES OF THE BINARY TREE/POISSON S(XJRCE SYST~ 4

£2.1 Derivation of E(LIp}

If we let the number of packets that are to be processed in an epoch be a

Poisson random variable with mean p and let 9. be the number of algorithmic

steps required to process these packets by the binary tree algorithm, then

in this appendix we will show that

• E{L~p) — 1 + 2D (p/2) (A2.l.l)

where

D (ii) Z 2¼(p/21) (A2.l. 2)
i—O

and

1 — e~~ — pe~~ (A2.l.3)

Before proving this result several definitions will be given. (Fig . A.2.l.l

might be helpful in visualizing these definitions)

a
11 

— the J ’th node of level 1. There are 2~ nodes at level i. (A2 .h.4)

— subtree whose root node is n
i1 

(A2.l .5)

— a random variable that equals one if n
~1 

is visited by the

algorithm and zero otherwise. Note that n~~ is always visited

by the algoritla, therefore, x~~ — 1. (A2.1.6)
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-: Figure A2.1.l The Infinite Binary Tree
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As has been pointed out an algorithmic step is equivalent to visiting

one node. Therefore, the total number of algorithmic steps equals the

total number of nodes visited. Motivated by this observation, we prove the

f ollowing lesma which is useful in determining the probability that a

particular node is visited .

L~~~ a A2.l.l. A node n11 i#O is transversed in the binary tree algorithm if

and only if there are at least two active sources in T
11.

Proof : Let [nar : in — 0, 1,..., i] be the set of all the nodes that lie on

the path f rom n~~ to n~1
. Since T~1 

is included in (Tm : in — 0, 1,..., 1],

it follows that if T11 contains at least two active sources so does

[T r : in < i]. Now if the protocol is on node [n~~ : in < ii and asks for the

number of active sources in T~~, the answer will be greater than one, and

it will move to node nm+1,r. Since this holds for at least m — 0, 1,..., i—h

we conclude that node n~1 will be transversed by the algorithm. If , on the

other hand , there is at most one source in T~1 
and the algorithm got at least

as far as n ~ and asked for the number of active sources in T4 4 ,  the answer

will be 0 or 1 and it will not continua to

Q~ 3

Tbsor A2. 1.1: Let there be V active sources (where v is a Poisson random

variable with mean p) and let 9. be the number of nodes transversed by the

— b inary tree algorit) in resolving the conflict , i.e. , the process of
- 

- separating all the sources into subsets such that each subset contains at

most one active source. Then ,

L

4 - _—• - —- ——- - --—-
~~~~~~~~~~
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E {tIp ) — 1 + 2D(p/2) (A2.l.7)

where

D(p) — ) ~i~(p/~i) (A2. 1.8)

i—0

and

~(p) — 1 — e~~ —pe~~ (A2.l.9)

Proof : From the definitions in Eqs. (A2.h.4) to (A2.l.6) we have that

21_i

£ — ~ x~1 
(A2.1.lO)

i—0 J—O

From Lesma A2.l.l we have that

p(At least 2 active sources in Ti1IP) 
for i’,$O

p(X~ —l i p) —

1 if i—0 (A2.l.ll)

But since the number of active sources is Poisson distributed , and the sources

are independent of each other , it follows that the number of active sources

in T
i1 

is also Poisson distributed with parameter ia/2~. Therefore, from

‘ ~ Eq. (A2.1.11) follows that
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P (X~fh lP )  - 1 - e~
U/21 

- ~12i e~~~~~; i # 0 (A2.l.12)

(A2.l.h3)

and from Eq. (A2.l.i.0) we have that

~

E{Llp} — Z P (x 1f’hIU) (A2.1.j.4)
i~O 1—0

and from Eq. (A2.h.hl) and (A2.1.l3)

E {Lj p I  — 1 + ~ 2¼ (~/2
1) (A2.l.15)

i—l

Q~
,
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A2.2 Properties of E{LIp)

Here we will derive several properties of E{LIp}. Some of these

properties are trivial, whereas, others are more involved. However, all

of them are presented here for completeness. The quantity E{LIp} which

was der.~ ed in Appendix £2.1, is rewritten below and plotted in Pig . A2.2.i.

E{LIp} — 1 + 2D(p/2) (A2.2.l)

D(p) — ~ 2~~(p/2i) (A2.2.2)

i—0

~Qi) — 1 — e~~ —pe~~ (A2.2.3)

Since E{LIp) depends trivially on D(p) and since D(p) is a basic quantity

that appears in other expressions, we will develop the properties of D(p).

The corresponding properties of E{LIp} follow from those of D(p) in a

straight forward manner. The properties of D(p) that are derived here are

listed on page 84. In order to motivati these properties we calculated

D(p), D’(p) and D’’(p) for pc[O,l6]. The results are shown in Figs. A2.2.2,

A2.2.3 and A2.2.4.

Before beginning the derivations we will coement on one of the techniques

used in this appendix as well as several other places in the thesis. At t imes

we need to show tha t a function is positive over some finite range of its

argument. This is accomplished here simply by calculating the function at

several points. An example of the use of this technique can be found in

( Property 4 where it is shown that ~~~~~ > 0 for 0 < p < 4. We are aware

of the fact that calculating th. function at a finite number of points does
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Property 4. A postive, convex non—decreasing lower bound to D (iL) is f (p)

where

D (1a ) for O ii 4
— (A2.2.35)

D’(4)(ii—4] + D(4) for p > 4

Proof : Prow Property 3B we have that D ’(p ) > 0 and since D(0) 0 it

follows that f(p) is positive and non—decreasing. That D(p ) is convex

for 0 < p < 4 follows frow Fig. A2.2.4 and fro. a sore detail.d co.puter

printout of 4. To show that f is convex for p > 0, note that

2
IL .Oforp> 4 (A2.2.36)

—

and that f(p ) is continuous and has a continuous first derivative at ii • 4.

Therefore f(p ) is convex.

Next we will show that

f (~) < D(p) for p > 0 (A2.2.37)

Since f(p) — D(p) for p < 4, Eq. (*2.2.37) would be true if f’(p) < D’(p)

for p > 4 .  But

— D’(4) for p ) 4 (A2.2.38)
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so we need to show that

D’(4) < D’(p) for p > 4 (A2.2.39)

Pros Property 3a

win D’(p) < D’(p) for p > 4 (A2.2.40)
4<p<8

D’(p) was computed for 4 < p < 8 (see Fig. A2.2.2). The minimum

did occur at 4 where

D’(4) — 1.440
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A2.3 Derivation of E{L21p}

In this section we will derive an expression for E{L2Jp}. This is

accomplished in Theorem A2.3.l. However, before this theorem is proved

it will be necessary to prove the following Lemma.

Lemma A2.3.1. Let ~~ be a random variable as defined in Eq. (A2.]..6)

with the probability density given in Eq. (A2.l.11). Then for i>w)1

• F~(p/2
1) if n~ and n~~ lie on the same path

E(x~1x~~I u ]
F~(p/2 )~(~/2

m) otherwise (A.2.3.l)

Note , two nodes (n
ij 

and : i > m) lie on the same path if n~~ lies

on the line connecting ~~ and n®.

Proof : If and lie on the same path , then

P(x
~~

—lIxi~
.1) • 1 (A2.3.2)

and

— ~(p/ 2i) (A2.3.3)

I
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• ~~~~~

therefore

p(x
ij

l l  and x~~— 1Ip ) — ~(p/2
1) (~4j34)

Next note that

1 if f x —1 and x —l
x~ x — 

ij mk (A2.3.5)
0 otherwise

Therefore, from Eqs. (*2.3.4) and (A2.3.5)

E[xjjx~~IP;nij 
and n~~ on same path; i > ml — ~(p/ 2i) (A2.3.6)

If, on the other hand, fl
jj 

and n~~ do not lie on the same path, then x~ and

are independent because the sources of ~~ and Tmk are independent.

Therefore

E[xi~x~~lP;nj~ and n~~ not on same pathi ~(p/2
t)~ (p/2~) (A2.3.7)

Q~)

Now we are ready to proceed with Theorem A2.3.l. where E[t2 Ip] is

derived .

I’
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Theorem A2 .3.l. Let V be a Poisson random variable with mean p corresponding

to the number of contending sources. Also let 2. (given in Eq. (A2.2.lO) and

rewritten below) be the number of nodes traneversed by the binary tree

algorit)~~.

~~

£ — 1 + (A2.3.8)
i—i j—o

Where ~~ is defined be Eqs. (*2.1.6) and (A2.l.ll), then

E(L 2 1p] — 1 + 2D(p/2) + (2D (p/2)J 2 
+ P(p) (A2.3.9)

where

D(p) — Z 2i~(p/2 i) (A2.3.lO)
i—0

and

F(p) — 2 ~ 2~D (p/2~) [l — ~(p/2i)1 + ~ 2i ~~~~~~~~ (.42.3. 11)
i—i i—I

Proof:  Square both sides of Eq. (A2.3.8) and then take the expectation to
.3

obtain

f 2~-1 1 1/ 2~-1 \2 1 L

• E(L21p1 1 + 2E1 I I XjjIuI + EI( 7 1 x~~ ) Iu~ (.42.3. 12)
U—1 j-O J L\i—’ j-° / J
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From Theorem .42.1.1 and Eq. (A2.3.10), the above expression can be simplified

to

/~ 
2~~l \2

E( t
2

~ p] — 1 + 4D(~/2) + E 7 ~ 
x
v,) 

lu (.42.3.13)

i—I. :1—0

Next note that

/ 2~—l \2 2~~1( I I x
jj )  

— I I 2 7 1 xjjxma — (A2.3.14)
\i1 j0 / i—i j—0 m>i n—fl (i ,m)

j  for rn—i
where fl(i,m) —

0 otherwise

Now the sums over w and n will be decomposed into three sums Y~~ ,Z~~ and

is the sum over all (m,n) £ ~~~ ~~~ is the sum over all

(m,n) 
~ 
T~ and a > i, and is the sum over all (rn,n) 

~ 
T~~ such that

m i , n>j. Figure A2.3.1 might be helpful in visualizin g the prec ed ing.

In terms of the above definitions we have

— I ~~~~~ (.42.3.15)

I
- I I (.42.3.16)
kEK (m ,n)cTj+lk
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Figure .42.3.1 Partitioning the Binary Tree for the Derivation

of E{L 2 1p}
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Where kcK if Tj+l k f lT jJ
uu.O; note that there are 2i+l_, such Tj+l k.

2i—1
V
ii 

— I XijX
i 

(.42.3.17)

nj +1

Finally from Eqs. (A2.3.14) through (A.2.3.17) we have

/ 2~—l 2i_1

I I x~1 ) — 7 7 (2Y~1 
+ 2Zij + 2Wij 

— xii ) (A2.3.].8)

\i—l :1—0 / 2._i i.O

Next we will determine EEYi1IPI , E[Z2.11 p1, E[W~1IP ]  and E(x~1 
hi].

First note that from L~~~a A2.3.l we have

— C(p/2~) (A2.3.19)

Now from Le .42.3.1 and Eq. (.42.3.15)

E(Yi1hi] — Z (2m_i)~(~ /2m)

and from Eq. (*2.3.10)

E(Y 2.1~
p] — D (p/22.) (.42.3.20)
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Next apply Lemsa .42.3.1 to Eq. (.42.3.16) and use symaetry to obtain,

E[Z~1 IP] — (2~~~—2 ) ~ 2m— t—l~ (~/2 i)~ ( / 2 m) (A2.3.2 1)
m-i+1

Simplifying

E(Z
2.11p] 2(2i_l)~ (p/2 i)D(p/2~~1) (.42.3.22)

Similarly

— (~i_~_jg2(pf ~i) (.42.3.23)

Next take expectations of both sides of Eq. (A2.3.18), substitute

Eqs. (.42.3.19), (A2.3.20), (.42.3.22) and (*2.3.23) into (A2.3.l8) sum over j
and then substitute this into Eq. (.42.3.13) to obtain,

E [L 2
1p 1 — L+2D (p/2) + ~ (2 (2i)D (p,21)+4(2~ )(2 2._l)~ (p,2 i )D(p, 2i+t )

i—i

• +2i(21_1g2 (p,2i)) (A2.3.24)

Now from Property 2* we have

D(p/2~~~) - f D(u/2 i) - ~ ~ (p/ 2 2.) (A2 .3.25)
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Substituting this into Eq. (A2. 3.24) and then rearranging we have,

E[9. 2
1p] — 1+2D(p/2) +

i—l (A2.3.26)

Next note that

(2D(p/2))2 — [ ~ 2i ~(p/~
2.
)] 

2 
(A2.3.27)

i—l

— 2 
~ ~~ 21~~~(p/2

t)~ (pI2 ) — 7 (2i)2~2(~ /2i)
i_i i—i i—i

St~~ ing over

— } 2(22.)2~(p/2
2.)D(p/21) — (2i)2~2(~/2i) (.42.3.28)

i—i

Substituting Eq. (A2.3.28) into Eq. (A2.3.26) concludes the proof .

QW

Next in Appendix A2.4 we will derive upper and lower bounds to E[t21p].
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A2.4 Upper and Lower Bounds to E[L21p]

In Appendix A2.3 we showed that

E(t 2!p] — 1 + 2D(p/2) + [2D(p/2)]2 + F(p) (.42.4.1)

where

D(p) — ~ 2~ ~(p/2
i) (.42.4.2)

1—0

F(p) — 2 7 2~ D(p/2~)[l—~ (p/2~ )] + 7 2¼~(p/2~) (.42.4.3)
i—i i_0

The quantity /iEL2 tu ]  was calculated and it is plotted in Fig. .42.4.1. In

this Appendix we will derive upper and lower bounds to E(L2 lul. More

specifically we will show that

E(2.2 1p) < (1 + l.44p)2 (A2.4.4)

E [L21p1 > (.25 + 1.44p) 2 
(A2.4.5)

We begin with the proof of Eq. (A2.4 .4). Two other quantities will be

needed in the analysis that follows. These are
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Figure .42.4.1 h(L2 J~) versus p for the Binary Tree/Poisson

Source System
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F’ (16) — max F’(p) — 4.369 (A2.4.6)
11>16

D(8) — 10.54 (.42.4.7)

The computations of F~~ (l6) is somewhat involved and it is performed

at the end of this Appendix. The value for F~~(16) given in Eq. (A2.4.6)

is calculated in Eqs. (A2.4.ll) through (A2.4.22). The computation of

D(8) is straightforward and no special explanation for its computation

will be given.

From Fig. A2.4.l and from a more detailed computer printout, it can be

seen that Eq. (.42.4.4) is true for Oqi(16. The validity of this equation

for p>l6 will follow if we prove that

~~ 
E(t~ jp] < (1 + 1.441.1)2 for p > 16 (.42.4.8)

We begin by differentiating Eq. (A2.4.l)

.
~~~~~ 

