NAVAI. POSTGRADUATE SCHOOL MONTEREY CALIF F/6 20/4
ANALYSIS OF SUPERSONIC FLOW PAST OSCILLATING CASCADES USING LIN==ETC(U) b
SEP 77 J A STRADA

_AD-A053 211

UNCLASSIFIED




22

MICROCOPY RESOLUTION TEST Ct
ATIONAL BUREAU OF

g 132 32
122

4L
fiz fjs

=22 1z

”J =

“ fI2S
lllllé

e

{ART




ADAOD3211

h 4ot

ROSIOTIPCE N

e,

i ....._—-L-.u‘,

Il 'q(,;;

o

A .
BOC FiLE copy®

NAVAL POSTGRADUATE SGHOOL

“Monterey, California

THESIS

Thesis Advisor:

ANALYSIS OF SUPERSONIC FLOW PAST OSCILLATING
CASCADES USING LINEAR AND NONLINEAR METHODS

by
Joseph Anthony Strada

September 1977

Approved for public release; distribution unlimited.

M.F. Platzer




T R e e AR

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE Bg,gig"c'g,fgﬁgg,’;!g":o“
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subritle) e ———————————— S. TYPE OF REPORT & PERIOD COVERED
(,p ALYSIS OF SUPERSONIC ELOW PAST OSCILLATING Doctor of Philosophy

SCADES YSING LINEAR AND NONLINEAR g_ETHODS; Thesis; September 1977

el 6. PERFORMING ORG. REPORT NUMBER

——— R ———

7~ AUTHOR(e) 8. CONTRACTY OR GRANT NUMBER(s)

QQQ oseph Anthony/étfgazil

9. PERFORMING ORGANIZATION NAME AND ADDRESS T0. PROGRAM ELEMENT. B ouc'r TASK
AREA & WORK UNIT NUMBER

Naval Postgraduate School

Monterey, California 93940

1. CONTROLLING OFFICE NAME AND ADDRESS 12, RERORI QATE.  — . ..

Naval Postgraduate School <11j cpamiam 3877

Monte Californi 9394 ok
e e s 70,
. MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Oflice) 15. SECURITY CLA T FoBS

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DlSTRIIUTlON STATEMENT (of the .Dllrlcl entered in Block 20, il different from Report)

(9 [pecTeral - A "s ')

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side if necessary and Identify by block number)

Unsteady supersonic cascade theory; linear theory; thickness
effects; resonance; turbomachine fan and compressor blades.

N
2 h ABSTRACT (Continue on reverse side If neceseary and identify by block number)

This study presents two methods of analysis for the
upersonic oscillating cascade with subsonic leading edge.
relatively straightforward solution is developed for the
lowly oscillating finite and infinite flat-plate cascades
hich provides simple analytlcal expressions for the unsteady
ressure distributions. Comparison with other solutions is
enerally excellent. Some additional linear topics including —

DD ,"on%, 1473  eoimion oF 1 nov 8 1s ossoLETE UNCLASSIFIED M
(Page 1) $/N 0102-014- 6601 | 1
SECURITY CLASSIFICATION OF THIS PA
y o/

ozxjv/’ &/ s 0 :

et e




UNCLASSIFIED

SLCUMTY CLASSIFICATION OF THIS PAGE(When Nete Entered

i (20. ABSTRACT Continued)

\\EJresonance and a unique inflow condition are also treated.
In addition a nonlinear method of characteristics solution
for finite cascades is described which permits analysis
of blade thickness effects on flutter. At this time, only
the inlet and passage flow computations have been completed
and are compared with available experimental data. p

0102-014-6601 2 SECURITY CLASSIFICATION OF THIS PAGE(When Dote Entered)

or 1473
D:/) |~} 5 orn, q UNCLASSIFIED

e s




Approved for public release; distribution unlimited

Analysis of Supersonic Flow Past Oscillating
Cascades Using Linear and Nonlinear Methods

by

Joseph Anthony Strada
Lieutenant Commander, United States Navy
B.S., Villanova University, 1967

M.S.A.E., Naval Postgraduate School, 1976

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

from the
NAVAL POSTGRADUATE SCHOOL

September 1977
Author: . / y
Approved by: /

. F T A RS

M.F. Platzer L.V. Schmidt
Professor of Aeronautics Professor of Aeronautics
Thesis Advisor

V10 Lot B,

D.J. Cﬁlins F.D. Faulkner
Professor of Aeronautics Distinguished Professor of Mathematics
A.E. Fuhs

Distinguished Professor of Mechanical Engineering

Approved by: W (/’L/ éé/

Chairman, Department of Aeronautics

/

i 4 e h
Approved by: Lty LTI

/ i F Academic Dean




ABSTRACT

This study presents two methods of analysis for the
supersonic oscillating cascade with subsonic leading edge.
A relatively straightforward solution is developed for the
slowly oscillating finite and infinite flat-plate cascades
which provides simple analytical expressions for the unsteady
pressure distributions. Comparison with other solutions
is generally excellent. Some additional linear topics
including resonance and a unique inflow condition are also
treated. In addition a nonlinear method of characteristics
solution for finite cascades is described which permits
analysis of blade thickness effects on flutter. At this
time, only the inlet and passage flow computations have.

been completed and are compared with available experimental

data.
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1. INTRODUCTION

1.1 General. Unsteady flow in turbomachines can be broadly

divided into two categories: circumferential asymmetry in
the flow through the turbomachine and flow perturbation due
to the self-excited oscillatory motion (flutter) of the
internal blading [l1]. As shown in figure 1.1.1, taken from
[2], at least four types of flutter may occur in a compressor
rotor. The two stalled-flutter phenomena are encountered
when compressor or fan blading is subjected to incidence
angles near or exceeding the stall angle, and so are off-
design phenomena. Subsonic stalled flutter has long plagued
the enginé designer [3]. Choke fluttér and supersonic unstalled
flutter are low-incidence instabilities occurring when the
flow over the blade is, respectively, transonic along most

of the chord, or supersonic over the outer span portions [3].
Supersonic unstalled flutter (hereafter referred to simply

as supersonic flutter), which has appeared only recently as

a significant problem in turbomachinery, is the subject of
this investigation. Primarily a concern in compressors and
fans [l], it is an instability born of the recent technologi-
cal advances aimed at increasing the thrust-to-weight ratios
of turbomachines: increased tip speeds, composite blades,
lighter discs and blades, and the elimination of part-span
shrouds (2,3]. Some insight into the nature of supersonic

flutter is gained by a consideration of its characteristics:




PRESSURE superscenic

RATIO stalled\flutter
. X1\ "'

subsonic
stalled flutter

LY
supersonic
unstalled
X1\ flutter
choke/
flutter
50% 75% 100%
WEIGHT FLOW

Figure 1.1.1 Compressor map showing boundaries for four
types of flutter.

1. 1Its flutter boundary imposes a high-speed limit on
compressor operaéion {2].

2. It is a low-incidence, attached-flow instability that
can occur at the design condition (figure 1.1.1).

3. Flutter amplitude decreases with increasing back
pressure on the rotor [2]. (For this reason the present
analysis considers the most critical case of zero pressure
rise across the rotor.)

4. . At the flutter condition all the blades are observed

to flutter at the same frequency with a constant interblade

phase angle [2].




5. Both single-degree-of-freedom torsional flutter (pitch)
and two-degree-of-freedom torsional-flexural flutter (pitch
and plunge) can occur [3,4]}

6. The flutter boundaries are significantly affected by
airfoil shape [4,5].

7. The primary flutter mechanism is an inviscid phenomenon.
If the unsteady aerodynamic force lags the blade motion
by a phase angle which is sufficient to ensure positive
work over the entire cycle, then flutter can occur [3,4].

It is clear that reliable techniques for predicting the
unsteady pressure distribution on a fluttering blade are
required if one hopes to predict and avoid the onset of
flutter. With this end in mind the cascade has been exten-
sively employed as.a'theoretical abstraction of a compressor
rotor. -The unsteady fléw is considered in an annulus of
differential radial height within which equispaced airfoils
are radially disposed. Unwrapping such an annulus gives
rise to the two-dimensional approximation of plane flow
through a cascade of airfoils [l]. The cascade is termed
linear if the airfoils are flat plates of zero thickness.

As seen in figure 1.1.2, a rotor does not require a super-
sonic axial flow to have a supersonic velocity component

relative to, and parallel to, the blade axis. Indeed this

12.a. arnoclai et al. in "Supersonic Chordwise Bending
Flutter in Cascades," Pratt & Whitney Report No. PWA-5271
of 31 May 1975 show that chordwise bending can also occur.
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distinction provides a convenient method of classifying
supersonic cascades. If the axial velocity is subsonic,

the cascade is said to have a subsonic leading edge; in the
other case it has a supersonic leading edge [6]. The physi-
cal significance of this distinction is clear from figure
1.1.2. 1In the supersonic-leading-edge cascade each blade
influences only its immediate neighbors. When the cascade
has a subsonic leading edge, however, disturbances generated
by the upstream portions of each blade affect the flow around
each subsequent blade in the cascade; furthermore the flow-
field at the underside of each blade is influenced by the

wake disturbances of all preceding blades. Since the supersonic-

leading-edge cascade has been thoroughly investigated {7,8,9,
10], the more difficult subsonic-leading-edge case, which is
also the more interesting in practice, is considered in the
present study. Another cascade classification is frequently
employed:. if each blade is assumed to be preceded and followed
by infinitely many others, the cascade is said to be infinite;
if there is an identifiable first blade — a necessary pre-
requisite for many numerical solutions — the cascade is
termed finite.

A considerable amount of effort has been expended in
attempting to predict — numerically and analytically -
the unsteady pressure distribution over a blade in an oscilla-
ting supersonic cascade with subsonic leading edge. A
brief discussion of some of the more noteworthy advances

follows.
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1.2 The Linear Subsonic-Leading-Edge Cascade. Verdon

and McCune [1l1l] formulated a linear boundary value problem
for the subsonic-leading-edge configuration, solving it

for velocity potential. This permitted calculation of the
pressure along the entire upper surface of an arbitrary blade
and along the lower surface from the leading edge to the
point of impingement of the trailing-edge Mach wave from

the preceding blade. In a more recent paper Verdon [12]
formulated a second boundary value problem, in which pressure
is the basic dependent variable, which permitted determination
of the pressure along the entire lower surface as well.
Nagashima and Whitehead [13] and Goldstein [14] obtained
solutions by replacing the cascade blades with doublet dis-
tributions. Kurosaka [6] introduced what he terms the
passage approach in applying Laplace transform techniques

to a slowly-oscillating cascade, obtaining closed-form
analytical expressions for the pressure distributions of
certain configurations. He recently [15] extended his solu-
tion to include arbitrary frequencies{of oscillation. 1In
assuming that a space periodicity of the flow exists from

one blade passage to the next, Kurosaka claims that he

avoids complications arising from the breakdown of linear
acoustic theory in the far field (4]. Platzer and Brix

[16] and Platzer and Bell [17] employed the method of char-
acteristics to solve directly for the perturbation veloci-
ties and pressures everywhere in the flowfield. Their

computer program has been thoroughly checked against existing
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Figure.l.z.l "Limits of applicability of Chadwick's solution.

solutions [11,12,13] and is extensively employed in the
present study as a method of comparison for both the analy-
tical and numerical solutions presented. Chadwick [5] used
Sauer's solution [18] of the unsteady potential equation,
accurate to a first order in freéuency of oscillation, to
determine the pressure distribution on a given blade from
the leading edge to the point of the first reflection (point
A in figure 1.2.1) of disturbances from the preceding blade.
He obtained exact analytical agreement with Kurosaka [6] over
that .portion of the blade for the single-degree-of-freedom
pitéhing cascade. Chadwick's technique has the decided

advantage of being much simpler than that of Kurosaka, easily
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yielding closed-form expressions for any cascade, and
raising the question as to whether the method could be
extended to the entire blade for the cases of both pitch
and plunge. Finally, Adamczyk [19], in a yet-unpublished
work, employs the Wiener-Hopf method to obtain the pressure
distribution for the linear cascade with subsonic leading

edge.

1.3 The Nonlinear Subsonic-Leading-Edge Cascade. Attempts

to deal analytically or numerically with an oscillating
cascade of blades having thickness are not nearly so numerous
as their linear counterparts. Carrier [20] provided an exact
theory for a single oscillating wedge. VanDyke [21,22].

also treated the isolated wedge as-'well as an oscillating
airfoil of arbitrary profile. Teipel [23,54] employed an
ingenious method-of-characteristics approach to numerically
obtain the unsteady pressures on a single oscillating profile
of arbitrary shape, obtaining good agreement with the single-
blade solutions of Carrier and VanDyke. Teipel's method
assumes potential flow with negligible entropy changes

across leading-edge and trailing-edge shocks. Kurosaka and
Edelfelt [4] have obtained numerical results for an isolated,
oscillating, parabolic-arc airfoil and are presently working
to extend their solution to a cascade of such airfoils.
Chadwick [5] employed Teipel's method to obtain the unsteady
pressure distribution over the preinterference zone of an

arbitrary blade in a cascade of wedges. His results indicate




that nonlinear thickness effects significantly alter the

unsteady pressure profile of an arbitrary blade.

1.4 The Present Investigation. The present work has two

major parts: The first is analytical and treats the linear
cascade while the second is numerical, dealing with a non-
linear configuration.

In the linear effort a closed-form analytical solution
for the pressure-difference distribution along a blade in
a slowly-oscillating cascade is obtained. The solution
technique is that developed by Chadwick [5] in the pre-
interference zone (figure 1.2.1) of a pitching cascade, in
which Sauer's solution of the unsteady linearized potential
equation is employed. In the present work Chadwick's solu-
tion is extended through all reflection zones and into the
blade's wake. 1In addition, the solution is obtained for
two degrees of freedom (pitch and plunge). Two standard
configurations — Verdon's cascades A and B (12] — are con-
sidered, one from a finite-cascade approach and the other
as an infinite cascéde in which Kurosaka's passage approach
is employed. Extensive comparisons are made with existing
solutions [6,12,19,17]; and severai special topics, including
cascade resonance and a unique inflow condition, are briefly
treated.

The nonlinear effort is an evaluation of the feasibility
of extending Teipel's unsteady method of characteristics

to a cascade of airfoils with arbitrary profiles. Teipel




[23,24] represents the nonlinear flowfield by a harmonic,
unsteady, velocity potential superimposed on a steady one,
and discontinuities in the flowfield variables across the
shockwaves emanating from the airfoil are determined from
the isentropic Rankine~-Hugoniot relations. These concepts,
coupled with the characteristic grid and compatibility relations
derived by Teipel, permit determination of the steady and
unsteady preinterference pressures acting on the second
blade of a cascade of parabolic-arc airfoils. The numerical
results are compared with experimental data from tests con-
ducted with a pitching cascade by Fleeter and Riffel [25]
and with linear theory. An improved method for determining
the jump conditions across the bow shock is presented and
the computational procedure is carefully outlined to facili-
tate extension of the technique to the entire flowfield 6f

a completely general cascade.

1.5 Some Comments on Notation. In the linear portion of

this investigation it is the unsteady, dimensionless,
pressure-difference distribution along a particular cascade
blade that is sought. This pressure difference is a complex
quantity given the symbol [;Cp and represents an amplitude
function of distance along the blade. The harmonic oscilla-
tion factor eikt is always implicitly understood. 1In

addition it is desirable to obtain an expression for

A;Cp at the instant that the blade in question achieves
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maximum up displacement, referred to as the initial position.
This expression is obtained by multiplying through by the
factor e *# and so it is indicated by the sumbol lLCpe-%“ :

In the nonlinear portion of this study only the local
pressures — Cp upper and lower — are sought. They are
also complex quantities and it is convenient to express

them as a magnitude and phase angle relative to the motion

of the blade under study; the symbols Icpl and Cp :

respectively, are emplpyed.




2. THE LINEAR LOW-FREQUENCY CASCADE

2.1 General. A cascade of flat plates with chord c¢
oscillating harmonically with frequency & in a steady,
uniform flow U is said to oscillate at a dimensionless

reduced frequency of oscillation k defined by

=R (2.1.1)

If k2 is small when compared with k , then the cascade is
termed a low-frequency or slowly-oscillating cascade. Although

low-frequency flutter is not common, it is worthy of investi-

gation for several reasons, the major one.being that it is
the only case for which one can hope to attain a relatively
simple, closed-form expression for the unsteady pressures

on a given blade. Such expressions provide insight into the
flutter phenomenon, as evidenced by the identification of

a unique inflow condition in a subsequent chapter of this
study. Also, thé low-frequency cascade provides an impo.:tant
limiting case for any general-frequency solution, numerical

or analytical.

2.2 Problem Formulation.

2.2.1 The Linearized Potential Equation. The flow

variables in the cascade flowfield are assumed to be

composed of a freestream component and a much smaller




perturbation component

The cascade is assumed immersed in a perfect gas, each
particle of which maintains constant entropy as it moves

through the flowfield

DS

Dt =0 (2.2.2)

In addition the flow is assumed inviscid and irrotational,
guaranteeing the existence of a velocity potential

N=w¢ (2.2.3)

The continuity and momentum equations for the flow are,

respectively
D ' Rsaned
_#— + . -
DV vP _=
Dt -+ 5 =0 (2.2.5)

Introducing the velocity potential and integrating (2.2.5)

produces, after linearization

% o P-Po _ :
S5+ = # 7o =0 (2.2.6)

Using the equation for the freestream speed of sound

a},,:v;:-': {2.2.7)

the continuity equation can be linearized to give

Py i) \ aP BN a0 (2.3.8
o * er t ok e (2.2.8)
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From (2.2.6) one obtains

P _ ra'y -
s = /P ol

and

ar = >'% oD
ax - T fe [axat MFET

] (2.2.10)

Substitution of (2.2.9) and (2.2.10) into (2.2.8) then
produces the linearized unsteady potential equation in

two dimensions

\ % M g 20 OB og
where M is the freestream Mach number
H - E¥ .
M = -y y (2.2.12)

2.2.2 The Linearized Pressure Coefficient. A generalized

form of Bernoullis equation follows directly from the

momentum equation (2.2.5)
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o1 12
L ‘VT' = j_j_:_-.- CONST. (2.2.13)
L.

Introducing the perturbation quantities in the form of
fi (2.2.1) and ignoring the products of perturbation

| quantities one obtains

% 3% | PPo _
E+U + 52 =0 (2.2.14)

where the prime notation has again been dropped. Thus, the

dimensionless pressure coefficient is given by

Cpz o=P=__ - (-é- +U3L,) (2.2.15)

2.2.3 The Linearized Boundary Conditions. The surface

of a body placed in the flow can be described as a function

of space and time

FIY,£)=0 (2.2.16)

where T is the position vector of points on the surface.

The condition that the flow at the body surface be everywhere
tangent to the surface can be expressed by
DF_ Lo (2.2.17)
Pr
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The plunging flat plate. The pitching flat plate.

