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SYSTEMS DEFENSE GAMES: ;

COLONEL BLOTTO, COMMAND AND CONTROLY

by :
Martin Shubik and Robert Jepes Waber 1
J. SOLONEL BLCEDITT GAMES
The first example of what is usually referred to as a Colonz2l
Blotto game appears tc have been given by Borel:*® a defender is Jefend-

ing three points against an aggressor, and the sides have ecual forces.

il . Kb, o . <t

The objective of the aggressor can be formulated either eas:
(1) Maximize the expected number of points captured,
or (ii) maximize the expectation that a majority of points are

captured.

e s it i 20

For three targetrs and equal forces these objectives are essentially

the same. i

Games involving the firs: type of objective were generalized

'A

by Tukey and several others™** to a class of assignment gomes with =aili- '

tary applications known in tne l{iterature as Colonel Biotto games. Quoting 3

i

"This work relates to Departuent of the Navy Contract N00016-77-C-0518J
fazued by the Office of Naval Research under Contract Authority NR 047-006.
llowever, the content does not necessarily reflect the position cr the policy
of tne Departaert o6f tlie Navy or the Government, and no officisl endorse-
oent should De infarred.

The United Statas Govermsent hag 2t ledst & royalty-free, nonexclu-
sive and {rrevocabla license throughout tha world fcr Government purvoses
¢c publish, translets, reproduce, duliver, perform, dispose of, and te
xuthorixe otrérs so to do, all or any porcion of this work.

*Borel (1938).

***Tukey (1949), Blacket: (1958), Beele anc Heselden (1962), Dresher (1961),
Gross (1950).




Beale and Hesselden:

A Blotto game is 2 zero-suam game involving
2 players, vho ma”’ be called 4 and B, and Yo
K independent battlefields (which asy, in par-
ticular, represent targer arcas). A has N

units of force to distribute between the battle- 4 'i
tields, and B has N unitc. Each player 7 Vol L4 1

must distribute these forces betveen these battlc-
fields, once for all, and w!thout knowing his
oppcnent's distribution. Then 1f 4 sends %

there is a payoff of Pk(:ck, yk) from B to A

at this battlefield; and the payoff for the '
game as a whole is simply the sum of the pay-
offs at the individual battlefields.”

unite and B ¥ units to the kth battlefield, /67

In this paper we consider a further generalizatior which {s of
inportaiace to a class of military problems. Specifically ve wish to take
iuto account the possibility thsat there exists a complementarity among
the pos:s beinyg defended, i.e. the "score” is not determined merely by
adding up individual target values but 1is determined by ccnsidering the
worth of capturing or "neutralizing” various configurations of targets.
Our generalization includes the classical Blotto games &s well as gaaes
involving objectives of the sacond ctype (i1).

We congider the possibility that the defending forces may be of
different glze than the attacking forces. The minimum defease force re-
nuirement fer ¢ guarzitesd defsnas con e calculoted (if such a defense
is possible). If the defending forces are less than this mirimum then
our concarn is with the level of expected success of the defenders.

By considering complementarity among targets we are¢ in & position
to model netwocrks and network failure. Given the redundancy in systems
such ss telephone and other communication systems (for example, sarly warn-

ing netvorks and command and control systwms or electrical power grids),

"Besle and Heselden (1962), p. 65.
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it is natural to consider howv many components car be knocked out before
the systea can no longer perfors its funcrion. Furthermore we may wish
to consider cost tradeoffs between built in redundancy ant defense costs.
1f one or even a few nodes of a network are inactivated messages
may be rerouted or power redirected. Bayond some critical level however
the system is no longer viable. Although in many instances -,stems degrade
in a continuous manner, for many purposes it is sufficient to consider two
states corresponding to "on" or "of f"; that i{s, to functioningor not functioning
at an acceptable level. For example a minimal size for a defensive second
strike force may have been selected in advance and even though some retali-
ation might be feasible with fewer weapons than the minimum level selected,
regarding the overall system as merely having two states may be an adequate
approximation for the purposes at hand. We consider the general case but
investigate the more special case as well. Surprisingly it provides mathe-
matical links among military, voting and circuit design problems.*
2. SYSTEMS FPIRFOFMANIE AND THE CHASACTERISTIC FUNCIION
Ar. n-person game in coalitional form is described by & charcrter-
tarie furcticn v(+) defined on all subsets of the set of all players
N . 1If one is considering networks or battlefields or key targets, then
the v(S) may be interpreted as the vaiue remaining in the system if only
the set of nodes £ is held. (In traditional cooperative game theory it
is frequently assumed that the characteristic function is superadditive;

i.e. 1f S and T are disjoint, then v(S) + v(T) < v(S U T) . However,

*Besle and Heselden (1962), Young (1977), Dubey and Shapley (1977).
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in & competitive contoxt this assumption may not be reasonable. For exemple
if one is protecting a network of Doowsdsy devices, the characteristic
function may assign a value of 1 to every nonempty set.)