E[2.21p] — D’(p/2) + 4D(p/2)D’(p/2) + F’(p) (.42.4.9)

Nov by applying Property 3C we can upper bound the right side of

Eq. (A2.4.9) as follows:
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8
.
~~~~~ 

E(2.21p] 
.
~~~ ~~ 

+ 48
~
(
~~
(u—l6)+0(8)] + F’ (16) for p > 16

or

.
~~~~~ E(2.

2
1u] < 4.l47p + .164 for p > 16 (.42.4.10)

Equation (A2.4.8) follows by carrying out the indicated differentiation

on its right side and then comparing the result to Eq. (*2.4.10).

The above argument was based on Eq. (.42.4.6). Next, we will prove

this equation. Now from Eq. (*2.4.3) we have

F(p) — 7 2~ f(p/2~) (.42.4.11)

i—i

where

f(p) 2D(p)(l—~ (p)) + ~
2(u) (A2.4.l2)

Differentiating Eq. (A2.4.ll) we have

— I f ’(p/2 t ) (.42.4.13)
i—i

Next any p > 16 can be expressed as

p — where 8<x(16 and k — 1,2,3,... (A2.4.14)
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Substituting Eq. (A2.4.14) into Eq. (.42.4.13) and then rearranging we have

k
P 1(x2 k) F ’( x) + I f~(2

ix) (.42.4.15)
i—l

Next we will show that

k

I f’(2~x) < l0~~ for k>1 and 8<x(16 (A2.4.l6)
1—1

Differentiating Eq. (A2.4.12) and then substituting D(p) —

(Proper ty ZA) we have

f ’(p )  —

— 2e~~’(D’ (p)( 1+p) — 2D(p/2)ul (.42.4.17)

A simple upper to f’(p) is

< 2e~~D’(p)(],.+p)

Equation (.42.4.18) can be, further, upper bounded by app1yii.~ Property 3C.

Doing this we have

f’(p) < 28 (l4Sa)e~~ (A2.4.19)

1~,
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therefore

k

I f’(22.x) < 7 28 (l+2~x)e
2 X 

< l0~~ for xc[8,16] (.42.4.20)
i—i 1—1

I

Finally from Eq. (A2.4.15) we have that

max F’(p) < max F ’(li ) + l0~~ (A2.4.2l)
p>16 — 8<p<16

The right side of Eq. (A2.4.2l) was calculated and is given by

F~~(16) — !e.369 (.42.4.22)

This concludes the proof of Eq. (.42.4.4).

The proof of Eq. (.42.4.5) is similar to that of Eq. (A2.4.4) and will not

be given here. That Eq. (*2.4.5) is true should be obvious from Fig. A2.4.l.
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A2.5 E[L1t2] > 
EI2.1]E(L 2]

In this Appendix we will, prove that E[L12.2] > E( L1]E[L2] where £~, 
and

£2 are the lengths of two consecutive epochs. This will be accomplished in

two steps; first, in Lemsa A5.l it is shown that E[L2fL11 is a non—decreasing

f unction of L
~
, and then in Theorem A5.l, the main result is proved.

L~~~a .45.1. Let

E(L21p] — 1 + 2D(p/2) (See Eq. (A2~1.7)) (.42.5.1)

where

p — 212.1 (See. Eq. (2.2.1.1)) (.42.5.2)

and A > 0 is the packet arrival rate. Then

.
~~~~ —‘ EfL2J2.1] > 0 (.42.5.3)

Proof: From Eqs. (.42.3.1) and (*2.5.2) we have

~~~~
E(L2IL1] — 21D’(1t1) (.42.5.4)
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From Property 33, D’(p) ) 0 and since A > 0 it follows that .~j.—E(L2I2.1] 
> 0.

Q~~

Now we are ready to prove the main result.

Theorem A2.5. 1.  Let E(t21L1] be non—decreasing in £l• Then, assuming all

expectations to exist,

E (L1L2] > E [L1]E[L2] (A2.5.5)

Proof: An equivalent statement to Eq. (A2.5.5) is

> 0 (.42.5.6)

Now,

E[(L1—11)(t2—12) — 7 (t 1—11) ( E (L 2 1t 1) —12] p ( L 1)
£1

— 7 (11—L1)(12—E (t 2 12.1b(L1)+ 7 (L1—11) (E ( t 2 1L 1)— 12 ] p ( L 1)

2.1<2.1 2 1>11 (.42.5.7)

(11 t1)(12—E(&21t1
)]p(t1) + I (L1 11) [E(t2~F1)_T2]p(~1)t i.~. 1 ‘~1>h1 (.42.5.8)

— 0 (.4~.5.9)
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Equation (.42.5.8) follows from (A2.5.7) because E(2.2 2.1] is non—decreasing.

Carrying out the suamation in Eq. (A2.5.8) results in Eq. (.42.5.9).

Q~
This concludes Appendix A2.5.
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£2.6 Derivation of E[df ul

Assume that there are V > 1 packets to be processed by the binary tree

algorithm where V is a Poisson random variable with mean ~i, and let d

correspond to the number of nodes visited by the algorithm before a randomly

selected packet from the set of the V active ones is successfully transmitted.

In this Appendix we will determine an expression for E[d~p]. Note that

as derived in Appendix .42.1, is the expected number of nodes visited

given p, whereas E(dtp] equals the expected number of nodes visited before a

randomly selected packet is transmitted. The relationship between E ( L I p]  and

Eldip ] is examined in Appendix A2.7.

The binary tree is shown in Fig. A2.6.l. As has been pointed out

previously, the sources correspond to the leaves of this tree. Another

representation of the sources which will be more convenient for the work in

this Appendix is to represent each source by the binary number S where,

— 

~0~1~2”” 
(A2.6.l)

The equivalence between the two representations is established through the

following convention.

If s~—0 take the upper branch emanating from the node of

level—i , and if si—i take the lower branch. This is

performed consecutively beginning with i—0,l ....etc.

In FL8. .42.6.1, for example, the circled nodes correspond to S—OllO...
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eve l-O
level- I

1 

1~~

4,

Figure .42.6.1 The Binary Tree: Definitions for the Derivation
of E {dIp }
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Below are some definitions that we will need.

— ~~~~~~~ the bit—by—bit complement of S. (A2.6.2)

E (d51p] — the expected delay source S undergoes, given p. (A2.6.3)

E (dIpl — the expected delay, i.e., E[d51p] averaged over S. (.42.6.4)

T~ — the subtree of level—i whose root node is one branch

away from S, (see Fig. .42.6.1) (A2.6.5)

D(p/2~) — ~ 2 ~(p/2~~~) (.42.6.6)

j-0

This is the expected number of nodes that must be

visited by the algorithm in order to process all the

active sources of Ti. (See Appendix .42.1)

— expected number of nodes lying on path— S that are used

to process source S given p. (A2.6.7)

Y5 — the expected number of nodes lying above S that are

visited before source S transmits, given p. (.42.6.8)
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— 
~(p/2i) (.42.6.9)

1—c—u ’2

This is the probability that there are at least two

active sources in Ti, given that there is at least

one active source.

In terms of the above definitions we have

Eld ip] — X5 + Y (A2.6.l0)

Next we will calculate E[d5~u] and E(d8Ip] and show that E[d lp] + E[dFf 11] is

independent of S. This result will lead us to conclude that

E(dlp] — 4 (E(d51 p1 + E[d~.jp]] (.42.6.11)

First we will calculate X . A node of level i will be visited by the

algorithm if there are at least two active sources in the subtree that emanate

from it (see Leema A2.l.1). Now any subtree whose root node lies on S contains

at least one active source, i.e., source S. Therefore , the probability that a

nod e of level—i , that ii on S will be used is ~(p/2~’) Now as in Theorem

.42.1.1 use the fact that expectation of a sum equals the ma of the expecta—

• tion to obtain ,

— 1 + 7 8(p/2i) (.42.6.12)

i—i
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Now we will make several observations before deriving Y5. Figure .42.6.1

should be helpful in conceptualizing the following observat ions .

A) T~ lies above S if f a~~ 1~ — I.

B) The set of all the T~ that lie above S equals all the nodes that

lie above S.

C) The average number of nodes in T~ that are used (not necessarily

before S is transmitted) is D(p/21). This follows from Theorem A2.l.l.

D) A tree T~ lying above S will be processed before S if there are more

than one active source in the subtree of level—i that contains S.

This is so because if S is the only active source in Ti, then that

source would have been transmitted at some node at level less than i.

Therefore, the probability that T~ that lies above S will be processed

before S is

Next we will combine the above observations so as to derive an expression

for Y
5

From observations A and D we have

Pr(T
~+i 

lies above S and it is processed before ~ — si~~PI2~~~
’) (A2.6.l3)

From Eq. (.42.6.13) and observation C we have
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Etnumber of nodes in T
~+j 

that are processed before S]

— Si9(p/2~
’
~
’)D(u/21 ’ )  (.42.6.14)

From Eq. (A2.6.14) and observation B we have

Is — 7 s~O (u/ 2 ~~’)D (uI2 t
~’) (.42.6.15)

i—0

Therefore substituting Eqs. (.42.6.12) and (.42.6.15) into Eq. (A2.6.l0)

and then rearranging we have

E(d5lp] — 3. + 7 (l+si_iD(u/2~))O(u/2~) (A2.6.l6)

i—i

similarly

E[d
5)p] 

— 1 + 7 (l4 ’i_1D(P/2 1))8(P/2
~
) (.42.6.17)

i—I.

and

— 1 + 7 (lI t 1t
~~

D(u/2
~

))e(u/2
~
) (A2.6.l8)

i—l

Since s~ + s~ 
— 1, 4rE(d,)+E(65fl Is independent of S, therefore,
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E(d (p] — 1 + 7 8(p/21)fl+~D(p/2
1)J (A2.6.19)

i—i

This concludes this Appendix. In Appendix .42.7 that follows, we develop

the relationship between E(&Ip] and E( d I p] .
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A2.7 Relationship Between E(d(pI and E(tfjj]

In Appendices .42.1 and .42.6 we derived expressions for E(2.Ip] and

E(djp]. These expressions are rewritten below.

E ( t I u l  — I. + 2D(p/2) (.42.7.1)

E[djp] — 1 + 7 e(u/2~fl1 + f D(p/2~’)] (.42.7.2)
- i—l

where

D(p) — 7 2¼ (u/21) (A2.7.3)
i.0

~(p) — 1 — e~~ —pe~~ (.42.7.4)

e(p) — (A2.7.5)1—c

In this Appendix we will prove in Theorems A2.7.3, and A2.7.2, respectively

that

4 E t t I p ]  for p 0

and
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E[djp] < a ECtip] + b for p > 0 (.42.7.7)

where (a,b) — (.55,.321)

Equation (A2.7.7) is specifically proved for the constants (a,b) — (.55,.32l).

However, it should be noted that there are other (a,b) pairs, that satisfy

Eq. (.42.7.7).

Now we are ready to prove Eqs. (A2.7.6) and (A2.7.7). In the

Theorems A2.7.l and A2.7.2 that follow, we will refer extensively to the

properties of D(p) that were developed in Appendix £2.2. We will also need

the following L~~~a.

Lemma A2.7.1. Let E(d~pJ be as given in Eq. (.42.7.2). Then

.
~~~~
. E ( d l p ]  > 0 (A2.7.8)

Proof: Differentiating Eq. (A2.7.2) and then rearranging we have

~~ E[d~p] - ! 
~~~~~~~~~~ 

Dt (u/2i) ~(u/2)~~ + 
(l+(~~))(;1~~~~~~ ~~ ~

(A2 .7 .9)
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Now, it can easily be shown that —l + p + e ’
~ > 0 for p > 0. And

since D(p) > 0 and D’(p) > 0 (See Property 3B), it follows that all the

terms in Eq. (A2.7.9) are positive.

Q~)

Theorem A2.7.l. Let E[dIul and E[t~p] be as given in Eqs. (.42.7.1) and

(A2.7.2) then,

EldIp ] >4 E(L~p] for p > 0 (.42.7.10)

Proof: By computation it can be shown that the maximum of 4 EttIpi -

E (dIpJ in the range of pc(0,4] occurs at p 0  and it equals 0. Therefore,

4 E(L~pJ — E(dIpJ < 0 for 0 < p < 4 ~A2.7.1l)

For p > 4 we will first prove that for any p > 4 there exists a

P*e(2 41 such that

4 E[LIpJ—E (dlp] ‘C 4 E [t Ip *]_E [d lp *J for p > 4 (.42.7.12)

The conclusion to the proof will follow by using Eq. (A2.7.ll) to upper

bound the right side of Eq. (A2.7.12).

