ADAO53959

Bolt Beranek and Newman Inc.

Report No. 3806

Planning for ACCAT Remote Site Operations
Quarterly Technical Report No. 2, 15 September 1977 to 15 December 1977

DDC
20

April 1978 A
MAY 15 1978

. e E

Prepared for:
Defense Advanced Research Projects Agency

coPY

AD No.-

(V¥
=
(W
,F Approved for public release;
Distribution Unlim@goc.!

p e |

[S——

BBN Report No. 3806

Planning for ACCAT Remote Site Operations

Quarterly Technical Report No. 2
15 September 1977 to 15 December 1977

Sponsored by:
Defense Advanced Research Projects Agency
ARPA Order No. 3175.8

Monitored by:
Naval Electronic Systems Command
Contract No. N@@@39-77-C-3239

Contract Period: 14 June 1977 to 13 June 1978

Principal Investigator: Robert H. Thomas

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied
of the Defense Advanced Research Projects Agency or the United
States Government.

ISTRIBUTION STA K]

Approved for public release;
Distribution Un!limited

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

4 REPORT nocuuemmon PAGE S e

T ~ REPQ ’r SOVT ACCEISION WO] 3. WECIPIENT'S CATALOG NUMBER]
i M
| A BEN_Sopumitin, - 38 6
¥ J 4. TITLE (end Subtitte) 5. tvngr niron'r & p;:too COVERED *F’ :
/“' Planning for ACCAT Remote Jite | / {j Quarterly Xechnicaly-ep nD,Qi’
{ (ﬂ Op?Fatlons . n 1/ 6. PERFOMING ORG REPORT NUMBER)
> - \ o7 e- e - :/
7. AUTHOR(e) > N] % CONTRACT OR GRAWY NOMBER(y) %
R. Thomas /}|Kobert /Thomas §39-77-C~9239)
H P. Johnso shnec o A/ ;LJ) ;
9. PERFORMING ORGANIZATION NAME AND ADDRESS \f . PROGRAM ELEMENT, OJECT TASK §
Bolt Beranek and Newman Inc. - - s dn b I
. 50 Moulton Street f
Cambridge, Massachusetts 2138 J :
11. CONTROLLING OFFICE NAME AND ADDRESS k ' ;
2. MONITORING AGENC‘Y NAME & ADDRESS(If dilferent from Cﬂlml‘"—n. Oftice)
Uncla851f1ed
[18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDOULE

e
16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimiied. It may be released
to the Clearinghouse, Department of Commerce for sale to the °
general public.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different irom Report)

18. SUPPLEMENTARY NOTES
This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 3175.8.

19. KEY WORDS (Continue on reverse aside if y and identify by block ber)
Advanced Command Control Architectural Testbed (ACCAT)
command control Remote Site Modules
ARPANET TENEX Operating System
interprocess communication
rﬁ"ustncv Continue on reverse eide If ‘and Identity by block number)
is report describes BBN efforts to perform site surveys and planning for

the installation of ACCAT remote site modules at selected sites; to provide
general system architecture and design services for the ACCAT program; and
to assist the ARPA staff in the planning, maintenance, and conducting of
demonstrations of various ARPA computer and communication techmologies.

DD , 5'7s M73 =oimion oF 1 wov 8 13 oRsoLETE Unclassified
i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Py 1pp -

4

o

BBN Report No. 3806 Bolt Beranek and Newman Inc.
4
i1 TABLE OF COMTENTS
“ -
Page
¥ 1. Introduction 1
.-
2. Implementation of MSG for UNIX 4
- &
ACCESSION for
NTIS White Section Oif
2 (1] Buff Section [
- GNANROUNCED O
. JUSTIFIGATION.....oo.cccoer e
: "
ﬁ o DISTRIBUTION /AVAILABILITY CODES
j e Ot AVAIL aad/or SPEGIAL

i §

ey

M
[S |

]

BBN Report No. 3806 Bolt Beranek and Newman Inc.

l. Introduction

This is the second Quarterly Technical Report for this
contract. It reports on project activity for the period between

September 15, 1977 and December 15, 1977.

The Advanced Command Control Architectural Testbed (ACCAT)
is a facility designed to support evaluation of the applicability
of various new computer-communication and information processing
techniques to military command and control problems. The ACCAT

program is sponsored jointly by ARPA and the Navy.

