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Abstract II. SIDELOBE CHARACTERISTICS OF THE RANDOM ARRAY (~
)

~~An upper bound on the height of the peak Consider a linear antenna array with N dc-
sidelobo of the random array is derived using ments distributed over an aperture of length L.
the theory of level crossings of a random pro- Let y

1
,y 2,.. ‘‘TN be the randomly chosen loca-

cess. This bound is obtained by calculating tions of the array elements with respect to an
the expected number of upcrossings of a given .

level by the array power pattern. The bound is origin arbitrarily picked at the midpoint of the

sults. 
aperture. Suppose the wavelength of incident
radiation is A , for which the wave number iscompared with computer simulation re 

k=2~/A . If the power received at each element
I. INTRODUCTION is the same, then S.(0) = exp(jky.sin8) is the

1
The linear random array has been studied by complex amplitude of the signal received at the

several authors, e.g. [l)—(4]. In this type of ~th element from a sinusoidal point source atarray all of the antenna elements lie on a line,
angle 0 from array broadside. The complex weightand their positions are chosen randomly and in-

dependently from some probability distribution, needed to bring the ~th element signal into phase
So any array with specified element locations with the signal at the origin, so that the sig— ~
designed in this way is a particular realization nals may be coherently summed , is W . (0)  =

from the set of possIble arrays determined by 
1.

exp(—jky .sino). The complex beam pattern B(00.0)
the given probability distribution. By choosing

>~~~ 
positions in this way, fewer elements may be is defined to be the complex amplitude of the
used than would be necessary in an array with signal received by the array from a sinusoidalj 

~~~ which are sidelobes of height equal to the height fixed at W (0 ) .  Thus
uniformly spaced elements, and grating lobes, source in the direction 0 with element weights

,,_) - of the main lobe, will be eliminated 11) . Be- ~• 0

N
cause of this property a random array could be
useful in an application in which a few elements

B(0 ,8) E expljky . (sine — sin8
0
)J. (1)

,_
~~~~ 

must be spread over a large aperture. Since the 0 i l____ element locations are chosen randomly, the power

c L&~ pattern of the array is a sample function of a
random process which is a function of angle. It The power pattern l B o

O
,e)~

2 
of the array is the

c..~ 
.is important to be able to characterize the
height of the peak (i.e., highest) sidelobe of 

power received from a sinusoidal source at angle
0 when the array is weighted to look in the dir-