~~~~~~~~

• 

~~~~ 
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From Eqs. (A2.7.l) and (A2.7.2) and Properties 2.4 and 2D we have

4 E [&Iu]—E[dIp] — — 4 + 4 7 f (p/2 i) (.42.7.13)

i—l

where

— 

~~ 
: )  “‘ ~‘~ ~

( 
~~ 

D(p) (A2.7.l4)

a

Now for any p > 4 there exists a k such that 2 ‘C p12k < 4. For that k

Eq. (.42.7.13) can be rewritten as follows.

k-l

4[E[tlpJ—E (dlu]] — fE (tIp2~~)—E (dIp2~~]] + ~ f1(p/2~) (A2.7 ].5)

i—l

From the definition of k it follows that p/2~ > 4 for i ‘C k. Next, therefore,

we will show that f3.(x) 
‘C 0 for x > 4, our ultimate objective being to show

that the sum in Eq. (A2.7.l5) is negative for p > 4.

From Property 3D we have

f1(x) < 
~~ 

‘
~ ) F~(x) + (8~x) ~~~~~~ (.42.7.16)

-s )
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It is a straightforward exercise to show that the right side of Eq. (A2.7.l6)

is negative for x > 4. So

f 1(x) < 0 for x > 4 (A2.7.l7)

And from Eq. (A2.7.15) we have

4(ErLIu]—E(dIPJ ] < 4 fE (t Iu 2~~]— E ( d Iu 2~~]] (.42.7.18)

where

p > 4 and 2 ‘C p2—k 
< 4

QTh

Theorem A2.7.2. Let E[tIp] and E [djp] be as given in Eqs. (A2.7.l) and

(.42.7.2). Then

E(d lp ] < .55 E [LIpJ + .321 (.42.7.19)
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Proof: The structure of this proof is similar to that of Theorem A2.7.l.

By computation it can be shown that

E [dIp] — .55 E(t~pJ < .321 for 0 < p < 8 (A2 7.20)

To prove Eq. (.42.7.19) for p > 8 we have from Eqs. (.42.7.1) and (.42.7.2)

and Properties 2.4 and 2D that

E[d/p] — .55 E(&/p] — .45 + 7 f2(p/2~) (A2.7.21)

1—1

where

f2(p) — ~~p) 
(.45+.55e

1
~ )+ D(~) [4 1 — e ~~ 

— .55]

As in Theorem A2 . 7.1 we conclude this proof by showing that f2(p) < 0 for

p > 8. This follows by substituting the following lower bound for D(p)

into Eq. (A2.7.22).

D(p) > B2.(4)(p—4) + D(4)

— l.44(p—4) + 4.77 (.42.7.23)

Q~

This concludes Appendix .42.7.
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£2.8 An Upper Bound to E{e8t lp }

Let G(s ,p) — E{e~
t Ip } be the generating function for the number of

steps required to resolve a conflict by the binary tree algorithm, given

that the number of contending packets is a Poisson random variable with mean

p. In this appendix we will upper bound G(s,p) and aG(s ,a)/ 3s. More spent—

fically if we will let

Gu (s ,U,x) — (l+p)e9
~~ — (A/ B2 + AJ4i/ B)e~~ + (.4/32) e (A2.8.l)

then

G(sp) < G ( e ,p,x) (.42.8.2)

and

.G(a,p) <frG(s,u,2) (.42.8.3)

where

A — 

2—e 
B — 1 ‘C x ‘C 3, 0 ~~ - ~~ 

~ ,~ 
> 0. (.42.8.4)

~~ 
depends on x and is positive for I. ‘C x ‘C 3; at x’.’2, s0 1n2. x is a

variable which is chosen so as to minimize the right aide of Eq. (.42.8.1) .

Note that the right side of Eq. (*2.8.1) is decreasing in x, therefore, its

greatest lower bound occurs at x—3.

Now we are ready to begin with the proof of Eq. (.42.8.2). Let

f~(a) — E(e t
I j packets to resolve} (.42.8.5)
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i—i

— ) e~~~~ (~) f~(s)f~_1(s) + ~~~~ e5f~(a) (.42.8.6)

i—l

We have divided j into i packets in the upper subtree and j—i in the lower.

Note that e5 is the contribution of the root node, 2 i (~) is the probability

of the assumed division, and ft(s) and f 1_1(s) are the generating functions

f or the number of steps to resolve each subtree. Furthermore, note that

f0(s) — f1(s) — 1; this is because exactly one step is required when there

are either zero or one packet.

Now solving Eq. (.42.8.6) for f~(s) we have,

j-l

) ‘ e~2~~ (~~~~(s)f~_~(s)

~ — 
il 

— +1 for j > 1 (.42.8.7)
e

Solving the above equations recursively we have

f1(s) — 1

a
Cf,,(s) —

2—.’

f (5) — ( C )(3S)

2—.’ 4—e

Motivated by the above expressions , we will show that

s j —2
(5) 1 ~~~j ~ ) for j > 2, 1 ‘C x ‘C 3 and s < ~~ (.42.8.8)

w h e r e g > O f o r l ’ C x ’ C 3 .
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Assuming tha t the above is true for j —l , then

[i2 
es2

_i
4)(

e
5

) ( ~~4~~~)~ +

i—2

2e’j2~~ 
e (

~~ ) 1  
+1 (*2.8.9 )

2—c8 x—e5 j 1—2 ~ e5

— 

2—es 
(
(x_1)e) 

[2:
s ~~~~~~~~~~~~~~ +

(x- 1)e5 (j2 i
~
1)] f~1 (*2.8.10)

x—e5 
J 

l—2~~ e8

a s j—2
I 

e ( (x l)e ) f o r j > 2  l < x < 3 a n d o < s < s ,
2—c x—e where s0(x )>Oforl<x < 3.

(*2. 8. 11)

Equation (*2.8.11) follows from Eq. (*2.8.10) , by noting that at s 0  both

equal one , both are continuous, and of Eq. (*2.8.9) ii greater than that

of Eq. (*2.8.8) .

Finally

E(e ’I p) — e5p(t”O,lIp) + 7 f~(s)P(t_~(U) (*2.8.12)

j—2

I e~(19p)e~~ + ~ ~~j—2 (U
J S) (.42.8.13)

j—2

where A and B ar e given in Eq. (*2.8.4) . Carrying out the indicated sum—

aation in Eq. (A2.8.13), we obtain Eq. (*2.8.2) . 
•

—127—

_ _ _  _ _ _ _  _ _ _ _ _ _



A tighter bound to G(s,p) should be possible if we use for an upper

bound to f1(s) the following

S —s s j—3
(~) I 

e )(3e )((x—l)e ) for j > 3, 0 < a I ~~~~2—c 4—c x—e (A2.8.l4)

The variable x is chosen so that the induction step is satisfied for all

3 > 3 and for > 0. Although we have not carried out the derivation

of this upper bound, it is felt that the resulting lover bound to the maxi-

mum arrival rate at which the moments of the delay are finite, will be

greater than that obtained from the bound given in Eq. (A2.8.2) (see Section

2.4).

Now we will prove Eq. (*2.8.3) . From Eq. (*2.8.12), we see that it

is sufficient to show that

~ a ~ 2( ~~ 
0 jl

J. <
~~~ ~ 

e > — 
j ; C for j > 1 (*2.8.15)

2—c 2—c 2—c

Differentiating Eq. (A2.8.7), we have

3—1
f~(s) + ~ e~2~~(~) ~ 

[f j(s) ~~~~~~~~~~~~~~~~~~

~~ f~(a) — 
1—]. 

1 — 2~~ ”e’ 
(*2.8.16)

Assuming Eq. (A2.8.l5) to be true for j—l , we have from Eqs. (*2.8.11) and

(*2.8.16) that

3 1 + 2 (1 2) (] _2 i~ 1 e5 j— l
— 

1 —f  e8 2—c
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I 
2(Fi) 

2—es 
(A2.8.l7)

This concludes Appendix A2.8.

L
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CHAPTER 3

OPTIMUM DYNAMIC TREE ALGORIThMS WITH POISSON SOURCE MODEL

3.1 Introduction

In Chapter 2 we presented and analyzed the static binary tree algorithm,

a protocol where thç tree is fixed to be binary and independent of traffic

condition. En this chapter we will consider a dynamic algorithm where the

tree is allowed to vary from epoch to epoch depending on traffic conditions .

Even though the tree may vary from one epoch to another, it is held fixed

within any one epoch. The tree search is the same as that of the static

algorithms that were considered in Chapter 2 and may be carried out serially

or in parallel, deterministically or randomly. The source model that will

be assumed in this chapter is the Poisson Source Model.

Now we will state the issues of this chapter more precisely. Three main

problems will be considered here. The first is the determination of the

optimum tree to be used in ~~~~ The optimum tree for £j+l is defined to

be that tree which minimizes the expected number of slots used in

given the observation of the transmission process up to the end of Ej. The

second problem will be the analysis of this optimal dynamic protocol , i.e.,

the determination of the delay, throughput and stability properties. The

third is the optimization and analysis of a suboptimum algorithm wher e the

t ree is restricted to have binary nodes everywhere except for the root node;

the degree of the root node is constrained to be a power of two. As will

be seen , this algorithm does have certain implementation advantages.
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Given that the number of arr ivals in any one slot is a Poisson random

variable which is independent of the arrivals in any other slot, it follows

that the only quantity from the transmission process that is needed to fully

characterize the packets to be processed during is h~ — the number of

slots in Cj . This is because, given ~~ the number of packets that arrived in

is a Poisson random variable with mean p where,

p — Ah~ (3.1.0.1)

If we let g~ be the degree of the optimum tree at depth—i, then in

Section 3.2 it is proved that

* 1 p < l . l O
—

n 1.70 + l .l5(n—2) ‘C p 1 1.70 + l.15(n—1)

— 2 for i > 1; all. p (3.1.0.2)

In terms of Eqs. (3.1.0.1) and (3.1.0.2), the optimum dynamic algorithm may

be stated as follows:

1 • Observe h, the number of slots in the previous epoch

2. Calculate p from Eq. (3.1.0.1)

3. Determine the opt imum tree to be used in the following epoch

from Eq. (3.1.0.2)

4. Execute the search in the following epoch using one of the tree

search algorithms of Chapter 2.
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In Section 3.3 we will analyze the slightly suboptimum but easier to

implement tree, where is restricted to be an even positive integer. There,

we will calculate upper and lower bounds to the average delay as a function

of the arrival rate (see Fig. 3.3.2.2), prove that the maximum average

throughput is .430 packets/slot, and show that system is stable for A < .430,

in the sense that all the moments of the delay exist for A < .430.

The third problem that was posed above will be considered in Section 3.4.

There we will show that if the root node degree of a binary tree is constrained
IC *to be 2 ; then IC , the optimum K , is given by

* 
l for p < 3.40

IC — 2’ 1K 3.40 (2 
— 

‘ p 5 3.40(2 
— ) (3.1.0.3)

We will also determine upper and lower bounds to the E(delay] (see Fig.

3.4.2.1) and we will show that for this dynamic algorithm the maximum E[thr]

is less than .430 but greater than .420 packets/slot.

In Appendix *3 that accompanies this chapter, we prove several of the

theorems. This appendix is consulted frequently as we proceed through

this chapter.
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I

3.2 The Optimum Tree

In this section we will prove that if the number of contending packets

is a Poisson random var iable with mean p, then the symmetric tree that

minimizes the expected number of slots required to process the contending

packets is given by Eq. (3.1.0.2). Althougn we do not prove that symmetric

trees are optimum, that this is so should be obvious from the symmetry of

the problem.

It can be shown, by a procedure analogous to that of Appendix *2.1.1,

that the expected number of slots required to - process the packets is given

by

E{hlp} — g0 + p ~ ~~~~ ~ (M
1
) (3.2.0.1)

i—O

where

E (3.2.0.2)

and

~~M) 1 — e~~ — Me~~ (3.2.0.3 )

In terms of the above three equations, our goal in this section is to

determine that (si; i — 0,l,2,...} which minimizes E {hlp } subject to the

constraint that g~ is an integer and

1 if i — 0
(3.2.0.4)

2 otherwise
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The solution will be carried out in three steps. First, we will show that

the optimum g1, equals 2 for sufficiently large i. This is accomplished

in Section 3.2.1. Secondly, in Section 3.2.2, we will prove that the minimum

of E{hIp} over and 
~k’ subject to the condition that g~ — 2 for i >

occurs at then — 2. This result applied recursively with the result of

Section 3.2.1 as the boundary condition proves that g~ 
— 2 for i > 1. Finally,

in Section 3.2.3, g~ 
is calculated as a function of p; this result is given

by Eq. (3.1.0.2).

p  3.2.1 Optimum Tail End of the Tree

We begin this section with the following definitions:

~ k’ ~~~ 
]; k > 0 (3.2.1.1)

the which minimizes E{hlp) subject to (3.2.1.2)

g
~ 
(i > k) being an integer and greater than 1

2 (2,2,2,....] (3.2.1.3)

) ~~~~~~~~~ 

~~~~~~~~ (3 .2.1.4)

i—i —l

fi(Gk) 4 Z ~~~~ “ ~k+i~~ 
; where It 1 (3.2.1.5)

i— 0 j— O j—O

3 *In this section we will prove that if k > 0 and if M1,~ 1 ‘C then —

It should be observed that since Mi — and Si > 2 for i ) 0,
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then for any finite p,a k exists such that M~~1 ‘C f~
. In other words, the

main result of this section states that beyond some finite depth the optimum

tree has binary nodes.

The solution will be carried out as follows:

a) Show that if minimizes fi (Gk,M.~_l ) it will also minimize

E {hIp }. This is Theorem 3.2.1.1.

b) Determine upper and lower bounds to l~
(Gk,Mk_l ) in terms of

fi(Gk
). This is accomplished in Theorem 3.2.1.2.

c) Show that the upper bound of ~ evaluated at Gk — 2 is less than the

lower bound at Gk # 2. This is accomplished in Theorems 3.2.1.3

and 3.2.1.4 and Corollary 3.2.1.1.

Theorem 3.2.1.1: If , Gk minimizes ti(Gk,M~a_l) for all M.~~1 then it will

also minimize E{hlp}.

Proof : By combining Eqs. (3.2.0.1) and (3.2.1.4), E(hjp} may be written as

follows:

E {hIp } — + 
k~2 g 1 

~~~~~ + _1~ (Gk,~~_l ) ( 3.2.1 .6)
i—0

Since of the three terms on the right side of Eq. (3.2.1.6), only 1~ depends

on and since I~ and pMk l  are greater than zero , it follows that if

minimizes R then it will also minimize E {hIlJ) .