The core of the ACCAT facility is located at the Naval Ocean
Systems Center (NOSC) in San Diego. 1t began operation in
mid-1977. The testbed is built on a number of existing
capabilities including: the ARPANET; the ability to provide
secure communication for subnetworks within the ARPANET; the
standard interfaces and protocols of the network which enable
interoperability of heterogeneous equipment; and a large base of
existing software and experience in computer networking,

time-sharing and interactive computing.

The ACCAT concept includes support for remote site
operations. 1Initially, this will involve secure access from
distant locations to the core ACCAT facility at NOSC. At a later
time, the ACCAT resources may be enhanced with the addition of

computing capability at one or more of these remote sites. ACCAT

-]=

BBN Report No. 3806 Bolt Beranek and Newman Inc.

activity at a given remote site will be via a "remote site

module" (RSM).

The object of this project is to perform site surveys and
planning for the installation of ACCAT remote site modules at
selected sites; to provide general system architecture and design
services for the ACCAT program; and, to develop a plan for making
(selected) services of the Fleet Numerical Weather Center (FNWC) ;
available to the ACCAT facility through the FNWC remote site
module. In addition, as part of this project, we are assisting
the ARPA office in planning, maintenance, and conduct of
demonstrations of various ARPA information processing

technologies.
Project activity during the quarter included the following:

- Site survey activity for the Naval Postgraduate School (NPS)
continued. A second visit to NPS was made to confer with NPS
personnel regarding site preparation requirements and to

consider alternative equipment layout plans. The NPS site

survey is substantially complete, and a detailed site survey

report is being prepared.

14 - We have started a UNIX implementation of MSG, the interprocess

T3 communication facility developed for the National Software
Works (NSW) system. At a July 1977 meeting, hosted by the RAND

i i; Corporation, MSG was adopted as the standard for ACCAT

Il 58

F——mm " ro— T - . -

BBN Report No. 3866 Bolt Beranek and Newman Inc.

interprocess communication. Implementations of MSG already i
exist for TENEX and TOPS-28. When the UNIX MSG implementation
is completed, all of the ACCAT host systems will support MSG.
The bulk of the implementation work will be performed during

the next two periods.

- We met with personnel from Massachusetts Computer Associates
(MCA) to help finalize plans for installation of the ACCAT],
remote site module at the Fleet Numerical Weather Center
(FNWC) . Discussions focused on the hardware and software

interface between the Print Line Interface (PLI) and the MCA

P —

PDP-11 front end for the FNWC computers.

- We assisted in a demonstration of ARPA information processing

technologies conducted at SRI in September for Army personnel.

This demonstration emphasized the Packet Radio Project.

- We attended the ACCAT principal investigator meeting at Woods |
Hole in September. At that meeting we discussed the FNWC and
NPS site planning activities, the UNIX MSG implementation, and

the potential role NSW might play in ACCAT.

The remainder of this report discusses the UNIX MSG

implementation effort in more detail.

g
. :

L]

[it |
!
w
]

BBN Report No. 3806 Bolt Beranek and Newman Inc.

i 2. Implementation of MSG for UNIX

In designing the implementation of MSG for UNIX, we started
with our designs for the TENEX and TOPS-20 implementations. We
modified them as necessary to take advantage of special UNIX

features and to avoid TENEX/TOPS-20 features absent from UNIX.

The implementation approach remains basically the same.

] There is a collection of processes to handle overall control and
communication with MSG modules on other hosts. This collection
is known as the "Central MSG." For each user process
communicating via MSG there is a process which implements the
interface between the user process and MSG. This process is
known as a "Process Controlling MSG" or a "Local MSG." 1In
addition, it functions to allow efficient intra-host MSG
communication and to protect the MSG system from aberrant or

malicious user programs.

The TENEX and TOPS-20# implementations rely heavily upon the
flexible interprocess communication (IPC) mechanisms available on
those hosts, and on the ability of processes to share address
spaces. These IPC mechanisms are used to support communication
among local MSGs, and between them and the central MSG. On UNIX
alternate IPC mechanisms must be used. It is in this area that
the standard UNIX system is inadequate. The basic UNIX IPC

mechanism is the "pipe." A pipe allows two processes to exchange

primsmanany

.
[——)

e—— [Ie—
G 4

M
| ———

BBN Report No. 3806 Bolt Beranek and Newman Inc.

data streams after some prior arrangement has been made by a
common ancestor. Furthermore, there is no structure imposed on
communication over a pipe. Since several processes may share a
pipe, a higher level communication protocol must be used to
enable a receiving process to distiguish between data sent to it

over a single pipe by more than one sending process.