. Figure 2.2.1 Two-degree-of-freedom oscillation.

at the surface. If the body is a flat plate oscillating
harmonically in plunge and/or pitch, as shown in figure 2.2.1,

then the describing functions are respectively
F;(z,,,g:;-»h.e‘“‘z‘o (2.2.18)
R (% g,0)= 9+ Ao (x-b) % =0 (2.2.19)
where h° and c(o are the maximum displacements and b
is the pitch axis location on the x axis. Applying the

generalized flow tangency condition (2.2.17) to (2.2.18)

and (2.2.19) yields the boundary conditions for plunge and




i o

pitch respecitvely

2 e A AR ALY

¢ _

at J=° (2.2.20)

2&- — . — \‘.Ubt 2
r o(.[u-»m(x qe otyzo (2.2.21)

2.2.4 Nondimensionalization. It is convenient to intro-
duce nondimensional variables into the governing equations
to simplify and generalize them. The distance variables
(x,y,b) are normalized by chordlength c¢ , velocity potential

by the product Uc and time by the quantity c¢/U . It is

also convenient to sct

ho=¢ ®e= 1 RADIAN (2.2.22)

and to separate the velocity potential into a complex

amplitude and phase angle

gox, g0 = gagpestt (2.2.23)

Thus the potential equation (2.2.1l1), pressure coefficient

(2.2.15) and boundary conditions (2.2.20,21) become

198 9% a2 s 29
prEE T;"" MG 42 kMEE 0 (2.2.24)

m o2 2B s i
Cp=-2(3L. — ikg) (2.2.25)




e ST PRI TS0 St

3%  _ : =
33- = —LR at g =° (2.2.26) i
|
j
% = —[1-)- '\R(’l-b)] ot g=° (2.2.27) 1

where,

/e‘= M3-1 (2.2.28)

and Cp and @ are complex amplitude functions of x and

Yy only with the factor elkt omitted.

2.2.5 Cascade Geometry. The physical parameters chosen

to describe the cascade are the vertical distance between
the blades: d and the horizontal distance between the
leading-edge Mach waves m . Both parameters are normalized
by chordlength. The cascade can also be described by
solidity # and stagger angle © , which are shown in

figure 2.2.2. These parameters are related as follows

TANG = ﬁ;— (2.2.29)
= 22 (2.2.30)
where /s is given by (2.2.28). The linear cascades employed

in this study are Verdon's cascades A and B [12], which
have become standards in the field and are depicted in

figure 2.2.2.




2.3 The Isolated Airfoil. Consider a single flat plate
oscillating with two degrees of freedom as shown in figure

2.2.1, and define

s=x-ls°7 §~='x+fy (2.3.1)

Then s 1is constant along any leftrunning (upper surface)
Mach wave, while s is constant along right-running (lower
surface) waves. Sauer (18] showed that the potential
equation (2.2.24) has the following left-running and
right-running solutions, respectively, for a slowly-

oscillating airfoil
) TPy |
¢:‘lx,9)=9°ls)+h[h.,(s)- %‘_;9“(3}] (2.3.2)
- M‘

(%9 =g.,(!\+ R[h._(t)-r"—ﬁ 3 9._(’53 (2.3.3)
where the g and h functions are determined from the
boundary conditions (2.2.26,27). Requiring that the
velocity potential be continuous across the leading-edge
Mach waves, one has

gg(o)z N (0) = @, (0) =h (0) =O (2.3.4)

Enforcing flow tangency at the upper surface of the airfoil

yields, for plunge and pitch respectively




Cascade parameters.
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Figure 2.2.2 Cascade geometry.
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PL: Juisd=o ho(S) = 78 {2.3.5)
PI: (o m = ho(or=- . (-s-:+b *s) (2.3.6)
. a“ - ﬁ “ - pa 2 f . .

And so on the upper surface

PL: Fex =R s (2.3.7)
A
PI: ¢;“(x,g):-—--—[ -a-s(blg +fM ] (2.3.8)

Thus the upper-surface pressure coefficient follows from

(2.2.25)

% sig .k . (2.3.9)
. 'l ’

PI: c,s——--r"‘“[.s(\- ‘H-bls] (2.3.10)

where the subscript indicates the single airfoil. Similarly,

for the lower surface

Cp,=~-Cp, (2.3.11)

2.4 Continuity of the Velocity Potential Across a Mach Wave.

Consider two reflection zones separated by the Mach wave
s =s,, as shown in figure 2.4.1, and let the variables z
and z respectively measure distance tangent and normal to

the Mach wave. The velocity potential in zone II is simply




Flat-plate airroil

Figure 2.4.1 Variation of the velocity potential along
the boundaries of reflection zones.

that in zone I plus an additional disturbance

¢ = 9T + &, (2.4.1)
Since the tangential velocity component remains unchanged
across the wave, (2.4.1) implies that ¢d is a function of
z alone, along the Mach wave

Pa=B,(2) $oxr S=So (2.4.2)

But since z is itself constant along the Mach wave, then

¢d must have the form




That the constant is zero follows from the physical con-

straint that the velocities remain finite in the wave

itself, and so

PT (o = PB (s (2.4.4)

which is in agreement with the conclusion reached by

Landahl [26].

2.5 The Finite Two-Degree-of-Freedom Cascade. As an

elementary means of introducing the method of analysis,

the pressure-difference distribution is found for the second
blade of a finite version of cascade A. This analysis also
affords the opportunity to compare the finite-cascade results
obtained with numerical finite-cascade data [17] and analy-
tical results [6] of existing solutions. It is emphasized
that the pitch results through equation (2.5.27) were first
obtained by Chadwick [5]. The reflection zones referred to
are pictured in figure 2.5.1, and the pressure results are
given in terms of the isolated~blade pressure coefficients
(2.3.9,10). Before proceeding with the analysis, some

additional variables are introduced for blade two

o= §- A" ?=§+IA'( (2.5.1)

which are related to those of blade one by the translation

relations




Cascade A (not to scale)
blade 3

Mach number: 1.345

U‘

blade 2

Figure 2.5.1 The finite-cascade reflection zones.
X=§#m¢,d I= 7+d (2:5:2)
S= g +m 3:6’-*m+zﬁa {2.5.3)

2.5.1 Zones I and IA. In zones I and IA Sauer's single-

blade solution applies
¢f<‘x,g) = ;,(s) + h[h.(S)-%g ;.(s)] (2.5.4)
¢:‘(gm =9 )+ RE:..(G)- %A-.Qa“ur)l (2.5.5)

and in zone IA the boundary conditions take the form




A

PL: %.“‘ =-tre» at %=0 (2.5.8)
283" :
PI: 2% = _[1rikeem]e# aen=0 (2.5.7)

where ‘/4 is the interblade phase angle by which the second
blade leads the first. Applying the boundary condition at

the upper surface of each blade and using that

() = no) =0 (2.5.8)

gives, for plunge and pitch

PL: =0 Jial®)= A (2.5.9)
! - .

PI: e 3 Jm(!r)z% e +B  (2.5.10)
E PL: n,(5)=,%-s hm(c-)z'%o'e"/‘ +C  (2.5.11)

: . ) i
f h.($)=—%5(éi‘+b’*8)
: PI: (2.5.12)

L 2 4
5 hm(cﬂ:--ﬁ—’[(% -»-tho')e/“-t-/BdM‘u-j-o-:D
where A, B, C and D are constants of integration. By
| enforcing continuity of the velocity potential across the

leading-edge Mach wave of blade two, the constants are

evaluated and the velocity potentials determined in terms

of the isolated blade potential @, (2.3.7,8)




PL: @ = ¥ Az Prer 4 ‘-_}"g-m (2.5.13)

BT = B
PI: (2.5.14)
e~ it o

where ¢ 1is a constant that need not be evaluated because
it becomes the coefficient of a term in k2 when the
pressure coefficients are formed.1 Thus, on the upper
surface of the second blade, in terms of the isolated-blade

pressure coefficient C:‘ (2.3.9,10)

w 1A

PL: €e, = Gevr (2.5.28) A
PI: Cp = C?‘e""*-%m (2.5.16) {

2,5.2 2Zones IIB and VIB. In zone IIB the velocity

"potential is that of the isolated blade (2.3.3)

Pre = Br (2.5.17)

while in VIB the potential acquires an additional ”

1The symbol ¢ is used throughout section 2 to indicate
a constant which need not be determined. v
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right-running disturbance

wm?
¢1.n- = @z® ¥ 9¢(S) + h[\n‘(SHr %y;dﬁ] (2.5.18)

2.5.3 Zone II. 1In zone II a right-running reflection
occurs and, using the translation relations (2.5.2,3) to

shift to the blade-two coordinate system, one has

s - = ¢ =), oM =
PL: g = ¢’.‘+,?;(o')+k[—,;—"— *iy &)+ 707,(u—)] (2.5.19)
PF =P ~ % - %ES’(M-»-FJM‘) */BMM‘QA-q‘.]
RE: {2.5.20) ‘=
—\ L iwme
+09,(E‘) + k[hz(q') -~ }_,‘.;‘_. " 91(3-)]
where

‘gz(o) =Wh,(0) =0 (2.5.21)

Applying the flow tangency condition at the lower surface
of blade two and using the Sauer functions to construct the

velocity potentials yields

PL: BE =PI 1; TO-e'M)+ m] (2.5.22)
3 e &2 L
PE= P+ % + %(\-e "‘)—"75{-—2— G- atm
PI: -Hi'[—la'm +/sdw+ Lb/s‘-/sm‘y)u—e"f*)] (2.5.23)

+T (M ) gt g ¢t




And the pressure coefficients follow from the potentials

PL: Cel = Cp(2-&%A) (2.5.24)
PI: G = c;;;(z—e‘w)-»“—;‘-,‘(m-z/a*m-»z/saw) (2.5.25)

Thus the pressure difference can be computed through zone
II, and by multiplying by the factor e M «<he pressure-
difference amplitude is obtained at the moment the second

blade reaches maximum displacement

PL

ACpe™ M = —2C8 (1-7M) 0L § <i-m (2.5.26)

' i -1 4Lk 2 -3
ACp€-* = -2CJ (- "M + o (FJM-/e‘m.e ”~

PI: (2.5.27)
o< § <\-m

2.5.4 Zone III. In zone III a left-running wake distur-
bance is experienced, and after applying the translation

relations
PL: ¢:m o ¢zz _‘_Js(s)...k[hs(s)_L_‘;;;gs(s)a-f.] (2.5.28)
Pr=pT -%‘- - %isem-z/ad +gdMM( - e

PI: -S(mypdMH+y [—/enM‘+ (Zf‘dm‘a- MM - e‘ﬁ)] (2.5.29)

+ ¢} +93(9 ¥ [h,(s)— LA 923 (s)]




where

;,(\) =h (1) = 0 (2.5.30)
Since zones III and VIB are separated by the wake of the
blade rather than the blade itself, the wake boundary con-

ditions are used between the two zones. The first of these

demands pressure equilibrium across the wake
Ce, = Cp, at y=0 {2.5.31)
which leads to the equations
iD= K@ = ST (CP) (2.5.32)
W (s)-vi‘(&ﬁ.[;,m-o?g(‘!»)] = FRICY) (2.5.33)

where the right-hand sides of (2.5.32,33) refer to the

steady and frequency terms respectively of C;l

The second wake condition requires continuity of the normal

(2.3.9,10).

velocity component through the wake

T 324
%L = 9B at y=o (2.5.34)
J 27

which leads to the equations

L(s) + 9% (5) =0 (2.5.35)
S B ¥ I
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’ ' im? -
hi(S) + h‘(.g) -+ 7 9;(S)+a‘( s)| =0 (2.5.36)

Equations (2.5.32,33,35,36) are solved for the zone-III

disturbances |

|

PL: Ji()=0 h’,(o):-.-%— (2.5.37)
PI: PRO -,% (s=1) \,{3(;)._.’;3 (s bph)  (2.5.38)

2.5.5 Zone V. In zone V an unknown disturbance is added

¢f = ¢f+;3cu’) +395(F) + k{hs(tﬂ + hg(T)
(2.5.39)

+ ‘—f‘?-' % [foq,(o-) * T - '-—/-"’f—‘-z d ;,uﬂ}

which is determined by enforcing flow tangency at the lower
surface of blade two in zone V

U

PL: Js@ =0 hg@)-.---/%— (2.5.40)

95t = --}-(‘6’-\-»»0
PI: (2.5.41)
He (@) = Lo (F = g%+ m +bg® 4 Bd M)
* = e

which leads directly to the pressure difference for the

last portion of the blade




e e S AR e G TG

|
PL: Ac, et =_203 - g & (2.5.42) |

- 4R ,CJM" - ‘

ACpe~ M= -ZC:"-?T(M——-Z—) e-vH ‘

PI: (2.5.43) '
l-m <<

2.5.6 Results and Conclusions. The finite results for

the second blade are compared with four existing solutions

in figures 2.5.2 and 2.5.3 for three interblade phase angles:
Kurosaka's solution [6] is a closed-form, analytical,
infinite-cascade solution; Platzer's [16,17] is a numerical,
'method—of—characteristics solution for the finite cascade;
and Adamczyk's [19] and Verdon's [12] solutions are numeri-
cal, infinite-ggscade results. It is interesting to note
'ﬁhat the finite results agree exactly with Kurosaka's .
infinite solution over the entire blade for the plunge case
and through zone II for the pitch case. Over the zone-V
portion of the pitching blade — the portion exposed to the
wake disturbances from blade one — the two solutions agree
numerically, as seen in figure 2.5.3, but are not analytically
the same. 1In fact, Kurosaka's solution is singular for

/u= 0 (in-phase oscillation of the blades) over the last
portion of the blade, while equation (2.5.43) behaves well
for that case. All five solutions were found to be in
excellent agreement for interblade phase angles larger than
15°, but for small angles considerable disagreement is

evident, as seen in figure 2.5.2.
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Figure 2.5.2 Comparison of the finite-cascade
solution with existing solutions.
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Figure 2.5.3 Comparison of the finite-cascade
solutions with existing solutions.




Chadwick [5] compared his finite and infinite results
for the pitch case over the in-flow portion of the blade and
noted that although the finite and infinite pressure-
difference (£;Cp) distributions are the same, the local
pressure distributions (Cg, C;) may in fact differ. The

author found this phenomenon occuring over the remaining

portion of the pitching blade also. Figure 2.5.4 shows that
the local pressure distributions for the present finite
solution and Verdon's infinite solution do not agree as
well as the pressure-difference distributions. Some con-
clusions can be drawn from the analysis at this point:

1. For low frequencies of oscillation the finite cascade

rapidly approaches the infinite-cascade solution, achieving

we—

good agreement with the pressure-difference distribution
of the latter at the second blade. . . ' 1

2. For small interblade phase angles, the present sclution
agrees with Kurosaka's Laplace transform solution for the
infinite cascade but considerable differences with the other
published solutions are noted.

3. Although the present finite-cascade solution and
Verdon's infinite-cascade solution for the pressure-difference
distributions are in agreement for large interblade phase
angles, the local pressure distributions resulting from the

two solutions are seen to disagree.

2.6 The Infinite Two-Degree-of-Freedom Cascade. In order

to demonstrate the applicability of the above analysis to
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Flgure 2.5.4 Comparison of the finite and infinite
local pressure distributions.

the infinite cascade, it is applied to an infinite version
of Cascade B. Since the advantage of an identifiable first
blade is lost, a condition specifying the space periodicity
of the flowfields between the blades is derived. The pitch
results through equation (2.6.17) were first obtained by
Chadwick [5], and the reflection zones referred to in the

solution are depicted in figure 2.6.1.




Cascade B (not to scale)

Mach number: 1,281

1 blade n+2

Figure 2.6.1 The infinite-cascade reflection zones.

2.6.1 The Flow Periodicity Condition. The periodicity

of the flow from blade passage to blade passage was first.
identified by Kurosaka [6] and is the heart of his passage
approach to the infinite cascade. An alternate derivation
follows.

Consider the corresponding zones I and IA, and assume
that the potentials are the same there except for a complex

factor K
Palxg) = K Prn(§,D (2.6.1)

Since each potential must satisfy the boundary condition of

its corresponding blade




i ° “ta'7=° (2.6.2)
aa&x:': —lREM at h =o {2.6.3)
it is clear that
K=@e-wnm (2.6.4)
and so
B (X,9) = PR (50 A (2.6.5)

The same result follows for any pair of corresponding zones
on adjacent blades — for pitch and plunge — and is termed

the flow periodicity condition.