Q~
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Theorem 3.2.1.2: Let t
~
(Gk,I4k_l), fi(Gk), l4.~, and Gk be as defined in

Eqs. (3.2.1.1) through (3.2.1.5) and (3.2.0.2). Furthermore, let

0 1 11k—l ‘C 1 and g~ be integer and greater than one. Then,

(1 — 

~~ 
Mk_l)fi(Gk) < Ii(G~,M,1~ 1) < fi(G~) (3.2.1.7)

Proof: First substitute the Taylor series expansion of e into

Eq. (3.2.0.3) and then substitute Eq. (3.2.0.3) into Eq. (3.2.1.4) and

• rearrange to obtain

— 2M 1 ~~ 

Sk+iMk_l+i — 

‘
~~

_
~ ~L 

gk+jR~~k_l+i
) (3.2.1.8)

where

— ~ (44~~~~~)n (3.2.1 .9)
n 2

If 0 .1 ) L~~1~~ ‘C 1, then R (Mi~_ 1+j) is the sum of an alternating sequence of

decreasing magnitude and it follows that,

0 1 R(Mk l+j ) I 4 M~_1~~ (3.2.1.10)

Prom Eqs (3.2.1.8) and (3.Z e] .l0) we have

‘C 

~~k—l ~ 

Sk+iMk_l+i (3.2.1.11)
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I

and

> 
~ ~k+i 

Mk_l+i I ~~~~ 
M
~ .i+i 

(3.2.1.12)

—1 i—o 
1 i—o

Since 0 ‘C 14k+i ‘C for i > i, it followe that

4 I ~~~~~~~~~~ 
I ~~~~~~~~~ 

(3.2.1.13)

i—o 
— i—O

Substituting Eq. (3.2.1.13) into Eq. (3.2.1.12) we have

fi(Gk,Mj..l
) > U — 

~ ~k—l~ 2i~~~ 
~ 

Sk+iMk_l+i 
(3.2.1.14)

Finally from Eqs . (3.2.0.2) and (3.2.1.5) we have

— 
~~~~~~~~ 

~ ~~~~~~~~~ 
(3.2.1. 15)

and by substituting Eq. (3.2.1.15) into Eq.. (3.2.1.11) and (3.2.1.14), we

obtain the desired result .
Q~
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Theorem 3.2.1.3: Let fi(Gk) be as given in Eq. (3.2.1.5) and let g~ 
be

integer and greater than one. Then the minimum of fi(Gk) is 2 and it occurs

at Gk — 2.

Proof: For n > k we have from Eq. (3.2.1.5)

n—k—l f~—~ 
\_l /n—k—i

— 

~~~ 
~k+i) + 

~ ~~~ 
~k+i,) 

fi(G~ ) (3.2.1.16)

Prom Eq. (3.2.1.16) it follows that if g~ 
minimizes fi(G~)~ it will also

minimize fi(Gk). Therefore we will determine g .

From Eq. (3.2.1.5) we have -

g
fi(G ) 

~~~~~~ 8n 
(3.2.1.17)

Now assume that has been determined in Eq. (3.2.1.17) and we would like

to know g~. But fi(G ) is convex in g ,  therefore the optimum g is the

smallest integer greater than one such that

* *
~~5&G~+i) 1 fi(s~+i~ G~~1) (3.2.1.18)

Substituting Eq. (3.2.1.17) into Eq. (3.2.1.18) and rearranging, we have

the following equivalent expression that g must satisfy,

+ 1) ) 2 fi(G~~1) (3.2.1.19)
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But since

fi(c .,.1) < fi(2) - 2

it follows that the smallest integer g greater than one that satisfies

Eq. (3.2.1.19) is

*
— 2

QED

Corollary 3.2.1.1: Let be such that > 3. Then fi(Gk) > 13/6.

Proof: From Eq. (3.2.1.17) we have

8k fi(c~~1)fi(Gk) ~~~~~~~~~~~~ 
(3.2.1.20)

and from Theorem 3.2.1.3 we have

fi(G~~1) 
) 2 (3.2.1.21)

therefore

fi(Gk) >~~k +L (3.2.1.22)

Since the derivative of the right side of Eq. (3.2.1.22) i. positive for

2, it follows that for
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2 1
— + — > — + —2 3

or

fi(Gk) >~~~~~ (3.2.1.23)

QED

Now we are ready to prove the main result of this section in the following

theorem.

Theorem 3.2.1.4: If Mkl
< ~~~~~~, then — 2 minimizes

Proof: Take any ,~ 2 and let 5 for n > k be the f irst element of that

is greater than 2. Then from Eq. (3.2.1.4) we have,

n-k-l
Ii(GkM~~l

) — 

~~~~ 

Z 
~~~~~~ ~~ ¼—l+~) 

+ 
~~~ ~~~

n’~n-1~ 
(3.2.1.24)

First , note that the that will minimize I~(G5,M~..1) will also minimize

~(Gk,M~~l
). Then from Theorem. 2 and 3 and Corollary 1, we have

~~~ Mn_l) ~ 
2 (3.2.1.25)

> (1 — 

~ 
M
n 1

)
~~ 

(3.2.1.26)
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But for n > k, 0 IM ~~1 ‘C ~~~~ ‘C 3/26, therefore from Eq. (3.2.1.26),

E(G ,M 1) > 2 (3.2.1.27)

and it follows from Eqs. (3.2.1.25) and (3.2.1.27) that,

‘C h(G~,M~_~) (3.2.1.28)

Finally since n was chosen so that — 2 for k 1 i I n—i, we have that

— Ii(2,M,~ 1) — 
~~~~ 

(Ii (c~~M~_ 1 — 1
~
(LMn_1)) (3.2.1.29)

and from Eq. (3.2.1.28) we conclude that

— h(2,M.
~ 1
) > 0 for M~~1 < (3.2.1.30)

QED

Theorem. 3.2.1.1 and 3.2.1.4 taken together prove the main result of

this section, i.e., the tail end of the optimum tree is binary. In the

next section we will be concernad with the degrees of the nodes of the

optimum tree from the tail end to the root node.

3.2.2 A Recursive Optimization Technique

Wher .as in Section 3.2.1 we were concerned with the tail end of

• the optimum tree , in this section we will develop a recursive relationship
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which in conjuction with the results of the previous section proves that

* *— 2 for i > 0. The optimum degree g~ of the root node does depend on

p and this will be considered in Section 3.2.3.

The recursive relationship that will be proved here is as follows.

Let and 5k+l be integer and greater than one (for k—0,l...) and let

— 2 for I > k + 1, then for any p > 0, the point that minimizes E{hIp}

satisfies,

— 2 (3.2.2.1)

The minimization problem has a slightly different objective for k’.0

then it does fo r k > 0. Therefore, the analysis of this section is

organized into two subsections. In Subsection i the case where k > 0 is

considered and in Subsection ii the case where t o O  is considered.

i. Recursive Relationship for k > 0

Nov we begin the analysis for k > 0. Setting g
~ 

— 2 for i > k + 2

in Eq. (3.2.0.1) we have

E{hIp} — + 

k~2 
5
~
+1C(M ) + 

~ ~
) L(gk,g.~ l,M~~l) (3.2.2.2)

i-O

where

+ 5k5k+i~~ ~~ ~ 
+ 2gkgk+iD(~~~~~

) (3.2.2.3)
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and

D(x) — ~ 2
i~~( / 2 i

) (3.2.2.4)

i—O

As can be seen from Eq. (3.2.2.2), the 
~~~~~~~ 

that minimizes L will also

minimize E(hIp}. Therefore, we will be concerned with the minimization of

L(gk,g.~ l,M.L~ l
) over 

~~~~~~ In order to simplify the notation somewhat

we will drop the subscript of N and also use 
~l 

and g2 instead of and

In what follows, therefore, we will prove that for any N > 0, the

minimum of L(g 1,g 2,M) occurs at g — 2. This will be accomplished in two

parts. In Part 1 it will, be proved for N 1 8 and in Part 2 for N > 8.

Part 1. Minimization of L(g1,g2,M) for N 1 8

In this part we will prove that if M I 8, and ~~ 
~l 

and are

ii~- ’gars and greater than one, then the mm L(g1,g2,M) occurs at — 2.

The results of Section 3.2.1 prove this statement f or H 1 3/26; therefore,

we will be concerned with its proof for 3/26 1 N I 8.
First divide the x 

~~~ 
space into three regions, R1,R2, and R3 as

follows.

2 
~ 

< 9, 2 
~ ~2 I 

51 (3.2.2.5)

R2 — ((51,52): g1 
) 10, 

~2 
> 3] (3.2.2.6)

) ft3 — ((g1,g
2
): 2 l g

~ 1 
~2 > 6] (3.2.2.7)

(See Fig. 3.2.2.1).
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I I
10-

i R3 I

8 - I  ////// I
I . . • . . . . .1

6 —  • • • • • • • .1 .

~~~~~~~~~~~~~~ 7/
~~~~ 

~: : :~~‘: : : :~~~:.‘~“~~
2- L~~~~~~~~~~~~~~~J

I I I I I
2 4 6 8 10 

~1

Figure 3.2.2.1 The Subdivision of the ~ 
~~ 

Space into a1, R2and ft3
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In the Append ix to this chapter we prov e in Theorem A3. 1 that

Lt(g1,g2,M) I L(g 1,g 2,M) for M/(g1g2) 1 1.2 (3 .2.2.8 )

where

L~(g1,g2,M) g1~~M) + g1g2~(~
!_.) + ~~(

M _~~.(M )
2
) (3.2.2.9)

g1g2 
g
1
g2

Note that the above lower bound is valid in R
2 
and ft3.

In Theorem A3.2 it is proved that for 
~~~~~~ 

in ft2 and .1 5, M 5 8,

then Lt(g1,g2,M) is minimum at ~~~~~ 
— (10,3).

In Theorem A3.3 it is proved that if (g1,g2) in R3 and .1 1 m 5 8,
then L~(g1,g2,M) is minimum at g2 — 6.

Now for N — .1k, k — 0,1 80, the quantity L(g1g2,M) was minimized

over the 32 (g1,g2) points in R1. The minimum did occur at g
2 — 2 and it is

plotted in Fi5. 3.2.2.2 as a function of N.

In R2, because of Theorems A3.l and A3.2, we calculated Lt(lO,3,.lK)

and in R3, because of Theorems A3.l and A3.3, we calculated

mm L~(g1,6,.1K) for k — O,l,...,8O2<giI9

These results are also included in Fig. 3.2.2.2. As can be seen from this

figure,
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Mm L(g1,g2,m)
- g1g2
- Mm L~(g1,6,m)

9’
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m
Figure 3.2.2.2 The Minimization of L(g 1,g 2,m) over g
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Mm L(g1,2,M) 5, Lt(lO ,3,M) (3.2.2.10)
2<51

<9

Mm L(g1,2,M) I L(g 1,6,M) ; 2 
~ 

g
~ 

‘C 9 (3.2.2.11)
2<g

1
<9

for .1 5 M <  8

Therefore, we conclude that L(g1,g2,M) attains its integer minimum at g2
.2,

if g1
> 2 , g2~~.

2 and .l < m < 8 .

Part 2. Minimization of L(g1,g2,M) for M > 8

In this part we will prove that if g
1 
and 

~2 
are integers and

greater than one, then for any H > 8, the minimum of L(g1,g2,M) lies on the

line Sf2

In this range of M it is more convenient to work with lf(g1,g 2,H) instead

of with L(g1,g2,M), where

H(g1,g 2,M ) ~ L(g 1,g 2,M) (3.2.2.12)

Since, for any N > 0, if (g1,g 2)* minimizes H(g1,g 2,N) it will also minimize

L(g1,g 2,M), it is sufficient to prove that the minimum of H(g1,g2,M) for

> 2, 
~2 

) 2 lies on Sf2

Here again, the way thi. will be proved is to show that an upper bound

to H(g 1,g 2,M) evaluat ed at 52 2 and minimized over 
~l 

> 2 is less than a

lover bound evaluated at 
~~ 

> 2, g2 > 3}.
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Since F (M) is an increasing function bounded by 1, we have from Eqs. (3.2.2.3)

and (3.2.2.12) that,

01(g1,g 2,M) .5, H(g1,g 2,M) .5, H~(g i,g 2,M) ; for H > 8 (3.2.2.13)

where

~l 
g1g2 

2 g
1
g2 MH~(g1,g2,M) — ~~(8)~~— +  

N ~(~—) + 2 1 N ~ (3.2.2.14)
1. 

~~~~~~ 
2 
~i~2

~l 
g
1~2 N 2 g

1g2 MH~(g1,g2.M) — + N F (j-.) + 2 1 N ~, 
(3.2.2.15)

1 
~~~~~~ 

2

Since

~ 5l2
~ 

N
H
~

(g1,2,M) — + 2 
~ N (3.2.2.16)

g12

we have from Theorem A3.4 that

Mm R~
(gi,2 ,M) .5 2.34 (3.2.2.17)

In Theorem A3.5 it is proved that if M/g1 .5~ ~~~~~ 
~2 

> 3, and N > 8, then

Ht (g1,g 2,N) > 2.498 (3.2.2.18)
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And in Theorem A3.6 it is proved that

R1
(g1,g2,N) > 2.34 for .1 ( M/g1 < 3 and 

~2 
> 3 (3.2.2.19)

Therefore, from Theorems A3.4, A3.5 and A3.6 we conclude that if

M/g
1
< 3 , M > 8 , g

1
> 2 , g

2~~~
2 then

the minimum of H(g1,g2,M) occurs on the line

— 2

In Theorem A3.7 it is proved that the minimum of H(g1,g 2,N) for N/g
1 > 3 also

occurs on

— 2

This concludes Part 2.

ii. Determination of Optimum 
~l

What we proved up to this point is that the minimum of E{hlp} over

and 
~~~~ 

(subj ect to the constraints that g.
~ 

and are integer and

greater than one; — 2 for i > k+2, and k > 0) occurs at 
~~~~~~ 

V. still

have to prove the above statement for k”O and this is what we will do next.