The v(S) reflect in an extremely general way the many types of
complementarity which can exist among the various combinations of points

in the network.

Soluticme to James in Ccoperstive Form

ts
»
LYY

There are many different solutions which have been suggested by
game theorists for games in coalitioral form. They all reflect various
aspects of dealings among cooperative players with different goals. Here
we note the Yo ué 87 uticns and the nuclec us which can be given natural
interpretations in terms of a military problem of defending a system with

nodes. In order to give this interpretation in detail ve must reform-
ulate the original n-perscn game in coalitional form as a two-perscn ncon-
cooperative game. We do this in Section 3. Prior to doing this the cooper-
ative solutions are defined and jilustrated.

The S5na;léy vaue® awards to each individual his expected marginal
vorth on the assumption that all individuals enter all coalitions in a
completely random order. The smount assigned to an individual ¢ may

be described s

() o, =T 1 osieelle Eron g )

Consider the 3J-person game with a characteristic function as follows**

*Shapley (19%9).

**The notation v(ij) stonds for the worth of the set consisting of 1
and j . We shall at times omit the draces from one-elesent sets.
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v(l) ®* v(2) = v(3) =0
v(12) = 1 v(l)) =2, v(2)) =3}
v(123) = &

A siwple cslculation gives the Shapley value of this game as " - s/6 ,
- ® !
‘', 8/6 sand L2 11/6 .
A different value sclution originally applicable only to voting
games vas suggested by Banzhaf.” Here an individual { may be regsrded
as a "switch" with on-off probabilities of 50:50. We then use the same

type of marginal consideration as before, obtaining

(28) 8, = 1 —sluisvi)-v(s)) .

Sev\t 2
The ei vill not necessarily sum to V(AN) 4in this formulation, hence
if we wigh ve can define a "normalized Banzhaf value" as

B

T 'I'ls

j=1 Y

Applying these formulae to the example above we obtain for the
unnormalized values 8 = (1, 3/2, 2) , or B8' = (8/9, 12/9, 16/9) .

Instead of regarding the probabilities that an individual will
be "on" or "off" as 50:50 we could consider them more generally as given

by t and 1-t where 0 <t <1 . A genersl class of values has been

considered with:

d, = t? (1-6)™" " Ywisvi) - vis)) .

I
Sci\1i

*Banzhaf (1963).




The 3hapley value is simply the unveighted average of ell of these "t~

values."”

Dubiy and Weber have shown that there 1is s wheie claas of (not
necessarily symmetric) value solutions® which includes both the Shapley
and Banzhaf vasiues as special cases; the solutions differ from sach cother
in the weights or probabilities platud upon the formation of the different
coalitions. Why one should choose one sat of veights over arother appears
to be a probiem better ansvered by the needs and reality of a specific
sodel than one amenable to purely a priori considerations.

The nerles ud is essentially the center of gravity of che core
of a game, 1if a core already exists, or it is the point at which the
core first appesars if a ccorelese game is appropristely modified.

In order to make this statement more precise the ércees of a coalition

S , whan vieving a prospective payoff vestor ¢ = (a I ar) , 18

1.
defined as

(4) ec(a) = wis) - .ani .
teo

The excess is a measure of how much more (or less) a coalition S can

claim for itself in comparison with what S5 ohtains at the specific im-
putation a .

The nucleclus is the imputation at which the maximum excese of
any coslition i . minimized. (Nonuniqueness is resolved by successive
sinimization of the nonmaximal excesses.)

Por the game above, the imputation a = (al. az, 33) that sinimizes

the maxisum excess is the point (2/4, 5/4, 9/4) , for which

'Duboy snd Weber (1977). 1In Dubey, Neyman and Weber (1978), it is shown
: that the additional requirement of symmeatry yields precissly the family
§ of all weighted averages of t-values.
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In thka remninder of this paper we will not daal with the ous leclus.
However in slightly different models than the ones veed have it plays an
]
important role.
The solution concepts above appesr to offer different ways for
ass: ining values or worths to the components of the game, dut we have
given no indication of how to link these valuation schemes with competi-

tion or conflict. We do this in Section 2.2,

2.2. The Noncooperatie e

We recast the gase given in chavacteristic fuaction form as though
it vere & two-pereon zerc-susm gams played batween two opponents, a de-
fander and an attacker. The n players in the criginal game are regardud
as nodes or individual targe:is io a netw.k that tha defender 1s trying
to protect and the attacker is trying to destroy.