2.6.2. Zones I and IA. The analysis in zones I and IA

proceeds much as in the finite case (section 2.5.1). The

velocity potentials have the form

¢§=09,(s)+\g[h.(s\-%‘u‘;gcfs)] (2.6.6)
¢§f‘= JialT) + R [h,,,.(cr\-— %"-’7 ;,Aur)] (2.6.7)

and the boundary conditions yield

PL: JUO=A  gumr=8 (2.6.8)




PI: J,(s)s%-»d_ ;.,(«):j‘i— e'#+D (2.6.9)

. 'Ml

h.(s)-.—-;-s- '-‘FAS +E

PL: (2.6.10)
na(o = -l%-cr'e"/‘— '1_/.’“1:36'-»!—‘

h(S) = --,%-3- (-3: +\fz$-¥/SM"cs)+ G
PI: (2.6.11)
Nl = --;-3 [(E;—a- - b/‘c')e;'/" -o-/BM"DG'El +H

The constants A through D are evaluated using, respectively,

continuity of the velocity potential across the leading-edge
Mach wave of the (n+l)st blade and the flow periodicity

condition
Ps=m) = P, (v=0) (2.6.12)
B = BN e~m (2.6.13)

The pressure coefficients, in terms of those of the isolated

blade (2.3.9,10), follow

PL: e = Cp, (2.6.14)

v “ < m
PI: iy = c,‘-"?!}(‘_ew (2.6.15)




2.6.3 Zones II through IV. Finding the additional

reflections through zone IV is accomplished by routine use
of the flow tangency condition (2.2.26,27), and so only the

pressure results for the (n+l)st blade are given below

PL: A&Cp @M = -2C301-e™) 0% § <2pd  (2.6.16)

AcCpe~Mr = -2 Ce (V- e +8F (ﬁJM‘ Is meE A
PI: (2.6.17)
o< g <2.fd

PL: AQpe M = —4 ¢} (1-e~w) 2pd< g <1-m  (2.6.18)

A e = —4cpu-emm . BX [(/saM‘ 2m) e M
PI: ) (2.6.19)

!’ : —2/s3du-e“‘/*i] 2pd<§ < 1-m

2.6.4 Zones V, VI, and VII. 1In the first three zones

above the wake of the nth blade

P = P + 95+ & [hsto= Ly 9. (s (2.6.20)
J k £ JJ

Bow = BT + 94 +k [ha(m+ L_;"—'qg+ca£| (2.6.21)

Bon = P, * 3(F) + R h,(ﬁ-)a—%f‘-‘w,(f] (2.6.22)

where the 94 and h4 Sauer functions are kncwn from the

analysis in zone IV and




;503—.- nsh =0 (2.6.23)

92 1=m)= hy l-m) =O (2.6.24)

£

2.6.5 Zones VA and VIII. 1In the zones straddling the

wake of the (n+l)st blade, using flow periodicity and

”

results from zones IV and Vv

s kS
TR o A +°«;s,\<u-)+n[mm-“—;i*zgmcﬂ] (&-B-a00

B = P +gs(c')e"‘/‘ + 99(F) + 9, (&)
+ R%Ms(u—) e M4 h(T) + he(@) (2.6.26)

- ‘:;le? [;s(q-) e°;'“-9., () -;‘LE')] - %’A JS(V) e'L/‘

where

;g,‘f)"'k[hga(ﬂ')" E"l;v"‘z? 95A(¢)] -

fikes e
{gs(s)-n- R [h,(s)- %9;,(3)] 3 an
;B(I)z hg(l) =0 (2.6.28)

The wake boundary conditions — pressure equilibrium and

normal velocity continuity — are enforced between zones

VA and VIII
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c;f‘:.=cm at 71=0 (2.6.29)

Pas
A YIL
9 Pua §¢n¢|
57 = an ot =0 (2.6.30)

giving rise to two equations in three unknown Sauer

functions
gsl-€ M =3, -9 = ST [-%(c"" c.““"‘)] (2.6.31)

Pavi —Paw

;;(\_e-;,u)_,,o,;*;g it (2.6.32)

‘h's(t- e M-, hg + %J g; S

] : (2.6.33)
+ [ 9s (-4 — 9, ~ ;,] =FR [— Tl c‘,’:‘jf{l
hs(i= €7A) +hy +ng + %‘[}.u—e‘ﬂ +;.,*.;,+fa;’, e:ﬂ =0 (2.6.34)

where the right-hand sides of (2.6.31,33) indicate the
steady and frequency terms, respectively, of the enclosed
quantity. The third equation in the set comes from applying
the boundary condition to ¢X£:{ at the lower surface of

the (n+l)st blade

e @ Mathy + EM (0. @t g, = 84 9! @-K) =0 (2.6.36) |
5 e 7S 7P s e i ‘
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Solving equations (2.6.31) through (2.6.36) for the Sauer

functions permits determination of the pressure difference

over the last pcrtion of the blade

PL: AcCpgetr=-208 Mg < 28d v {2.86.37)
ST 4R WM
PI: (2.6.38)
hm<§<zfé+m
PL: ACp & #=-2C} (2-€%4) 2pdrm< g (2.6.39)

Ac,eM=-20, (2-e) — 27';1} iz (;q\n«\"-/afa m)

PI: + [z/aJM’-a- (ff-zxm:?a)] e = T, (2.6.40)

z/sd-o-vn St

2.6.6 Results and Conclusions. Figure 2.6.2 shows that,

as with the finite-cascade solution, there is considerable
disagreement among the several existing solutions for small
interblade phase angles, but even for those angles the
present solution and Kurosaka's are in agreement. The
pressure-difference expressions derived above for the infinite
cascade agree exactly with those of Kurosaka [6] over the
entire plunging blade and up to §= z,gd-»m_ for the pitching
one. Over the last portion of the pitching blade the two

solutions are slightly different analytically but are in

Sl
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numerical agreement as seen in figures 2.6.3 and 2.6.4;

§ the analytical discrepancy could not be resolved. All of
the solutions are in accord for the larger phase angles.

Continuing with the conclusions begun in section 2.5.6, it

can be added that:

4. For interblade phase angles larger than 15° the
present method of analysis yields closed-form pressure-
difference expressions which are in agreement with existing

solutions for the slowly-oscillating cascade.

2.7 Limiting Cases of the Finite and Infinite-Cascade
Solutions.

2.7.1 The Steady Cascade. All terms of the plunge solu-
tions are frequency terms; therefore if 'k is set to zero,
the pressére—difference diétribution'goes.to zero for the
entire blade, which is, of course, what should happen for a

stationary flat plate aligned with the flow.

If k 1is set to zero in the pitching case, then one

obtains for the isolated airfoil |

q
|
|
|
|
|

1 el =-2 (2.7.1)

1 P|— } . .
and so both the finite (2.5.27) and infinite (2.6.17)
solutions becomes

AC {2.7.2}

i
(M2

S5A
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where the phase-angle term has been ignored because it is
meaningless in the steady case. Equation (2.7.2) is the
classical Ackeret solution [27] for a flat plate at an angle
of attack equal to one radian, which is the maximum up-pitch

position.

2.7.2 The Single-Blade "Cascade". If either cascade is

"squeezed" down to a single blade by setting the spacing
parameters m and d to zero, then the solutions (2.5.26,27)

and (2.6.16,17) reduce to those of the isolated blade
ACp=—2.Cp (2.7.3)

where the phase term-has again been ignored.

2.7.3 The Infinitely-Spaced Cascade. The isolated-blade

solution is again recovered from equations (2.5.27) and
(2.6.17) as the cascade spacing is allowed to get large.
If the spacing parameters m and d approach infinity in
such a way that the terms FdM" and 2w remain equal,
then equation (2.7.3) again results. The significance of

these two terms is discussed further in the next section.

2.8 The Unique Inflow Condition. A consideration of the

infinitely-spaced cascade in section 2.7.3 leads onel to

lThe author is grateful to Professor M. F. Platzer for
first asking this question.
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ask: For which cascades does the relationship
/saw: Am (2.7.4)

hold? As seen from equation (2.5.27), for such a cascade
the pressure-difference over the inflow portion of the blade
is merely that of the isolated pitching blade times the
factor (\- ™M),

Let ot be the Mach angle defined by
e -
™« = SIN (M\ {2.7.5)

then it is not difficult to show that for any cascade having

the stagger angle

il -l SlNZ“
©o=TAN (—z+ 2 (2.7.6)
equation (2.7.4) will also hold. Said another way, all
members of an infinite family of pitching cascades with the
stagger angle given by (2.7.6) — and with no restrictions

on blade spacing — will have exactly the same inflow pressure

distribution, i.e.
PI: ACy = -2C3 (1— €74) (2.7.7)

This is termed, by the author, the unique inflow condition

for the slowly-oscillating cascade. Figure 2.8.1 depicts
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three different cascades, each with the same stagger angle,
satisfying (2.7.6). The pressure distribution for each
was obtained via Platzer's method-of-characteristics pro-
gram. The unique inflow condition is evidenced by the
exact agreement of the pressures for all three cascades

over the first portion of the blade.

2.9 Some Comments on Resonance. For a given reference

blade in an infinite cascade, resonance occurs when aero-
dynamic disturbance waves generated by upstream blade' are

in phase with the motion of the reference blade [12].
Samoylovich [28] shows that at the resonance condition the
linear cascade experiences zero aerodynamic damping. The
Qevelopment,thét follows is based on Verdon's [12] excellent
explanation of the resonance phenomenoﬁ and provides a means
of delineating what he calls the subresonant and superresonant
regions of the IA—R plane.

Referring to figure 2.9.1, also taken from [12], it is
seen that the leading edge of each blade creates disturbances
which propagate in all directions at the freestream speed
of sound a, . These disturbances are swept downstream by
the freestream flow U , and there are exactly two resultant
waves which propagate along the cascade leading edge in
the direction opposite to the direction of rotation and at

velocities V1 and V2 . From the law of cosines one has

Vi _ M(m+pd) 3 [m(m+ 241"

(2.9.1)

o M cn-u-la.nh-al]"l

t=12
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The times t

’ t2n required for a wave from an upstream

1n
blade (n = -1, -2, ...) to reach any given reference blade

(n = 0) are
x ='-LM—EM(m+ E: [mtm+z J\]vz
wan = T g2 F = A } (2.9.2)
The reference blade lags an upstream blade by
to= oA~ " SRRSO S (2.9.3)

and resonance occurs when the upstream waves are in phase

with the reference-blade motion, i.e. when
to=£m,zn (2.9.4)
or when

/4.,,-:.71"—/22- {M(m-»/sd)'_‘: [m(vn-yzfd)]v‘} (2.9.5)

For a fixed reduced frequency k the superresonant inter-
blade phase angles lie between Pl and /42, as shown in
figure 2.9.2, while the subresonant phase angles lie to I

either side. The superresonant region is important because

Verdon is of the opinion that, in that region, neither a
finite-cascade solution nor a passage-approach infinite-
cascade solution will adequately approximate the true

infinite~-cascade solution. 1In an effort to shed some light




on the subject, some comparisons are presented in figures

2.9.3 through 2.9.6. For cascade A, with k = 0.05 , the
superresonant range of phase angles is approximately =7°

to -2° , and so -5° was examined. Figures 2.9.3 and 2.9.4
show that Platzer's finite solution and the author's passage-
approach infinite solution are in agreement with Verdon';
solution. For cascade B, however, Verdon's solution is
significantly different from the other two over the last
portion of the blade for the superresonant phase angle =3° .
Figures 2.9.5 and 2.9.6 show some high-frequency comparisons
for the phase angle -90° , which is in the superresonant

regions of both cascades A and B. In these two cases the

two solutions — one finite and one infinite — are in accord.
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3. THE NONLINEAR CASCADE

3.1 General. In two papers Teipel provides the numerical
tools for the analysis of low supersonic flow past a single
oscillating airfoil of finite thickness. In one paper [23]

he presents an unsteady, nonlinear characteristics method

to determine the continuous variation of flow variables.

In the other [24] he treats the oscillating shock waves
present in the nonlinear problem to permit determination

of the discontinuous jumps in the flow variables across the
shocks emanating from the single blade. Using these tech-
nigues as well as some computational and theoretical insight

érovided by Chadwick [5]°, who very ably translated and applied’

Teipel's work, the present study is aimed at finding the
pressures, steady and unsteady, on the second blade of a
parabolic-arc cascade. The cascade oscillates in pitch
alone, and the pressures are sought over the entire upper
blade surface and over the lower surface up to the point of
impingement of the trailing-edge shock from the preceding
blade (figure 3.2.2). These surface pressures are computed
by means of a FORTRAN IV computer program prepared by the
author for the IBM-360 computer. The program listing appears
at the end of this work immediately after Appendix A. What
follows is an orderly presentation of the theory underlying
the computer program and the computational techniques used
in implementing that theory. Wherever possible the text

notation will coincide with that used in the program.




3.2 Cascade Geometry.
3.2.1 Blade Shape. The blade shape was chosen to approx-

imate the blades in the test cascade employed by Fleeter
and Riffel [25] who attempted to measure steady and unsteady
pressures in a pitching cascade. The airfoil used in the
computer model has a flat upper surface and a lower surface

conforming to the parabolic arc given by
07=4.'t: R (xX=\) {3.2.1)

where chordwise distance x and midchord thickness 7% are
normalized by chordlength. Figure 3.2.1 shows the computer
model for T = 0.03 superimposed on Fleeter's test blade

and lists- the surface coordinates of the test blade in per-
cent chord. The greatest discrepancy between the two shapes
occurs on the aft portion of the blade in the region behind
the lower-surface shock reflection; however, the lower- :

surface pressures are not computed in this region.

3.2.2 Blade Spacing. The blade spacing parameters are

input variables for the program and are discussed in more
detail in section 3.5.1. The physical spacing of the blades
of the computer-model cascade — dubbed Cascade T — is shown

in figure 3.2.2.

3.3 Teipel's Method of Characteristics. The underlying

insight of Teipel's treatment of the unsteady problem is




L ¥ T o ] —
0.l 0.2 0.3 0.4 x

Test blade shape —— — — —
Computer model shape

J.eading edge to midchord,

0.00 —_— e

Midchord to trailing edge.

UPPER SURFACE LOWER SURFACE

* *
x* y* x v x* y* x* y*
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Figure 3.2.1 Test blade shape and coordinates. |
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his representation of the velocity potential as the sum

of a steady tomponent.and a small-amplitﬁde unsteady one
Bx,g,4) = P% ) + B x,gHethE (3.3.1)

as depicted in figure 3.3.1. When (3.3.1) is substituted

into the transonic unsteady small-disturbance equationl

A wtoxand®| 2B _ @ 2 'P 1% _
[ﬁ""‘“‘*“ax]axa a:‘-t-zmaxat-l-Mae_ @ {3.3.2)

and into the unsteady boundary condition

lFor a discussion of the limitations imposed by this
equacion see Teipel [23] and Chadwick [5].
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Figure 3.3.1 The total velocity potential.

Figure 3.3.2 The characteristic grid.
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where Yy (x,t) describes the oscillating airfoil surface,
one obtains two separate problems coupled by the steady
velocity potential ﬂo . One problem is nonlinear, steady

and zero-angle-of-attack

2, k3
[F-.-M'um%%]-g—é— %ﬁ;l:o (3.3.4)
__?;- & __.*:z (3.3.5)

and the other linear and unsteady

; 2 2 5 :
[Fa_m‘cw)g%‘]’a—:; o g;-o- [M‘(m)%% - 2£hM‘]:—:‘—M‘h‘¢.‘-’O (3.3.6)

_=..[|+ Lhcx-—b)] (3.3.7)

where ﬂl(x,y) is an amplitude function and the factor @'“%
is omitted. It is important to note that since the char-
acteristic directions are determined by the coefficients of
the highest derivatives, both problems will have the same

characteristic directions. The state variables1 for the two

lrhe symbol a4 1is used both for the steady state variable
and the interblade phase angle, and it is normally clear
from usage which meaning applies.

LTS —




problems are essentially the steady and unsteady velocity

components Ugr Vgr Uy and vy
: STEADY: A= /a‘+M‘(x+nu, (3.3.8)
!
P=Y2 M ¥V, (3.3.9)
‘ UNSTEADY : THRVA (3.3.10)
where
f’-.- mi- {3.3.11)

‘The characteristic directions for both problems are
where the upper sign refers to the leftsrunning o charac-
teristics and the lower to the right-running ’ﬁ character-

istics.l The compatibility relations, however, are not

the same for the two problems. They are

STEADY : AV 3 M= c:ovsx'z;-\',,,’/s (3.3.13)

1The symbol &8 1is used both for the quantity (Mz-l)%
and the right-running characteristic direction. It is
normally clear from usage which meaning applies.




UNSTEADY : i (3.3.14)
—-"‘;A $, dx =0
where
AN

Equation (3.3.14) requires some additional comment.
Note first that in addition to the state variables uy
and vy v ﬂl is also present in the unsteady compatibility

relations. Since
dp = 2By 4 281y (3.3.16)
V=3 oy °/
then ﬂl must be found by integration as one moves from

one gridpoint to another. For the points A, B, and C

shown in figure 3.3.2, for example

c

% @z gA - S(u.\-a- —;’\!;;)Jx (3.3.17)
A
3 =

f-. or = ¢“.\. )(u\-—wz)d‘! (3.3.18)
(3

In performing the actual computations an average of the two

above expressions is employed.




The factor £ in (3.3.14) is straightforward, repre-
senting the increment in A along the /ﬁ characteristic.
At point C in figure 3.3.2 for example one could use the

approximation
A/‘E-’ %g""h‘ (3.3.19)

However A, is a bit more complex, for while the increment
dx 1is along the ™ characteristic, the quantity .%%%)P
represents the change in A with respect to x along the
crossing /8 characteristic at the point of interest.

Again at point C one could employ

Ay =De=s (x %y, L a3

» = Xo

3.4 Teipel's Treatment of the Osc111at1ng Shock Wave with
Extension to the Present Qgggggg

3.4.1 The Isentropic Rankine-Hugoniot Pressure Relation.

Consider a normal shock moving through an undisturbed
perfect gas at velocity Vs relative to the gas as shown
in figure 3.4.1, where the hat notation indicates conditions
behind the shock. The governing continuity, momentum and

energy equations are

lExcept for and ¥ the velocities appearing
in sections 3.4.1 %hro&gh % 4.6 are dlmensional, in a brief
departure from the normalization of all velocities by the
freestream velocity U .
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A A
PE = B Na-ve-v (3.4.1)
P+)ov:-_- ’r?-»ﬁ((/‘..-vs-v.)‘ (3.4.2)

2 ~ Gn = Ve — V)2
M Ve Bl g (Vn = Vs = Vi) (3.4.3)
2 2
Assuming constant specific heats, the speeds of sound are

introduced, and the enthalpies are eliminated by

ot=w L ’a‘.’-x$ (3.4.4)
P 7
a? ~ a2t
= = — 3.4.5
h v h o ( )

and, after a good deél of manipulation, the change in
the normal velocities across the shock is found in terms
of the shock velocity and sound speed ahead of the shock

V.S
Vn=Vn _ _2 e
ol 3 —Vs) (3.4.6)

2Y
-,%— -.-(-%?:'— (3.4.7)

yield the Rankine-Hugoniot pressure relation sought

£ 2% |[ s\
e 2l ) - (3.4.8)




Figure 3.4.2 is based on figure 8-3 of [29], and it shows
that the isentropic approximation introduces no significant

error for Fleeter's test cascade or its computer model.

3.4.2 The Blade-Two Shock Position. The leading-edge
shock from the pitching blade oscillates out of phase with
the blade. Let Xo(y) be the shock angle of the steady,
leading-edge s!ock as shown in figure 3.4.3. Since the
shock is curved, XS varies with distance y from the

blade, and by convention
0<% ¥ < XL (3.4.9)

The shock angle at any point on the oscillating wave can

be written as a small variation from £he steady 6nel
¥ = do+ ¥ SR (3.4.10)

In order to locate the oscillating shock relative to the
steady one, Teipel introduces the complex displacement
function g(y) , also shown in figure 3.4.3, and so the x

coordinate of a shock point is approximately

K= Ko+ (Yo=y) COT Yo + 9iy) @14 (3.4.11)

lThe symbol gamma used here and in figures 3.4.4 and
3.4.5 represents the total shock angle. All other uses of
the unsubscripted, unsuperscripted gamma stand for the
dimensionless ratio of specific heats.
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where (xo,yo) are the steady coordinates of the blade's
leading edge. Taking the total differential of (3.4.11)

and noting that along the shock

(]

A

results in
' = sIn? xQ%j— etht (3.4.13)

thus relating shock angle and shock displacement.

3.4.3 The Velocity Components Upstream of the Blade-Two

Shock Wave. Ahead of the shock the velocity components

have both steady and unsteady parts

W* =T + T + U, &tre {3.4.14)

where the barred velocities are dimensional counterparts of
the dimensionless quantities Uyt Vs Wy and vy already
introduced in equations (3.3.8,9,10). However, the flat upper
surfaces of the blades of cascade T are aligned with the flow

in the steady position, and so, upstream of the shock

Ne=Vo=0 (3.4.16)




Referring to figure 3.4.4 one has for the normal and

tangential velocity components ahead of the shock

Va= T SIN%+TTCOS ¥ ¥’ + (T, SIN %o + ¥V, COS %) 4Rt (3.4.17)

Vaz o8 % -TI sINBe¥' + (T, cO08 ¥~ V, SIN ¥o) © Rt (3.4.18)

3.4.4 The Blade-Two Shock-Motion-Induced Velocity.

Relative to the gas ahead of it the shock is moving at

the velocity
Ve = =Vq+V' (3.4.19)

where V' is a normal velocity induced by the motion of

the shock, and is seen from figure 3.4.5 to be

1o 2%
V"a-t SINY (3.4.20)

or, from (3.4.1l1)
V'= LR SINY, 3 e Rt (3.4.21)

3.4.5 The Velocity Jump Conditions Across the Blade-Two

’

Shock. Using equation (3.4.13) to eliminate ¥’ from the

expressions for the upstream velocity components (3.4.17,18),

they become




Figure 3.4.5 The shock-motion-induced velocity.