Recognizing these deficiencies, the RAND Corporation has
developed an alternate IPC mechanism known as "Ports." Ports are
an extension to the pipe mechanism. Port names are managed
within the UNIX directory structure. Use of the directory
structure for port naming allows two unrelated processes to
communicate with each other, with protection provided by the
normal UNIX file access control mechanisms. 1In addition, a
message structure is imposed on communication over ports. This
is accomplished by adding a message header to data sent over a
port. The receiver may read the header to determine the identity

of the sending process.

The port mechanism is adequate to support communication
among the local MSG processes and between them and the central

MSG process.

The other major difficulty with standard UNIX is the fact
that all I/0 operations are blocking. That is, if a read

operation is attempted when no input is available, the process

BBN Report No. 3806 Bolt Beranek and Newman Inc.

reading will block until data is available. Similarly, a process
that attempts a write operation when no capacity is available
(e.g., a pipe or port is full) will block until room is made
available. This makes it difficult, if not impossible, to
efficiently implement a process, such as the central MSG, whose
basic task is coordinating information flow between many other

processes over several information channels.

The UNIX group at BBN developing a UNIX implementation of
TCP has recognized this problem, and has developed two new system
calls for UNIX to overcome it. The first (CAPAC) allows a
process to determine how much data, if any, can be safely read or
written on a given data channel. The second (AWAIT) allows a
process to wait for activity on any of several data channels.
Together these two operations allow a process to monitor activity
over a number of communication channels with other processes and
safely (i.e., without danger of being blocked by a
non-cooperating or malfunctioning process) act as a central
coordinator of information flow between them. This is

essentially MSG's role.

The design for the UNIX is thus as follows. Associated with
each process that uses MSG are a set of process interface
routines that the user process can call to cause MSG operations
to occur. These routines do most of the parameter checking

needed and then communicate over a pipe with a parallel process

-

AAAAAA

BBN Report No. 3806 Bolt Beranek and Newman Inc.

which acts as the local MSG. The local MSG is responsible for
communication with the central MSG over a port, with other local
MSGs over ports for intra-host MSG communications, and for
protecting the MSG system from interference by user processes. A
central process (or collection of processes) acts as the central
MSG to coordinate MSG activity on the host. It handles all
communication with MSGs on other hosts, allocates various MSG
resources such as process names, creates new MSG processes as

necessary to handle received Generic messages, etc.

Since UNIX allows a process to derive its identity for
access control purposes from the file being run in it, it is
possible for the local MSG and the central MSG to access system
resources that are inaccessible to the user processes
communicating via MSG. This makes it relatively easy to
implement protection for internal MSG data bases and the
communication ports used by MSG. This feature also makes it
straightforward to concurrently run multiple MSG systems in an

independent manner on the same UNIX host.
The current state of the implementation is as follows.

To help design the user process interface to MSG, two
standard MSG test programs (the so-called "M1" and "M2" programs;
see BBN Report 3752 for details) were written with dummy MSG

interface routines. These test programs have been debugged and

S

BBN Report No. 3806 Bolt Beranek and Newman Inc.

will be used to test and debug interim and final implementations

of MSG.

As the result of this exercise, the interface between user
processes and MSG has been designed. The process/MSG interface
closely parallels that of the MSG Design Specification, with
messages, process names, dispositions, and so forth, being passed
between MSG and the process address space. The primary
divergence from the specification is with "signals." (A signal
is the mechanism by which MSG notifies user processes that an
operation, such as ReceiveMessage, has completed.) With the
exception of block/unblock and the "flag" signal (which requires
that a process poll to detect it), none of the signal examples in
the Design Specification are appropriate for UNIX. A new type of
MSG signal is provided for UNIX. For this the process will make
a special call (RequestSignal()) when it is prepared to block and
wait for an MSG event to complete. When this occurs, the
RequestSignal () call will return with a "pending event ID" that
identifies the operation which has completed. It may be
appropriate in the future to add other signalling mechanisms, and
the implementation is being done with the need for such

flexibility in mind.

The process interface routines themselves have been designed
and implemented. 1In so doing, the interface between these

routines and the local MSG was designed.

P R O TR P T ape.

e camn———— —
| pm————
[- i .

S
SR

BBN Report No. 3806 Bolt Beranek and Newman Inc.

The local MSG was next designed and is currently being
implemented. Finally, the central MSG has been partially
designed; its interface with the local MSG has been specified and

its general structure has been defined.