/
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Setting g1 — 2 for I > 2 in Eq. (3.2.0.1) we have

E{hhi} — g
~ 

+ g0g1~(~—) + 2 
~~~~~~~~~ 

(3.2.2.20)

We are going to show that the minimum of the above expression subject to

and 
~l 

being integer and g
0 

> 1, g
1 > 2 occurs at g1 — 2. By comparing

Eq. (3.2.2.20) to Eq. (3.2.2.3) it can be seen that this problem is very

similar to that solved in Subsection i. Therefore, one may go through a

similar procedure in solving the above prograimning problem. Here, however, we

are going to be less rigorous and simply show that — 2 by computation.

The procedure to be used here is as follows.

Divide Eq. (3.2.2. 20) by ~ and let x ~‘~o 
to obtain ~ ~“ ~~

f(x,g1) — ~~(l + g1~(x) + 2g
1

D(~—’)) (3.2.2.21)

Given the preceding definition of f (x ,g1), it follows that if the

minimum of f(x,g1) occurs at g1 2 then the minimum of E{hfp} will also occur

at g~.2. We computed f(x,g1) for various values of (x,g1) and the results

are shown in Fig. 3.2.2.3.

Now if p ‘C 3.08 then x — ~~ ‘— ‘C 1.54, and as can be seen from this

figure

f(x 2) .5, f (x ,g1) for x ‘C 1.54 ; 
~l 

> 2 (3.2.2.22)

If , on the other hand , p > 3.08 then it can be shown that a 
~l 

> 7 exists

such that .89 5, P/S 1 .5, 1.54. But here again as can be seen from Fig. 3.2.2.3
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f (x 2) 5 f(x,g1) for .89 < x < 1.54; g
~ 

> 2 (3.2.2.23)

Therefore, we will assume that

— 2 (3.2.2.24)

This concludes Section 3.2.2.

3.2.3 The Root Node of the Optimum Tree

In this section we will determine the optimum g0, i.e., that

which minimizes E{hIp,g0} subject to g0 being integer, g0 > 1 and g
~ 

— 2

for I > 1.

We begin by setting gl 2 in Eq. (3.2.2.2) to obtain

E{hIp, 
~~ 

— + 2D(p/g0)} (3.2.3.1)

This equation was calculated and the results are illustrated in Fig. 3.2.3.1.

The problem posed in this section is solved by determining f](n), a quantity

defined by,

g~(p) — n for P(n) ‘C p I p(n+l) (3.2.3.2)

As can be seen from Fig. 3.2.3.1, 
~~~~ 

is that p which satisfies

E {hIp ,g 0—l } — E{hlp, 
~~~ 

(3.2.3.3)
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Equation (3.2.3.3) was solved, and 11(n) to within two significant places to

the right of the decimal point is given by,

0(n) — 1.70 + l.l5(n—2) (3.2.3.4)

This concludes Section 3.2.3.
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3.3 Analysis of the Dynamic Algorithm

In this section we will analyze (for the Poisson Source Model) the

dynamic tree algorithm where all the nodes except for the root node are

b inary — the degree of the root is restricted to be even and it is chosen

so as to minimize the expected number of slots used, ~ .ven the expected

number of contending sources . This algorithm should be ~~nized as being

very similar to the optimum algorithm of Section 3.2 , the only differ ence being

that here the root node is restricted to taking on an even degree where in

the optimum algorithm it is not . There are two reasons for considering

this suboptimum algorithm. First, the even degree root node tree is easier to

implement since here all nodes are even, and secondly the analysis is neater ,

even though it is not essentially less complex.

This algorithm will be executed serially by assigning two consecutive

slots to it for each round trip interval. If, for example, the initial node

has degree 2r, then the tree search is identical to r consecutive serial

searches (of the type described in Chapter 2) where each of the r searches

is over h r  of the sources.

As in Chapter 2 , an algorithmic step consists of the actions taken in

two consecutive slots . Therefore , the root node correponds to r steps but

all other nodes correspond to a single step each . It also follows that if

we let 6 be the number of steps óetween the arrival and the successful

t ransmission of a pack.t , and •t
r and the round trip delay and length

of one slot , then the delay (in seconds ) experienced by that packet is

• given by
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packet delay — + 2r~} (3.3.0.1)

Since in the above equation and are constant, it follows that in order

to characterize the packet delay, one need only obtain the statistics of

5. In this section, therefore, we will obtain upper and lower bounds to

E{6} as a function of the packet arrival rate A. A by—product of this

analysis is the determination of the maximum throughput and the characteri-

zation of stability.

Since the expected delay with the parallel execution of the algorithm

Is less than that with the series execution, the delay results obtained here

may be considered to be upper bounds to those of the parallel execution. The

maximum thrc~ughput, however, is the same for both schemes.

The analysis is organized as follows. In Section 3.3.1, expressIons

for E{L~p,r}, E{L
2
1p ,r} and E{dIp,r) are derived. The quantities £, p and d

have the same definition as they did in Chapter 2; that is, p is the

expected number of packet arrivals in the previous epoch , L is the number

of algorithmic steps in the present epoch , and d is the number of algorithmic

steps until a randomly chosen packet from the set of conflicting packets is

successfully transmitted. Furthermore, note that the above conditional

moments with r—l are identical to the corresponding ones of Chapter 2. In

Section 3.3.2, we determine the optimum r and obtain upper and lower bound

to E{6} (see Eqs. (3.3.2.3), (3.3.2.13), and (3.2.2.14)). In Sections 3.3.3

and 3.3.4 the stability and throughput are consider ed , respectively . It should

be noted that the analysis of the dynamic tree is very similar to that of the

static binary tree which was considered in Section 2.2. Therefore, since many

of the results of Section 2.2 carry over to the dynamic tree analysis, we will

not be as detailed here.
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3.3.1. Deriva t ion of E {LIp, r}, E {L 2 1p, r} and E {dlp, r}

Consider a tree where the root node has degree 2r and where all other

nodes have degree two . Furthermore , the slots are ~scd in pairs, and the

algorithm is executed serially as described above. In this section, expressions

of E{9.Ip,r}, E{t21p,r} and E{d(p,r} will be derived in terms of E{L (~~,l} and

E{L2j~
.,l} (the corresponding quantities of the binary tree that was analyzed

in Section 2.2. These derivations are developed in Theorems 3.3.3.1 and

3.3.3.2 below.

Theorem 3.3.3.1: Let 2. and p be as defined above and let the source model

be Poisson. Then

E{tfp,r} — rE(LI~~,1} (3.3.1.1)

— r(r—l)E2{LI~ ,1} + rE {L2t~ ’,l} (3.3.1.2)

or

E(t21p,r) — r2E2{L~~,l} + r Var {LI~~,l) (3.3.1.3)

Proof : Divide the 2r sub trees that emanate from the root node into r pairs

and let L~, be the number of nodes that are visited in the i’th pair. Then

since the root node corresponds to r steps and all other nodes corr espond to

a single step , we have

r

2. — (1 + L~ ) (3.3.1.4)

i—i
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Taking expectations of the above equation and then noting that 1 + 2.~, equals

the number of nodes in a binary tree with mean p/r we have Eq. (3.3.1.1).

To prove Eq. (3.3.1.2), square both sides of Eq. (3.3.1.4) to obtain,

t2 - 2 
~ 

(1 + L~)(l + t~
) + 

~ 
(1 + £~)

2 
(3.3.1.5)

i—h j—i+l i—l

Taking expectation of Eq. (3.3.1.5) and noting the independence of 9~, and

for I # j we have Eq. (3.3.1.2).

QFD

Theor em 3.3.1.2: Let the source model be Poisson, and 2., d , p be as def ined

above , (Note that d is the same as d 2 )~ Then

E1d1 p,r} I .55E{L(p,r} + .321 (3.3.1.6)

and

E{dlp,r} > ~ E{L~p,r) (3.3.1.7)

Proof: Here, again, divide the tree into r pairs of subtrees and observe

that each pair is equivalent to a binary tree where the expected number of

contending packets is

Assuming that each pair is processed in sequence, we have

test packet is in the i’th pair) — (i— 1)E {Lf ~~,l) + E{dI~~,
l}

(3.3.1.8)
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Next multiply by ‘
~~~ and sum over I to obtain

E{dlp,r} — %‘~ 
E{24~,l} + E{dl1

~,1} (3.3.1.9)

But from Appendix A2.4.2

E{d~y,l} I .55E{LIy,l} + .321 (3.3.1.10)

and

E{d~y,l} > ‘
~~~ EU~y,l} 

• (3.3.1.11)

Substituting Eq. (3.3.1.10) into Eq. (3.3.1.9) we have

E{d I~ ’,l) < 
(r+.l) r E{LI!~,l} + .321 (3.3.1.12)

But for r > 1,

1 .55 (3. 3.1.13)

Therefore , substituting Eq. (3.3.1.1) into Eq. (3.3.1.12) and then applying

Theorem 3.3.3.1, we get Eq. (3.3.1.6). To obtain Eq. (3.3.1.7), substitute

Eq. (3.3.1.11) into Eq. (3.3.1.9) and apply Theorem 3.3.1. 1.

QED
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3.3.2 Upper and Lover Bounds to Average Delay

Here , upper and lower bounds to E{6}, that are functions of A , will

be obtained for the dynamic tree. This will be accomplished as follows.

First, bounds to E(d} that depend on EU) and EU2} are obtained. Secondly

r*(p), the optimum relationship between p and r , is obtained. (Note: 2r is

the degree of the root no4e.) And finally, r*Ui) is substituted Into

EfLl p,r}, E{R.21p, r} and E{dIp,r} so that techniques similar to those used

in Section 2.2.1.3 may be applied here to obtain bounds to E(t} and

EU
2) that are functions of A.

E{6} vs EU) and E{L2}

Since Eqs. (3.3.1.6) and (3.3.1.7) are identical to Eqs. (2.2.2.16)

and (2.2.2.17), the results of Section 2.2.2 (Eqs . (2.2.2.20) and (2.2.2.25))

are applicable here. Therefore,

EU
2)

E {6} •5~ 
1.05 EU) + .321 (3.3.2.1)

E{6} >~~~ E
~~23 + EU) (3.3.2.2)

Determination of r*(p) for Even Degree Node Tree

The quantity r*(p) is the optimum relationship between the degree of

the root node and the expected number of contending packets for a tree where

the root node is restricted to be even and all others are binary. It was

calculated by a procedure analogous to that used in Section 3.2.3 to obtain

g
~

; the result is,
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* 
l forp<3.40

r (p) — (3.3.2.3)

r for 3.40 + (r—2)2.30 < p < 3.40 + (r—l)2.30

Determination of E(6} vs. A

Next r*(p) is substituted into Eqs. (3.3.1.1) and (3.3.1.2) to obtain

E{LIp,r*(p)) and /i~i~tp,r*(p)}. These two quantities are plotted in

Fig. 3.3.2.1. The discontinuities of E{L211J ,r*}, which are evident in this

figure, are due to c~inges in the degree of the root node.

As in Chapter 2, it can be shown that

E{L~~1IL~~r
5
) < 2.325A(2.~—l)  + E {L~~1l L ~”1~ l}  (3.3.2.4)

< 2.325A (L~—1) + /i
~

L
j
’
+lI L j

111l
~~
l} (3.3.2.5)

) 2.325AL~ + .6 (3.3.2.6)

E{LIp,l} for p 1 2
f (ii) — (3.3.2.7)

2.32 5(p—2) + E {LIp— 2 ,1} p ) 2

Where f~ is a convex , increasing lower bound to E{LIp,r*(p)).

Continuing , as in Chapter 2, it can , fur ther be shown that

E{L} I 1. + ~
D
~
A
~2SA (3.3.2.8)

EU) £* (3.3.2.9)
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where L* —

and — f~~(2AL)

EU2) < 
4.65cAE{L) + c2 

(3.3.2.10)
— 

1 — (2.325A )

where

c — /E{L~~1Ip — 2A ) — 2.325A (3.3.2.11)

and

EU2) 2.79AE{L) + .36 (3.3.2.12)— 
1 — (2.325A)

Finally , fr om Eqs. (3.3.2.1), (3.3.7.2) and (3.3.2.7) through (3.3.2.12) we

have

E{6) < 
4.88c1 

2 + 
l.05c2 

2 — + .321 (3.3. 2. 13)— 1 — (2.325A) (1 — (2.325A) IL2.(A)
E{.S} > max 1(1 395A 

2 + 
.18 

2 — + 4 (A )\; ç(x)l
— 

L~~l— 2.32sA (l—(2 .325A) ]L (A) / J
(3.3.~ .l4)

‘H;
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Equations (3.3.2.13) and (3.3.2.14) have been calculated and they are plotted

in Fig. 3.3.2.2. Note that the maximum arrival rate is .430 packets/slot.

3.3.3 Average Throughput

Based on the results of the preceding section and Section 2.3, it

follows that the maximum average throughput for the optimum dynamic algorithm

is .430 packets/slot. Furthermore, the average delay vs. average arrival

rate results of Section 3.3.2 may be interpreted as average delay vs.

average throughput (see Fig. 3.3.2.2).

3.3.4 System Stability

In this section, we will consider the stability of the optimum

*dynamic tree where the root node has degree 2r and all other nodes are

b inary . The definition of stability of the multi—access system with the

dynamic algorithm is the same as It is with the static algorithm. That is,

the system is k’th order stable if the k’th moment of the delay Is finite.

In this section we will prove that if EU) exists, then the generating

function of 2. also exists (2. corresponds to the number of algorithm steps).

Since in Section 3.3.2, we showed that EU) is finite 1ff A < .430 and

since E{(delay]k~~) < ~ if E{Lk} < •, the preceding statement allows us

to conclude that all the moments of the delay are finite as long as A < .430

packets/slot.

Let G(s,p) and Gd(s,u) be th. generating functions of 2. given p for the

binary and for the dynamic tree algorithms. The analysis of this section is

organized as follows.
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Figure 3.3.2.2 Upper and Lower Bounds to the E{delay} versus the
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-- - Arrival Rate for the Opt imum Dynamic Tree/Poisson
Source System
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1. Show that G(s,p) I ~~~~~~~ 
+ ~ for 0 < s < s0, 0 1 p < 3.4,

> 0, and C arbitrary.

s(EdUIP) + c]
ii. Show that Gd(s,u) 

1 e for all p and 0 <os 
~~~. ~o’

> 0. Note that Ed{L(p} is the indicated expectation for the

optimum dynamic tree algorithm.

iii. Argue that E(e~
t) exists if E{2.Ip} exists or equivalently if

A < .430 packets/slot.

