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Preface

This topic was selected for study as a result of my

fascination with observers. Although often overlooked, or

replaced by a Kalman filter, the observer is a relatively

simple solution to many sometimes—complex problems. In

this report, a simple example plant was selected for study

because I felt it would provide as much insight to the

problem as would a more comprehensive model. Also, many

practical control systems are, in reality, no more complex

that the two—state model investigated. All of the cases

worked were designed to reflect practical problems that

could possibly be encountered in a real—life situation. I

3 sincerely hope that these results will be a useful contribu-

t.ton to the control world.

A special note of appreciation is in order for four

outstanding persons who made this project a little more

bearable. My lovely wife, Peggy, stood by me, offering

encouragement when everything seemed to go wrong and

rejoiced with me when obstacles were overcome. My initial

thesis advisor, Major Richard M. Potter, helped immeasur-

ably in setting up a solid research effort and getting me

started on the problem. Captain J. Gary Reid took over as

advisor well into the study, picking up loose ends and

molding my efforts into the final stretch. His patient

understanding and guidance in generating the computer
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program used for solving example cases were of immeasurable

S assistance in accomplishing the overall task. Finally a

note of appreciation is necessary for my typist, Phyllis
• Reynolds, for her outstanding work and professional touch

that spared me the normal hassles involved in typing a

thesis. To these four I am especially indebted.

Dennis L. Hamme
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Abstract

State—variable feedback is a modern control theory

technique that is employed in system design to place

closed—loop poles to achieve desired performance character-

istics. Two problems associated with state—variable feed-

back are physical inaccessibility to plant states and out-

put sensitivity to plant parameter variations. In this

report an observer is employed to reconstruct all plant

states. The plant—observer system is investigated with

respect to sensitivity aspects of the following three

areas: state-variable representation , extent of pole place-

ment, and observer dynamics design. A comparison between

physical, phase, and Jordan canonical variables indicated

physical and phase variable representations yield identical

sensitivity functions; Jordan canonical variables result

in greater sensitivities than physical and phase variables.

Placing plant poles close together creates a high system

sensitivity to plant parameter variations; separation of

poles reduces sensitivity. As a nominal requirement for

low system sensitivity, observer poles should be placed to

the left of dominant plant poles; further reductions in

sensitivity are achieved by placing observer poles to the

l•ft of all plant poles.

vi
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AN ANALYSIS OF OBSERVED-SYSTEM SENSITIVITY

TO PLANT PARAMETER VARIATIONS

I. Introduction

Conventional control theory introduces the use of

compensators placed either in cascade with or feedback

around basic plant elements to improve closed-loop perform-

ance by modifying the pole-zero pattern. D’Azzo and Houpis

demonstrate that the feedback of system states through

appropriate gains can rearrange the poles to achieve almost

any desired closed—loop performance (Ref 1:410-413). This

state—variable feedback technique is accomplished by con-

structing the closed—loop transfer function, or control

ratio, in terms of feedback coefficient, ~~ for each i—th

system state. Using the performance specifications as a

• guide , a desired control ratio is synthesized to achieve

the proper response. The final step is to equate the two

control ratios to determine the required k~. There are

two major problems associated with state-variable feedback

• which must be considered: all system states may not be

physically available for feeding back to the input and

the resulting system performance may be quite sensitive to

parameter variations within the plant.

The problem of inaccessible states has been investi—

gated thoroughly and several solutions proposed. Minor-loop1
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feedback of accessible states can be employed to synthe— —

size inaccessible states (Ref 2:517—529). This approach,

however, requires exact knowledge of the plant parameters

for faithful duplication of the states. A parameter

variation or inaccuracy in determining plant parameters

can render this procedure impractical. A second solution

is to design an outer—loop feedback compensator through

block diagram manipulation (Ref 1:441-444). This approach

requires utilization of differentiator devices, which are

inherently noisy, and thus are not suitable for practical

applications. A third approach is to derive the state

vector of a plant through modelling techniques , such as

with a Kalman filter or an observer.

Luenberger developed the mathematical basis for a

linear system that, when driven by the inputs and outputs

of a second system, could reconstruct the entire state

vector of the second system (Ref 3:74—80). Termed an

observer, this system actually constructs art invertible,

linear transformation of the sta te vector ‘~r the observed

system and has no ill effects upon the control ratio other

than adding its own poles. These are selected by the

designer as a prudent choice of observer dynamics. To

better understand this , the design procedure is presented

below. Given a linear , continuous , time— invariant system

of the form

*(t) — Ax (t )  + Bu(t) (1)
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and x(t) Cx(t) (2)

C
where x(t) is an nxl state vector

u(t) is an mxl input vector

Z(t) is an rxl output vector

A is an nxn transition, or dynamics, matrix

B is an man distribution, or control, matrix

C is an rxn output matrix

an observer that will reconstruct a linear transformation

of the state vector, z(t)=Tx(t), is given by

~(t) — Dz(t) + Hx(t) + Fu(t) (3)

where TA—DT—H (4)

• and F—TB (5)

The matrix H is selected to force the observer dynamics

matr ix , D , to have some desired eigenvalues. Equations

(4) and (5) are then solved to complete Eq (3) .  The

ma trix P must be invertible (nonsingular) to ensure the

recovery of the reconstructed state vector x(t)=T z(t).

There is also a stipulation that the initial conditions of

the system and observer state vectors must be equal.

Luenberger proved that if the above conditions were satis-

fied , the observer would exactly reproduce the selected

transformation of the system state vector (Ref 3:75).

In practical applications the system output vector,

rather than the state vector, drives the observer. Then

C
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Eq (3) becomes

L
~ (t) -

~~ Dz(t) + V~~(t) + Fu (t) (6)

or , by Eq (2),

~ (t) = Dz(t) + VCx(t) + Fu (t) (7)

wherein Eq (4) becomes

TA-DT=VC (8)

This simplifies the calculation of D since only nr elements

of V must be chosen instead of n2 elements of H.

An observer is employed to provide the inaccessible

states for feedback to the input to obtain the benefits of

state—variable feedback. In fact, the entire reconstructed

state vector can be utilized for feedback to minimize

instrumentation costs by not having to measure the access-

sible system states. As mentioned earlier, only the

observer poles are added to the closed-loop transfer func-

tion and they may be placed where desired by the designer;

the plant poles are shif ted independently by choice of

feedback coefficients.