f the height of the peak sidelobe would be 
ection 0

0
.t he power pattern. A complete characterization

~~~ given by its probability density function (pdf) . Since the element locations are random

Appro,~imations to this probability density quantities , 8
~°o’°~ 

and 18(0 0,0 ) 1 2 are random
function hLve been derived (1J— [4J by consider-
ing samples of the power pattern at ~ number of processes. The special case in which 0()~O will

points. Different results will be obtained in be considered, although an extension is possi-
this paper, where an upper bound on the height ble to the case in which 0~#0. Let u=sin0,
of the peak sidelobe will be derived by using X (u)  8(0 ,0). and let X
the theory of level crossings of a random pro- 1

(u) and X
2
(u) be the

cess (discussed , for example, in [5]—[7]). real and imaginary components of X (u). Note
Since it is important in antenna array design to that u lies in the interval [—1,1]. From (1),
make the sidelobes as low as possible, a proba-
bilistic upper bound on the peak sidelobe height X(u) X

1
(u) + jX

2
(u)

can be of considerable significance.
N N

This upper bound will be compared with corn- ~ I eos(ky
i

u) + j  I sin (ky~ u)~ (2)
puter si’~ulat~ons. It will be shown that the i’l i_i
derived result yields a reasonably tight upper
bound on the peak sidelobe height. and the power pattern is lX (u) 1 2. Since the

beam pattern X (u) has the symmetry property
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X(—u) = X*(u). X(u) in the interval (0,1] deter— R (u )  ~~‘~ X~ (u) + X~~(u) of the power pattern, in
mines X(u) in the interval (—1 .0). So it is suf-
ficient to consider the beam pattern X(u) only any interval, can now be calculated. This will
over the interval (0,1]. yield a bound on the probability of R(u) exceed-

ing z in the sidelobe region . It can be shown
The random process X(u) can be partially that the expected number of upcrossings in

described in terms of the means , the autocovari— an interval of length 9. of the level z by anyanco functions, and the crosscovariance function stationary random process A (u) is given by (7]of X
1

(u) and X
2
(u). The special case in which

the element positions are independent and uni-
formly distributed over the interval (—L/2,L/2) s{u } t • ( z ,a )da (5)
will be considered. The mean value of the pro- o ~cess X

1
(u) is (4]

E{X
1
(u) } = N sinc(uL/A) 

where f,~~s(a~a ) is the joint pdf of the pro-

cess A(u) and its derivative A (u). (It will

— sin (suL/A) The be assumed here that A (u) has continuous samplefor u~ f 0,1], where sinc (uL/A) — 

~uL/X functions. The power pattern of the random ar-
mean value of X

2 (u )  is ~{x2(u)) 0. ray has this property). This expectation value
has been calculated for the case in which A (u)

It can be shown that the crosscovariance is normal (5] and the case in which A(u) is the
function Kx x (u

i
.u

2
) is zero for all envelope of a normal process (6]. Methods used

by Rice (5] will be used here to determine F(U }
u
1,u2

c(0,1]. In the sidelobe region of the beam for R(u). The joint pdf of X
1
(u) and X

2
(u), and

pattern , where u is much larger than A/L, the their derivative~ X1(u) and X~ (u ), at any point
autocovariance functions of X

1
(u) and X

2(u) are u, is
approximately equal and are given by

=
- NKx (v) X.~~ (v) = sinc (vL/A), (4)

_________ 
1çx~+x2 x1 +x

where v=u
1
-u2. The mean of the process X1

(u) can 2 
- 

2 2 2 2 ~

be neglected in the sidelobe region if it is o
b
o { 

2 (6)exp —
~

-
~~--~~

——— + 12(2s) A

small in comparison wi th the standard deviation

.4~7~~~of the processes. The mean of X
1
(u) will where )~0

=N/2 is the variance of X
1
(u) and

f irst be neglected , and later its effect  on the and 12 = (N/6) (SL/A)
2 is the variance of X

1
(u)

peak sidelobe will be considered. Therefore, and X~ (u). These variances can be calculated
here it will be assumed that the processes X

1
(u)

using the technique described in (6], for ex—
and X

2
(u) are wide-sense stationary in the side— ample. By using the change of variables x1 

=

lobe region of the beam pattern. The processes r cosO , x
2 

= r sinG , the joint pdf of R ( u )  =
X
1
(u) and X

2
(u), for a given u , are each equal ___________

to a sum of N independent , identically distrib - ~ X~ (u) + X~~(u), 0(u) tan 1(X
1
(u)/X

2
(u)], and

uted random variables. A multivariate form of their derivatives It (u) and 0’ (u), csn be found ;the central limit theorem (8] can be used to Integrating over all possible values of 0 and 0
show that, in the sidelobe region, X

1
(u) and yields the joint pdf of R(u) and R’ (u) ;

X2(u) can be approximated to be normal random 2 ‘2~processes with zero means and autocovariance f~~ .(r,r
’) = 

r e

treated as if they were normal processes. Since ~~~~~ 
A~ 

-
functions given by (4); henceforth they will be

X
1
(u) and X

2(u) are assumed to be normal and are
Using equation (5) for the expected number ofuncorrelated, they must be independent, and since upcrossings of z by R(u), and setting 9.

each is wide—sense stationary , they must both be (1—A/I.) the length of the sidelobe region,
stationary, 

gives

S
The peak sidelobe height is the highest -z2/2A~ tI~~~~ U

local maximum , other than the maximum at u 0  E{U
5
} (1-A/I.) — e 0

which is the main lobe, of the power pattern 
A o

Ix (u)1
2 

X~ (u ) + X~~(u). The expected number 
(1 1/I.) ~I~~

_
~_ e 52/N (8)

of upcrossings of a level z by the square root __________

‘V- 

2 
~__ii _:i — 

I
bu t. A~~~~ 1$/s ~tcvd~
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Equation (8) is the main result of this section. 1
and will be used to set an upper bound on the ECU ) J du ~r (u)If .(z,r (u) ;u)dr  , (9)aheight of the peak sidelobe. A/L 0 

RE

To use (8) to study the peak sidelobe of where f
RE . (r(u) ,r (u) ;u) is the joint probabil-R(u) , the relationship between level crossings

of a random process and local maxima of that ity density function of R(u) and N’ (u), wri tten
as a function of uc (A/L,l]. (Note that u is notprocess must be considered. There are at least
a random variable). The expected value ECU ) isas many local maxima above a as there are up— z

crossings of a; thus the probability of an up— not obtainable in closed form, and must be cal-
crossing of z is equal to the probability of culated by numerical integration . Computed re-