Vo= U sin ¥o + (U cos ¥e smlx,‘gg*u. SIN¥o+ViCOS ¥o) R (3 .4,.22)

Ve =U cosse +(-U sm‘x.'j—% + W, COS ¥e = Vi SINY) @'RE  (3,4,.23)
Note that each of the above velocities has three component

parts. The first term in each expression arises from the

motion of the shock about that steady position, and the
third and fourth terms arise from the unsteady disturbances
ahead of the shock which are generated by the first blade's

motion.

steady shock position, the second arises from the oscillatory




The components behind the shock are found by noting

that the tangential component does not change

Ve = Vi (3.4.24)

and by using (3.4.6,19,21,22) to obtain

oL B—\ 2 \
V“—?-;TU StIN Yo (‘+‘d—-\. M’;‘)
6 —::: U cos¥e siN?¥, (\-—f_‘ . h)—d; (3.4.25)
2. | .
¥ o (\+M§\(¢.k SINY, 9)
‘-1 2 \

+ q WU, SINYe + ¥, COS w.)] etht

T+ ¥-y M%

where

Mu=M SIN Y (3.4.26)

It is convenient to once again return to the dimensionless
x-y velocity components {?l and (?1 , obtaining from the

unsteady terms of (3.4.24,25)

d
| ﬁ.=m‘a% * i 9 + mguwy+myy, (3.4.27)
| Vi= n.:; * i3 + iy +ng v (3.4.28)
|
!
e |
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where the factor e has been dropped and
- 2
m,= 7o SN 2% SINT Y, (3.4.29)
M= —=— R(1+ —1) SINY, (3.4.30)
27 ¥ M . iy
i 2 ¥=\ 2 ek
my= COS™ ¥o -+ =1 SIN“ Yo QO ¥t W) (3.4.31)
S‘Nl‘. ‘d—\ s\N 2.80 iy 2- \ 4 32
= — <2— (COS 2%0 + —) SIN®¥ (3.4.33)
G > * T Ma ¥
2 ) 2
n,= R —) COTY¥e SINTY .4.34
2 el (L= M:; TY¥e ° (3 3 )
ny=my, : (3.4.35)
A 2 ¥-\ § i & \
na = SIN xg‘r—-‘*‘ coa* ¥, (\ -y —Mf. ) (3.4.36)

Note that the above coefficients are functions of the
local shock angle 80 and so are not constant along the
shock.

If no unsteady disturbances exist upstream of the shock
(ul s, T 0) then (3.4.27\,28) reduce to Teipel's éingle-
blade results. If, in addition, the shock does not oscillate
(g = dg/dy = 0) , then 'u\:L and /‘}l are identically zero
indicating that there are no unsteady disturbances behind

the shock. Equations (3.4.27,28) represent an extension of




gl Re—

Teipel's work from the single blade to the cascade, and
they were first obtained by Chadwick for a cascade of
wedges. It is noted for completeness that the above

equations would apply equally well to an upper-surface

shock wave if the signs of my, My, N, and n, were

reversed.

3.4.6 The Pressure Jump Conditions Across the Blade-Two

Shock. An additional extension of Teipel's work was accom-
plished by the author in order to develop a more accurate
method of determining the flow-variable discontinuities
than that employed by either Chadwick or Teipel. The
improved method is treated in more detail in section 3.8,
but it is based on the extension of the Rankine-Hugoniot
pressure relation (3.4.8) to the cascade via equations

(3.4.19,20,21), resulting in

da

" .
% - F‘—; +LPg + Pathi + PV (3.4.37)

where

L 2
Pa==gar Mu k (3.4.39)

pa= ¥ ME (3.4.40)




R

4y 2
P“’--i:\_ My COT ¥, (3.4.41)

Equation (3.4.37) relates the pressure jump across the
shock to the shock displacement and the upstream unsteady
velocities. In the single-blade case uy and v, are

zero, and Teipel's result is recovered.

3.4.7 The Boundary Conditions for the Shock Equations.

In section 3.8, the flow variables behind the shock are
obtained by the simultaneous solution of the difference
equations resulting from (3.3.14) and the shock equations
(3.4.27,28,37). In order to start the solution process,
then, several quantities must initially be known at the
point of inter;ection of the shock ana blade, i.e. at

(xo,yo). From figure 3.4.3 it is clear that

g(yo) =0 (3.4.42)

Also, immediately behind the shock the flow tangency

condition for the second blade must hold
Q=-[1+ Lk(x.-b\]e"/" at (Xs, o) (3.4.43)
With vy known equation (3.4.28) provides

d \
;‘? = E(Q,—h;u.—\rm\l.) at (‘xv;o) (3.4.44)




and (3.4.44) used with (3.4.27,37) gives the remaining

boundary conditions

mA Mavii=mn, Mani=mn
Q _T\I|+ ‘VI. ~ W) + —'T‘—" A\VIY ak (‘Xo,;o) (3.4.45)
4; b P . P
— =+ 20 J————— 21___3 Vi
R R W (3.4.46)

Of course for equations (3.4.43) through (3.4.46) the hatted
quantities are just behind the shock at (xo,yo) .
Equation (3.4.45) was derived by Chadwick while (3.4.46)

is the author's result.

3.4.8 The Velocity Potential Jump Conditions Across the

Blade-Two Shock. Landahl [26] shows that the total velocity
potential (3.3.1) is continuous across the leading-edge
shock, but this does not imply that either the steady or
unsteady component is individually continuous. Teipel and

Chadwick choose to assume that, at the first shock point

B (X, go) = B, (X, yo) (3.4.47)

The author, on the othef hand, chooses to find the initial
velocity potential jump at the point (xo,yo) . For a

perfect gas with constant specific heats, it can be shown that




A
P
(G + -,‘—A:A‘%) (3.4.48)

ol

P
P=

and since Gi and 572, are known at (xo,yo) from
equations (3.4.45,46), then so is ﬁ& . Figure 3.4.6 is a
plot of computer cdata for cascade T, and it shows the
discontinuity in ﬁl along the shock as a function of
distance from the blade. Note that the initial discon-
tinuity is small justifying Teipel's assumption (3.4.47),
but equation (3.4.48) eliminates having to make that

assumption at all.

3.5 Constructing the Characteristic Grid. Because the

characteristic directions are the same for both the steady
and unsteady problem,.phe characteristic érid can be con-
structed and employed to find both the steady and unsteady
velocities. The grids above blade one (zone A) and above
blade two (zone C) are composed of two families of straight,
parallel characteristics. The mesh below blade two (zone B),
however, is composed of one straight, divergent family Sﬁ)

and one curved family ().

3.5.1 The Straight Characteristic Grids Above Blades One

and Two. Since the upper blade surfaces generate no steady

disturbances, it is seen from (3.3.8) that, in zones A and C

%A= ’AQ=M2‘" =ﬁz (3.5.1)
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Figure 3.4.6 The discontinuous jump in the unsteady
velocity potential across the leading-
edge shock.




and so the characteristics in those zones are simply Mach

waves (figure 3.5.1). Each blade has 21 equispaced upper-
surface gridpoints, and the program requires that the leading
edge of the second blade be positioned at one of the straight-
mesh gridpoints. This is accomplished via the input parameters

K and N which fix the cascade blade spacing according to

YB:‘»(’).':)“.'.*:-;L (3.5.2)
‘p
XB=YB/3 4+ 0.05 N (3.5.3)

For cascade T, K and N are 16 and 7 respectively.
Figure 3.5.1 also shows the characteristic numbering conven-
tion employed in the program, so that a gridpoint may be

located by two characteristic coordinates

(T, Tp) (3.5.4)

Note that the straight mesh is computed as if both blades
were flat plates. The x-y coordinates of the straight

mesh are referred to as X1, Y1 in the computer program.

3.5.2 The Curved Characteristic Grid Below Blade Two.
In zone B (figure 3.5.2) the characteristic grid is non-
linear and must be constructed iteratively. Figure 3.5.2
reveals the numbering convention employad for the curved

mesh. The curved-mesh x-y coordinates are referred to as
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Figure 3,5.3 Characteristic lines through the shock.
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X2,Y2 in the program to distinguish them from those of

the straight mesh. Before proceeding with the grid con-

sturction, some useful relations are obtained.
For an o characteristic passing through the shock

from zone A to zone B (figure 3.5.3)

N = pa = Ng - Ms (3.5.5)

and since /"A is zero
Ne= (AR 5 pg) (3.5.6)
Now consider two points on the same /8 characteristic,

also illustrated in figure 3.5.3. From the o compatibility

relation

AT 2= I = ave (3.5.7)
AT KM= 13,10 = NE (3.5.8)

and from the P compatibility relation |
¥ ol Y,
AT, I) -r,A(I,J) = AI,K) +/A(T.,K) {3.5.9)

and so it must be that

ACT,T) = AT, K) (I3) = u(I,K) (3.5.10)
K T =p
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which proves, in addition, that the /B family is composed
of straight lines.

The steady shock angle at any point along the shock is
found by averaging the angles of the characteristic lines
before and after the shock, i.e.

Yo = [-rm" (N"2) vrm"(’?‘s'y‘)] (3.5.11)

-
2
Taking the tangent of (3.5.11) and applying the sum and
double-angle trigonometric formulae leads to a quadratic

equation in tan 86
(N2 +A%) TANTS, + 2(A2 X)) TAN 3, - (AR+ RM =0 (3.5.12)

The solution of (3.5.12) is rather cumbersome and is

adquately approximated by the simpler expression

2,
TAN ¥, = 2 A £3.5.13)
In the computational implementation of (3.5.13), referring
to figure 3.5.3 again, the characteristic angles at adjacent
points behind the shock are first averaged together, and

the result is averaged with the zone-A angle, i.e.

4
20% + A A K%

TAN ¥o = (3.5.14)
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3.5.2.1 Computing the Point (1,1). The X2-Y2 coord-

inates of (1,1) are of course those of the blade-two

leading edge. ‘/A(l,l) is found from the steady boundary

condition (3.3.5) and equation (3.3.9) while A(1,l1) follows
from (3.5.6).

3.5.2.2 Computing the Points (1,2) and (2,2). The

points (1,2) and (2,2) are established iteratively as

follows. Program subroutines employed are indicated in

parentheses, and figure 3.5.4 is provided for reference.
1. Establish the reference point XA on the blade,

close to the leading edge

XA = X2())) + 0.00S

2. Compute M at XA , which is equal to /u(l,Z),
using the steady boundary condition (3.3.5) and (3.3.9).

3. Compute A at XA , which is equal to 2A(1,2),
using equation (3.5.6).

4. (Subroutine SOLVE) Locate (1,2) at the intersection
of a line through (XA, Y2(1,1)) with slope

-\
AG, 2%

and a line through (X2(1,1), Y2(1,1)) with slope

-4
2% ¥ 200" & A%
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Figure 3.5.4 Computing the shock-front points.




5. (Subroutine ITER) Guess at the position of (2,2)

on the blade

XZ(2,2) = x2Q,)

6. (Subroutine ITER) Increment that guess

X2(2,2) = X2(2,2) + 0.00\

7. (Subroutine ITER) Compute /u(2,2) from (3.3.5,9).
8. (Subroutine ITER) Compute A(2,2) from (3.5.6).
9. (Subroutine iTER) Solve for X2(2,2) from the

slope of the ®o characteristic through (1,2) and (2,2)

X2(2,2)-x20,2) _ 2

——

Y2(2,2)-yv24,2) A2 & A2, 2)"

10. (Subroutine ITER) Does X2(2,2) = X2(2,2)?

YES: GO TO 1ll; NO: GO TO 6.
11. SToP.

3.5.2.3 Computing Subsequent Shock Front Points.

Subsequent points (1,I) along the shock are also found
iteratively. The technique follows, and figure 3.5.4
applies.

l. Relocate XA on the blade

KA = KA + DXA

ST 1u;uHh;::==:n=Ezimiuh------ﬂ-lhﬂiiﬂﬂﬂ‘-“
o 4 o .




where DXA is based on the first position of XA

X2 (2,2) = XA
153

DXA =
2. (Subroutine SHOKPT) Guess A(l,I)
AOTY = 7\({,1-0
3. (Subroutine SHOKPT) Increment that guess.
AL, T) = A(,I) + 0.00\

4. (Subroutine SHOKPT) Compute /u(l,I) using /LA and
A at (2,I) , which are the same respectively as /A(2,2)

and A(2,2)
3/ 32
/A(\;n: AT =N, (2,2)

5. (Subroutine SOLVE) Locate (1,I) at the intersection

of a line through (XA, Y2(1,1)) with slope

JRGRCE..... SRR
AQ,ITV2

and a line through (X2(1,1-1), Y2(1,I-1l)) with slope

-4
272 A0, T-0"2 4 a0, T

ity
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6. (Subroutine SHOKPT) Compute )1(1,1) from ﬁhe
steady boundary condition (3.3.5) at XA and equation
£3.3.9).

7. (Subroutine SHOKPT) Does /u(l,x) =/,4"(1,1)?
YES: GO TO 8; NO: GO TO 3.

8. STOP.

3.5.2.4 Computing the Curved-Mesh Interior Points. A

point (I,J) interior to the curved mesh is located (figure
3.5.5) -at the intersection of a line passing through

(I-1,J) with slope

)
A (x-1,3)2

and a line throdgh ‘(I,I) with slopé

=\
AlT, X))

3.5.2.5 Computing Subsequent Blade-Surface Points.

Subsequent points of the form (I,I) on the lower surface
are computed in a manner exactly analagous to the computation
of the point (2,2) as described in steps 5 through 11 of

section 3.5.2.2.

3.6 Computing the Steady Velocities and Pressures. With
/u and ‘A known throughout the grid, the steady velocities

follow directly from (3.3.8,9). The steady pressures on




(1-1,1-1) (1,1)

blade two

Figure 3.5.5 Computing the curved-mesh
, interior points.

the upper surface of blade two are zero and on the lower

surface are given at the surface points (I,I) by

Ce

o = — 2 UelT,T) (3.6.1)

3.7 Computing the Unsteady Flow Variables at the
Straight-Mesh Grid Points.

3.7.1 The Blade-One Upper-Surface Grid Points. In the

straight mesh the unsteady velocities and velocity potential

are designated by

u; = ULIR + i UllI vy = V1IR + i V111
f) = FIR + i F1I (3.7.1)

,,,,,,




The unsteady boundary condition for blade one (3.3.7)

allows determination of the vy velocities

VIIR(I,T) = -1  VILICI,I) = -k[X1(1,1) - b] (3.7.2)

Using the /3 compatibility relation (3.3.14) in difference
form results in a system of linear equations for the

unknowns UllR(I,I), UllI(I,I) . Figure 3.7.1 A applies,
and the equations appear in matrix form in section A.l of

the appendix. The velocity potential is found by integration
of the velocities, using equation (3.3.18); see section A.2

of appendix A.

3.7.2 The Straight-Mesh Field Points. As éeen in figure

3.7.1 B, grid points not on the blade require use of both
compatibility relations. The equations resulting for the
unknown u, and vy velocities at each field point (I,J)
are given in A.3 of the appendix. Equations (3.3.17,18)
are averaged to find the velocity potential; see section

A.4 of the appendix.

3.7.3 The Grid Points Immediately Upstream of the Shock.

Figure 3.7.1 C shows that the shock points lie in the straight
mesh and therefore the flow variables at each shock point -
upstream of the shock — are found by means of an interpolation
algorithm. The distances RI in figure 3.7.1 C are computed
and any desired quantity Q(1,K) is found from the values

of Q at the four surrounding points

TAA
L o s e - T —— T ¢ .
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Figure 3.7.1 Computing the straight-mesh and
curved-mesh grid points.




QUK) =

RR| Q(T~1,3-\)+RR2 Q(T~|,T)+RR3 Q(T,I)+RR4 Q(T,I-1)

RD 3.7.3)

where

4
RRT=TTRT RD=2. RRT (3.9.4)
s =

3.8 Determining the Jumps in the Flow Variables Across the

Blade-Two Shock. It is in the determination of the jump
conditions that the author employs a technique — alluded to
in section 3.4.8 — that is different from the method used
by Teipel in the single-blade case. The essence of Teipel's
approach is to: ;

1. Assume that the velocity potential does not change
across the shock at the first point (3.4.47).

2. Use the shock velocity equations (3.4.27,28), with
boundary conditions (3.4.42,43,45), in conjunction with the

”~
v

P compatibility relation (3.3.14), to solve for 'u‘l, A

(behind the shock) and g at each shock point.

3. Use equation (3.3.18) behind the shock to recover

A

ﬂl at each shock point.
In contrast, the method employed in the present study is to:
I~ ;
l. Use (3.4.46,48) to determine ﬂl behind the shock

at the first shock point.
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2. Use the shock velocity equations (3.4.27,28), the
shock pressure equation (3.4.37), the ;ﬁ compatibility
relation (3.3.14) and the boundary conditions (3.4.42,43,
45,46) to solve for ﬁi,‘?l, g and $7P at each shock point.

3. Use equation (3.4.48) to find ﬁl from the pressure
jump at each shock point.

The latter method results in a larger system of equations
at each point, but no assumptions concerning the continuity

of the velocity potential are required.

3.8.1 Details of the Jump-Condition Computations.

Step 2 above requires some additional comment. The shock
equations (3.4.27,28,37) are applied in difference form from
one shock point to the next. They are the.last six.equations
in the matrix equation'given in appenaix section A.5. The
/Q relation supplies the first two equations in that matrix
equation. Note from figure 3.7.1 D that using the /8 relation
at shock point (1,I) requires two tacit assumptions. First,
the flow variables at the point where the /8 characteristic
through (1,I) leaves the blade are essentially those at
the point (1,1) immediately behind the shock. Second, the
flow variables on the /Q characteristic through (1,I+1)
and just behind (1,I) are about the same as those at
(1,I) behind the shock.

In the computer program the flow variables at shock

point (1,I) , ahead of the shock, have the form

W & U12(1,I) = {1 U121(1,1) (3.8.1)

—— ,q‘Taznﬂgnna___,____n___.,__,___,h“ﬁ..gu.u..-.-...a-ﬁnnn--lnlill‘i‘




while, at the same point immediately behind the shock,

they are designated

u; = URJ(I) + i UIJ(I) (3.8.2)

until stored in the form of (3.8.1).