One significant question arises concerning the use

of observers to enhance state—variable feedback : how is

the control ratio affected by plant parameter variations?

In general, given any black box with output y ( t ) , the change

in output due to a change in an internal parameter is

expressed by a first-order Taylor series approximation 
as4
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y ( t;p0+~ p) : y (t ; p 0) + L~p (9)

where p0 is the nominal parameter value and L~p is the

variation . If the system is linear , the steady—state out-

put can be considered with no loss of generality. Rewriting

Eq (9) as

ay
55

(t ;p )
y

55
( t ;p0+ ttp) — y55(t;p0) 

Z I~P ( 10)
0

it is seen tha t the change in output is approximately equal

to the “sensitivity ” of y(t) to p scaled by the variation

in p. Since the sign and magnitude of t~p are not known,

t the area of concern lies in the magnitude of the sensitivity

function . For greater understanding of how the system is

affected by Ap, a frequency response of the sensitivity

function would reveal any particular frequencies of opera-

tion for which the system would be especially susceptible

to 
~
p.

Consider , for example , the linear regulator in

Fig. 1. The output of the plant is fed back to nulli~y

disturbance inputs, d(t). If

the output is particularly d(t)+ J y(t)PLANT I
sensitive to a certain band of — ]
frequencies within the opera-

( tional bandwidth , the feedback ___________________________

Figure 1. Linear Regulator

I
~~~~~~— -~~~~~~ - 
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signal could itself introduce disturbance inputs for some

parameter variation within the plant.

Another example is in the control system in Fig. 2.

r(t) +~~~~u ( t)
1j
__

PLANT 
~

OBSERVER
I 
x(t)

[K~~

Figure 2. Feedback Control System

Utilizing state—variable feedback, an input r ( t )  causes a

desired steady—state output y(t). The feedback coefficient

~~~~- - matrix, K, is selected to provide a particular response and

the observer constructs the required state vector. Under

a paramet’r variation the plant output may vary, causing

errors in the observer which, in turn, generates the wrong

feedback signal that creates more errors——and the cycle

continues. Or, quite possibly, the plant parameters are

not known exactly and the observer design is based upon

“best guess” parameters. The reconstructed state vector

will contain an error such that the feedback signal does

not provide the desired system response. In both cases

the sensitivity function provides insight into the severity

of output deviations due to parameter variations. A fre—

quency response of the sensitivity function can assist in

k~ ( determining whether or not the system can perform

c
6

~ 
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satisfactorily within its operating bandwidth.

The objective of this thesis is to compare the

sensitivity functions for direct state feedback and

observer—implemented feedback systems to determine if the

employment of observers is acceptable in light of plant

parameter variations.

I;

7 
-
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II. Development of the Study

There are three major areas to be investigated

for their effects upon system sensitivity to parameter

variations: state—variable representation, pole placement,

and observer design. These topics will be studied both

individually and in combinations to test for possible

interdependence.

It has been demonstrated tha t the choice of state—

variable representation can have a rather drastic effect

upon eigenvalue sensitivity. A small change in a plant

parameter can cause the eigenvalues to vary by many orders

of magnitude or very little at all (Refs 4:85—93; 5:263—

4 266). The concept of eigenvalue sensitivity centers

around simulation of a linear, time—invariant system on a

computer. A high sensitivity indicates an eigenvalue of

the system may vary greatly f rom its nominal value in the

presence of elemental variations or inaccuracies in model-

ling. The resulting errors in system dynamics detract

f rom the benefit s of modelling. The correlation between

eigenva] ue sensitivity and closed—loop system sensitivity

to parameter variations is not well—defined; therefore,

a comparison will be made between three common types of

state variables to determine whether the type of state—

variable representation affects system sensitivity.

Physical variables are selected because they depict actual,

I- -

8

.~
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measurable quantities that can be utilized for feedback.

Phase canonical , or simply phase , and Jordan canonical

variables are purely mathematical quantities that have

practical applications in control system analysis and

design. Singer shows that these two forms can have

radically dif ferent  eigenvalue sensitivities (Re f 4:88 )

and , thus, are logical candidates for study .

The second area of interest is the pole placement

that results from state—variable feedback. It seems

possible that the distance poles are shifted and/or the

pattern desired (e.g., double roots) may affect system

sensitivity because of the range of possible feedback

gains . An initial guess is that larger feedback gains

( would tend to decrease system sensitivity due to increased

feedback effects , except that errors in the reconstructed

state vector would be amplified . The converse seems

logical for small feedback gains. This facet of the

problem will be studied to determine if, indeed , there

exists any correlation between pole placement and sensi-

tivity.

There have been many articles published on observer

theory (see, for example Ref s 7, 8, and 9) but none of them

specifically address general guidance in observer pole

selection. Luenberger states only that the observer

dynamics should have a quicker response than the dynamics

of the plant it observes (Ref 6:190) .  Art obvious solution

is to place the observer poles far into the left half of

9

-~~~ --S  ~~.— ---~~~~~~~~ . - .  - -
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the s plane, but this introduces differentiator noise

as the poles become very large negatively. This question

will be investigated with the goal of establishing some

guideline for selecting observer poles to minimize system

sensitivity to parameter variations.

The question of what constitutes a sensitivity

function has no standard answer. Anderson (Ref 10:117-124)

considers the return difference matrix , I+G ( j w I H ( j w ) ,

where G ( jw ) H (j w) is the open—loop transfer function , as

the determining factor . Since the closed-loop transfer

function is G (j w ) / ( I + G ( j w ) H (j w ) ] ,  a system obviously is

insensitive to a parameter variation in the plant , G ( j w ) ,

if the return difference is “large .” On the other hand,

U D!Azzo and Houpis define a sensitivity function to be the

ratio of derivatives of the natural logarithms of the con—

trol ratio and the variable parameter . Their algebraically—

reduced sensitivity function is

S (jw) = (11)

where S is the sensitivity of the control ratio, M, with

respect to parameter p. Equation (11) is a normalized form

of the more general sensitivity function, ay/ap, (Ref 13:1)

which simply expresses the change in output due to a

parameter variation. This definition follows from Eq (10)

and will be used as the standard definition of sensitivity

throughout this report.