having at least one local maximum above z. sults based on (9) will he presented in graphi—
Following methods used by Rice (5], it can be cal form in the next Section.
shown that the expected number of local maxima
above a approaches the expected number of up—
crossings of z for high levels of z. This III. COMPARISON WITH COMPUTER SIMULATION RESULTS

justifies the use of level crossings to study
the local maxima of R(u). The bounds on the peak sidelobe height

given by equations (8) and (9) are presented
For the case of R(u) the expected value graphically in Figures 1 and 2, where the solid

E{U
~
) of the number of upcrossings in the side— lines represent the bound given by (9) and the

dashed lines those given by (8). The value of
lobe region is an upper bound on the probabil-
ity P{U } of at least one upcrossing of z the normalized level z

2
/N2 versus the normalized

length L/A of the array is plotted for different
that region. The number of upcrossings of a 

numbers of elements N, and the indicated values
level z can assume only non—negative integer
values. Letting ~~ (z) be the probability of of ECU }. The normalized level z

2
/N2 is useda

exactly i upcrossings of z , it is clear that because from it is obtained the height of the
= peak sidelobe of the power pattern relative to

E{U } = E ip.(z), and P{u } = ~ p.(z). 
the height of the main beam. In Figure 1, the

z 1=0 value of ECU } is 0.1, and in Figure 2, ECUa z
Therefore P{u}  < ECU ), and E{U } is an upper is 0.3. From Section II, we know that the
bound on P{U }. It is reasonable to expect probability PCu } of at least one upcrossing of

that this bound becomes tight for small values z is less than or equal to ECU
5
}. Thus for a

of ECU ), since in this case the probability given N and L/A , the probabil ity P{ti } of the
of obtaining more than one upcrossing in the normalized height of the peak sidelobe of the
sidelobe region is negligible compared to the 2 2 -probability of obtaining zero or one upcrossing. power pattern exceeding the value a /N given

by the curve of Figure 1 or 2 is less than or
The case in which the mean E{X

1
(u) ) of equal to E CU ). This is equivalent to sayingz

X
1
(u) can be neglected has been considered , that the normalized height exceeded by the peak

sidelobe with probability ECU ) is less than or
Since E(X

1
(u)} = N sinc(uL/A) and the standard

equal to the normalized height z
2/N

2 
given by

deviation of X
1

(u)  is approximately ~~~~ we the curve of Figure 1 or 2. It can be seen that
see that as N increases while L/A remains con— there are differences between the calculations
stant, the mean will increase relative to the based on the assumption tha t the beam pattern is
standard devia tion , and will make a large con— stationary with zero mean and the more precise
tribution to the beam pattern. The case in calculation which considers the nonconstant mean
which E {X

1
(u)} cannot be neglected will now be of the beam pattern. The peak sidelobe upper

bound increases due to the mean term , particu—treated . The process X
1(u) is no longer sta— larly where the density N/(L/A) of array ele—

t ionary, and the expected number of upcrossings Inents per array length is high. It is reason-
of a by It(u) is not given by (5) . able to expect this difference to increase when

N increases or L/A decreases, since in these
The expected number of upcrossings by an cases the mean term becomes larger with respect

arbitrary, nonstationary random process can be to the standard deviation of the beats pattern
ca lculated by integrating over the interval in over the sidelobe region.
question. Specifically the expected number
E {U

~
} of upcrossings in the interval (A/L,l] ~f Figures 1 and 2 also contain the results of

computer simulations that were done to study the
the level z by the square root R(u) of the power validity of the upper bounds. For given valuespattern is given by ((6] ,  Chapter 13) 

~,f N and L/A, a Set of random arrays was formed

3



by generating independent random numbers to rep- the region near the main beam exhibits some of
resent element positions uniformly distributed the properties of deterministic arrays (4], an
over (—L/2,L/2]. The power pattern of each ar- alternative method of studying the peak sidelobe,
ray was calculated, and the peak sidolobe was which will not be considered here, might be to
found. For each value of N and 1./A , an empiri— use the theory to study the restricted region in
cal cumulative distribution function of the which the approximations are very accurate, and
peak sidelohe value was formed from this set of treat the region near the main beam as if it
arrays. In Figure 1, the points represent the were deterministic.
normalized level which exceeded the peak side-
lobe height of 90% of the arrays, and in Figure Figures 3 and 4 compare the results derived
2, the points represent the level which exceed— in this paper with previous results concerning
ed the peak sidelobe height of 70% of the ar— the peak sidelobe of the random array. Steinberg
rays. For each value of N and 1./A shown, 100 (3], (4] used a technique in which the beam pat—
arrays were generated , except for N~2O, L/A~ 20O , tern was sampled at a number of poin ts , an esti—
for which 50 arrays were generated. However, mate of the peak sidelobe height was fortsed, and
for each N end 1./A, the points in Figures 1 and a correction term based on interpolation was
2 are taken from the same empirical distribution added to the estimate. The solid and dashed
function , and do net represent the results of lines and simulation points in Figures 3 and 4
independent experiments. It can be seen that in were taken from Figures 1 and 2, respectively.
all cases the simulations fell below the curve and the dotted line was calculated using
given by the more precise upper bound obtained $teinberg s technique. It can be seen that
from (9), and for lower densities of elements Steinberg ’s estimate is equal to or greater than
N/CL/A), the experimental points fell below the the upper bound derived in this paper, and li es
upper bound calculated from (8). above the simulations reported in this paper ,

for the parameter values that were considered.
It is likely that the densi ty of elemen ts

will not be high for practical random array
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