There are severs) diffsrent models of combat at & ningle target
that we can choose. The validit: of different models of combat undoubtedly
depends directly upon the type of target &nd the nature of attacking and
defending forces. Specific mathematical forms to describa the battle

outcoms at a single target are discussed in Sectionm 3.

*Shubik and Young (1978).
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Let -xl. esay ‘,5 :wd "l' ceve By te the sssigrments of forces
of the defondrr snd sttachar to the =  targets and let f}!'j' y.: be
the function (as yet unspecified) which indicares the ocutcoaw of the battle
at poing J . A matural interpretstion which we take ot this time s
that 1t cpecifies the probedility that the defender retains point
Assume that the goal of the defender is to seximire the (expected)
effect.veness of the surviviag configurstion of targete. The prodadility

that the targets in the set . survive, vhile all others are desircyed,

fe o - T2 S 1-7.'%., #./. - Therefore, 1he expacted effective-
v.'"i‘ * ..‘.: - - .

neas of the surviving collection 1s
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et & and : be the respective amounts of strategi. rescurces
(for enample, troops or ballistic/anti-ballistic missiles) held by the |

defender any. the attacher. If we assume that the interests of the attacher

are directly opposed to those of the defender, then we have 3t hand a
IWO-PEroCn 2ero-suk game. The defander may cholse ooy allocation

I w ‘:l, I of resources, subiect tc the constraint that ':_ .

-

Similarly, the attacker may choose any allovstion o « PIRREERE - for

which ... =« 5 . The payolf (to the defender) is . -, .

-

f we suspend the interpretaticn ¢! the functions . as fadicating
probabilities, we find that this competitive game directly generalizes
the traditional Colonel Bjlottc games, as described in the firat section
of this paper. Assuse that tha underlying characteristic function in

additive, eo that v’S) = [ v'k) for all SC & . Then
kel




"
clx,y) = { f‘(xk, yk)-v(k)

k=1
By tdentifying Pk(‘k' 'k) vith fk(xk’ yk)-v(k) (for example, by tak-
ing Fk - f‘ and v(k) = 1 for all k ( N ), we may obtain any classi-
cal Blotto game we desire.

Prior to investigating the two-person zero-su= game, it is desir-
able to descridbe some wodcls for individual battle outcowes. These ave
critical for calculating the probsbility of the capture or destruction
of sn individual target. It is this tactical infcrmaction wvhich is needed
as & basls for overall strategic command decisions concerning allocation
of forces.

SATILE NJELS

[ 29

It may well be reassonable to state that the probability that a

target _ i captured or destroyed is a function ‘.'x., yj) of the
resources expended in attach and defense by the two sides. The actual
appearance of this function is an empirical question which depends upon
target type, force aix, doctrine used, morale and many other factors
which cannct be stated ir Lacas.

A listing of ths various dattle models vhich have been considered
togrther with a critical evaluation of their validity is beyond the scope
of thic paper. Such a study worid be of considerable worth but dves not
sppear 20 be aveiladble. Even Napoleon's dictus that Cod is on the side
of the ntrongest battalion does not appear . be doroe out when the sta-

tistice of tihre size of forces of victors aad losers of major battles are

compared.®

®See Dupuy (1977), 3. 89.
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For the purposes of this paper we consider a simplified clasc of
models vhere the attacker and defender have homogeneous resources; hence,
force mix problsms are set aside.

In particular we consider

m
(5) fx,y) = - AL 5 Unless =0, y=0
vy o+ (l-yly

=y if z=0, y=0.

Y wmsy be interpreted as an indicator of the natural defensibility
of the target. If x =y , then [flx,y) =y .

m reflects the importance of the difference in size between the
attacking and defendirg forces.

The homogeneity of the function [ allows us to concern ourselves
with the ratio k = A8 of defending to attacking forces, rather than
with the specific amounts A and B .