3.9 Computing the Unsteady Flow Variables at the Curved-

Mesh Grid Points.

3.9.1 The Blade-Two Lower-Surface Grid Points. The

unsteady boundary condition for the second blade provides
the lower-surface vy velocities (figure 3.9.1 A). The
equations are given in section A.6 of the appendix. The

u, velocities are found via the o<.compatibility relation
(section A.7) and tﬁe veloéity potential follows from

equation (3.3.17) (appendix section A.8).

3.9.2 The Curved-Mesh Field Points. Both compatibility

relations are used at a field point, as seen from figure
3.9.1 B. The resultant matrix equation appears in appendix
section A.9. The velocity potential is found from equations
(3.3.17,18) (appendix section A.10).

With the curved mesh completely computed the unsteady
pressures at blade-two, lower-surface grid points are given

by

oy, = -2[UL2R(1,1) - k F2I(I,1)]

(3.9.1)
-2i[L121(1,1) + k F2R(1,1)]
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Figure 3.9.1 Computing the curved-mesh grid points.

3.10 Results and Conclusions.

3.10.1 The Isolated-Blade Case. If the unsteady boundary

condition along the first blade is set to zero, the-second
blade sees freestream conditions and its unsteady pressures
can be compared with Teipel's isolated-blade results [23].
This is accomplished in figure 3.10.1, where it is noted
that a small discrepancy between the two solutions exists.
This discrepancy is attributable in part to the different
techniques used by Teipel and the author in solving the
shock equations (see section 3.8). But it is also noted
that Chadwick [5] too encountered a discrepancy when he

applied Teipel's methcd to the single, biconvex airfoil.
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Figure 3.10.1 Isolated-Blade Results.

Teipel points out that, for the single blade, as k
gets lgrge the linear and nonlinear solutions approach
each other. This phenomenon is also evident for the second
blade in cascade T, as seen in figure 3.10.2 which compares
Platzer's linear solution (17] with the nonlinear results of

this investigation for a k of 1.5 .

3.10.2 The Steady Pressure Results. Figure 3.10.3 shows

the steady pressures for the lower surface of blade two.

It is seen that agreement between the experimental results
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Figure 3.10.2 High-k comparison of the linear
and non-linear solutions.

of Flee?er [25] and the numerical results of the computer
model is good at midchord and fair at the leading edge.
The program results compare favorably wiéh theoretical
predictions from second-order Prandtl-Busemann theory and
a third-order theory due to Ferri [30] which takes entropy
losses into account. This latter comparison again demon-
strates that the computer solution is not limited by its
use of the isentropic Rankine-Hugoniot pressure relation

(3.4.8).

3.10.3 The Unsteady Pressure Results. Figures 3.10.4
through 3.10.12 show the computer results of the present

study, the experimental data from Fleeter's investigation,
and the linear results of Platzer's method-of-characteristics

program for nine interblade phase angles. The pressure

il
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Figure 3.10.3 Blade-two lower-surface

steady pressures.

data are presented as an amplitude and phase angle relative

to the motion of the second blade. The phase angle is

measured from the point where the second blade attains

maximum up pitch to the point of peak blade pressure. Along

the upper surface of blade two the linear and nonlinear

numerical results agree exactly — because the upper surface
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is flat — providing an additional check of the nonlinear
program. Along the lower surface the nonlinear effects

show up as differences between the two predicted pressure
distributions — differences which vary with interblade phase
angle. The predicted nonlinear pressure amplitude is, in
all cases examined, at least as large as the linear predic-
tions, which is as expected. In figure 3.10.5 (/A= -4.4°)
the linear and nonlinear amplitude predictions are nearly
coincident, while in figure 3.10.9 (/A= 130.6°) they differ
considerably. Figure 3.10.13 is a plot of the difference
between the nonlinear and linear amplitude predictions versus
the turning angles experienced by the flow at the leading
edge of blade two. It shows that the nonlinear computer
prediction; are consistent since'the variation from the
linear solution increases with the flow turning angle.

That turning angle is given by
TA.= 572.3° (- COS/A) + &6.8° (3.10.1)

when blade two is in the maximum up-pitch position. Note
that the large turning angles in figure 3.10.13 result from
the choice of a one radian maximum pitch amplitude for
nondimensionalization purposes.

Comparison of the nonlinear computer predictions with
Fleeter's experimental data, however, reveals that the

theory and the experimental results do not consistently agree.
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Figure 3.10.13 Nonlinear variations from linear theory.

In figure 3.10.11, for example, there is adequate upper-
surface agreement with the theory, but the lower-surface
pressure-amplitude comparison is poor. In fact, in no case
is there agreement between data and theory for both phase
and amplitude along the lower surface. The lower-surface
experimental data appear to be somewhat inconsistent. They
sometimes vary widely from one point to the next for the

same interblade phase angle (figure 3.10.6) and they also




vary a great deal for rather small changes in interblade
phase angle (figures 3.10.10,11,12). 1In addition, in each

of the figures there is at leastAone amplitude data point

for the nonlinear (lower) surface that is below the corres-
ponding linear-surface data point. This phenomenon is
contrary to expectation because the thickness surface must
generate a larger magnitude disturbance than the flat surface.
Certainly, additional experimental data are required to

adequately evaluate the theoretical methods.

3.10.4 Conclusions. 1In summary, it is concluded that the
extension of Teipel's single~blade methods to the nonlinear
cascade results in:

l. Steady pressure predictions which are in accord
with other nonlinear theories and which are supported, to
some extent, by experimental results.

2. Unsteady pressure predictions which exhibit expected

trends relative to linear theory, but which are not consis-

tently in agreement with experimental data presently available.

The significant influence of thickness on the unsteady
pressures is apparent in both the theory and data.

3. A numerical approach to the unsteady cascade which
appears to have the potential to treat the effects of blade
thickness, blade camber, and steady angle-of-attack loading
to provide a more realistic model of the fan and compressor

blades in a turbomachine.
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APPENDIX A

A.l Equations for the Unknown u; Velocity at Blade-One

Surface Points.

1. References: section 3.,7.1; figure 3.7.1 A.

2. Auxiliary constants:

Al = 2kM2(0.025)/A, A2 = k2M2(0.025)/A,
A3 = 1+ 0.0125 A2 A6 = A3/NE
A5 = 1=0,0125 A2 A6 = A5/A2

3, Matrix equation:

A5 -Al/2] [Olir(i, D] [A Ullr(i-1,1) +
Al/2 AS M1I1(I,1)|” A3 U1l1I(I-1,I) -
v AL ULLI(I-1,1)/2 = a4 VLLR(I,I) +A6 VIIR(I-1,I)%

« Al ULIR(I-1,I)/2 = A4 VIL1I(I,I)*A6 VI1I(I-1,I)+

+A2 FIR(I-1,I)
+A2 F1I(I-1,1)

A,2 Equations for @, at Blade-One Surface Points.

1. Reference: section 3.7.1; figure 3.7.1 A.

2. Equations:
FIR(I,1) = FIR(I-1,1) + {Ul1R(1,) # VLIR(1-1,D) -
- [i1rcz,1) « v11R(1-1,15]/4\":}(o.0125)
FLI(I,I) = FLI(I-1,I) + {muu,n + ULLI(I-1,1) -
- iz, « virtici-1,1) /;1: (0.0125)
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A.3 Equations for the Velocities u; and vy at Straight-Mesh

Grid Points.

1. References: section 3.7.2; figure 3.7.1 B.

2, Auxiliary constants:

Al = 2kM2(0.025)/7} A2 =

A3 = 1 - 0,0125 A2 A4 =

a5 = A3/ A6 =

3. Matrix equation:

A3 -Al/2 -a6 0 | [Wir(T, )]
Al/2 A3 0 -A6 Ull1(1,J)
A3 =Al/2 A6 0 V11R(I,J)
L_A:l/z A3 0 46| | VI11(I,J)|

+% ULLI(T,J-1) = A5
- AL ULIR(T, J-1) = 45
- %1_ UL1R(I-1,J) < A5

VIIR(I,J~1) 4 A2 F].R(I,J—l?‘
V11I(I,J-1) % A2 FLI(I,J-1)
V11R(I-1,J) + A2 FLR(I-1,J)
VI1I(1-1,J) + A2 FLI(I-1,J) |

k2M2(0.,025 V’A

1 4 0.,0125 A2
AL/
2

(a4 UL1R(I,J-1)
A4 UllI(I1,J-1)

LA_4 Ul11I(I-1,J)

A.4 Equations for @ at Straight-Mesh Grid Points.

+

-+

FIR(I,7) = 4[FIR(1,3-1) + FIR(I-1,J)] + 0.0125 ULIR(I,J) +
+ 0.00625 [U11R(T,J-1) + ULLR(I-1,J)] <+
+ 0.00625 [v11R(1,3-1) - v11n(1-1,.1§]/7£'z

FLI(I,3) = #[Fl1(1,3-1) + F11(1-1,3) + 0.0125 U11I(I,J) +
+ 0.,00625 [U111(1,J-1) + ULLICI-1,3)] +
+ 0.00625 [V111(1,J-1) - v111(1-1,.1)]/§"'-

1. References: section 3.7.,2; figure 3.7.1 B.
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A.5 Equations for the Jump Conditions across the Blade-Two
Leading-Edge Shock.

1. References: section 3.8.1; figure 3.,7.1 D.

2. Auxiliary constants:

2/ [7‘\/?1,1) +‘;<'(1.I-19

A2 = 4em2[x2(1,1) - x2(1,1-1)]/ [AQL, D) + N1, 1-1)
A3 = A2 k/2
or = [r2(1,1) - ¥2(1,1-1)] /2

3, Matrix equations:

_1— -A2/2 Al 0 =A3/2 0 0 0 g FERJ(I)_

A2/2 1 0 Al O =A3/2 0 0 UIJ(I)

1 0 o 0 o 0 -my /DY m, VRJI(I)

0 1 ¢ 0o o 0 -m, -m, /DY{ | VIICT) | ‘
0 0 1 0 o 0 -n) /DY n, FRICI) |~
0 0 g 3 0 0 -n, -n, /oY| [ F1I(1) |
am2 0 o 0 o ¥Mk  -py/DY P, GR(T)

: -4M2 0 0 ¥M%k O -2, -pl/Dﬂ fI(I)—

TJ-RJ(I-I) + A2 ULJ(I-1)/2 + AL VRJ(I-1) 4 A3 FRJ(I-1)/2 .
UIJ(I-1) = A2 URJ(I-1)/2 « AL VIJ(I-l) <4 A3 FIJ(I-1)/2

ms [U12R(1,1) + UV12R(1,1-1)] «+ m4[VI2R(1,T) + VI2R(1,1-1)] -
ms [U121¢1,1) & UL21(1,1-1)] + mg [V121¢1,1) + vi21(L,1-1)] -
mg [U12R(1,1) # UL2R(1,1-1)] * n4[Vi2R(1,1) + VI2R(1,1-1)]=
m, [U121€1,1) + U121(1,1-1)] « ng[V121(1,1) + vi21(1,1-1)]=-
(ps - M2)[UL2R(1,1) + UL2R(1,1I-1)] + p4[V12R(1,1) +

(p3 - M) [M21(1,1) * V121(1,1-1)] * pa[V121C1,1) +
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A.,5 (Continued):

3. Matrix equation (right hand side continued):

- URJ(I-1) - mj GR(I-1)/DY - m, GI(I-1l)
- UIJ(I-1) - m; GI(I-1)/DY 4 my GR(I-1)
- VRJ(I-1) - my GR(I-1)/DY - n, GI(I-1)
- VIJ(I-1) - n; GI(I-1)/DY 4 np GR(I-1)

+ VL2R(I-1)] + w2 [F21(1) + F2I(I-1)]+¥M2RI(I-1) =
+ V121(1-1)] - k8M2[F2R(I) + F2R(I-1)]+¥ M2ULI(I-1) +

*

*

-$M’k FIJ(I-1) - p; GR(I-1)/DY = p, GI(I-1)

+¥M%k FRI(I-1) - py GI(I-1)/DY + p, GR(I-1)

A.6 Boundary-Condition Equations for the vy Velocity at the

Blade-Two Surface Points.

1. References: section 3,9.1l; figure 3.9.1 A.
2, Auxiliary constants: X = X2(I,I1) - X2(1,1l)

3, Equations:

V12R(I,I)
V12I1(I,I)

- cos(,u) - k(x-b)sm(/a)
- SIN(/.c) - k(x—b)cos(/a)
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A.7 Equations for the uj Velocity at Blade-Two Surface

Points,
1. References: section 3,9.1l; figure 3.9.1 A.

2, Auxiliary constants (also used in A.9 equations):

| DXA = X2(I,J) - X2(I-1,3) XA = $[NI1,) + M1-1,3)
DXB = X2(1,J) - X2(1,3-1)  x1B = $[A(1,3) + ACz,3-1)]
vaR = $[V12R(1,3) + V12R(1-1,3)] DLB = N(I,J) = A(I,J-1)
va1 = 3[vi21(1,3) + vi21(1,3-1) Al = 2 k M2
DVAR = V12R(I,J) - V12R(I-1,J) A2 = k A1/2

DVAI = V12I(1,J) - V1i21(1-1,J)

Y iy Y,
sta = 3 [her, %« a1, 004 see = 1 Dna,o '+ Acz, 3134
pixB = [ACT,54L) - NI,J)]/Ecz(I,J-.-l) - X2(1,3))

3., Matrix equation:

R e = 3 ﬁ ) .
DLXB DXA . A2 DXA2  _ Al DXA :
B v - aadie 5 - B e ¥
Al DXA DLXB DXA _ A2 DXA2 B
| S XA L+ - Soxia | u21(1,7)

2
UIZR(I-I,J)[ -.QGL’%‘A__P_XA-pAg_}%X_.‘: + U121(I-1,J) A; %‘2-»-

2
Ul2I(I-1,J)[ . DLXB DXA-, A2 DXA ]_ Ul2R(1-1,7) AL DXA .
& XtA < "2 XLA TS 2aA

DVAR = A2 VAR DXA2
*+3TA ¥ T XA StA -+ F2R(I-1,0) Azx:_ﬁxA

DVAI A2 VAI DXa2
VI v RTA STA- 4 F21(1-1,0) SR

4, Ncte: at surface points I = J.
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A.8 Equations for @, at Blade-Two Surface Points.

1. References: section 3.9.1; figure 3.9.1 A.
2. Auxiliary constants: as defined in A.7.
3. Bquations:
F2R(1,J) = F2R(I-1,J) + {‘}[UIZR(I,J) -+ U12R(1-1,Jﬂ
+ VAR/SLA} DXA
F2I(1,J) = F2I(I-1,J) + {&[mzx(I,J) + UL21(1-1,J)]
+ VAI/SLAY DXA

4. Note: at surface points I = J.

A.9 Equations for the Velocities u; _and v,_at Curved-Mesh
Grid Points,

1. References: section 3.9.2; figure 3,9.1 B.

e Auxiiiary constants: as defined in A.7.

3., Matrix equation:

1 -DLXB DXA _ A2 DXA? _ Al DXA _ 1

A2 Dxa2 1 _ A2 Dxa2 0
& XTA 2 XLA =2 XIA IA 2 XIA SLA
Al DXA DLXB DXA _ A2 DXA2 ke o A2 _Dxa2
TR lvamae S ) SLA™ 2 XILA SLA
2 2
14-2LB___ A2 DXBS _ Al DXB 1 A2 DXB
4 XIB 2 XiB 2 XLB s"m“"mm .

Al _DXB DLB_ __ A2 DXB2

A2 DXB2

3 X8 L¥TrYRT ST

o

1
SiB ¥ 3 as 5B

(Note: continued on next page.)
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A.9 (Continued):

3. Matrix equation (unknown vector and right-hand-side

matrix continued):

IZR(I,J—)‘ WL2R(1-1,5) _r.l - B A« 25 )gl).(ﬁz]?_
m21(1,J) Ul21(I-1,J) [1 -%&*%‘%J
V12R(I,J) —U12R(I,J-1) :1 - z%‘I&B—B ‘*‘Azz—xn%z] *
:,:1-21(1,-3—)‘ _t-ﬂ.2I(I,J-l) Tl = ‘l,LL'XET *%%3 o
i .\-vlzz—(zj,.n -1 & A2Dxa2 ]

UL2I(I-1,J)-AL DXA
4 UL2I(I-1,J) BT

- UL2R(I-1,J) AL DXA

2 XLA

+m21(1,3-1>_‘%_m§

X1.B

- UL2R(I,J-1)_AL DXB

2 X1B

<+ F2R(I-1,J).A2 DXA

4

«+ F2I(1I-1,J) A2 _DXA
F2R(I,J-1) A2 DXB
-+ ’ B

F2I(I,J-1) A2 DXB
- ( » ) el ]

+ V12I(I-1,J3) |-

P
<+ VL2R(I,J-1) |-+

«+ V12I(I,J-1) |+
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1 4 A2 DXA2 | &
SLA 2 XLA STA

- A2 DXB2
SLBE 2 XLB SIB

1 _ A2 pxB2 | o
SLB 2 XLB SLB




A.10 Equations for g at Curved-Mesh Grid Points,

l. References: section 3.9.2; figure 3.9.1 B.
2, Auxiliary constants: as defined in A.7.
3. Equations:
F2R(1,7) = #[F2R(1-1,3) + F2r(1,3-1)]
» v, + warcza,n + VlzR(IlJ)-S‘I%AVMR(I'l’J)}DxA
+ #{uL2r(1,n) * v2r(T,0-1) - VL2R(1,9) - VI2R(L,J-L}nxs

F21(1,3) = $[F21(1-1,3) + F21(I,J-1)]
+ }{UIZI(I J) % UL2I(I-1,J) 4 YL2I(I,J) +V121(I-1 J>}DXA

‘L{UlZI(I J) + Ul2I(I1,J-1) = Vi21(I,J) %Vl21(1 J-l)}D)(B




|
|
|

gccececcccecceccccecccccecccccceccccecccecccceccccceccccceccecccccecccceccccc
PRCSRAM INFLT VARIABLES.

LOLLYOLVOLLVYOLWWOLOLOLLOLL

wea k= |-

LOLLLLLLLVLLVLOLVLL

1 70 10

SECONC CATA CARD:
cccceececececceeccccececcccecececccccccceccccccccccccccecccceccccceccccccccccccccce

o NN N & @ g U

o P -

S 4 Oy .. - | | -

o O e O < < W

N il | n > o w >

o} ~0 * e o

> W~ (&) [+'4 e g O

- LIS T 2 W w - N

- -_— U w oo > P

O JYOwvuwm D 9 = - ul -

F 0O Owr oT [ P | o T e -

& W et~y W @ X =~ O -~ W

O eONG » X e O o W U ©Q

G ATt~ W & e~ X Ww W D

- Qw>0N0 bl o« N U W . e~

N Wt «aU™M O O un e W O ~ n

U St () e Wi e ® em~m() O 4 .

