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Abstract

The Eight-queens , the Mutilated
Checkerboard of Golomb , Instant Insanity,
and the various figures that can be built
out of the seven Soma pieces are all
examp les of space-filling puzzles. Such
puzzles may be described in terms of sets 5 6 7
and groups. Puzzle solution is then seen
to be a special case of finding an exact
cover for a set. The latter can be
solved by backtrack algorithms. Certain 

Figure I: Pi eces of the Somo Cube

well-known combinatorics~-reducing count-ing arguments applicable to the puzzles
are formalized relative to the exact cover
problem. Then the special group structure
of the space-filling puzzles is used to
choose specific counting arguments and to The problem is interesting relative

pick representatives for symmetrically to Simon ’s definition of well-structured-

equivalent solutions . ness [19 :1. The basic components of this
definition are (1) test for solution

1. Introduction state , (2) characterization of start ,
goal and intermediate states, (3) repre-

The Soma Cube [3,5,6 9 10,14,16,17, sentation of necessary state transitions ,

253, Instant Insanity [4 , i7~] and Eight (4) representation of knowledge about the
Queens 12,l7,26j are all examp les of problem , (5) real-world accuracy of the

space-filling puzzles . There are others model, (6) practical amounts of computa-
[8,11,13,15,19,20,22,23,24.1. In general tion required.
terms each puzzle consists of a set of
pieces and the challenge is to build. a the problem of space-filling puzzles

specific figure or configuration out. ,~f 
can be formalized to the first f ye cri-

them. teria. As we expose ~reviously hidden
structure in the prob em space, we progress

For example, the seven Soma Cube in measurable steps toward satisfaction of

pieces are shown in Figure 1; some of the the sixth component. In the more general
puzzles that one can attempt to construct sense of Simon, well-structuredness is

are shown in Figure 2. seen as a relation between the problem
and solver. As the solver gains know-

It is straightforward to formulate ledge, the amount of apparent structure
exhaustive algorithms for the puzzles. increases.
Our primary objective is to improve the
efficiency of these algorithms. We will The steps to solution are:
do this by a preliminary analysis that
has the effect of pruning the search tree (1) Describe the puzzles in terms
before the search begins. Such pruning of groups and sets.
can in general benefit both backtracking
and heuristic search algorithms.

1 
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(2) F~’rmalize certain well-known used and each of the 27 unit cubes in the
counting arguments in terms of figure must be occupied. Thus the set of
the exac t cover problem 1.1. conditions can be used to describe the

figure to be built.
(3) Use the groups to p ick parti-

cular counting arguments A piece can be described by the set
specifically app licable to of conditions it satisfies. Such a de-
puzzles , and scription is not unique; the piece

satisfies different conditions when it is
(4) Pick a representative for in different positions in the figure.

each c lass of symmetrically
equivalent solutions. The moves in space that carry pieces

from one position to another may be
2. A Formal Solution thought of as functions over the set of

conditions . Thus the givens are:
Space-filling puzzles can be des-

cribed in terms of the component pieces , (1) Figure: a finite set of con-
the figure to be construc ted, and the ways ditions to be satisfied for a
pieces can be moved in space, particular puzzle.

One has successfully constructed a (2) Pieces : a set of subsets of
figure when certain conditions have each Figure, each subset describ-
been satisfied exactly once. The Soma ing a different piece , in a
Cube is the 3 x 3 x 3 c~~T~in Figure 2. particular position.
To build it , one mus t satisfy 34 condi-
tions: each of the seven pieces must be (3) Moves: a set of functions

carry ing pieces from one posi-
tion to another .

Underlying the figure there is some-
times a larger (perhaps even infinite)
set of conditions describing a geometric
space-filling. A space-filling is a, regular pattern of objects that fit to-
gether to fill up the entire space in

I 

•.;;~
•• which they are embedded . For the Soma

Cube it is the infinite set of unit cubes
filling three-dimensional Cartesian
space. Another example is given in Fig-
ure 3. There are many such examp les , in
higher dimensional spaces , and even non-

.. . Euclidean spaces.