1. Upperbound to G(s,)~~

Let
S

Iif~ -li

Cu (s,p) — e~~(e
5 

— (2_:5)) + pe~~(e
5—l) + 

2::~ e L2—e
8 J (3.3.4.1)

for 0 < s < ln2

Then in Appendix A2.8 we show that

G(s,p) I G(s,p) for s < 1n2 (3.3.4.2)

and

~~(s,p) ~~~~~~~~~ 
for s < 1n2 (3.3.4.3)

—166—

_ _ _  _ _ _ _ _ _ _ _ _



It can be shown that if a genera ting function is bounded , then it

is continuous in s. The same is true for .~!• Therefore, it follows from

Eqs. (3.3.4.2) and (3.3.4.3) that G(s,p) and }-C(s,~ ) are continuous in s

for s < ln2. Note that G(s,p) and ~—G(s,p) are also continuous In p. This

follows from the fact that P{j packets are active) —

Since G(s ,p) and ~~G(s ,p) are continuous in s and p, ~j .lnG(s,P) is

continuous in s and p for s < ln2 and p. Then, in any closed bounded region,

say 0 < s < ln2 , 0 < p < 3.4, .~~1nG(s,p) is uniformly continuous. Thus

for any C ) 0 we can choose > 0 so that

~~lnG(s,ii) I ~~lnG(s,p)1 
+ ~ for 0 < s < 

~~~~~ 

0 < p < 3.4 (3.3.4.4)
s—O

Therefore, since ~~ln(G(s,ii) — EU~p),s—0

G(s ,1.1) < e5 (th 1) + t 1 for s I 
~~~~~ 

a I p I 3.4 (3.3.4.5)

ii. Upperbound to Cd
(s ,li)

Let 2r*(p) be the degree of the optimum root node. Note that this

tree corresponds to r*(p) independent binary trees where the mean number

of contending packets at each subtree is p/r
i
. Therefore, from Eq. (3.3.4.5)

we have

* Usr (E {L I ~~} + c]
r 

8 1 $
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But rE{L~~
.) a E~{L~p) and 3.4 (see Section 3.3.2), therefore

s(E
d{LIu) 

+ .
~~~~. c]

Gd(s,U) 
< e • 

~ .~~~ ~o 
(3.3.4.6)

iii. Existance of E(e~
t)

In Section 3.3.2 we showed that Ed(LI uu < 1. + l.163p. Substituting

this along with and ~—2AL~ into Eq. (3.3.4.6) we have

Ed{e~~~~iLJ
) I e~~~

1 163 + ~‘3.4)2A + f l  (3.3.4.7)

Finally , from Theorem 2.4.0.1 we have

s2. 1
E{e ) exists for A 

~~ 2(1.163 + c/3.4) and s < s0

but C is arbitrary 80 Amex — .430 packets/slot.

It can be shown that if E{e~
2 } exists for a 1 then so does E{Lk}

for any k.

This concludes this section.
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3.4 An Efficient Suboptimum Dynamic Tree Algorithm

In this section we will consider a tree algorithm whose root node

degree is constrained to be a power of 2, but whose all other nodes are

binary. The advantage of such an algorithm is that it is relatively easy

to implement. The reason for this is that as the root node degree is varied

dynamically , it is not necessary to choose a different tree and a different

addressing scheme each time; variations in the root node degree may be

realized in a single binary tree simply by varying the depth of the nodes

where the algorithm originates.

In Subsection 3.4.1, we determined the optimum tree given the above

constraints. That is, if we let,

2K; K — 1,2,... for I — 0
— (3.4.0.1)

2 i > 0

Then we will show that K*, the K which minimizes E{h/p,K) , is given by

* 
l forp<3.40 

.

K — 
— (3.4.0.2)

K for 3 40(2
K_2

) < < 3•4~(2
K_l
), K > 1

In Subsection 3.4.2, where the above algorithm is analyzed, we obtain

upper and lower bounds to the E{de3.ay); these are illustrated in Fig. 3.4.2.1.

In this section we also show that the maximum throughput is less than .430

but greater than .420 packets/slot.
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3.4.1 Optimizing the Suboptimum Tree

Let a dyanmic algorithm have a tree with node degrees given by

2K K — 1,2,3,... for I — 0
— (3.4.1.1)

2 i > O

Then, in this section, we will determine the K which minimizes E{&/p,K).

Note that since h — 22., minimizing E{t/p,K) is equivalent to minimizing

E{h/p,K}.

By making the association that 2r — 2
K
, we have from Eq. (3.3.1.1)

that -

E{L Ip , K} — f E{LI.~~,l) (3.4.1.2)

*As in Section 3.2.3, K may be determined by setting

E{tIp,K—l) — E{L~p,IC) (3.4.1.3)

and then solving for ~1(1() for K — 2,3,4 Where ~RK) is defined by

a K for ~(K) < p I p(K+l) (3.4.1.4)

This problem is considerably simplified if both sides of Eq. (3.4.1.3)

are divided by p before it is solved. (Note that this operation does not

affect the solution ~I(k).) The simplification arises from the fact that

- - 
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is simply a function of p12K, therefore, as will be shown below,

and it follows that Eq. (3.4.1.3) need be solved only for

K — 2 .  Let

H(p/2K) f~
. EUI~~,l} (3.4.1.5)

then if ~(2) satisfies

H(p/2)  — H(p/4) (3.4.1.6)

it follows that

11(K) — ~ (2)2
K_2 (3.4. 1.7)

will satisf y

H(p/2~~~) — H(p/2
K
) (3.4.1.8)

Equation (3.4.1.6) was solved numerically; and the answer is

p(2 ) — 3.40 (3.4.1.9)

The f inal result to this section follows from Eqs . (3.4.1.4), (3.4.1.7) and

(3.4.1.9). It is given by
I
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* 
l for~~~< 3.4O

K — 
— (3.4.1.10)

K for 3~40(2
K_2
) < p < 3•40(2 K_l ) ,  K > 1

3.4.2 Analysis of the Suboptimum Algorithm

The first step of the analysis is to determine and 8L~ 
the 

:

b0Pes

of the straight lines that respectively upper and lower bound E(2./p,K } .

These two quantities are given by,

B — max E~~~~~*) (3.4.2. 1)
~ U~3.4

82. a mm 
E h j c*} (3.4.2.2)

p>3.4 ~

From Eq. (3.4.1.10) and the fact that E{LIp,K}/p is simply a function of

it can be shown that

max — max t~~~ *} (3.4.2.3)p 3.4(p<6.8 ~

and

mm E 11 (*)_ mm ~~L~~~~*} (3.4.2.4)
p>3.4 ~‘ 3.4qi<6.8 11

_ _ _ _  _ ______::

~~~~~~~~~~~~~~
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Equations (3.4.2.3) and (3.4.2.4) were solved numerically and the answers

are

— 1.189 (3.4.2.5)

82. — 1.164 (3.4.2.6)

The corresponding B’s of /E {L2 1p, K*} equal those of E (Lt p } .  To see

this, first note that by setting 2r — 2K ~~ Eq. (3.3.1.2) we have

E {L211j ,K*) 2K l (2K l _1)~2{2.1~ /2 K l
,1} + 2~~

1E{t2Ip/2 1,l} (3.4.2.7)

Next take the square root of this expression, divide by p , let p -
~~

and use Eq. (3.4.1.10 ) to obtain,

lim 
vfi ~i2 Iu K*} 

— 
E {2. Ip,K*} .5 1.189 

(3.4.2.8)p > 1.164

Using the above results and numerical calculation of E{LIp,K*} and

E {L2 1p , K )  it can be shown as in Section 3.3.2 that

EU) < 1 + 
~~9 378A (3.4.2.9)

EU) > 2.~ (3.4.2.10)

where £* 
-
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a f~~(2A2.)

E (LII.I,K.l} for p < 2

p 
2.328(p—2) + EUIU—2,K—1 } p > 2

Furthermore it can be shown that

EU2) 4.756cAE{L) +c 
(3.4.2.11)

— 

1 — (2.378A)

where

c — /i~2.~~ 1Ip—2A} — 2.378A

and

E{2.2} > 
2.328E{2.) + 

(3.4.2.12)
— 

1 — (2.328A)

Now substitute Eqs. (3.4.2.9—3.4.2.12 ) into Eqs. (3.3.2.1) and (3.3.2.2) to

obtain

E{6} < 4.99 c A 
2 + 

l.05c2 
+ .321 (3.4.2.13)

1 — (2.378A) 1— ~2.378A)~~~ (A)
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Theorem A3.4: Define ,

H~ (g,p ) - + 2 ~ L~i ~~~~~~~~ (A3.l9)
g

And let p > 8 and g be integer and greater than one. Then

mm H~(g,u) < 2.34 (A3.20)
g

Proof: This will be proved by f irst f inding an interval X such that for any
p > 8, an integer y > exists such that p/g c X and then showing that

max H (~ ) < 2.34. First, we prove that X • : 1.1 1 1 1.257 }
(p/g)CX u g  — g g

satisfies the above criteria. It is sufficient to show that

sup f mm (~)1 — 1.257 (A3.2].)

~~~~~~~~~ ~ j

Bu t m~n ~ for 8 < p < 8(1.1). Therefore,

sup [
~~

] — (1.14 . 1.257 (A3.22)8<p< 8.8

—‘a ’—

4 ~~~
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Similarly for 1.1k < p < l.1(k+1) ; p > 8

l.lk<~ <1.1(k+l ) [g1~~~ l.l(11~~)] 
— ~~~~~~~ for k > 8 (A3.23)

Equations (A3.22) and (A3.23) prove Eq. (A3.21)

Now let

— p/g (A3.24)

then from Eq. (A3 .19) we have

R
~

(x) — -
~~~ 

+ 2 ~ f F; (
;~) (A3.25)

i—0

Finally , H
~
(x) was maximized over xcX and the result is

max H (x) — 2.34 (A3.26)
xcX U

QED

Theorem A3.5: Define

H2.(x ,g) — ~~~(8) + g—
~~~ 

+ 2 ~ 
-~. ( — ~—) (A3.27)

1—0 2 g
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and let 0 < x 1 .5 and g > 3. Then

H2.(x ,g) > 2.498 (A3.28)

Proof: Since the sum in Eq. (A3.27) is positive we have that

H2.(x,g) 
>1F (8) + g.& (A3 .29)

> 
~~ (8) + 3~~’~ for g > 3 (A3.30)

>~~~(8) ~~~~ - ~
2 

(A3.3l)

The last equation follows from Property lB of Appendix A2. 1.2. Now for

0 < x 1 .5, the right side of Eq. (A3.3l) is decreasing in x. Therefore,

evaluating it at x — .5 we have

H2.(x,g) > 2.498

QED

Theorem A3 .6: Let H2.(x ,g) be as in Eq. (A3.27). Also let .5 < x 1 3

a n d g > 3 .  Then

H2. (x ,g) > 2.34 (A3.32)
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Proof: First we prove this for g > 12. It can easily be shown that,

[
~~x ]~ -~~[1 - ~i + x + X3)C

_x
~ < 0 for x < 3

therefore

mm (~~ (X)
] — miii (~(~

5) 
~~~~ — ~

(.5) (A3.33)
.5<x<3 X

But from Eq. (A3.29)

H2.(x,g) 
>~~~(8) + ~~~~~~ for .5 1 x 1 3 and g > 12 (A3.34)

— 2.497 for g > 12 (A3.35)

Finally, H2.
(x,g) is minimized over g — 3,4,..., l2 and .5 < x < 3. The

result is

H2.
(x,g) > 2.34 for .5 < x < 3 and g — 2,3,... l2 (A3.36)

Theorem A3.7: Define H(g 11g2,p) as-

H(g1,g2,1z) — ~.¼( 3a ) + 
8i~~~(p ) + 2 ~ 2~ 

81
~
2C(g

1
~g2
) (A3.37)

1—0

/
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and let g1,g2 be integer and greater than one. Furthermore, let p > 8

and IL> ~.g1

then the miii R(g1,g 2,p) lies on g
2 — 2 (A3.38)g

1g2

Proof : Since 
~

(p) is an increasing fun ction we have for p > 8 that

H(g 1,g 2 ,p ) 1~ 1+ 8l~2~~jL~ + 2 ~ 2~ 
~ 2~( 1’ 

~) (A3.39)
ii p a1

1—0 gig22

2ig
H(g 1,g 2,p) >~~~~(8) + ~~

2C( IL) + 2 ~ i 2 ~( ~~ 

~) (A3.40)

1—0 
g1g2

2

for p > 8

< ~(8)e the following holdsNow for

~(8) + g2~(p/g1) > g2 (A3 .4l)

therefore ,

g1g2 2~g1g2 11 (A3.42)— p  IiH(g1,g 2 ,p)  > + 2
1—0 g1g22

and
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I
H(g1,g2,p) > min(&+ 2 

~ 
.
~~ ‘~

(—
~~

)] (A3.43)

1—0 g2

But the right side of Eq. (A3.43) is the upper bound (Eq. (A3.39)) evaluated

at g
2 

— 2 and minimized over g1. So we have proved that if g 2 .5 
~ + lu g 1

then the minimum of H(g 1,g 2,p) lies on g
2 — 2.