X NHO e QL - O nw w a o

* A>T ~0 D n W e o X w

-~ U e Q . - =N << -

O emOnN - w o X wee £ = ~

T e OT a W N O *D =~ - n

* QWO - - o ZXUV) - ¢

O W eaxdnN e X = (S N7 ] < -

< CON N ww x o Sy W = n

—w T e - o - We oz UV - []

N Swr>>at N -~ - QO Qila 4 e (og)

> Wit «eO> o s Il Z <« I = W

- erdemiN o - oy [ I (VD i ¥ Sy & W -

- O~ N e O O adadD (SN o

O ZO¢30 a D o~ < Oz O o

3 W e et - w = 0 Z2Z2u 2 - |-

& SmOO o~ e g W 9P G ¢ -

Q ~OF o5 ~ X (7] Mm n

¥ LO~=-m N o~ w unwz w - .

-~ eSS o - N QO FND N - o

Ny *ONYT =« (v - U a Z4q - & &

X o T 0o~ N N W -~ ~Iy = o -

L2 w00 A Z W DA e W e~

- oy o TN o o X Q < J O m

O ot e w o - ww QO e |-

WINN D) pmy )" e M g de=mUL D 2 - [y

X I >FN—ON S T OW0Og00 O NN

OXW & o D)~ D e L e v ~N ®
N o &6~ & o L z [WIVAT X Q - o
Der Y. NO G = oLt 1w NuWwWxry = *
2~NX2 W~0D *a. I O = Uil < = -
MX>XNU oL TN~ o O g @XX2r-a w0 ©
® e eOnN o=t~ << J OUNDZn. - N ~
N~ F 4 DO~ F O~ «Tw=D 1 X -
IO w2~ DTN - -ifNe =, =« = - -
XOZTU X DDV~ - & 8 By & gt Y
® ax ey * DN X XOX XXUWe g O .
NO *I0~ON=O™ =i UVILNONUNGI=>A =~ O
T~ JWUT 000 - - e e e aiLme =
S OU. [ — - - e e " e L e -
N™N Z0"FTOUL LD UVUNUVUODLOZLUL SV 0

XX~ JITLNNDIN N . o e ™ - kip-pmo ~ |

QO 12 (N L ot 1 St s e B it (), S () et - —
WVZOA LN~ (XD b e UV b 1= ) b P o S o e b UL e
#OOLXLL~A™ ST U 0] « DIqA2 LA
ST S PWUL O~RLIWT I O =T WIE ST A al
AT w2 o\ *TU AU ZorQUL XL ogdldo

N WDOXtdm = e amp~ () (37) &5 1DIO0OQCH 0. L)
COFWOOONOLLOUL WL XL UL Ju b w™ w

N -4 ~ (NN T e | -~ -~
) 0o V9O
000 O W 000 » O O
000 O U OO0 w O O
OO0 O O 000 O = N
NOE NN O O - o~ oy

133




e NG s

REAL A

3
.

ACE STeADY PRESSURE COEFFICIENT.')

CP-STEACY?*)

F
[
DToFAZE

URFACE UNSTEADY PRESSLRE COEFFICIENT
R

*

)

J

u
9
2
R

wyrd o X

S

'LOWER
W
C
8
X

ol & TULWVO
- cle e e\
QLODUWVO
- e s P-INMW
(D - -
el el ad ALTA
L R O O
F>FZF WO
o (¢ixpraa
[l ke Timlee VY]
GZu. U e

e ;
QO
o000
nNoon
N0
oy ol i

1300C

wny
OY i~

@ exXm

SNt X 0 >-W)

N= X N

NZE e

O X=X W

O e oy S o~
O #q0V0O
® ADOVLO
[alad S LEIW )
| Nw~ULrunww o
ST * e ey e
A QOWVVUWVA | =\ N
P )R s s || WO+t
TR LAMWIIWIMU * + XY * X
KOU Db T L7 2L
LU I L (R e L L S [ LT L 1}
NI DO ALL X ~NOT
WWFrFNELETEXLEILE

RZQUIREC CONSTANTS

CCMPUTING SCME

C
c

(&)

~LINE MESHPOINTS COVERING ZONES A AND C

C

THE STBAIGHT

C CCMPLTING

SGME INITIAL VALUES FOR THE CURVED MESF PROBLEM

L2(1,1))

—~a2

-

—t T

N0

- D
— e e\
N O
2T X% o
- ol #
MDD LZ#
P N i
e S P
) KK e
X - —t -ty
Nl == e ex
— () e (N Tt
D han o KA LIl
* e ()3 (NI -y
O N e )X D
e D 4N W N -
NNF X JNgae<
2= XX R X >

n '
~N
om
N
* N
-0
Q0O
L}
N ¥
| o~
e
> X
~a + 1
BB~y Y
. Sy TIX R
b P gt
WHr=p—n 0
~ Qe )

LA [ har Jar 1 q
OOdy & (O
el U bt g e T

U N~ wZ
OOt D) =
LEORXX»rOV J

a.
.
o
(& ]
o
(&) —-LLO

(2,2).

AND

C CCMPUTINCG THE CURVED MESF POINTS (1,2),

c




)
Yo Y2 (I4KSFIK)yD1yX2(J3J)9Y2(JyJ)D2,X2(J,KSHC
CF THE SECOND BLACE HAS BEEN REACHED.

§%INF!+OSQRT(XL2(1'KSHCK))*DSQBT(XLZ(I,MS!)’
2 YAsD19X2(14ME) 4 Y2(1yM5),C2,X2(1yKSHOK) Y2 (1,KSHCK

® (=]
w) o
|l 0 '
v z -
o~ - [ o
o = Q o
-t - Q. 0
) (] -
4 Q. b o
v (%] o
b4 | w —
- -~ & P P
B - o~ (») - (o] S
w3 o (&) [ o0 Q
N~ [V 8 'Y ] pv4 o u
DV4L | N > O = - O - =
2wy b4 oM @ A - O o (5}
- W Lo ] N X -~ e wO < >
o ¥ 0, & Qe T O e — W |
XK e 4. W xXwn > ML e - -
—-— Yt~ N v ~ - - ) ™A U W OXY
DN -0 ~ X<t Q — N D oN I 3
THN L i~ b~ Qe N e e S - = ~TI
0N wH#xXX own = AL TZ - Xi=tem X - + W)
O WX~ 0o w x wg W X Xl O ——~ L e~y
O =&Lil= H$<A~g D et AX = = ~ =ONX e~ L o ™ e »
? Yty O o~ P -~ Xerq «£ Wh- X=X 1N = N ~x O
* O=dxU L ~rwer (N W \WNX = 2L I IX X @ We W U0
= eXJUV)HNNN W v~ V) e A~ N s VWVl ~ W WUN W O
| HAUVIS= T | ~op=-(> X @ NL<(XXY W |~y QO>Xdn £ = S N VIS
! CANMNVINYNCUU J W D “UIXUWUO) T XL Nd*uVXww = xnNy XX -
] WXL N ™ V) WNXUALTL = WUMN QWX S 0 LA U e
il & 0T gemal) ey X I+ vy X O N~ eMIZH O L) = XNw
NN Q=) T =N WO =YAX Y O UV Seird (N %y wIx wxw
Moo\l | ¥ ] d Z (DX~ o 7 XNedp | d>=OFd O XX O W
Nt DONNN N NEF O = +4 AT Nt dT e N Nt lld *NOZT ) 7 e £ T =
LLZ XK IV DU AT ™l = XN ALT = VOt I NDom 2 MEG =~ ULl = DUy
XXX XXLL2OVOULUSY 2 QXXXOU 2 20WQTIQUVXXXOW O et X XS
4 Q. \\ a. v % ®
o \ >, ) w
o Q . - X
(&) Q o O (% O O o
Qo o o N O
9 QLY ~ LM N QLU LUV~ © 1

135




3

CUMPUTING THE STEADY PRESSURE-CIFFERENCE DISTRIBUTION FOR THE SECONC ELACE

.
e 5
wv
w
>
w
zZ
(=]
-4
|
(.
I
(&
()
<
o
[
(%}
w
I
-

-
2 (&)
> zZ
#* Q
P o |
x L=
#*
< [%2]
. w
o~ —t
— -
~ -
-~ -~ Q.
- -y Q
— - -
- o (Y&}
- Q. >
B L ™ ,
Ned & >
-4 X o
X = <
X | X (995
- O N\~ -
VO LOXO (%]
OOV~ | O Z
VOX# —~0 -
U Sy
et ped § St w
S el N~ W) I
W || =W -
- A\~ Z
WO XX~ O
b (N () =
e O T
XA XL -
STOQAXSED I
a.
i
<
(8]
(=]
(&) MUOVLOU

APPLYING THE BOUNCARY CCNCITION ALCNG THE UFPER SURFACE OF BLADE ONE.

THE UFPER SURFACE CF BLADGE ThC.

(&)
=
=]
-
L ¢
Z
(e
- =4
- o
w -
a4 o
x P4
| Q
- (8
-
- >
- o
— <{
~ Q
~ =
#* [
b 4 ®
o
— 4 X w
OV | -+
Y =
-
([ R )
-eed) £
[ L P ]
Oerwied Do
S
e Q.
Uity Q.
WO\ g
o
SO0

(M} Q=

i (& 1V, }
r~ U}
uye—
NN
us o
N~

— -t
-

<\ + e "
U P rd )
W vt | bt 7
WO + T st
N LS o vt
< WY~z
WOy~
UWQeD>>0

o
N

ALCNG THE LEACING MACF WAVE OF BLACE ONE THE PERTURBATIONS ARE ZERO.

L
>
N o e -
2V00U * -
NN nNnOw
o~ || W Q
NI I I £
b BT I T T S )
P T S
(o DT T TS S |
OO Y gl O
Dl Lo Lo [+ A0 S 8
(0 L e e L B P B
[N e B IV TSNS )
o
VOOV

ANC PHI AT THE STRAIGFT-MESH FIELD PJINTS.

M*XM/ B2

> U\~




»,
~

05/84V11R(11,9)

=Al*UL1R(I14J)/2.-V11I(1,J)%*CO5/B+V11I(I1,J)

+A1*LL1T(T1,J)/2.-V11R(I,J)*C
)+.0125%(LLLR(I yJ)+U11R(I1,J)=(VI1IR(I,J)#V1IRI(II,

G)=F1I(I1,J)4.0125%(ULLEI(1,J)+UL11(I1,J)-(V11I(I,J)+V11I(I1,
(
RITyJ1I*CCS+#AL*ULLII(T4J1)/2.-VI1IR(I,J1)%CO2(1)/B+A2*F1IR

==£13ULLIR(TI9J1)/2.4UL1I(1,J1)#COS-V11I(I,J1)%CO2(1)/B+A2*F1

SUTIR(IL,J)*COS+AL*L11I(I1,J)/2.+V011IR(I1,J)%CC2(1)/B+A2%F1F
~ADXULIR(I19J)/2.+L11I(I1,J)*CCS+VLILII(I1l,J)%*CC2(1)/R+A2%F1

(]
(@] - -
-t wno w
- N=1N~v O b4
i WO «O 2
oo O O =*NO <
QO Rk BT bol
o~ -t et O N 5
O e og TV D D~ - ¢ w)
DO * oY e T * % T
«D0O N L bl Len [s AL ] n -— o~ o
O =~ ™ &N ~ -~ o~ o - -t -
Q St (Nomes 3t~ 3¢ AN~ - e (Nem O~ = R - ¥
N O O Sy ' N=IN(D) L LY O Ot N e\ T S w
o ol ® (YN e €Y o <L ) ™ (MK g WINPT~ Je N IS RN ] (®]
L & P I NNt P g =g 1| WL | ST LITOOTW 0 0 L el ~
O NI IOMS e~ U LUOII0O | QQUOUV D (&
W Mo O NIE U Ve OetecaqUO L LU it nn n
T N NNty & &) COM 00 G ) Ay O s o ™0 oy, N S, et
T I D et o oy A e ] (\[ () O BN G Sy, S s o o OV A N NS UG O Mo TN
1O 11 | ~SONMPar e )~ gy (L g (L) L e OO ST U D T (00 U 7l e 54 0 o 0ol e ot P DYoo Do &

bt QD ™) "D et Y v e (N N O TN e M A e N5 N e St ot o s ol ot g o o ot o o o o o T Y O S Py )
" W e Y NNANN QNN e od (f Spgom. T PFTIITTETISITIEITITION aNeaN =N J
MOUOMLULULODNOTITOVIOAUL ~ i yem () DO Q0O NUODOUDOUNMI I ™A=L~
L™ hor I PRT IS LIS (WIS V4 A W[ pee 56 7N ﬂgﬂuuuuUuuuuuuuuuuUumvm (S Ao 4 l® ]
-y -y ~ e -

QOO
200
OO~

11CC

137




- - b=t P b by om -~
- - - M o ww om e
= ) o ™ o et et e
+* * - e e ™) .
- - . oy v e e - -
- o~ b 4 DD > >
Lo (o] &+ T T X -
- 4 @ X o o v+t =~
S - (%) x & o o W uw
- —— o~ * * 4+ ¢ # w
— = NN - e, e~ T
- - o % % B e B By B - S 4
& D [+ 8] #* 3t #* * - s o * £
[ —— o o~ el o g s +*
+ * Q . o~ o~ - N et o o
- - w —t - o ™ @ = DD
3= > =799 (o (Gt e o IR
- - (o4 P Y . I I o
bt =4 o ey D D > D e w
P Q ot et et 'S *  » #* L -
@x et g M M M ) el
~ - [¥V] ped ) = ed (64 (6 4 (Va4 5 ¥ = L
———y G PP o X X o o # =
D~D~ - @ (N 4 * + 4+ O ™
~ Q> m - —— g~ — -~ o~ e e~ Y, L
Je % 3 # 4 - o e e T T T -4
uy 9N o < - - ® o o - - - - & -
NNy o - ot el ol g - ed et ™ m e
L Dl L - y - e et et P b e M) T
OO\ < -t NNy - o & -
e~ o~ bt D= == om X Y bt et ey
Rl B 4 o - st s st et e e
e™) o™ s ~ > + bt I e e
N e = a - [} & D S O
NN~ - - NNy . ¥ ¥ o ey
o~ et Q -t -t 3% 3 * 3% N N NN W W
I o N < - Lo 3 3t #* @ € o o« # *
b 1o 4w Lo < T -t - o, & L o N N
o St - ~ -~ * + * + @
7 pd gt 4 - Lo ~N — - -~ e~ e~ e o X
-t S > > x ="  ed e ™+ o+
~ |~ | - | Ad L S e B B T TP S
(o) al T > | - -*> i et - - - o o -~
o ot e el 4 - - ot ot 1t L I B T e B |
o YD u. [ ®] b L& |  —r — et bt (4 - -
o + od o o -0 L3N e e I - — W e ww e ed
4 Lt B2 | -~y e rod M XXX K - o L T T
ot e e wv N & ' w e (] I e B I e
O amon =Y ™= [18] > - —— rd el ph -t e
bt NS ot & 2 ~ et > P S | EZD I > > - -

P s T St Pl e Pk - X | — | -~ > o & +* 3t 3 # * w w
OFTIEIIT~>DOw> g Ui~ & -~ ot o A oy - * x
QU NNV O~ i~ > ANIO NI T~ o o & X w4 o~

TLLT N~y V) & opd 2 *u) NINANNTE TN e e ¢ o
L d S A" S AV 1 XN rdped * Srar= NN NRKIT (VX Pow o = w o @
NN~ b v O Tam X -~ - RO " " " -

Sommemmam I NUN = NN #ONN - Tt VIMNANAIX. ™ o om =~ "
W I~ N =X UV W) O R JLOJ IO IO -~ W
e & o & TV D - "now nw o LT R P ol " o *h) - I
Vptbdbipey &™) 6L > £ Ot 7 O NS Z el ek (Y (T D PN el o e e el N N ot N e N & . <«
N ornr P aatt Gt 0ot oy Oy Lt Y dbt | | VN UNVIOLAL (AL (O o ™ot ™ ot et o vl el bt
N LAY g o et el P TV O‘—NJUF-—‘U!)O—HﬂQDQO WO ™t ™ L o=t e -
o o ol gk O, b et P T T ey Wlaw @ (11 2Z 1 000 HN~NNS "N—lNF‘N"‘N"‘r{DHU‘
L ot vl o 7 ot e e (VT 2 UHSLL‘)( T UL (D et O\ () (L O O (O D Dot ™t ™) =1 DN N )
OO ULOW O QOQUUUUONOUONMIC XX EREEND *D o2 «3> *L\U\Q
- ‘o R e e T
F
w
Q 0o QO
QO -0y Tin o
OOV - ot i *

138

|
4
!




r

n 00001 3L Q9 (1°33°SX)s1
w ; (SH L Sy SHY! ¢nu.ua“w.uuww~
T322V+8/7 (11202 (P TIITTA45 02« (FPTI)ITTA+°2/(Q*TI)ETTINKTY u.wwwmuma

YT JZV+8/7(T)Z00%( FATID B TTA+2Z/(PTI) ITTNxTV+GI D% (M TI)ETT u“m%wqua
T42V48/(T) 200 =( 1P ¢V ITTA-SDO4(IF D ITIN+ 27010 1) ETTIN%I V- u.w“wMﬂm~

JTdx2V+8/(T 1233 (TIF INATTA="2/ (TP I)ITT T V+SOO=(Tr¢I)UTIN=(T) % SHY

_ (T1)%22=(31)%02

*0=(SIV%0)

(6)7052=(%1)%0)

*)=(e1)%0)

*0=(21)%0)

(6)%23-=(11)%C3

*2=(0T1)%2)

3/333-=(5)%3)

(1)732=(3)%02

(2)%22=-=(11%1)

(1)702=(9)1%0)

(2)%33-=(5)%0)

fepiels ) (2)%33=(%)%2)

(1)»5J=(£)%0)

iz . *2/17=(2)%J)

= : Nq*mmﬂu.'.au.~m¢ow
! 1-r=1IF -

1-1=11

’ Y=l

En=1

qumwdo.v.aumou

*Z/TVveNXX=2V

ZB/WXHAX $ AKX %G) * =TV

e *20v18 ONODJ35 341 30 3333
. ONIJV3T 3HL 40 WV3Y¥LSdN LSNF INIOd V 1V S378VI¥7A MDTd 341 INILIdAID
FINIINCD

X=(I)IvX

~>.x.No..H.ﬂvwr..u.a.mx.ao.-.-~>..H_ﬂqx.m>4umogawm

((1°1)21X) 193S3/7°1=-=10

NCHSH®*Z=1 031 03

*INICd hzomm N¥ICHS HIV3 ONIHZSE LSAF SINICd 3IN3¥I43I4 INIINDAWD)

)

®*MOOHS 3HL SSCYIY SNOCILIONCD dWNF 341 INTLINDAIDD

~-OOLL

J
3
J
J
d

139




1R(1,J)+{ULLR(T,J1)+U1]
11(i,J)4(ULLI(I,J1)4U11

P e ]