Figure 2. Puzzles for the Somo Cube Pieces Figure 3: A Space -filling
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The functions in Moves are permutations on Then we get a new solution formula :
this larger set and are closed under the
operation of functional composition ; thus Symnietry (S)~ S ~- (~.24oves(Pieces)) ~
they form a group . For the Soma Cube, Fi ure
Moves consists of translations , ro tations 2 g 

, US = Figure , disjoint (S)) (2.2)
and reflections in 3-space.

It is formula 2.2 that yields an exhaus-
A puzzle may then be formally solved tive backtracking algorithm and serves as

as follows : a basis for the improved versions to be
developed. The natural one-to-one corres-

(1) Use Moves to generate all ~ondence between 2.1 and 2.2 is given in
possible p lacements of pieces . Li8).

(2) Find subsets of placements 3. Applying the Formal Model
• that

(a) fill Figure and The elements in Figure may be given
(b) don ’t intersect, individual names, and the rest of the

givens defined in terms of them. The
(3) Collect solutions that can be functions in Moves need be only partially

mapped onto each other by specified since a move outside of Figure
Moves , can be ignored. Furthermore we need only

provide Generators for the group of Moves
That is , the solution is the set since they can be iterated over Pieces to

get all that lie within Figure. Popular
CMoves(S)IS UMoves(Pieces), puzzles fall into two classes: Those
US = Figure , disjoint(S)) * (2.1) where one kind of piece is used as often

as necessary , and those where there is a
Because Moves p laces pieces through- fixed set of individual pieces each to be

out the entire space-filling , some of the used exactly once. Both fit within the
sets may be infinite. A finite version formalism but are represented somewhat
can be given in terms of the symmetry differently.
subgroup of Moves. It is given by the
set of functions: Puzzle 1 (Mutilated Checkerboard)

How many different ways can a 4 x 4
Symmetry = Ef)f E Moves, f(Figure) = checkerboard missing two diagonally oppo-

Figure). site corners be covered with dominoes the
_______________________________________ size of two squares [11 )?

§ Let S be a set of objects in the domain
of a function f. Then it is convenient
to extend f to apply to S, yielding a set

of values: f(s) d~f Lf(s)~ s E SI. Note 
_ _ _ _ _ _ _ _ _

that this definition is applicable to ‘

~~~~~ 

—

sets of sets , and so on Further , let F 2 3 4

be a set of functions , then F(x) 
d~f — — .— — _ _ _ _ _ _ _ _ _

[f(x)~ f E F) 5 6 7 8 a domino

E g , Moves(Pieces) = [~m(p)~p E Piecesfl — —
m € Moves) 9 10 Ii 12

For any set of sets S, disjoint(S) d~
f — — —

• (V s,t S) s ~ t implies sflt — 
~~, and 3 14 1 5

~s 
d~f u s. The effect of U is to remove — —.

sES Figure
one level of set bracketing, e.g.,
U[[l,2), [4,(51)) = [1,2,4,ts)3. Figure.4: Mutilated Checkerboard

~ = [pip Figure).

3
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Figure = .2,3,...14 ,15) thus we add a “free” diagonal to Pieces.

Pieces = ~-~2,3)). Figure = i.c I0si~N) U tr~~I 0~ i.~zN )

Genera tors = t translate,rotate) where -. ~p~~I -N <i<
~
N ) ~n~~! -N’d..~N )

Pieces = tt c O, rO,p _N ,nO),.pO i)x 1 2 3 4 5 6 7 8 9

translate (x)t 2 3 4 C 6 7 ~ .~ 10 
Generators

rotate (x) !~ 8 12 16 3 7 11 15 2
C .  p. ii. r .x 1 1 1 1

translate(x) for i-~~ c~~ 1 P~.+i ~i.+1 r~10 11 12 13 14 15 16
for i=N .. ~. ~ r11 12 .~~l4 15 l6 U 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
i

6 10 14 1 5 9 13 rotate(x) r~ ~~ ~i. 
~~~~~~