_
_ _ _ _
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R(s) (s)~ 
Bi .,1I 1~~~

s) 

~ 

-

~ 

!~~

Figure 3. State—variable Feedback

Figure 3 depicts the application of state-variable

feedback to a linear system that can be modelled by a

first—order differential equation. The Laplace transform

of the describing differential equation for the system is

aX (s)  = AX(s) + BU (s) (12)

with output Y(s)  = CX(s) (13)

and input U(s) = —ICC(s) + R ( s )  (14 )

Substituting Eq (14 ) into Eq (12) and rearranging terms

yields

sX ( s)  = (A—BK )X ( s)  + BR(s) (15)

Taking the partial derivative of Eqs (15) and (131 with

respect to parameter p yields, respectively,

aix (s) a( A B ax( s) 
~~— — K) X(s) + (A—BK ) + ~~ !: (

~
) (16)

- 

‘.
11
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9Y ( s )  
~~ 

a X ( s )
ap = ~. ~~(s) + C (17)

It is noted that the input R ( s )  is not a function of the

variable parameter. The partial derivatives are evaluated

at the nomina l parameter value . Eqs (15) and (16) may be

combined to form an augmented set of matrix equations , or

[s x s l  r A-BK 0 B I
I I + ———— i R(s) (18)
Jas~~(s) Ia (A — BK ) : 3X (s)

l ~B 
—

L ap J L ar , A-BK

X(s)

~% c [;~~-] 
(19)

These two equations have the same form as Eqs (12) and

(13). For simplicity, the 2n x 2n augmented “A” matrix

of Eq (18) is labelled A’. Then, solving Eq (18) for the

augmented “X (s)” vector and substituting it into Eq (19)

yields the sensitivity transfer function

_ _ _ _ _  = [
~ ~ c] [

sI_A s] 

~~~ 
R(s)  (20)

12
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In Fig. 4 an observer has been added to the basic

system of Fig. 3 to provide the reconstructed state vector,

An acceptable choice for T is the identity matrix

so that the state vector of the observer is, in steady

state , the state vector of the plant it is observing .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 
_______________________  ~~(s)

Figure 4. Use of Observer in State—variable Feedback

Choosing T=I also reduces the mathematics involved since

F=B and Eq (8) becomes

A-D VC (2 1)

In the frequency domain , with the substitution U ( s ) =

—KZ(s)+R(s), Eq (7) can be expressed as

aZ(s) = (D—BK)Z(s) + VCX (s) + BR(s) (22)

Considering that the ma trices D and V are not functions

of the plant parameter p, since they are computed at the

nominal value of p, the partial derivative of Eq (22) with

13

— -—-- -- ~~-—-.—5--~~-- 5 ~-‘• -~~~ -. - - •-S-• ~~~~~~~~~~ 5



— - — ~~~~~~~~~~ ~~~~~~~~ 5~ S 55~~ ~~~~~~~~~ - ~~~~~~ 5~~~~••5 5 - ~ 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - 

- 1IU~~

respect to p is
( 5

a sZ (s) 9 z ( s )  3C
ar =-~~~ K~~(s) + (D-BK ) ap + v ~~ ~ (s)

9X ( s) as+ VC + .
~~—. R(s) (23)

As in the state—variable feedback case it is desired to

construct an augmented matrix equation as a prelude to the

sensitivity transfer function for the system in Fig. 4.

Combining Eqs ( 12) ,  ( 2 2 ) ,  ( 16) ,  and (2 3) gives

sX(s) A —BK 0 0 X ( s )  B
aZ(s) VC D—BK 0 0 i(s) B

_____ — ~ _____ + ~~~~~ ~~~~~~~~~~ 
(24)

ap 3p 
~P

L”~ - K VC D-BK 9z (s) .~!

As before, Eq (24) can be solved for the augmented state

vector , which is substituted into Eq (17) to obtain the

sensitivity transfer function . Defining the partitioned

4n x 4n “A” matrix of Eq (24) as A” , the final result is

B

_ _ _ _ _  
C 

—
_ _ _ _  = 0 C  0] [sI_A’~ ~~ a( s) (25 )

a-s

where each zero element in the row matrix above is itself

an rxn matrix of zeros to maintain conformability.

C

14 
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This concludes the theoretical development required

for the problem. Since it is obviously not practical to

analytically compare Eq (20) with Eq (25) to determine if

one system is more sensitive to a parameter variation than

the other , the next chapter will develop numerous examples

to investigate this question.

4:

(2

15 
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r III. Numerical Examples S 
-

* 
p

In order to keep the required computations to a

convenient level a two—state plant with one input and out-

put will be examined. Even such a simple example will

give some insight into the two sensitivity transfer func-

tions and, more importantly, an idea of how the three

areas under investigation affect the sensitivity of a

system.

Consider the plant

in Fig. 5 with nominal param- Iu
____ 

. 1 1
eter values of K=l0, a=2, and l s+a ______

b 1  where “a” is the varia—

ble parameter. The states Figure 5. Example Plant

X1 and X2 will be defined as outputs of the integrators

from right to left or top to bottom, respectively, as

applicable for each. situation.

In physical variables the state equations, omitting

the time designators for brevity, are

r-l ll rol* x  I I x +  I Ju  (26)

L°~~J [lOJ

and y = [ 1  o] x (27)

The implementation of state—variable feedback is shown in

Laplace-transformed form in Fig. 6. Using block diagram
- 

ii
t 16 
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Figure 6. Physical Variable Feedback

reduction techniques the control ratio is found to be

10 (28 )r s2+ (1+a+10k 2)s+(a+10k2 +10k1)

or , evaluated at the nominal parameter value , a=2 ,

10 (29)r s2+(3+10k2)s+(2+10k2+10k 1)

To generate some sort of performance specifications, sup-

pose it is desired that the system have zero steady-state

error for a step input. Then 2+10k2+10k 1 l0 and the con-

trol ratio is

10 (30)r g 2 + ( 3 +lOk 2 ) s+1O

Now the pole placement is a function only of k2 with k1

being determined by 2+10k2+10k 1=lO. Four cases of pole

placement will be investigated . Hereafter , “plant poles ”

are considercd to be the closed-loop poles of the plant.

~
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Case 1. Plant poles: —2 , —5 ; physical variables.

The plant poles will  be shifted from -1, -2 to

—2 , -5 to provide faster  transient response decay . The

characteristic equation is

(s+2) (s+5) = s2 +7s + 10 = 0 (31)

Equating the plant characteristic equation (denominator

of Eq (30)) with Eq (31) yields k2 =0.4 and thus, k1=0.4.

Case 2. Plant poles: —2.235+j2.235; physical variables.

The plant poles will be placed at —2.235+j2.235

to give a slightly oscillatory response with a damping

ratio of 0.707. The characteristic equation is

( s+2.235+j2.235 )  ( s + 2 .2 3 5 — j 2 . 2 3 5 )  = s2+4 .47s+ 10=0 (32)

with k2 = 0.1472 and k 1= 0 .6 528.

Case 3. Plant poles: —1 , —10 ; physical variables.

For a larger shift to the left, poles are placed

at —1 , —10. Because of its rapid transient decay , the

pole at —10 is considered to be nondotninant. The charac-

teristic equation becomes

(s+l) (s+10) = s2+lls + 10 = 0 (33)

making k2 = 0.8 and k1 0.0.

Case 4. Plant poles: —3.125 , —3.2; physical variables.

Finally , the two poles are placed close together

18  
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at —3.125 and —3.2. According to Singer (Ref 4:88), this

situation has a high eigenvalue sensi t iv i ty .  This test

will help determine the extent, if any , eigenvaluc

sensitivity a f fec t s  system sensit ivity . The result ing

characteristic equation is

(s+3.l25) (s+3.2 82+ 6.325s + 10 — 0 (34)

forcing k2 — 0.3325 and k 1 — 0.4675.

Three observer designs will be considered , each

having judiciously-placed poles. It is horod that this

exercise will provide some guidance for observer poie

selection for minimizing sensitivity to plant parameter

variations.

Observer I. Poles: —6 , —6; physical variables.

Double poles are arbitrarily selected at -6. For

all but Case 3 above this choice places the observer poles

to the left of the plant poles so that the observer

reaches steady state before the plant. Analysis of Case 3

results should suggest whether or not this requirement is

va lid . With a characteristic polynomial of 9 2 +128+36 and

T—I, the observer dynamics matrix , from Eq (21), is

1~ii d 1fl r-i-v~ 11I I — I  I (35)
Ld23 d22J [V 2 _2J

The characteristic polynomial of D is found by equating the

C- determinant of [~ I—D] to zero, or

19
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s’+ ( 3 + v j ) s + ( 2 + 2 v 1 + u 2 )  0 (36 )

Equating the coeff ic ients  of s in Eq (36 ) to those of the

desired characteristic polynomial , s’+l2s+36, V and D are

found to be

r91
v1 — 

Ll6i 
( 3 7 )

r-io ii
D 1 L— 16 _2J (38)

Observer H. Poles: —12 , —15; physical variables.

By solcctinq poles to the le f t  of -10 , the observe r

dynamics will always have reached steady state before the

plant.  A choice of —12 , —1 5 accomplishes th is  objcctivc

plus it provides a large separation between plant  and

observer poles for Cases 1, 2 , and 4. With a characteris-

tic polynomial of s ’ +27 s+ 180 , V and D are computed , a~
before wi th  Observer I , to be

r~~~~~~i (39 )
L’~°J

D2 [.25 11 (4 0)
L— 130 —2J

Observer I I I .  Poles: —3 , — 4 :  ph ys -(ca I variables.

For the third trial , observer poles will be

located in the vicinity of the plant poios to allow some

interaction bet ween the two t r ans ien t  responses . Roots

20
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of —3 , —4 generate a characteristic polynomial of

82+78+12, making

V 
[
~
] (41)

D~~ [_ 5  ii  (4 2 )
L-2 -2J 

-

In phase-variable form the state equations for the

plant in Fig. 5 are derived from the describing differen-

tial equation to be

* [o 11 x + [ol u (4 3)— L-a -a-lJ L’J - -

y — LlO 01 x (44)

The block dIagram for this U