Lt i F o' TR
N J o ord
D Nt gy W ) Tl )
TETEwSw>
(Ve 120 100 [P0 Lo Wad n T4
ATl l~tt >
WL el "W @
NN SNy
o~ NN
el L T P
L L L o
rlrd ", ¢ ) =)
vt v G >
(A A I A L Ll ]
NN AQC " ot g
v o 7 ) () e (]
DIA> U LU -
~y -y

SOLVE THE SHOCK-FRONT

LVOLL

ﬂ‘ p— -
-— -~ - -
—4 ey =t
—r - —

-3 5 - -F I~

~ T -~ -~gd~

(DD -t —t (DDt

— o e

2 rted R et D

<aZZg <7 Zq

(LITRE L] OUuLO

- N~ - NN~

o N ] — O g

Lo~ L Lo~

Uy, [T b ' 8

N N NN

O s g v

- e~ - e~

W T Ly W= <Ti

NOON NOWN

T~ q -

[TERN X T (VIS N IV
~—um2Zu WEZyu~—
o L, L ~ U U o vd e
et Z R 3 U ZRHRV) o=

o erarnen () [ kbl ® Lo T AV S ¥2
v el L) o o () o~ N om( ) X X
L Kl b L] % mdod L 1< X
bt Lt e & > = = NN N
NI D2 Ol OEFE QO rdrdan

[(TRVETge £ € i
3 3¢ XU XX pmy
Y X~ i NN

LA > Do
HKOOX# 3~
PRl e laa e d

I Y A Y el Mot XTI 3
XXX TIX>D> XaQ X+ 42
| XU WXt P UL U X 3
memd | 1 1N E N e Ll R
) o, P e o T ) P e e JEC N
- Sjrmmanilld & U™ i pd ® @
e N 7 ] N ™ o N 7 et N~ s =l e
> ] -t el ol b S d o B8 AR
il 22U * & U 2 NN
NONWLT<T U et WL <D AU ot o
P g e L) () o 7 — ) () e ) )l et
DN~ (Y (g el
e () o e St (N O ) oo vt (N NI O

®HQOECU)eH—S N DINN
S =l DO rwlll~-+4+a0
SOCH 3¢ ¥ # I TI g %Wt t b
Y mam ™mO\INN o Sm ™ D) D™ e
TI e ™™ D DN (" ™ e et
M I rdrdod el p b T D el v el o s e
T P e P o ] T it s St P ] v = Y
CFITI 223 NI 22T e x
e s U L Lo B S € S A Jub P

e~ DOOD e O (DD e e e
® 0) | T DO e |
D T ™0 ) W= NN

N e 3 502 monemonny QL O o= o

O s o o ks L (L, M e ol e et L U UL S el el e et

T s | oy | s | T |

waa = W W DDDDN NN N O™

O bt el et = N (N 1 O 4t O s o=t () () $* IO X 0t
N\

140

it aniadd

SCLVINC THE SIMULTANEOUS JUMP-CONDITION EQUATIONS.

OV

<
0

L 2
W=
nmn o

KSHOK

N Ry [SIVH]

"

-
-
4
—~
- -
- —
—
- 0N
*
- X
- .
N —
-t -4
> 3
e —4
® - ~—
oo N
N¢od
~ X .
- - N
~r NN
— o — >xX -
-l oem () o
g el I* —d
—~—— T e
Nt XK -
<>~ ®
XiIiN 2 e
| ™ XN
— * \Ne
et O M N~ o
St ) 2 T N ol

L (X P~

ONem Z ot (NUN# XTI o~
P %= | CNID=UD @ 9K T
O ) o e 4t I e ) (N F K (D

DZNN NN NN~
DU X D= U=t 0 O
LOUUVU=OWOLQENIVO

165

167

m——




.
'
¥
E: —r bt P e
~— = -~ R e e
- X ™ o el
O O O O v =
* # R K o -
- em em em T ™)
D O O O o
- e o~ D D
N N &N N ¥
2 2 &L Z o~ -~
[TER T S V R VY
§f & 8 e -
@ 0> > > >  ©
NND O O O O Q
. NN N NN O O
Lt e [] (]
rdod ™4 ed el e X
Lanlan Lo B I I N T uw
s W w e v L
= e 0L S~
LD O O O et
[PRITEE S T L ]
WNHhom om o o Jw Lo
MY O O O o
ADAewr o = w VOOV
- bt o ed - RO
X X £ L& VO V™
el W W W OO
- | | ' | T~
. e e ™ SN -
WD - e - Qaa
Yottt bt et = #UH W
St s e o~ |~
¥FEo D D O>O>-
el Y et o e DD
Q) 2 2> > NNTN
+4+ 0 | ] | a~a~=—~
o oY v ¥ ~v U~
NND> > 2> > $radee
N™@E o -
- E Y * * DL
i i T el & J04 )
- -~ QD O (D O FRE e~
el ] St - W e o—)
Pt pt P o e )P T ~O~OUX
* ® MY 2 N &L & e e
et it~ D DU W WL U e D
- - & ol B 4+ <+ omawa =
b 4 > > > Qo PN =~ o =~ (WU
-~ > OO 0 0 NANNNw=-T1aD D 2D D IV IW
> X ~N NN deded gyt V(€ (X ¢ L $e~de-mT
* H# SO oo, o g men wm T DD DS NNem = # sy
X -~ - CmMPFOOVVONDO~UOMON S ¢ ¢ Ll mirdom = e m OO &
xn ~~ NN st ot e ot et N\ N\t UV "™ e o P (D D () UV ~www® ’
@ ~— N (D rd O et N et N (N (N (oo F o g 1t St o o ' e~ (O
N YO w MWWUL2 £LULUD WL DUW & & o S )ITHM M ¥ F w=aouw
-~ Ll O U Sy TNV MWL UL ML WD WML e v e e e 2. D FOA WU U
N ottt Q== OV ) U VU UOww I UL UL “w wi~-nr O
S W I NN LI [ U LI T T LI [ L LA A U LI IO LI [ (L T« A s AL Dl T () " " " W || o~
B0 DE U o o s cmy, T, S TN gy, S gy oy, T T, S g, g, T gy, (N ANAN (] (O, T -~ —_— — — -
i = o S ONWI= AWO MNMONMNSANMTNWVWRO~ANMT et NN T U O T ewv
! Nt = NN AT T TUNNDINNNOWOWVV I IS P UL Yo = w w e
! s s P s e e s D s St P i i P gy P P gy P s vt N W N NN WNODOD O D O DOONM
COWM MNPV MOWMODMOMODVIMWVWEHDOMHWDODOA e ™I A VN N NN

Q0N ONLUWAOALOQUWURVOOOOMNUDOUVOVOMNII>PULLTITLL~laT~IT~LOLOA
UUUUQUUUUUUUUWUUUUUUSUUWUG LA EALOL ™AL~ =™ | &)
. - ety et -y

168

141




TC 10000

J

Q) o * oy o Ny
OO T U O =
" it P s W e [~ ()
4 W 0D W) W D W e =
VIV IV IINVIWW
UIALLlLLLTOVWV
Wl OO oY LY A L
LU U U LI L LY L
V) o S oy i o || W
N St 0t et Bl g S
N st N N vy P gy Vo) Sl
e I i i i L
L OF 4 (4 O bt O et
=) D2 el OO

]
(7]
w
-
-l
<
>
o
<
)
=
'
ar
w
(-
2
o
LN
| ]
w
w
- O
Zz <
bty
- o
Zz O
(o I
O v
o
~
OOV

N o~

T ot St P g = 0
e P e e Sl g -l ]
NIV~ -
A A Ts A0 R | w
*ID>IU - x
NW NN e ~Q
oo~ N =z
0 e ot et ot = o || (L]e)
Lol L L P ) P4
Orirdpird o o> U
00 = e = g 7 gl >0
el LN O bt o St p |
NONANNOL s> aw
)t g = (NN O a4
WII7 22U -
b,
o v
L+ ]
~OOLLLVL
142

CMPUTING THE LNSTEADY VELCCITIES ALGNG THE CURVEC MESH.

w
o
w
(S ]
<
w
24
2
(%]
o
w
=
o
-l
w
X
[
o
z
Q
-
<
<
v
-
-
e~y
Qo
=
Q
Q
>
.
g
Q
<
s
Q
m
[+ 4
<
(1%
Zw

COMPLTINC U,V,y, AND PFI AT THE CURVED-MESH FIELD POINTS.

-
-
o~
X v n
—

X211,J2)-X211,J))

® >
4+ X
—t—
~— ) o~
N eN
K=
o o
‘N“
NV d—
XN
—t—
N

MO O NN~
O XN N X o
ANX NIt | D

nnx wa

W<t X

NN =N X )
CAXOIVI=LXD




+F2R(I1,J)4

N "™l XX X S ef 1Y 2
OSSO0 NIAI
N ol &l } R wXD>D>
= rdembten NN\ ¢ ooy
=" VeI KA TNt
(O St & JRA _Jodan 0L
U (NN O LI LMAAVINNNN
U)o rdr e g | 3 NN
DY o Qg (Nl IJ D

D]
N
Q
Ll Y u

Qq

—t

» X

¥* 3t
L) +
- NN -—
- D . ~N
- NS L
- < ~N
- >N Q
—t QoD O
Lo 3# #* *
~ < < -—
N xx =
-4 an -
x * W -t
b NN a<g ot
= ~ = qQu« - -t bt
x =~ =~ | * 17,19} St
L e e SR NN ~N
v e o <« 4 ~—4
Q e ) > 2
* =TI X (]} +*
- - S o W * 3% mn
- =t @ ™ P ~N
w
Q
*
-—
-
-
—

- e\ (€L ] L T | " UV ™ (et e el o L D ot e T QA | ] Lnna
- VR A R B U (I LI I L UL S ETIIIOS R O NN NN RN N RN e e
NZNSNDm - IO~ N errt & & (NUNdU\om o - o~ -, o o, C et N )
e 0N S N MG~ Voo or pug ™ 0K Sy N m W\ O 0 UM g ot =
o Moy I manes N P ) D e st (NP (Y N 7 i fom (] 1 1 1) e ot e 06 Nt T ot (O U e o o o e o e

+FzI(11,J)%

coas

(2)=U121(11,J)*%CC25-UL2R(I1,J)1*CO2(2)+

~N — -
gl bl i b
I~ & o
o St ] vl
L& VT N T ]
NOVIV) -
Q Al
(L L NN
- ed WU W

<]

-t d

X

3 ®
e 0 -~
-~ QD
— e el d
-~ »x

el * * *

XX o .
Q0 NN
-t —
~—<{<I N~
AN X o
—J0Q X
K« ¥# (]S
~ OO * *
< < [ap]* 8]

L N Lo T -
- Va<a VI ®
- NNy
- +XX L e §
o -~ 3 o| +
oo 9 e (S
- ITTQq SWOL@D

N S~ | q U

) TN N XX XX

DR qaOE OR K

ed NN o<1y ¢ o o)

—_ N JOQNIN T FN

=y DR N o W T e 5O

N eXew@DEON'WUNNNN\ ==y

Nt | XA LCUOTLUOWLIN~T M <y

| ol d d XX JAd RO &

=N IOOLLW WL TITV o

] VP RGN SR ) 0 0 o

XB/2.)/SLE
*OXA=CXA/(2.*XLA))/SLA

«+A2%DXE*CXB/(2.2XLB))/SLA

L emem i O *oXr4) * o™ N | * o =N-HOLOLOULULV-OLOQ

Qo L I ANNNNNNNANNNUNI=NN Y™ OAO0E TP TIITET T I IrITeT.y
LU DLPI2A00YANMNOTOTOLAUUL~N~NNIX JJ JUDAuUO0IIAOID000uVQVUN0D

V=>Q>00VWVVVLVVEWEOWUMIILLVOXOVNUOLLLVVLLUVOLLLLLLVLLL

-y o~y \

o
Q
~N
—

143




3J)1¥CL41+U12T (11 4J)*CC4(2)+#VI2R(IL 4 J)*CT42+F2R(11,4J

L121(I19J)#CC41-UL2R(I19J)*CC4(2)+V1I21(I1,J)*CI42+4F2I(11,J

J=UI2R(X,J1)*CC44+ULZI(I+J1)%CO4(4)+VI2R{TIJ1)*CO45+F2(1 4.1
1=U121(1,J1)%C044-UL2R(I,J1)*CC4(4)+V12I(I 4J1)*CCL5+F2I(1,J1

— oy
- it
V' el
~ -~y
¥ TN
(W T
(8 L& LA
waen

e e F )P F O F O XL O 1t N e VO =
TP T NONOONIND NN NI Y o ol et ek £
COOIITH IR L® LY et =S DI SDS
QUL XSmO I DD P U =)

-

+ | + |
L ndand -
e T
L] o
e - e

(o e A ] )
NN NN
[ i I T
22 DD
++ &
L andiE o
i S et |

[o A~ Sral
NN Ny
e Lo B I
9D DO
St ot S
* R
N uwn
NN Ny

L [ B ]
++r + 4
— -
- -
~q O~ <D
I XXX
LN «LO

<m0

NALNIJ
o wnIw.nv
wo FTNNENN
) —— . o -
-0 Y Y oy -~
O e Ded o™
*—d — e~ o)
< bdd Oty &

W) o o s oy, vt 1l ) at? g bl
T b et NV F (L oot t ~w aw
O o O\I(Y (Y O\ 1~
COFTIF U yNUL N
T OQUNNWN Y )~ e ™ g4
Q LLLTHS>ROSS
(O Lade Ao ali 42 ATRE 20 AToW B 2
~tr=d NN Cemem Vo
Q *mEmSam || ITIN T
ZUTIDHT) IS & e~ e
P S B & T g pet ) bt

~™N -

w
-)

.
Q
=
-
w
Q
<
=)
a
('
(™ ]
w
O
<
uw
o
2
wv
o
[t
a
Q.
=
u
I
[
O
=2
o
-l
<
w
[2 4
=2
wv)
w
w
[+ 4
a.
>
Qo
«
w
-
wn
bad
=
w
=
-
Q
Z
-
(o
<D
a.
>
Q@
(%}

COMPUTINCG THE UNSTEADY PRESSURE DISTRIBUTIONS ALCNG THE SECCAND BLACE.

o
N
NOLOLLLLL

144

VSTEADY PRESSURE ALONG THE LCWER SURFACE CF BLADE ThCe.

e oS
-— o~
oy
o i
- -—
Ll | - —
Pl =yt
— L
ot UL ——
—4 oy —
W Y
* 4 -~ (NN
X X 23 uwuw
X XX @ #®
> # % X
| += Fx= XX
- xx X
- & * = |+
- T -
-t o0 it
— -t ) - -
bt e X et by
D el | NN e~
Ot = = e
et D eI
- v Lt
zZ DD - W =N D
- — —— vy &% NN X~
= * I — uu e
— ® Gnw H$RON O
"N =aN—- (&) o * NN
e )XW NN | W
LA NNy v LU || "nnw
1O |y = a7
P e Tttt ) F bt Ul g
NNLF v~ A =i
" NNLard Z Qe (T
Z ) rdrt g eI ) ) NNDOINNDO
LA aAxX0 W koA
o (™ ]
[ v
NQLO ~N




D
ThCo, .

o
w
o
o
-
w
£L
-
Z
=)
w
o
=
vy
wy
w
o
a
>
<g

VLV

o

. w

. K 3

(o]

-

w

P

-

=

Q

w

o

o

N

w)

w

o
a °
o
>z
(=]

<
W
-
wa
(&) |
< o®

-

x wo
- e P

a
-5 w
< w>
_— 'S Ora
Wiy . [} -— (=
NN o o — W<
<< fee) O ~ -t
¢ e u - ™ - <<wi
W + + -4 Lo

T m o~ (V) Mm ™ Q. o
ZUnN L] (] ° - -
HOR O O M~ -~ Qi
NOHFON I N O Z0
HHSNE N O - aq
Pttt o ~ - 'Mm o -d
A~~~ D~ - — wam

P e O QA Q
P T ) - o - - =20
wiha.Qee el X - —-Z
NNF*O Dt = O g (e ]
<< o a a O - -0
WLt - N — a.w
Wl o Rt ¢ Tn

O D4y e X <t
- N Tt o St o PO m w

-~ODL Ur=t= = L™ O VOO wir
VOD< LVNXO™~ O~ HOMWO -
LuUIND - * Tt o 0 A MO -

(& 18 PP P Lo M wPriUly L
Wedmd I om0 0~ Z I L O Z ) et WDt (1w ]
S ottt | prwrd W<l DD 0] Ly £

NW Y =™ ) L b= N (N d Dl W ) Pl
Qe Sl L AKX Z O
WY et et =N A 1 OO WO N W U= DT
=AU =~ | OO OOX U= O.u
et ) YO QA A4 q9wAZT XL
M= L JOU U D XD WD
£ L£XOALAAQMXOXOX XX EOL OV

N\

o Qo (=] =]
w o own
~N NN MNLLLO

—
ww L) []
NN o (@]
T @© 0
W - ()
wu -+ +
-~ () m ™
2wV e . (]
OO O M~
NO#~N O N o
# I ~ME MH 3 wn
(2 L L B - e [32]
R e T L I (W]
—~ ] - [
wwa Do oo &
NN+ON U N -~0
N QO a a ~O
- UL o -~aN N -
¥ WU e~  em o~ e
(8] — Ottt Ot (4 o
-~~~ T N7 o~ e o STND o
(@1 [ 174 ] Ottt (Y =D XHO
LODX OVNEON ON ND | MY
LUID - # ROy S LU Q™ 'm
MO~~~ UL LA A - |
et o) e L O LD LD D
S o Syt | FeQiN-uNQaU~ 'q

WWW =~ | 1L = 1 e (V) e e e At
— O bt PN (NQ € XN X
LWL NF AN == N OW WO WX
b= N0 Qe | e W e D= 1 XD
o N TR e <l - | < AAX~Ag
AL ~NATU DU DI IXL I
S X ESOWLL A Q. it 3 (DM (D I I I 0=t X

o ow
Loy nN
() am




-

12000)XXXyP2R(I)yP2I(1I)yAMP, XLAG

[Tt (R W
2OOL sVW

owv
0
MM

T 2Xe ' (T9J)=1,2(2X,13))

~
o0
(=10
QOoN
ot o

e 2

VALUE OF MU ON THE AIRFGIL SURFACE USING THE FLCW

g)&X§ (42940) 9¥2(40940)9yXL2(404940)9yXMU2(40,
Ny

o
.
4
U
oN X
ey X
QX *
N =« O
DY L4
=X N
w MIK
- - e »
- Nesfp—- T
-—d0 &« X
nNE XX0FT
QU w & & F
Zr4 DNO em~X
[ - L
L Wty o
() NN
D& ZXX =T
22W O N e
WO =OZAXTZ
= 00 | O
Z> O¥ «X 1D
D2V ZKLKE~ N D=0
L DWDOXTWZ
W LT Xucw
' 4 \\
Z < A\
2<q
.-
(S LIS ]S ]

v)