The proof is concluded by demonstrating that Eq. (A3.43) also holds

~ (8)e~
’
~~lif > i. + plg • Letting x — p/g in Eq. (A3.40) we have from Theorem A3.1

that -

1 2x 8 2H(x ,g
2
) > -~~(8) + ~-~ (x) + — - ~~

- (x/g
2
) (A3.44)

1 ~2 2x 8 x  —x 2  e 3C
> ~~ (8) + ~—~ (x) + — -

g2 ~~~ e ) for g2 > (A3.45)

Now let y be defined by

E (xj 2xy — g  +— (A3.46)2 x g
2

Then it can easily be shown that y is convex in g2 for x > 0 with the

minimum occurring at

* 
— x

~
! 2 (A3.47)
~(x)

( 
-
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But for x > 3

(A3.48)

and since y is convex it follows that

y >~~~~~~~~ + 2x(!t~) forx > 3

Therefore from the above equation and Eq. (A3.45) we have that

~‘ ~ > + ._~~~~~ E (x) 
+ ., 

(l+x) 8,x x~2
~~~~~~~ — ~~ 

.-x 9~l+x C /

e

> 2.55

and from Theorem A3.4 we conclude that

>- mun (1+ 2  ~g1
>2 ~ ~‘ 2 g

QED
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CHAPTER 4

THE TREE ALGORITHMS WITH A FINITE SOURCE MODEL

4.1 Introduction

In this chapter we will, consider a multiple access system with

ind~pendent sources. The transmissions process is essentially the same as

thac which is described in Chapter 2. That is, packets that arrive in one

epoch are processed in the following epoch by a tree algorithm (both static

and dynamic algorithms will be considered in this chapter). Here, as in

Chapter 2, a group of sources that has undergone a conflict is divided in

half and the two subgroups transmit their packets in two consecutive slots.

The decision to divide a group in half, the transmission of the two halves

and the observation of the results of those two transmissions constitute

an algorithmic step . The number of algorithmic steps in one epoch will be

designated by 2..

It will be assumed that a source may receive at most one new packet per

epoch. The probability that a source will receive a packet in the next step,

given that it has not yet received one in the present epoch, is a constant and

will be designated by p. It follows then, that q, the probability that a

source will receive a packet in an epoch of length 2., Is given by

q — 1 — (1—p)t. (4.1.0.1)

It should be noted that in the above source model, a source. can have

at most two packets at any one time; one that arrived in the previous epoch

and which is in the process of being transmitted, and one that arrived in
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the present epoch and which will be processed in the following epoch.

The channel model is the same as that which was considered in Chap-

ters 2 and 3. That is, it is slotted and the sources have the means

to determine whether there are 0, 1 or more than 1 packets in any one slot.

If  a slot contains more than one packet, then it is assumed that no one

gets through.

The tree searches of the algorithms that we will consider here will

be carried out serially and the source addresses are assigned deterministi—

caUy. The parallel search and the random address assignment will not be

considered here. It is important to point out however that, even though

for the Poisson source model the random and deterministic source assign-

ments had the same delay and throughput properties, in the finite source

model it can be shown that the random address assignment has larger average

delay than that of the deterministic.

The rest of this chapter is organized into two sections. In Section

4.2 we consider the static binary tree. Here we obtain an upper bound to

th. averag, delay and a lower bound to the average throughput in terms of

p. We al so combine these two bounds to obtain an El delay) vs El throughput)

performance curve. This is illustrated in Fig. 4.2.2.2 for !16. In Sec-

tion 4.3 we consider the optimum dynamic tr.. algorithm. Here we restrict

all nodes to be binary except for the root node which is allowed to have

a degre . that is a power of 2 but less than or equal to 2N
• Subject to

the preceding restrictions, g0 is chosen so as to ainiaiz. the expected nun—

b.r of slots needed to proc..s th. contending packets , given q. The optimum

is given by Eqs. (4.3.1.1) and (4.3.1.6). Following th. determination

of the optiam tree , first, vs obtain upper and lover bounds to the average



delay and average throughput respectively, and then obtain an El delay) vs
Elthroughput} curve. The E{delay} vs El throughput) curve is shown in

Fig. 4.3.2.5. Section 4.3 is concluded with a theorem proving that the

E(delay} for the optimum dynamic tree protocol is less than or equal to the

Eldelay) of the TDMA protocol.

I -
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4.2 Static Binary Tree Algorithm with Finite Source Model

This section contains two subsections: 4.2.1 where an upper bound to

the E{d.lay) is obtained and 4.2 .2 where a lower bound to E{throughput) is

obtained . Both of these bounds are functions of p, the traffic parameter.

They have been computed for N—6 and they are plotted in Pigs. 4.2.1.4 and

4.2.2.1. The E{delay} vs. E{throughput) curve is given in 4.2.2.1.

4.2.1 Average Delay

We begin this section by presenting several definitions . We will be

using the following quantities : c
~
, L~, d~ 5, I~, p, and q. The first five

of these are defined in Section 2.2 and the last 2 are defined in Section

4.1. Furthermore, let

2* (2*_l)
*(q,m) — 1. — (1—q) — 2mq(l—q) ’ (4.2. 1.1)

— 1 — (1—q)~
2 —1) 

(4.2.1.2)

D(q,a) — ~ 2~~(q,m—i) (4.2.1.3)
i-0

*(q,a) is the probab ility that there are at Least two active sources in a

branch with 2* leaves . •(q,.) is the probability that ther e is at least

one othsr active source in a branch with 2* leaves given that one particular

source of that branch is active. D(q *) is the expected number of nodes

visited in a branch with 2* leaves. These quantititss ar e considered

in more detail in Appendix M.

The analysis is carried out as follows:

1.. Calculate
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ii. Show that E{ô~~1,p} is concave and increasing in

iii. Calculate , an upper bound to Eli) .

iv. Apply Jenssen’ s inequality to the above three step s to prove

that E {6 1p) < KId

i. Derivation of KId 1L1p)

The delay that a packet undergoes can be decomposed into d1 and

where d1 is the time spent by the packet in the epoch of arrival and

d2 is the time spent in the following epoch, i.e., the epoch where it is

successfully transmitted. As a consequence of this observation we have

that

E{6~L1,p) — E{d1jL 1,p} + E{d2 1L 1,p} (4.2.1.4)

The subscript of 1. will not be used where ambiguities do not arise.

Note that £i, refers to length of the epoch in which the packet arrived

and when a random variable ii conditioned on L we will mean

Next an expression for KId1! L ,p} will be determined ; this is accom-

plished by noting that, given that El has length 1., the delay of a packet

arriving in the ~th ~~~ of e~ is,

d1 — L — j — l  (4.2.1.5)

Tb. probability of a given packet arriving in the ~th step is

I ‘
~~~~
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I
P(jI L,p) — for j.’O,l,...,L—l. (4.2.1.6)

1 — (l—p )

Multiplying Eqs. (4.2.1.5) and (4.2.1.6) and si~~ ing over j  we have

E(d11L ,p) — — — 1 — — (l—Ø)t(~p~4.1—pI (4.2.1.7)
pCi — (l—p) )

This is the desired expression for E(d1jL,p}. E(d21& ,p} is derived in

Appendix A4 and it i. rewritten below,

N—i

E{d211,p} — 1 + ~ 
(1 + 

~ 
D(q , N—i) J $(q, N—i) (4.2.1.8)

i—i

where q, $, and D are given by Eqs. (4.1.0.1), (4.2.1.2) and (4.2.1.3). Tb.

expression for E{6IL,p) follows from Eqs. (4.2.1.4) , (4.2.1.7) and (4.2.1.8) .

ii. Properties of E{d(L.D}

For N.6 and selected values of p, the quantity E{6~t,p} was cal-

culated for L—l,2,3,...63. The results are shown in Fig. 4.2.1.1. From the

computer printout , as well as fro, this figure, it is evident that KId It ,p)
is concave and increasing in L • These properties viii be used in Subsection

iv.

iii. Determination of Upper Bound to Eli)

In this subsection, first, vs will derive an upper bound to

El I.), and then compute that upper bound for N.6. Th. upper bound follows

from the following theor .
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Figure 4.2.1.1 E(d.layI& ,p) versus L for the Binary Tree Algorithm

with 64 Sources
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Theorem 4.2.1.1: Let be the outcome of a Markov chain after the 1
th

transition and let f ~, (1~) be a nondecreasing concave upper bound to

Furthermore, let be defined by

L
a 

— 
- 

(4.2.1.9)

and assume that ‘ f ( t
1) for > then

~~~ 
E{L~} < L~ (4.2.1.10)

Proof : This proof is sImit*r to that of Theorem 2.2.3.2. Therefore, it

will not be given.

QED

Next we will calculate 9. for N—6. In Appendix A4 the following ex-

pression is derived.

E{L21q} — 1 + 2D(q N—l) (4.2.1.11)

Equation (4.2.1.11) ii plotted in Fig. 4.2.1.2 for N—6, where for comparison

we also plot on the same figure £19.21 q) for the optiaum dynamic tree —

this t. derived in Section 4.3.1. E(t2~&1,p} follow, from Eqs. (4.2.1.11)

and (4.1.0.1) . This quantity is illustrat ed in Fig. 4.2.1.3. As can be

seen from this figure, for p > .016, fv (L*) — E{&21t
*). Equation (4.2.1.9)

was solved for this f~ and for p > .016. The results sr• listed in Table

4.2.1.1. For p — .004, .008 and .012, the following three linear expressions
upperbound 1(9.219.1) respectively.
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(

P t 
~u th1 th2

.004 1.04 1.24 .125

.001 1.2 1.6 .232

.012 1.9 2.6 .314

.016 19 22.5 .372 .331

.020 32 36 .410 .370

.030 50 59.5 .436 .436

.040 57 70 .436 .470

.050 60 77 .437 .489

.100 63 89 .439 .507

TABLE 4.2.1.1

AVERAGE DELAY AND AVERAGE THROUGHPUT
FOR

BINARY TREE ALGORIT~~( WITH 64 SOURCES
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E{&2 12 i,.004} < • 224&i + .804 (4.2.1.12)

E{L
2(t1,.008} < .5009.] + .605 (4.2.1.13)

E{t2 1L 1,.0l2} < .7509.1 + .473 . (4.2.1.14)

These were used in Eq. (4.2.1.9) to obtain for the indicated

p ’s. The results are listed in Table 4.2.1.1. On that same table we also

present 6u’ th1 
an~ th2. ~u is the upper bound to the Eldelay) which is de-

termined in the following subsection and th1 and th2 are lower bounds to

the expected throughput which are derived in Section 4.2.2.

iv. Determination of Upper Bound to ECdelay}

In Subsection ii, it was shown E(d~L ,p} is concave and nondecreas—

ing in 9... Therefore, from Jenssen ’ a inequality and the concavity of

£16 IL,p} it follows that

E{61p} < E (611,P) (4.2.1.15)

and from the nondecreasing property of £16 I& 1p} we have the following upper

bound.

£1619) c E{6Ii~,9} E ‘
~u (4.2.1.16)

Note that th, right side of the above equation equals Eq. (4.2.1.4) with



£j  replaced by L,~. The values of L (p) that were calculated in the pre-

ceding subsection were substituted into Eq. (4.2.1.16) and the results

are presented in Table 4.2.1.1 and in Fig. 4.2.1.4.

One more result will be developed bef ore coaclud ing this section ; it

is an exact expression for E{delay} at p1 . This is a useful quantity

since it is the maximum E{delay} over p . When p ]., a packet arrives at

each source in the first step of each epoch with probability one . There-

fore , it can be shown that

E{d119— 1) — 2N 2 (4.2.1.17)

and E{d2l p”l) — N + 2N 
— (4. 1.18)

and we have

£1619.11) 3(2 ) + N  — 5 (4.2.1.19)

This should be compared with the maximum average delay for the optimum

dynamic tree which, as we will see, is given by

Edyn{6l9.11} (3(2N_l)_j )/2  (4.2.1.20)

This concludes Section 4.2.1. Next we consider the expected throughput.

4.2.2 Average Throughput

This section has two objectives. Th. first is the determination of

a lower bound on the E{thxoughput) as a function of p , and the second is

the determination of an E(delay } vs El throughput) curve. These two results

( are displayed in Pigs. 4.2 .2.1 and 4.2.2.2.
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The definition of throughput for the finite source model is the same

as it was £ or the Poisson source model. That is, the average throughput

is the fraction of time that the channel contains valid data , i.e., exactly

one packet/slot. Even though the definition of E(throughput} is the same

for both cases, the computations are more involved in the finite source

model because of the assumpt ions that a source can accept only one packet

per epoch.

We begin by deriving an expression for El throughput) in terms of the

system parameters. By using the law of large numbers, one sees that

in an interval of length 2kE{L) slots the number of packets that is succes-

sfully transmitted approaches k(2NE{q) + o(k) ] for large k, where 2., q,

and N are as defined previously and o (k)’.O. It follows then that,

E{throughputI — (4.2.2.1)

Note that in the above equation both E{q} and Eli.) are functions of the

traffic parameter p .

Next we will develop two lower bounds to El throughput) ; they will be

designated by th1(p)  
~~~ 

th2 (P ) . Since, as will be shown shortl y , neither

of these bound s is tightest over all p, we will. take the lower bound to the

E(throughput) to be,

th9. — Max{ th1, th2} (4.2.2.2)

Nov vs will derive EE1. Equation (4.2.2.1) can be rewritten as follows
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~E{q~ t~) p1t1
)

9.
El throughput) — 2~~ 

1

~E(L2 J £1)p {L1
}

1

> ~~~~ £ E{L2 (L 1
} (4.2.2.3)

Where E{ql11) and E{L21L1} are given by Eqs. (4.1.0.1) and (4.2.1.11).

Next we will derive th2. First note that Eli. Iq i (see Eq. 4.1.0.1)

can be lover bounded as follows:

E{q(L} > aS. — a + p for 9._1,2,~~~,2N_1 (4.2.2.4)

where

N
_ 1 (]~~)2 —]._ 

~ (4.2.2.5)
2N_2

Taking expectations of both aide. of Eq. (4.2.2.4) we have

E(q} > a Eli.) — a + p (4.2.2.6)

Substituting this into Eq. (4.2.2.1) vs have

11th) > (a + E1~J~
]2 (4.2.2.7)

It can be shown t h a t p — a > O , and therefore

—203—

I
3

-~~~~



C
.

E{th} > (a + th (4.2.2.8)
£u

This is the desired form for th2. th1(p) and ~i~(p) were calculated for
N 6  for several values of p. The results are presented in Table 4.2.1.1

and in Fig. 4.2.2.1.