~~~~L~J ’  L~J ’  Usystem is given in Fig. 7.
a+1

The variables to be fed

back arc not the same x 1 a

and X 2  as before; there- Figure 7 . Phase Variabl e Plant

fore , a new relat ionship b ‘tween the control ratio and

feedback coefficients is necessary. Equation (15) can be

solved for x which is substituted into Eq (13) to yield

the general m a t r i x  for-rn of the control ratio

— C [sI—A+ B K ]~~~B (4 5)

_ _

_ 
_ _  --
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Substituting the corresponding matrices of Eqs (431 and

(44) into Eq (45) yields

10 (46)
- s2+ (k2 +3)s+ (k 1+2)

which is the desired control ratio as a function of phase-

variable feedback coefficients.

The necessary feedback coefficients are to be

calculated for pole placements identical to those presented

in the physical variable development using the same pro-

cedure discussed there. It is obvious that for zero

steady—state step error k 1 8  and is independent of pole

placement.

Case 5. t~lant poles: —2, —5; phase variables.

The characteristic equation was s2+7s+l0~0, so

that k2—4.

Case 6. Plant poles: —2.235+j  2.235; phase variables.

The characteristic equation was 82 +4.47 18+10=0 ,

making k2 — l .4 7 l .

Case 7. Plant poles: —1 , —10; phase variables.

The characteristic equation was s2+1ls+l0~0, or

k2—8.

Case 8. Plant poles: —3.125, —3.2; phase variables.

The characteristic equation was 52+6.325s+10_0,

thus k2 —3.325. -

22
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Observer IV. Poles: —6, —6; phase variables.

Solving Eq (21) at nominal parameter values and

equating the coefficients of the characteristic poly-

nomial of D with the coefficients of the desired character-

istic equation , S2 +l25+361I~0 , results in

Vs, — ro.91 - (47)
L0.7J

- D~~ r—~ ‘1 (48)
L-~ 

-3J

Observer V. Poles: -1,2, —15; phase variables.

Repeating the procedures for determining V and D

with the desired observer characteristic equation of

s2+27s+l80_0 gives
L

V 5 — [2.4 1 (49 )
Ll0.6J

D5 [_24 ii (50)
L-108 -3J

Observer VI. Poles: —3, —4; phase variables.