ETERMINING THE JUMP CCNDITIONS ACROS

UNCTICNS ARE USED IN C

F
SHOCK

*¥X ) (SIN(X))%#2

v40),Y2(40,4C), XL 20 40,4C) s XMU2(4Cy

9 X2(40
NyK
(SIN(X))x%2

~ NN 2 M
22 2~ A Y
D) W —w

LA V= oL

QSN @

OF ) el O

ZESQA~NN=0

DIOW | Tz

[T L 4. & JTW: 417]
-t




!
-
o
<
-
N
2
z
>
L
-
o
X
-
o
&
A
N
S
>
-
—
(&
L 4
E
Q
¢
-~
~N
>
-
-
(@]
&+
-
o
¢
d
N
>
-
-~

)4
-
<
-

*¥(Lle=Y)*(SIN(X))*2#2

S2O0W N 2 WL
LOS>UL W
-

0)yX2(40940)9Y2(40,44C),XL2(40,40),XMU2(4Cy

ToNsK

v 8
RG
33*SIN(2.*X)* (1Y)

4
9
2
)
8

~ININZ V)
ZXw KRR
W wuy

Q

N Z0. O~ o2
=JOR N |
OF. o J el D
ZETAANT=O0
DUOW || W
(VS L s 4 J VN AVE]

—

N

9X2040440) +¥2(40,4C) 4XL2(40,%40),XMU2(4C,

Ny K
Y)I*(SIN(X))*%2

Y1(4
XXK ¢
XMU2
*%2)
*X )+

- o G- 9

- O\ =~ )
mQO ool D~
XM X~
- e *2Z0)
- ®INM=)
E A pal ol o b d
lhwO *% &%

~ONINS M
&L K~ R XN
v O ww

—ZTA W o7
—OWEN | o
OUS. *«dJd *°N1D
LT -
20w N Zwz
LOT LU W

\\d

0,80)yX2(40,40),Y2(40,40),XL2(40,40C)yXMU2(4C,
XRCT oA yK

COS(X)=SIN(X)

T SO~

—~ONINZ V)
Z X=X XM
O Y —w

P ZO. O o

=UO# S o

OF ed el D

ZE~QA~NFO

DOOW N FwZ

ROV a>waw
~4

2040 ,440) y¥2(40,4C) 4XL2(40,40),XMU2(40,

N

4

#*

-—

b 4

~

w)

"4 cC
X e O
L *
-— -
O >
wo |
oy L]
oOXx -
T o=~
o = LV E 2
K 203 N~
> XX # O

OT ed oD
LF QNS0
QO0OWN LIVE

WO >w W

-




NCTIONS ARE USED TO COMPUTE THE PRESSURE JUMP ACRCES

-

2 X2040940) yY2{40,4C) yXL2(40,4C) ¢XML2(4C,

9 X2 (40940) yY2(40+40)9XL2(40+40)9XMU2(4C,

C)yXx2(4C440) y¥2(40,4C) 4XL2(40,40) yXNL2(4C,

2 ?)ﬁXE(40740)vY2(40'40)oXL2(40p4JloXMUZ(éOo
LARN

_ZOWR o Z NZA MR INZ
FOLHE 2 |
OX eJdX 2D
LT ~Q |l N0

~AZLQR o
UW# 2. Nee
QWX e X 11 D
ZE I M=)

—Za0of L
OO 2N
O e X || D
LE~AN -0

x 4 > 4
- - -
< < <
- - L]
Op- - or [
wy > o) wo el ]
(e 4 * ~Cr Y. b 4
O X (] o»x QX o
T MN N T =\ ey T ety X
~—X ) - -y X ~ D b
- Z —_a X —~xX 3z —_Ne Z
XK >R X > >Xxx
b ‘.Oou‘) -~ e o - * e - s
oo ~—N % ~~nN = ~F—N -0 N
w - 4 Z -~ o4 X -~ - Z _0 ed 7
XOExX X HOIT X #* XOEX X XMEX X
- - eX o 3t - e & > - aX e - 8 * %
.4 -0 ®iNew 2 NO eNe= X MO siN~<L FJO e(Nem 2~
w W o = 3¢ A DA 2B 8 2 W T ==X N . LT === X
— W~y e~ g Ul S ™) U~ o gy U S
(@] AN~ L NN Z ) ~ONNC ™ — NN
-~ & 2C " 2% =t ) & I e X 4t (V) & O = ) LK e D = V)
('S (W S Y L v VU v W W uvim oV v
w
w
o
(S}

o dULwLawe L20O00WZaw> 2W00owZa wz dCowWwZaw=
av) WOT XU W O XU W WOTx XU ow e O (X X W (L W)
v~y \-I —4 -t
Wi !
P -
[
(SIS 815

148




Q

SUBROUTINE SCLVE FINDS THE FOINT OF INTERSECTICN OF TWQ STRAIGHT LINES

C

(

ANC MU ON THE SURFACE OF THE CURVED

-
> N

- ~4
> 2

- x
N ~
= —~
> -~ -

- ~ <
N > Q
> * 2.

- -~ <
N 2, -l
x NX

L N ] -
- S >
2 X> -
PG NG x

- —h*

- -y o
> Xa& w

s # X w e
- e z
X Fe~ wmwo
-ty L=
W +X >
> i -l
-t >N (S ] 4
[ B N wnw
NN X o

2Xx 1 =~
WX # (N w

< | N> b= b

D -

-2 K4t -

K| -2 \ wo

Ul Na o Zx

EOND=XD Seade

U vl et v e L) -
ST 0wz P |

VXX oL oOw

D

M-

- -l

vl

(SIS 118}

v40) ,Y2(4044C)y XL2(40y40)9XML2(4C,

2(JyI))*(CSQRTUXL2(JoI))+CSQRTEXL2(T 4I)))/2.C# 32

1.5-XNMU2(Jy1)4XMU2(I,1))

o
<
b
NX
> &
~
- -
or
)
~Y.
QX
Ng =
DX
T X - [
- >R a3t V>
- e & (LRE 3 el |
~ (\] o= e PO~
A = R 72 L ® B )
WX 0 x Vi & 0 -
= o &X O I r

#NO o) O3 R~

TR T N AN
W ewOw SN+ | D=
Z (N =itN VAKX -
L P & L R R TP Lo Dt ||
{ ol WL \Newr= syt
LOZA £ HNrdU)=10) e

92Xy 14)

1=

N DID NCT CONVERCE;

VI Qe =W
O™~

O#* QLU || &)=~ emQ ) | LU
KdF ol | Qo) (O wrt-tpmt N U~ T =D

MAT ==l (YD | N Sl =0
DU OX I = = X NN U e DLW T
NV QT WIN >N XXX ) O L Xl

o
-t

149

)

o
o O0O0Oo
N~y




FRCANT PCINTS ThROUGH ITERATION.

SLBROUTINE SHCKFT SCLVES FCR THE SHUCK

C
C

,40)pYZ(40.4C).XL2(40040).XMLZ(4C¢

<
N
—
N
xX o
L
-~ e~
- Ok
O o
- [V A
«@ OX -t
NN = L
o e X (&)
Lot P4 .
2K > X -
b= o o — -
Q. Ne=jp— e L]
W I I o B
O>Xooa @ g ped
A & X — -
0VINO o I NN
I~ P |
W e ow _~3C A
& N\ N
LR P 4 e | SR s -~
o W<y 0 pea

DDV LZO. 2 -l & &

Ll
—
- -
- e
o i
- - !
~ -
N o~ <
- &N -
X = -
- - >
NP= -~ N
ha® AN ] -
NU - -
Ll 72 B ]
NQ - 2
2+ o]
2~ X E
Ko~ - (%]
e N [
n e
ol - -
~t = uJ
#N > o
*d o o
-~ X T w
N~ X >
- - z
N - (]
-~ O Q
N -
-t -~ [
X ™ -~ [e= |
| -~ - < z
Uil DO
0T 2™ Q
i\ X O M
% ) S 109 O
# X & =\
o et o) =
Caliada Ve «Ot—- a.
eX.d s ~N N4
~OX~ -~ ) O
—N) e N=O I
N# =N N N~
AdOXXK 2O~ = O
RN T VeouwuXOOW -
HNONVIWX s O - O
LIV | NN D

HMNNJODOW Qe =
SOV ) e €l U Pt
0 NULOM™U -

OU#UOK rmiiNUermdrdodawrded # 1 Q oMU
X Y2 Sl | LN | | JTU =T =D

DIF mpm Ot (| FHNNID N JIOU ~ Xtl=0

DWIOX N afdd d N Tk N 2yl L. OO W2

NZOTUW ATIFRX X=X LDOO X QM DU 5 L W
—t \

o
-

B,

o

[w)
o 000
M ~NTN

C

SUEROUTINE SIMC IS A LINEAR EQUATION SJOLUTION RCLTINE.

C

WVOOLOOUVUOVOLOOOLOOY
VCO~NMITNWrEORO~N
TNV NN O W W

UOOUoOUUIWOaOUg
T2FX2232aTFT2IFIFT2Z
L L L L P T L L T L T )
NVIVINVINNVINVIVINVIN

(
B
SOLUTICN

< . <

L d

—y

"

w il -

. — Q|

(S AR S N e 1 & ]

NI ODIDe™M
oax - nn nmuwou

Dr= QIO > D= Q)

V) =000

T

1
FORWARD

Ml

I=J4N

(&) LLO




0LOLVOVLUOOOVLVOVOOLVOVLVLOVOOVOVUOUOOVOLLVOVOOLVOVOOWLD
AOTNWVEORO~ANMIUNOSDCO=~NMOFNONDRO=~NMFNUONDNO~NMTNO~OCO
VWO VVOWRRMR=f==p OO O WO WRORWOUVVRRRPUVRNVOUOD00OL0O0W
) ] g gl #= ) ] P ) 7 ol
VOoVLVOUOoOOoOYOUUQUIOOUOUUIOUVOOUOUUOUaOOUIOWUOUaOoOJvauuwaovwaao
xzz&zl ::::z.zz;za.: zzza.a-:a.::z& z:.a.:a.zza-za. 3-22.122—:1 2FT2TF

VJVNI)V)V)V)U'V)V'U)V)V’V)VIW WWU’U) WWVM"U,VI mu’wmwwmvnnm WWWVI(’)V}WWV’WV,V’U)

£

% %A)‘ABS(A(IJ))) 20,30,30

i
J

P
"N I~
e L
el I
N>
-u—a
=t g (L et )

0 9
N ™

SEARCF FCR MAXIMUM CCEFFICIENT IN CCLUMN

(S8 18]

THAN TOLERANCE (SINGULAR MATRIX)

8S(E1C2)-T3L) 35,35,40

&N
INTERCHANGE ROWS IF NECESSARY

TEST FCR PIVIT LESS

<~

IF(
KS=
RET

3

VOOV

(818 1

-

N < -~

| » N
A B | ——>
-y " B b e U

oA L - Y)
A pEq )N
* T O rtrd | ame~
DU et L)
W NN e
ol o (L} A O\ L, e
bt = L) bttt N L QA
\
(") N
<

DIVIDE EQUATIUN BY LEADING COEFFICIENT

LLL

151

LIMINATE NEXT VAFIABLE

€

L

+1IX

N

Ze~ N
ot bl |
> I
b Lol b N
0w [ B )

TIX 4 e X ||~
e rmUIA IR DL
< % et ZXXI
| ZUVet | O Ny
DNON=HOX ) XX
) N X
YO X =X~
4t et L) St et LD g D L )

o &
~~ -
L P
UV ==

"y
“y

Qe
VW

b
o
B
-
=
-
o
(%]
x
(&)
Q
m

Low




R A M W ey 3

QO0OVOVVOVWOOO
~ONAT DO PO ~N
o ol g £ g e e g = (N ) N
et o e 7 et g el g et g g el
(e o (¥ [a [V IV [ [V o [a [¥ [q ]
TFa2Iaay !.:5&1

VININAVINOVININ

-
(5]
[
- ~
[24]
*
-—
«r
—
-
<q
D= )
P4 9 Lo
- -
-t —
" "~
=27 AL~
-Z LS nil|z
14O~ O=qQQ®
Z 70T Z0 M ear D
N N0
> OADUD>AOWZ
€ v L) it Pt () CL) g 4t LI AL
(%] w
r~ P

152




10.

11.

L2,

LIST OF REFERENCES

Sisto, F., "A Review of the Fluid Mechanics of Aero-
elasticity in Turbomachines," Transactions of the ASME,
p. 40-44, March 1977.

Snyder, L.E. and Commerford, G.L., "Supersonic Unstalled
Flutter in Fan Rotors; Analytical and Experimental
Results," Journal of Engineering for Power, v. 96, no. 4,
p. 379-386, October 1974.

Platzer, M.F., "Transonic Blade Flutter — A Survey,"
The Shock and Vibration Digest, v. 7, no. 7, p. 97,
July 1975.

Kurosaka, M., "Some Recent Developments in Unsteady
Aerodynamics of a Supersonic Cascade," Revue Francaise
de Mecanique, Numero Special, p. 57-64, October 1976.

—

Chadwick, W.R., Unsteady Supersonic Cascade Theory
Including Nonlinear Thickness Effects, Ph.D. Thesis,
Naval Postgraduate School, Monterey, Ca., 1975.

Kurosaka, M., "On the Unsteady Supersonic Cascade with
a Subsonic Leading Edge — An Exact First-Order Theory —
Parts 1 and 2," Journal of Engineering for Power,
Series A, v. 96, p. 13-31, January 1974.

Miles, J.W., The Potential Thec:sy of Unsteady Flow,
p. 49-53, Cambridge University Press, 1959.

Miles, J.W., "The Compressible Flow Past an Oscillatihg
Airfoil in a Wind Tunnel", Journal of Aeronautical Sciences,
v. 23, p. 671-678, July 1956.

Lane, F., "Supersonic Flow Past an Oscillating Cascade
with Supersonic Leading Edge Locus," Journal of Aeronautical

Sciences, v. 24, p. 65-66, June 1957.

Chalkley, H.G., A Study of Supersonic Flow Past Vibrating
Panels and Shells, Aeronautical Engineer's Thesis, Naval
Postgraduate School, Monterey, CA, 1972.

Verdon, J.M. and McCune, J.E., "Unsteady Supersonic Cascade
in Subsonic Axial Flow," AIAA Journal, v. 13, no. 2,
p. 193-201, February 1975.

Verdon, J.M., "Further Developments in the Aerodynamic
Analysis of Unsteady Supersonic Cascacdes, Parts 1 and
2," ASME Papers 77-GT-44 and 77-GT-45, December 1576.

P O B LT —




T R e T g ey e g

13.

14.

15.

16.

17.

18.

9.

20.

21.

22.

23.

24.

25,

Nagashima, T. and Whitehead, D.S., "Aerodynamic Forces
and Moments for Vibrating Supersonic Cascade Blades,"
Jniversity of Cambridge Department of Engineering Report
CUED/A — TURBO/TR59, 1974.

Goldstein, M.E., "Cascade with Supersonic Leading-Edge
Locus," AIAA Journal, v. 13, no. 8, p. 1117-1118, August
1975.

Kurosaka, M., "On the Issue of Resonance in an
Unsteady Supersonic Cascade," AIAA Journal, v. 13,
no. 11, p. 1514-1516, November 1975.

Brix, C.W., A Study of Supersonic Flow Past Vibrating
Shells and Cascades, Aeronautical Engineer's Thesis,
Naval Postgraduate School, Monterey, Ca., 1973.

Bell, J.K., Theoretical Investigation of the Flutter
Characteristics of Supersonic Cascades with Subsonic
Leading-Edge Locus, Aeronautical Engineer's Thesis,
Naval Postgraduate School, Monterey, CA., 1975.

Sauer, R., "Elementare Theorie des langsam schwingenden
Uberschallflugels," ZAMP, p. 248-253, 1950.

Adamczyk, J.J., Verbal and Written Cqommunications with
LCDR J.A. Strada, USN of May 1977.

Carrier, G.F., "The Oscillating Wedge in a Supersonic
Stream," Journal of Aeronautical Sciences, v. 16, no. 3,
p. 150-152, March 1949.

Van Dyke, M.D., "Supersonic Flow Past Oscillating
Aerofoils Including Nonlinear Thickness Effects," NACA
Technical Note 2982, July 1953.

Van Dyke, M.D., "On Supersonic Flow Past an Oscillating
Wedge," Quarterly of Applied Mathematics, v. 11, no. 3,
p. 360-363, October 1953.

Teipel, I., "Die Berechnung instationarer Luftkrafte
im schallnahen Bereich," Journal de Mecanique, v. 4,
no. 3, p. 335-360, September 1965.

Teipel, I., "Die Kopfwelle an einem schwingenden Profil,"
DVL no. 65-30, July 1965.

Fleeter, S. and Riffel, R.E., "An Experimental Investiga-
tion of the Unsteady Aerodynamics of a Controlled
Oscillating MCA Airfoil Cascade," Detroit Diesel Allison
EDR 9028, December 1976.




26.

27,

28.

29.

30.

Landahl, M.T., Unsteady Transonic Flow, p. 110-113,
Pergamon Press, 1961l.

Liepmann, H.W. and Roshko, A., Elements of Gas Dynamics,
p. 110, Wiley, 1967.

Samoylovich, G.S., "Unsteady Flow Around and Aeroelastic
Vibration in Turbomachine Cascades," U.S. Dept. of
Commerce Foreign Technology Division AD 721 959, Wright-
Patterson AFB, Ohio, 23 February 1971.

Owczarek, J.A., Fundamentals of Gas Dynamics, p. 370,
International Textbook Company, 1968.

Ferri, A., Elements of Aerodynamics of Supersonic Flows,
p. 126-127, MacMillan, 1949.




10.

INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Department Chairman, Code 67
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940

Professor M. F. Platzer, Code 67P1
Department of Aeronautics

Naval Postgraduate School
Monterey, California 93940

Professor D. J.-Collins, Code 67Co
Department of Aeronautics

Naval. Postgraduate School
Monterey, California 93940

Professor L. V. Schmidt, Code 67Sx
Department of Aeronautics

Naval Postgraduate School
Monterey, California 93940

Distinguished Professor F. D. Faulkner
Department of Mathematics, Code 53Fa
Naval Postgraduate School

Monterey, California 93940

Distinguished Professor A. E. Fuhs, Code 69
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, California 93940

Dr. H. J. Mueller, Code AIR-310
Naval Air Systems Command
Washington, D.C. 20360

Dr. John J. Adamczyk
Compressor Branch

NASA Lewis Research Center
Cleveland, Ohio 44135

156

No.

Copies

15




11.

12.

No. Copies

Dr. S. Fleeter 1
Supervisor, Cascade and Flow Systems

Detroit Diesel Allison

Division of General Motors Corporation
Indianapolis, Indiana 46206

LCDR Josephy Anthony Strada, USN 2
SAMSO/YEUP, P.0. Box 92960

Worldway Postal Center %
Los Angeles, California 90009

157