Surprisingly, at one extreme in the class of mechanisms sugpested
by (5) we have a mathematical analogy between an economic marker and a
kill c¢. capture protability. At the other extreme the Colonel Blotto
capture conditions appear, and we observe a mathematical analogy between

* This

combat and a peculiar auction known as "the dollar auction.”
auction serves to illustrate problems in escalation. It is discussed

further below.

“Shubik (1971).
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3.1. Proportioml Bid and Xill Probabilities
If weset y*o]1 and me=1 then (3) becomes:

(6) fiz,y) = ;f; .

This condition can be stated as "you get in propor:ion to wvhat you pay."”
Suppose for example that there is a8 single target. Then in a
military context (6) gives the provadbility that the defender wins. Al-
ternatively ve may consider an economic context as follows: Imagine that
instead of a single target there is a single good to bc scld. PFurther-
unre consider that the good is divisible (for instance a thousand gallons
of gasoline). Interpret the xr and y as sums of money bdid for the
good. Then '=+.. may be regarded us an overall price, and the price
divided into the amount of money bid by an individual indicates the pro-

portion of the good that individusl receives.®

3.2. Zlolone: Blotzo Models
Set Yy =1/2 and let m - = . Then (5) becomes
1l 1f = >y
flx,y) =
7) 1/2 1f T ey .

0 it T <y

*Shubik (1973), Shapley and Shubik (1977).
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The function in (7) presents the crudest form of "superior forces"
model. It states *hat superior forces will win with certainty.

If one imugines that the force. on each side are essentially inte-
gral (for example the defender has m battalions and the attacker has
n battalione and an assigrment of fcrces must always be made in integral
units) then the force-allocation game can be solved as a wmatrix game.

If one allows for a continuous distribution of forces, all except a few
highly special cases are difficult to analyze fully.*

A natural question to ask is whether the finite models show nice
limiting behavior as the grid is made finer. That is, suppose we allcw
the splitting of battalions into brigades, or even into individual troops:
as we consider closer and closer approximates to continuous distributions
of forces do the solutions behave in a regular way?

The original Blotto games use the battle condition reflected in
(7) together with the further simplification that the values of the tar-
gets are independent. This is equivalent tn stating that »/(«) {is addi-
tive; that is,

v(S) = [ v(i) for all SCW.
1S

Here by having a general characteristic function v(+) and using
the battle conditions of (7) we describe a much more general class of
Blotto games. Unfortunately,if resources of the defender and attacker

are the same or even close, in general there are no pure strategy solutions

*(coss (1950), Beale and Heselden (1962).
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to these games. The existence of pure strategies, as is shcwn elsevhere,*
will depend upon a relationship berween the relative size of forces

k and the exponent m in (5). In particular, as has already been noted
by Peyton Young (in a different and more specialized context),if k is
large enough then the Colonel Blotto game will have a pure strategy solu-
tion.

It is clear that whenever the relative size of the defending force
to the attacking force is such that the defender can guarantee the allo-
cation of superior forces to the defense of all n targets there will
be a pure strategy solution. This is correct but trivial and suggests
that a better model is called for. 1In partizular a natural extension of
the model which is discussed in Section 5 relates the cost of the defend-
ing forces to the value cf the targets defended. In the formulation above
the forces are given and their cost is not calculated in the payoffs.

We noted at the start of Section 3 that the Blotto game forwula-
tion could be related to a peculiar form of market. The analogy 1s not
as far-fetched as it may seem at first glance. In a normal price market,
individuals commit resources in the form of money and they receive goods
in proportion to the amounts bid. 1In an auction market individuals com-
mit resources in the form of promises to pay; the individusl who wins
must provide the money bid and obtains the prize, while those who lose
make no payments. In a military engagement both sides commit their re-
sources and, although only one side gets the prize of victory, both must
pay.

The dollar auction is an elementary game in which someone auctions

*Shubik and Weber (1978).
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off a dollar. Bids are sequentislly accepted (in units, for example,
of five cents). When no bid is entered in a fixed interval of time the
game ends, and the dollar is given to the highest bidder in exchange for
his bid. There is, however, the additionsl rule that the second highest
bidder must also pavy the auctioneer the amount of his bid, and obtains
nothing. When this game is played with open se2quential bids it provides
a classical example of escalation. Suppose, for example, that 4 has
bid $§1 and B has bid 95¢. B way decide to bid $1.05 in order to cut
his loases to 5¢. Using the szme reasoning A may then raise his bid
to $1.10, and so forth.*

If we consider a similar game, played with both individuals making
single simultzneous bids, then the relation to the Colonel :lotto game

emerges. Suppoue esch of the two players has $2. We use as the payoff

functions
l-x if x>y

(8) EF ix,y) = % -z if x =y
-x if z <y
1-y if y»>«
1

and Pz(x,y) =(5-y if y==2
-y if y<=x.