For the desired characteristic equation of

.2+7.+l2_0, V and D-were computed , as before , to be

V. — (51)
L-°•2J

0, — [: 
~
] (52)

23
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To describe the basic plant in Jordan canonical form, the

plant transfer function must be rewritten in its partial

fraction expansion form as 
-

— j~j (~~~ - ~~~ u (53)

The simulation diagram __________________________________

for Eq (53) is given 
+ 1 ~C i

in Fig. 8 • The new —

state variables x1 and a + 10

x2 are not the same as — 
—a

in either of the pre- 
+ I X2

ceding state-variable

forms. The state _________________________________

- 

- 

equations can be Figure 8. Jordan Form Plant

derived from Fig . 8

to be

— [-a 01 x + [11 U (54)- L0 -1J L1J

r~0 -iol
L’~ 

1
~J 

~ (55)

To obtain the control ratio as a function of the feedback

coefficients in this case, the A, B, and C matrices of

Eqs (54) and (55) are substituted into Eq (45). The result

is

10 (56)
r s2+(3+k1+k2)a+(2+k1+2k2)

24 
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For zero steady—state step error , 2+k1+2k2~ l0. The feed—

back coefficients are computed for each case by equating

like coefficients of s in Eq (56) with those of the

desired characteristic equations.

Case 9. Plant poles : -2 , —5; Jordan canonical variables.

The characteristic equation was s2+7s+10_O;

k1—0, k2—4.

Case 10. Plant poles: -2. 235+j2 .235; Jordan canonical

variables.

The characteristic equation was s2 +4.47ls+lO=0;

k1—— 5.056, k2=6.528.

Case 11. Plant poles: —1, -10; Jordan canonical variables.

The characteristic equation was s2+lls+l0 0;

k1—8, k2—0.

Case 12. Plant poles: —3.125, — 3.2 ;  Jordan canonical

variables.

The characteristic equation was s2+6.325s+l0 0;

k1—— l .3 5 , k 2 =4. 675.

Using the same procedure described in the phys ical

and phase variable cases, the following V and D matrices

were computed for the Jordan form observers:

Observer VII. Poles: —6, -6; Jordan canonical variables.

r
25~

_ _ _ _ _ _ _ _ _ _ _  
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r V7 _ rl.61 (57)
L2.5J

D. — r14 —161 (58)
-26J

Observer VIII. Poles: -12, —15; Jordan canonical variables.

r13
‘ 

~~~
De [128 —1301 (60)

~~~ 
—l55J

Observer IX. Poles: -3, —4; Jordan canonical variables.

v, = [~h21 (61)
L0.6J

D~ — ro —2 1 (62)
L6 -7J

Sensitivity transfer functions were computed for

each of the 48 combinations of state-variable representa-

tions, pole placements, and observer designs as displayed

in Fig . 9. The algorithm used to perform the necessary

matrix inversions for Eqs (20) and (25) is presented in

Appendix A. As a means for comparing relative sensitivi-

ties of the state—variable feedback model with the

observer feedback models, frequency responses of the

sensitivity transfer functions were plotted from 0—5

• radians per second. This range is considered to be

26
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representative of the operational bandwidth of practical

control systems. Figs. 10—17 display the absolute value

of the magnitudes of the sensitivity functions for all

the cases. It was noticed that the results for physical

variables and phase var iables were always identical (to

about four decimal places); therefore, only one plot was

used to represent the two data runs for each similar test.

(2 -
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- FRE~ JENCY-RADIANS PER SECOND

~~ Direct state feedback.
o Observers I and IV. Poles: -.6,—6.
o Observers II and V. Poles : —12,—15.
~ Observers III and VI. Poles : —3, 4.

Figure 10. Case 1. Plant Poles : —2,—5; Physical Variables .
Case 5. Plant Poles: —2,—5 ;  Phase Variables .
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* Direct state feedback.
o Observer VII. Poles: —6,-6.
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A Observer IX. Poles: —3,-4.

Figure 11. Case 9. Plant Poles: -.2,—5; Jordan Canonical Variables .
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FREQUENCY-RADIANS PER SECOND

0 Direct state feedback.
o Observers I and IV. Poles: -6,-6.
o Observers II and V. Poles: —12,—15.
~ 

Observers III arid VI. Poles: —3,—4 .

Figure 12. Case 2. Plant Poles: —2.235±j2.235; Physical Variables.
Case 6. Plant Poles : —2.235±j2.2 35; Phase Variables .
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FREQUENCY-RADIANS PER SECOND

0 Direct state feedback.
O0bserver VII. Poles: —6,—6.
o Observer VIII. Poles: —12,—15.
A Observer IX. Poles: —3, —4.

Figure 13. Case 10. Plant Poles: —2.235±j2.2 35; Jordan Canonical
Variables.
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0 Direct state feedback.
o Observers I and IV. Poles: —6,-.~.
0 Observers II and V. Poles: —12,—15.
~ Observers III and VI . Poles: —3, 4.

Figure 14. Case 3. Plant Poles: —1,—lO; Phyilcal Variables.
Caee 7. Plant Poles: —1,— b ;  Ph~so Variables .
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Figure 15. Case U. Plant Poles: —1,— b ;  Jordan Canonical Variables.
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Figure 16. Case 4. Plant Poles: —3.125,—3.2; Physical Variables.
Case 8. Plant Poles: •3.125,—3.2; Phase Variables.