The performanc e curve 
~~u vs th9.) can be obtained directly from

Table 4.2.1.1. This is plotted in Fig. 6.2.2.2.
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Figure 4.2.2.1 Lover Bounds to the Average Throughput versus p for
the Binary Tree Algorithm with 64 Sources

—203—

_ _ _  

____ 
_ _ _4 _ _ _ _  _ _ _ _ _ _  
_ _ _ _ _

.

~ -



10~~-

U)
0.

(1)10 .

10-

1

I — 
I I I I II

0 0.1 0.2 0.3 0.4 6.507
E (thr ] ( pac ke ts/s lot )

Figure 4.2.2.2 The Upper Bound to El delay) versus the Lover Bound
the it throughput) for the Binary Tree Algorithm
with 64 Sources

/ :
Note: An Algr . step equals one round trip delay

plus two slots
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4.3 Optimum Dynamic Tree Algorithm with Finite Source Model

There are two major objectives to this section; the determination of

the optimum finite tree algorithm and the analysis of that algorithm. These

two problems are considered in Subsection 4.3.1 and 4.3.2, respectively. In

Subsection 4.3.2 we also prove that the optimum dynamic tree algorithm is

superior to the TDMA protocol..

4.3.1 Optimum Tree

The criterion of optimality to be used here is the same as that of

Chapter 3. That is, the optimum tree is that which minimizes the expected

number of slots needed to process the 2N sources given that the probability

that any one of them has a packet to transmit is q. Since the number of

sources is finite , the opt imization is carried out over a smaller set

of trees then it was in the Poisson source model. More specifically , we

are going to restrict all nodes to be binary except for the root node which

can have a degree that is a paver of 2. In other words , if we let

then the problem ii to choose K—l ,2 , . . . ,N so that 2E{i.fq,N,K) is minimum.

The reason f  or restricting the initial degree to be a power of two is

easier implementation. Var iations In the degree of the root node under this

restriction are equiva l ent to starting the binary tree algorithm at different

levels, thus not requiring a different tree etch time the degree of the root

node is changed. For .,‘ple , an algorithm whose tree has 2N leaves and

root node degree equal to 21 is equivalent to a binary tree algorithm that

starts with the nodes of depth L

Nov we will determine E~, the optimum K, as a function of q. More

specifically vs will obtain an equation whose solution is q(K,N), where
) A

-~~~ q(E ,N) is defin.d by
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K
5 

— K for q (K,N) < q < q (K+l,N) (4.3.1.1)

As we will shortly see, q(K ,N) q (N—K) . It can be shown by a procedure

analogous to that of Section 3.3.1 that for a tree with leaves and a

root nods degree 2E, tbat

E{12 1q, N ,E} — 2~~1 E{t2~q,N—K+1,1} (4.3.1.2)

Substituting Eq. (4.2.1.11) into this expression results in,

E{t2~q, N,K) — 2K..1 11 + 2D(q, N—F3} (4.3.1.3)

q(N ,K) ii determined by setting

E(t 2~q, N,&—1} E{L 2~q,N,K) (4.3.1.4)

and then solving for q. Substituting Eqs. (4.2.1.3) and (4.3.1.3) Into

Eq. (4.3.1.4) and then rearranging we have the following expression which

defines q.

$(q, N—L+ 1) 1/2

or

( A g K+l) A

(1 + q(2 —l)](1—q)~ —1) — 1/2 (4.3.1.5)
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Equation (4.3.1.5) was solved for N—K”0,1,2,3,4,5. The results are

given in Table 4.3.1.1 below:

N-K q (N-K)

0 .707

1 .38

2 .20

3 .10

4 .05

5 .025

TABLE 4.3.1.1

OPTIMUM ROOT NODE DEGREE

Pros the above table the following expression for q (N—K) is evident

.707 for N—K— O
q(N—K) — .38 N—K—i (4.3.1.6)

.8/2~~~

The optimum K for N—6, which follows from Eqs. (4.3.1.1) and (4.3.1.6)

was substituted into Eq. (4.3.1.2) and the result is plotted in Ti1. 4.2.1.2.

As can be seen from that figure, E(t~q} is the same for both binary and

opt imum tree for small q. As q increases, however, the optim~ protocol is

definitely superior. What this suggests is that the optimum algorithm

should be used when the traffic is heavy .

When K—N the tree algorithm is equival ent to the TDMA protocol. Since

q(N—E.0) • 1/vT . .707 vs see that TDM& is optimum if q >  i/ v’E What is

-209- 

-~~~~~~~~~~ _ _ _



surprising is that this result does not depend on N. The relationship

between the tree .~.~uritha and TDM& is considered in more detail in Theorem

4.3.2.1 in the following section.

We conclude this section with the presentation of the optimal dynamic

strategy . This is as follows:

1. Observe L
~
, the length of the previous epoch.

2. Substitute £1 into Eq. (4.1.0.1) to obtain q.

3. Use the q, determined in Step—2 , to obtain K* f rom Eq. (4.3.1.6).

4. Use the tree, determined in Step—3 , to resolve any conflicts

that may exist.

4.3.2 Analysis of the Optimum Dynamic Tree Algorithm

In this section we will analyze the optimum dynamic algorithm when it

is used in conjunction with the finite source model. First, we will develop

an upper bound to the E{delay} in ter ms of p, secondly , we will develop a

corresponding lover bound to the El throughput), and final ly, combine these

two bounds to obtain a vs th2. performance curve. These three results are

illustrated in Figs. 4.3.2.3 , 4.3.2.4 and 4.3.2.5. In this section, we will.

also prove (in Theorem 4.3.2.1) that the E{de]..ay} of the optimum dynamic

tree algorithm is smaller than or equal to that of the TDt4A protocol. This

intsrssting result should be evident from the work of the preced ing section.

i. Upper Bound to Eldelay)

As in Section 4.2.1 the delay is decomposed into d1 and d2. There-

fore , vs can write

E(81L ,p,N,K} — 1(d1~L ,p, N,K) + E(d 21t ,p,N ,Z) (4.3.2.1)
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z{d11t ,p,Nx } in the preceding equation is the same as that of the static

algorithm. That is,

E{d111,p, N,IC) — ~~j_ 1—p—(1—p ) 2.(&p+1—p ) (4.3.2.2)
p( 1— (1—L) )

E{d2 1L ,p, N,K) can be shown to be

(K—].)
E{d 2~L ,p, N,K} — 

2 
2 

—l E{L2 1q( L ,p), N—K+j,lj +
(4.3.2.3)

E {d 2~q(L ,p ) ,  N—K+l,l}

In the preceding equation, q, E(d2 q,ra,1}, and E(L 2 jq, m l )  are given by

Eqs. (4.1.0.1), (4.2.1.8), and (4.2.1.11).

The conditional delay given by Eq . (4.3.2.1) was computed for N 6

and K K 5 
(from Table 4.3.1. 1). The results are shown in Pig . 4.3.2.1. As

can be seen from that figure , Z{61L,p,I1,K
5} is increasing in 2. but it is

not concave . The nonconcavity of th is function is especially evident for

p— .4 around 2.—lO. Next, vs proceed by obta ining f~~(t), the tightest con-
cave lover bound to E{61t,p,N,X*} and than upper bounding E(6} by

E{6) c 
~V1~

1
U~

• (4.3.2.4)

The function is determi ned graphically from Fig. 4.3.2.1 and from a

more detailed computer printout.
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Figure 4.3.2.1 E{delayIL,p) versus £ for the Optimum Dynamic Tree
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The next step is to calculate It can be seen that

E{L
21L11p,N,K

*} 2K —l E(L2Jt1,p,N_K
*+l,l) (4.3.2.5)

where the conditional mean on the right of Eq. (4.3.2.5) is given by

Eq. (4.2.1.8) . Equation (4.3.2.5) is plotted in Fig. (4.3.2.2) for N”6.

By a procedure similar to that of Section 4.2.1, 1 (p) is calculated. The

results are listed in Table 4.3.2.1. Finally 2. 
- 

is substituted into
U

Eq. (4.3.2.4) and the upper bound to E{6), thus derived, is tabulated in

Table 4.3.2.1 and plotted Lu Pig. 4.3.2.3.

ii. Lover Bound to El throughput)

Here as in Section 4.2.2, we will determine th1 and th 2. These

two quantities are defined by Eqs. (4.2.2.3) and (4.2.2.9) . They have

been calculated using the values of 2.~ given in Table 4.3.2.1, and the re-

sults are presented on that same table and in Fig. 4.3.2.4. Finally, by

using the lower bound to El throughput) the aax{th1, th2) we obtain from

Table 4.3.2.1 the ~ vs th2. performance curve shown in Pig. 4.3.2.5.

iii. On the Superiority of the Optimum Dynamic Tree Over the TDMA Protocol

The following theorem is based on the observation that E{s5 1 q}
> 0. That this is so follows by showing that

a
;, ~T Et6 I ti ~~~~~~> 0

Theoram 4.3.2.1: Let q be th. probability that a source has a packet to

trsn.mit and let 6 be the delay that a packet undergoes when it is proc essed

by the opt imum tree algori thm. Furthermore, assume that ,
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Figure 4.3.2.2 E(L2 1L 1,p} versus £~ for the Optimum Dynamic Tree
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P 2. th1 th 2

.004 1,04 1.24 .125

.008 1.20 1.60 .232

.012 1.72 2.40 .314

.016 6.8 7.7 .372 .329

.02 14 14.9 .410 .381

.03 19 30.5 .454 .443

.04 32 35.4 .462 .481

.05 32 36.2 .505

.1 32 39.6 .549

.2 32 43.7 .600

.4 32 46.2 .700

.6 32 47.0 .812

tA BLE 4.3.2.1

AVERAGE DELAY AND AVERAGE THROUGHPUT FOR OPTI)WM
DYNAMIC TREE ALGORIT*I WITH 64 SOURCES

—215—

4 .  ~~~~- - - -
~~~~~~-

--.—-—
~~~~

--,-
~ - ~~-- ~~~~~~~~~

-
~~~~

—- - -—-- — - -
• 

-



5 0—

U ) 4 0 -

U)
U)

:~,
30-

a
—

10-

t ~~~~ ~~i i . i I i & i i i i i ~ I i_ I I h u l l

10 ’ 10 1 I0~p

V
. Figure 4.3.2.3 Upper Bound to the Eldelay) versus p for the

Optimum Dynamic Tree Algorithm with 64 Sources
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Figure 4.3.2.4 Lover Bounds to E{thxoughput} versus p for the
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Figure 4.3.2.5 The Upper Bound to E(delay) versus the Lover Bound
to E(throughputJ for the Optimum Dynamic Tree
Algorithm with 64 Sources

Note : An Algr . step equals one round trip delay
plus two slots
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.fr E {6It } ~~~~~~> 0.

Then the E{delay} of the opt imum dynamic tree protocol ii less than or equal

to the E{delay} of the TDM& protocol.

Proof:
1

E{6} a f E {6Jq} dF(q)
0

integrating by parts we have ,

1~ 1
E{6} — E(6~ q} F(q)I — f(F  E{6~q} P(q)dq.

~~

~~ E{6~q) > 0, F(q) > 0, F(O) 0, and F(1) — 1; therefore

E{6} ( E{6tq”l}

But from Eq. (4.3.1.6) it follows that at q.’l. the optimu. tree algorithm

is the T~K& protocol.
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APPENDIX £4

PROPEItTIES OP THE BINARY TREE /PINITE SOURCE SYST~4

Let there be 2N sources in a multiaccese system where each source may

be active with proba bility q, and assume that the multi—access protocol is

the static binary tree algorithm. Also let 2. and d have the same def init ions

as they did in Chapter 2. Then in this appendix we will derive expressions

for E{L~q} and E{d (q}. Since the work of this appendix parallels that of

Appendix A2, we will not be as detailed here.

£4.1 Derivation of E{LtqJ

The number of nodes £ visited by the algorithm may be written as follows:

N—i
2. — 1 + ~ x~4 (A4.l.i)

i”l j—O

where

(1 if node n is visited
x~1 —

~~~ (*4.1.2)
‘ (0 otherw ise

Since a node is visited if there are at least two active sources in

we have that

P(x~~~l/q ) — *(q,$—i) (*4.1.3)

where

B 1 - (l—q)~ - ~~q(1_q)~~~1 (*4.1.4)
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and it follows that

N—].
E{L~q) — 1 + ~ 

4s(q,N—1) (A4.l.5)
i—I

or

E{L~q} — 1 + 2D(q, N—1) (A4.1.6)

where

rn—i
D(q, m) Y. 2~ *(q, m—i) (44.1.7)

iso

Equations (A4.1.5) through (A4.i.7) are the desired results.

M.2 Derivation of E {d lg}

E{dI q} is the number of nodes that are visited before a randomly se-

lected packet from the contending set is successfully transmitted . First

we will calculate E{d5J q}, where d5 is the number of nodes visited before

source—s is successfully transmitted. E{d5~ q} may be decomposed as

E(d5~g} — + T~ (*4.2.1)

Where and Y~ have the s~~~ definitions as in Append ix £2.6. That is, Z5
is the average number of nodes lying on a, end Y5 is the average number of

nodes above a that were visited before the successful trani”lssion of a.

As in Appendix £2.6 vs may write X and Y as
C )  

5 5
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N-i
— 1 + ~ •(q,N—i) (A4.2.2)

i—i

and

N—i
— ) S~_1 D(q, N—i) $(q, N—i) (*6.2.3)

i—I.

where

•(q,rn) — 1 — (1—q )~ 
-1)

— Pr (at least 2 active sources in a branch of depth

a, given that a particular source in tha t branch

is active) .

To obta in the f inal result , first substitute Eqs. (44.2.2) and (*4.2.3) into

Eq. (M.2. 1) and then add f E{d5jq} and ~ E{d.~.~q) , as shown in Eq. (*4.2.5).

Note that is the ones ’ compliment of s.

N-]. 1B(d ~q} + 4 (4q} — 1 + ~ 
[1 + 

~ 
D(q,N—i) ] +(q,N—i) (*4.2.5)S i—i

— E(d~q) (*4.2.6)

The last step follows because Z{d51 q} + E{d1~q} is independent of s.
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