*Shubik (1971).
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This formulation implicitly assumes that there is a direct and simple
relationship between resources committed and their costs. This is clearly
true in the dollar auction. 1In a battle ﬁovever, one might at-
tribute some valua to victory, but there is a difficult sroblem in cast-
ing the value of victory, the rescurces coamitted and the costs of the
resvurces in commensurate units. We return to this probles in Section 4.
A relationship between auctions and Blotto games haa been remarked

upon before by Sakagulhi.*

3.3. A Corrent on Ccnflict M:dels

Zero-sum games can be qualitativelyclassified, according to whether
they have pure-strategy optimal solutions, or require the use of randomi-
zation for optimal play. Pure-strategy solutions to a ccmpetitive de-~
fender/attacker game are closely related to the t-values of the under-
lying characteristic funciicn game,

Specifically, assume that t:e samc outcome function [f(¢,+) de-
scribes the situationat all n targe~s (battlefields), and further assume
that f 1s homogeneous cf degree zero (s0 that fiz,y) = fluwr,ay) for
all ¢ >0 ). Let the initiel resources of the oppcsing sides be ./
and B, respectisely. Then, 1f both sides have optimal pure gtrategies,
these strategies must be resource allocations proportional to the f(A,5)-
value of the underlying game.

Furtherm. ‘e, let f have the form f(x,y) = yxm/(yzr7+ (l-y)ym)
Then, for all sufficiently small values of m , the allocaticns propor-

tional to the f(4,B)-vaiuc are indeed optimal. (Note that small values

*Sgkagushi (1962).
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of m correspond to outcome fu~ctions which are relatively insensitive i
to small differences in opposing allocations at a target. It is not un-

reasonably to expect such a situation to occur.) i

: Further datails concerning these results are presented elsewhere.” 4

4. THE COSTS OF SYSTEMS DEFENSE
5 "What price freedom?" is a saying that is difficult to operativnalize
for political philosophers, for Department of Defense budget proposers,

or for economists.

A model that links the value and the cost of defense is presented

sl tn AT TR RN T e et S i bl it

here and a different model is also noted in Section 5.

Here we consider the value of defense¢ in relationship to its costs.
In Section 5 we take the costs of defense as given but consider the pos-
sibility of trade~offs between esystema design and the defensibility of

a system. (From the point of view of modelling the process of defense s

A 3

the model here is far less sstisfactory than that in Section 5.)

At a high level of abstraction we can consider four major factors

SaiinatT

in the description of the defense of a system:
(1) The military or societal "worth” of defense;
(2) The type of forces, quantity of forces, and force-structure

usad in defense;

(3) The cost of the forces;
(4) The "hardness' or "defensive strength" of individual

targets.

*Shubik and Weber (1978).
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The models in Sectior 3 essentially avoid the probleme of compar-
ing value and cost by portrayiang value in the characteristic function
and specifying the avai.atle attack and defense forces. Thus the military
resources snter only 2& boundary conditons on a ‘orce assignment problem,
zather than as resources whose costs must be taken into account in the
psyoffs. By using this ‘ormulation there is no need to compare vilue
and cost.

In sccnomir markets involving bidding or prices the mechanism is
explicitly designed to include value and cost in the payoffs. If there
is some item selling at price p and au individual buys x units of it,
paying in some other commodity of which he has a supply ¥ , then his

payoff is given by:
¢(z, M-pz) .

If we were to regard M as a money which the individual values

more or less at a constant worth we might write his payoff as:
‘(x)*M'pI.

We can easily modiry the games of Section 3 to include costs in
the following manner. The defender and attacker first each select force
levels kl and kz » incurring costs of cl(kl) and cz(kz) . They

then each assign forces and the payoffs are given by:
9) P1 = v(5) - cl(kl)

for all S .
P, = v(s°) - e, (ky)

vhere the v(S5) 4s the worth (in monetary units) of the set S of targets

Sl Bt e s 11
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defended successfully. (In analogy with our earlier zero-sum model, we
could alternstively defive P, = -v(S) - o,(k,) ; 4f v is constant-
sum, these twvo approaches are equivalent.) This is a two-stage noncon-
stant-sus game.