. (

35

- -  
___



— -~~~~~~~~~~~~ -~~~~_ - 
_—,•—.-.~~~~~~~~~ _ 5. •-- • ~ 

-
~~~~~

~~--- - - ----- - - 5  - --5 -

100

• 60
‘S

30

1O~

0 6

• 3 -

I

.6

t- .
.3

.1 I

O 2 3 4 5

FREQUENCY-RADIANS PER SECOND
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Figure 17. Case 12. Plant Poles: —3.125,—3.2; Jordan Canonical
Variables.
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IV. Results and Discussion

To avoid confusion over notation of the different

test cases in this section, an explicit coding is needed to

distinguish the three aspects of the cases: state—variable *

representation, plant poles, and observer pole locations.

Since the results for physical variables and phase vari-

ables were identical in all cases studied, it is necessary

to refer only to one of the two; say, phase variables. Then

the following notation is adopted : (a; b , c; d , e) where a

is the type of state variable (P for phase variables; J for

jordan canonical variables); b and c are the plant pole

locations (for complex conjugate poles b and c are the real

and imaginary parts , respectively) ; d and e are the observer

pole locations. If d and e are not listed , direct state

feedback is implied. When observers are individually men-

tioned by their respective numbers, the type of state van -

able representation and observer poles will immediately

follow as in IV (P; -6 , — 6 ) .

Data Summary

Case 5. (P; —2 , —5 ), (P; —2 , —5 ; —6 , —6 ), (P; —2,

— 5; —12 , — 15), (P ; —2 , —5 ; —3 , —4 ) and Case 9. (J; —2 , —5 ;

—6 , — 6), (J ; —2 , —5 ; —12 , —1 5), (J ; — 2 , —5 ; —3 , —4 ) ,  (3; —2 , —5 ) .

For the phase—variable representation (Pig. 10), all three

observer s exhibited greater sensitivity magnitudes than did

the plant with direct state feedback; in Jordan form
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(Fig. 11) the opposite was true with an increase of two

orders of magnitude in the direct state feedback . The

observer sensitivities were independent of state—variable

H representation. Although observers V (P; — 12 , —15 ) and

VIII (3; —12, —15 ) were the least sensitive, followed by

observers VI (P; —3, —4 ) and IX (J; —3 , -4) ,  then IV

(P; —6, —6 ) and VII (3; —6 , —6 ) in increasing order , none

had a sensitivity magnitude greater than 0.54 in the band-

width of interest; thus the system changes by only half the

magnitude of a parameter variation. Observers IV (P; —6,

—6), VI (P; —3, —4), VII (J; —6, —6) and IX (3; —3, —4)

displayed extreme insensitivity to parameter variations at

about one radian per second; observers V (P; —12, —15) and

VIII (3; —12, —15) were insensitive near two radians per

second, as was the direct state feedback function in phase—

variable form. In Jordan form the d irect state feedback

sensitivity was not affected by this phenomenon . The

algorithm used to generate data points considered only the

absolute value of the sensitivity function . In expanding

the [sI—A] 1 terms, some of the components were suffi-

ciently negative to impart a negative sign to the sensitivity

function for some frequencies. The physical implication is

that the system output deviates in the opposite direction

of the parameter variation . It also means there is a fre—

quency for which the system has zero sensitivity to param-

eter variations.
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Case 6. (P; —2.235 , +2.235), (P; —2.235, +2.235;

—6, —6) , (P; —2.235 , +2.235; —12 , —15), (P; —2.235 , ±2.235;

—3, —4 ) and Case 10. (J; —2.235 , ±2.235), (J; — 2.235 ,

+2.235; —6 , — 6 ) ,  (J; —2.235  +2.235; —12 , —15 ) ,  (J; —2.235 ,

+2.235; —3 , —4). In Fig. 12 observers IV (P; —6, —6) and

V (P; —12 , —15) very closely approximated the sensitivity 
—

function for direct feedback . Observer VI (P; —3 , —4 )

exhibited the sign inversion, previously discussed, at about

0.3 radians per second , becoming extremely sensitive with

increasing frequency. In Fig. 13, observer IX (3; —3 , —4)

was even more sensitive to variations, being over two

orders of magnitude above observers VII (3; —6, -6) and

VIII (3; —12 , —15) . Again , in Jordan form, the direct state

feedback system sensitivity was an order of magnitude

greater than it was in phase—variable form. Observers IV

(P; —6, —6), V (P; —12, —15), VII (J; —6, —6), and VIII

J 
(3; —12, —15) were all very similar with peak sensitivities

4 of 0.3.

Case 7. (P; —1, —10), (P; —1, —10; —6 , —6),

(P; —1, —10; —12 , —15), (P; —1 , —10; —3, —4) and Case 11.

(3; —1, —10), (3; —1 , —10; —6, —6), . (3; —1, —10; —12 , —15)

(3; —1, —10; —3 , —4). The only difference between Figs. 14

and 15 was the sensitivity of the direct state feedback

system. In phase-variable form, direct state feedback was

the least sensitive implementation whereas in Jordan form,

it was increased by two orders of magnitude ; observer

i: • 

—
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performances were identical for the two state—variable

representations.

Case 8. (P; —3.125, —3.2), (P; —3.125, —3.2;

—6, —6), (P; —3.125, —3.2 ; —12 , —15 ), (P; —3 .125, —3.2;

—3 , —4) and Case 12. (3; —3.125, —3.2), (3; —3.125 , —3.2 ;

—6, —6), (3; —3.125, —3.2 ; —12, —15 ), (3; —3.125, —3.2 ;

—3 , —4). In these cases all systems exhibited very high

sensitivities to parameter variations with the observers

being basically independent of state-variable representa-

tion. Observer VI (P; -3, -4) underwent a sign inversion

at 0.2 radian per second; observers VII (3; -6, —6) and

VIII (3; —12, —15) experienced sign inversions at 0.55 and

0.8 radian per second, respectively. The direct state feed-

~~~~~ 

back system sensitivity was much greater in Jordan form

than in phase-variable form.

Analysis

The first question posed in developing this study

concerned the effects of different state—variable representa-

tions upon system sensitivity. The data show that there is

no difference in sensitivity between physical and phase

4 variables and that the Jordan form is always more sensitive

than the former two representations. This does not corre-

late with eigenvalue sensitivity concepts. Reference 4

demonstrates that unity eigenvalue sensitivity is always

obtained with the Jordan form if the eigenvalues are real

whereas, with phase variables, the eigenvalue sensitivity can
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range from less than one to infinity, depending upon the

-‘ pole locations. The following phase-variable eigenvalue

sensitivities (S) were computed for the examples investi-

gated: for plant poles of —2 , —5: S=l, 2, respectively;

for plant poles of —2.235 ± j 2.235: S 0.88, 0.88 ,

respectively; for plant poles of —1 , —10: S=0.22, 1.22,

respectively; and finally, for plant poles of —3.125, —3.2 :

S~55, 56, respectively (Ref 4:88). The phase—variable

eigenvalue sensitivities for the first three sets of plant

poles are all in the vicinity of S=l, which is the Jordan

form eigenvalue sensitivity, and yet the system sensitivi-

ties for those cases vary greatly between the two different

state—variable representations. It is not understood why

this apparent discrepancy occurs. It would seem that low

system sensitivity would imply low eigenvalue sensitivity

and conversely, but the converse does not hold here. The

observer sensitivities, on the other hand, did not vary much

from one state—variable representation to another; only the

direct state feedback sensitivity functions were affected

by the Jordan form .

The second question was that of pole placement

effects upon system sensitivity. The extent of desired

pole placement definitely can change the system sensitivity.

Attempting to place poles close together drastically

increases parameter variation sensitivity; creation of

complex conjugate poles does not have adverse sensitivity

effects. Low system sensitivity is also achieved by pairing

41
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a pole near the origin with one deeper into the left half—

plane. The magnitudes of the feedback gains required to

achieve the pole placements do not appear to affect the

system sensitivities as seen by the duplicate results for

physical and phase variables for which the feedback

coefficients differed by an order of magnitude. There

were no obvious adverse effects from the negative k1

coefficients (which create positive, unstable feedback )

in several of the Jordan form cases as all exhibited the

same high sensitivity characteristics.

The final area of investigation, that of effects of

observer design upon system sensitivity, revealed a definite

relationship between the two factors. The design of

observer dynamics is the most important aspect in reducing
4 5 .

the sensitivity of an observed plant to internal parameter

variations. As mentioned in Chapter II, literature on

observers states only that the observer poles should be

placed to the left of all plant poles for good performance.

Analysis of the test cases in this report indicates that

such a guideline may be too restrictive upon observer design.

In several of the cases involving plant poles of —1, —10,

placing observer poles to the left of the dominant pole at

—1, but to the right of the nondominant pole at -10, achieved

not only low system sensitivity but identical performance in

all three state—variable forms. In general, though, placing

the observer poles to the left of all plant poles does

result in a lower system sensitivity.
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V. Conclusions and Recommendations

Conclusions 
-

The selection of state variables to be utilized in

system analysis does affect the outcome. Physical vari-

ables are the best choice when applicable because they

represent measurable quantities of interest within a system.

If physical variables are not realizable for some reason ,

such as when a derivative of the input (zero) appears with

the n—th state , phase variables yield identical sensitivity

results. Jordan canonical variables should be avoided

because of the relatively high system sensitivity that

results from this form.

In placing closed-loop poles through state—variable

feedback , system sensitivity is reduced when the poles are

separated from each other, especially if one pole is non-

dominant. This result is also seen in Chapter 12 of Reference

1. Observer poles should be placed to the left of all dominant

plant poles as a minimal requirement, and to the left of all

plant poles, if practical, for low system sensitivity to

parameter variations.

The “bottom line” is that the observer can be

designed so that the resulting system sensitivity is as low

as that of direct state feedback , or even lower in many cases.

Recommendations

L Several areas for further research were identified
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during this study . The observers considered were ful l-

order types; that is, the entire state vector was recon-

structed for feedback purposes. It is possible to use

available states for feedback and design a reduced-order

observer to generate only the inaccessible states. The

observer has fewer states and may reduce system sensitivity

since there is less probability of interaction between plant

parameter variations and the observer. There exists a

trade—off between acceptable system sensitivity and the

cost/availability of sensors to pick off plant states. An

investigation should be conducted to determine the sensi-

tivity aspects of reduced—order observers.

Equation (10) expresses the change in output magni-

tude due to a parameter variation , but does not address

corresponding phase ang le changes . In the data summary of

Chapter IV, sign changes were credited with causing zero

parameter sensitivities at certain frequencies. A question

arises as to whether or not it is possible to predict condi—

tions under which the “phase angle sensitivity” (~•/~
p)

causes a sign change in the sensitivity magnitude. If so,

it may be possible to alter some design parameters to create

zero sensitivity at frequencies of known external distur—

bances. Such a capability would be a most useful addition

to control theory.

Another area is that of plants with multiple inputs

and outputs. Luenberger states that the problem of design-

ing an observer for a plant with multiple outputs involves

44

_ _  -5---  - 5.



— - 
~~~ ‘~~~~ 5. 5- 

- -. - - 
5.”—,5--, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- ‘

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-

- - 5. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~ - —~ -~~ 5.~~- -5 --- -5.- - - . — —
I 

5.
. 

5.

a series of observers, one for each output (Ref 6:190).

Since the output of each observer is intimately tied to the
- 

-
~ plant, and hence to each other observer through cross-

coupling, there may be some interesting sensitivity conse—

quences to a plant parameter variation.
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APPENDIX A

Algorithm for Computing Sensitivity

Transfer Functions

The only diff icult  task in computing the sensi-

tivity transfer functions, Eqs (20) and (25), is inverting

the 2n x 2n matrix [sI-A’] and the 4n x 4n matrix [sI—A”).

Obviously, for n>l this becomes a formidable task for hand

calculation and computer routines inherently solve numeri-

cal matrix inversions. Reference 11 presents a convenient

scheme for accomplishing this task , based upon the fact

that

[sI~ i~] ’  = ~~(e
Mt) (63)

There are a number of methods available for expanding a

matrix exponential, but this scheme is readily adaptable

to a digital computer . The four basic steps , each of

which is discussed later, are as follows:

1. Construct the Vandermonde matrix , A.

2. Compute A ’  - V.

3. Construct the component matrices, 
~k ~~~~

, of M.

4. Expand Eq (63) as

— q mk~
l A t

X(.Mt) — E E 
~k j

~~~(t ie k (64)
k—i i—0

(
~-

48

_ _ _ _  
_ _ _  _ _ _  _ _ _ _ _ _  _ _ _  _ _ _  

- .4—. —-— ~ -- 5--..-— _ ___ i__ - — - - - -. ~~~~~~~~~~~~~~~~~~~~~~ , ~~~~j i .st  —- !~_~~5. - - - — A. ~~~~~~



r~~~~~~~~~~~~

”

~

” 

~I~Ii~’I: 
-‘-i 

:~~~
-
~

——
~ ~TiT ~ -

where q is the number of distinct eigenvalues of i~i and

is the multiplicity of in the minimal polynomial of

M. (See Appendix B for a brief discussion of minimal

polynomials.)