The fact that the above game formulates wel)l as a two stage pro-
cess should call sttention to the possidbility that in actuality the two
stages are separate, inboth time and bursaucratic control. The problem in

8 defense department in dealing with the government as a whole is to select

k.

g incurring the budgetary expense ci(ki) . The problam of the com-

sander, having been presented with forces ki » 1s to allocate these
forces wvisely.

From the viewpoint of analysis it thus seems to be reasonable to
regard the models of Section 3 as worth pursuing at the level of command
and control but to consider the type of mcdel suggested by (9) as a dif-

ferent level of decisionmaking which involves deep problems in the modelling

of dafense budgctin;.'

5. THE HARDENING OF TARGETS

In order to illustrate the preceding considerations, we analyze
a simple exsmple. Assume that the defender seeks to protect three sites,
at each of vwhich several anti-ballistic missiles are siloed. If the at-
tacker destroys any two (or all three) of the targets, the overall defen-
sive system will collapse. The first site houses fewer missiles than
the second, which in turn houses fewer than the third; although any two
surviving sites wvill yield an adequate system, the survival of all three

provides even greater security. We model this situation with a charac-

*Hitch and McKean (1960).
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teristic function v , which satisfies V(123) = 4 ; V(12) =1 ,
v(i3) =2, v(23) =3 ; v(S) =0 if |S| 1.

Assume that the attacker and defender possess comparable amounts
of strategic resources; say, A = B =1 . Lat the outcome of conflict
at site k be represented by the function pk(z.y) - Yk.rm/(vk:"# (1-vk)y”) s
for some relatively small value of m (that is, assume that equal fotces
engaged at site X wil)l yicld & result favorable to the defender with
probabilicty Yy 0 and further assume that small differences in troop as-
signments lead to only small changes in this probability). The parameter
Y; 1ind*-ates the "hardness” of the target at site k --its natural strength
against attack. The optimal allocatinn of strategic forces by each side
will be projortional to the (vl. Yoo 73)-valuc of the game v . Hence,

this allocation will be proportional to the vector
Ba (v, +2v, - 2,4 Yy + 3V, = 2V47,, vy + 37, - 2’1’2)

In particular, if we initially have Y,* Y, "V, 1/2 , the optimal
allocation for each side is (2/9, 3/9, 4/9) .

Now, assume that additional capital is available to the defender,
which may be used to harden any of the targets. Indeed, sssume that an
investment of Ack units of capital at site k will yield an increase
of (1-yk)-Ack in the hardness of target k ; that is, ayk/ack - (1-vk) .
A natural question is how best to invest the additional capital.

Assume that the defender allocates his forces according to
T = (xl. P :3) » while the attacker's deployment is y = (yl. 7% y3) . |

Then the value of the outcome of the corpetitive game, to the defender, is




20

Dlx,y) ® piPy + 2p1P3 + 3PaPy = 2P F by »

vhere each Fi is evaluated at (:k, yk) . The optima) strategies are
' a yts e/{ei . Therefere, the rate of gain from investment in the

hardening of target Xk 1is

o 3y

[} al k k
o—(Z%, y*) m (2%, y*)ee—(z*, y*)exT—
o %y 4 3y

= (8,/]8,):1:(1- v, ! .

The best investment is in the target (or targets) for which this expres-
sion is maximized. But the expression varies with the parameters 71 ’

Yo and vy Hence, if we begin with all Yi equal, it is best to
initially invest in work at the site for which Bk is maximal; this changes
£ as wvell as Y o after vhich we can determine the ' ~t target for
further investment. Beginning with Yp " Y=Yy, 1/2 , we obtain the
results indicated in the figures. (As the available capital increases
without limit, the value of D(x", y*) approaches 4, and the three sites

attract nearly equal proportions of the capital.)

Dix*, y*)
(vilue of game
to defender)

2 b =
- 3.38
2.22 2.74
1.92
1.77
1.25 9
—t - — — - - —+—capital
0 .087 .162.26 .63 .84 1.32 2.37 4.49

R
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Proportion
of capital
invested i
in each site J
------ 1 :
—2/3
1 2% 3% ... !
43% j
392 i
352 212 _-:1/3 ;
152 2 132 *
/ / ) i
0 - —— + -+ ! +- > ica %
.087 .182 .26 .63 .84 1.32 2.37 4.49 8P

This model is presented merely as a simple suggestive example of

the type of computationwhich, although not easy, appears to be feasible

)
!
and relevant to studying tradeoffs in defense, in hardening of targets, 1
and in redundancy in systems. :
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