A useful property of the matrices A’ and A” in

Eqs (20) and (25) ,  respectively, is that they have the

form

- 
rM :ol

M ——— - ——— I (65)
• t~~M I

L~~ 
N
j2 x 2n

where n is the dimension of each partition of ~~~. The

eigenvalues of ~ are simply the eigenvalues of M, each 5.

repeated once. The characteristic polynomial of i~i is
- 

u defined as

q
6(A) — det (AI—M ) = 11 (A

~Ak)
2’
~
k (66)

k—l

The Vandermonde matrix of ~i is constructed from the
aigenvalues of i~ as r rows of the form

(1 Ak x ... A
k
2
~~~
’1 (67)

dA~ 
k

where k—l ,2,...,r and j.O,l...,2nk—l for r real , distinct

sigenvalues and q—r rows of the form

Real (.~.?3. [1 Ak Ak
2
~~.• 

Ak
2n_l

l)

- C -
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Imag (~~23. [1 Xk X k~~ A k ]) (68)

where k—r+l , r+3, ... q—1 and j=O ,l,...,2nk—l for complex

eigenvalues. The odd subscript accounts for the fact that

complex eigenvalues occur in conjugate pairs as *

A k — ~k~j~
t1k~ Ak+1 — a]~~jWk

Once the Vandermonde matrix is complete, Step 2 can be

accomplished by any matrix inversion routine.

Computation of the components, 
~k ~. 

of M,
depends intimately upon the form of the Vandermonde matrix

for each system. 
~k ~ 

is, itself, a partitioned matrix of

nxn component matrices, Zk ~~. 
and ZPk ~ 

of M and 3M/ap,

- respectively; that is,

- ~~ 1 (69)k, i [ ~~k,i I Zk,i ]
2n

where ZL. — E M~~
1 V4 ~ k~ 0,1,...q; i=O ,l,...,mk—l~~~~~ j—~

(70)
2n 3Mand 

~~k,i j—2 
V~~f~

k—0,l,...,q; 
~~~~~~~~~~~

(71)

The subscript fp in Eq (71) acts as a counting index. For

•xampie , in ZP1 0  fp—l ; ZP1,1 fp—2 and so forth up to

_ _  

_ 
_ _  _  - _Ii
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fp—4n . It should be noted that fp remains f ixed over the

entire summation for each component matrix ZP k ,j . The

subscript f in Eq (70) is not so simply stated . It is the

index number of the row in the Vandermonde matrix that

corresponds to the i-th derivative of the k-th eigenvalue.

This is better understood through an example. Assume

n—4 and that there are four distinct, real eigenvalues of

14. Then q—4, r—4 , and n1 — ~2 n3— n —  1. The Vandermonde

matrix is

A 1 A 12 A 13 A 1~ A 15 A 1’ A~’ 
—

0 1 2A 1 3A~ 4A 13 5A 1~ 6A~ lÀ 1’

, ~.L A 3  A 2  . .
A —  0 1  2A2 ... (72)

a ~I & A 3  A )  .

0 1 2A , . .
a ~£ A~~ A~~ . .
0 1 2A., . .

In this case, for Z1 0-’f—l (the 0—th derivative of A 1 is

row 1 of A); Z2 0~f3 ; Z3 ~- f 5 ;  Z , ~f_7• If, say, A 1 ,
S

is repeated once, then q— 3— r and n1 —2 , fl2~ fl 3~ 1 and the

Vandermonde matrix is

51
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1 A 1 A 12 A 13 A 1~ A 15 A 1’ A 17 
—

0 1 2A 1 3A 12 4A 13 5A 1~ 6A 15 7A 1’

0 0 2 6A 1 12A 12 20A 13 30A 1~ 42A 15

• 0 0 0 6 24A1 60A 12 l20A13 2l0A 1’
A —  (73)

a ~ ~~2 -
J A~~ ~~ . . • 

—

0 1 2A2 . .
1 A 3 A 32 . .
0 1 2A 3 ...

For Z1 0- f l ;  z1 ~~~~~~~~ (the first derivative, of A~ is row

2 of A); Z2 0-~f5; Z3 ~÷f=7. The pattern holds for any

case. Once Zk,i and ZPkj  have been computed, the component

matrices . are formed as shown in Eq (69). It should be
t 

,1.

noted that for each ~ • there is a ZP but not neces-k,i k,i

sarily a Zk ~~
. In such cases the missing Zk ~ 

is an, , 5.

nxn zero matrix. 5.

Th~ expansion of Eq (60) is straightforward once

the component matrices have been defined. The exponential

expansion is substituted into the sensitivity transfer

function equation. The remaining operations are simple

matrix algebra.
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APPENDIX B

Minimal Polynomial

The characteristic polynomial of a matrix N is

defined as

q
8(A) = det (Al— H) = IT ( A — A g ) (74)

k=1

where q is the number of distinct eigenvalues of M and

nk is the multiplicity of Ak in M. The adjoint matrix of

M is defined to be the transpose of the matrix of cofactors

of M (see, for example, Ref 12:211). The largest factor

that is common to all elements of the adjoint matrix of

(AI—M) is called g(A) and is at least unity; that is,

a . . . a b . . . b
1~~1 I,n 1~~1

adj(AI—M) = = g (X) . (75)

an,i • ~~~~ 
b~ ,1 . bn,n

The minimal polynomial of M is calculated from

m (A) = 8(A)/g(A) = 
~ 

(A
~
Ak)~~ 

(76)
k—l

5.

) where 
~k’ 

nk 
> ntk.~

ll is the multiplicity of Ak in the

minimal polynomial of M (Ref 13:65).
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State—variable feedback is a nodern control theory technique that is
employed in system design to place closed—loop poles to achieve dezired
performance characteristics . Two problet~s associated with state—variablefeedback are physical inaccessibility to plant states and output sensitivity
to plant parameter variations. In this report an observer is employed to
reconntruct all plant states. The plant—observer system is investigated
with respect to sensitivity aspects of the following three areas: state— —
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~~riable representation, extent of pole placement, and observer dynamics
design. A comparison between physical, phase, and Jordan canonical variables
indicated physical and phase variable representations yield identical
sensitivity functions; Jordan canonical variables result in greater sensitivity
than physical and phase variables. Placing plant poles close together creates
a high system sensitivity to plant parameter variations; separation of poles
reduces sensitivity. As a minimal requirement for low system sensitivity,
observer poles should be placed to the left of dominant plant poles; further
reductions in sensitivity are achieved by placing observer poles to the left
of all plant poles. -
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