reflect(x) CN L  ~~ ~~ 
r~

Puzzle 2 (N queens) How many differ-
ent ways can N queens be p laced on an Notice we included reflections thisN x N chessboard so that no pair is time , giving a larger symmetry group andmutually threatening? The representation leading to fewer non-equivalent solutions .is in terms of the files of queen attack
(c = column, r = row , p = positively How many different ways NM hyper-sloping diagonal, n = negatively sloping rooks can be placed on an M+l dimensionaldiagonal). Once N queens are placed, hyper-chessboard of side N is similar tosome diagonals are still unthreatened , the N queens problem. There are several

formalizations of the problem , each with
a different view of symmetry. Some haveC0 C1 C2 C3 been solved in closed form l5]. Others

/>

~~~~~~~~~ are known ~o be very difficult (for exam-
ple, the N hyper-rooks problem is

squares [2]). These oroblems can also be
expressed as space-filling puzzles.

,
~~~~~:;�~

:___ _ r1 equivalent to enumerating the N x N Latin

Puzzle 3 (The Soma Cube) How many
3 different ways can a 3 x 3 x 3 cube (orp..2 any other object in Figure 2) be builtp

-I out of the seven pieces in Figure 1?
no Place a corner of the puzzle at thep1

P2 ~~ origin in 3-space, and let the coordinate
triples of each cube describe it. Then_3 pieces themselves are numbered 1 - 7.

Figurea 4 x 4 chessboard
j000,001,002,OlO ,0ll,0l2,020,021 ,022,
100,101,102,110,lll ,l12,120,l2l,122,

>K 200 201,202,210,2l1~2l2 ,220,22l,222,
1, ~~, 3, 4, 5, 6, 7j

Pieces =

[.000,100,010,1),
.000,100,200,010,2) ,a queen’s space [000,100,200,110,31,
[000,100,110,210,43,
[O00,1OO ,OlO ,l01,5)~[000,lOO ,OlO ,00l,7)j.

Figure 5: N Queens
Generators contains two rotations, a

translation, and a reflection similar to
that of Puzzle 1. The piece names 1 - 7
are invariant under the moves except that

The condition ~ stands for “outside the reflection of 5 is 6 and vice versa.
the puzzle.”

4
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Puzzle 4 (Instant Insanity) The puz- reduce , or even eliminate the backtrack-
zle Consists of four colored cubes. The ing search for puzzle solutions.
solution is achieved when the cubes are
aligned (say stacked up) so that each of We first introduce the concepts of a
the four colors appears on each side of solution vector for an exact cover S, and
the stack. The sides that happen to be a characteristic vector for an element of
faced up or down are ignored. The basic B. Both kinds of vectors are dependent
objects out of which one builds Ins tant on a par titioning of ~B. We can compute
Insanity are color/direction pairs and the characteristic vectors of B directly,
piece names . Let the colors be ~.r,w ,b ,g) use them to compute the solution vectors
(meaning red , white , blue , green), and of the exact covers S, and then use the
the four directions be CN ,E,S,WJ , and the results to reformulate the search algo-
piece names be {l,2,3,4j. Then rithm .

Figure = L rN ,rE ,rS , rW ,wN ,wE ,wS ,wW , Let [t 1, t2 , . . . , t~~) be an arbi t rary
bN bE ,bS ,bW ,gN ,gE ,gS ,gW , disjoint partitioning of jB. The charac-l,~~,3,4) teristic vector , c , of an element , b , of

B relative to the partitioning (t1I~~~~
tn)Each or igina l colored cube has three

initial positions in Pieces correspond- is defined by
ing to each opposite pair of faces in the
ignored (vertical) orientation. (Unfor- C = ibit 1I , I b ~ t2i’ ,...Ibflt~~tunately the published literature on
Instant Insanity and some commercial ver - Now partition B itself according to the
sions of the puzzle do not have the same characteristic vectors (that is, B =

coloring . The one given here is taken B1 U B2. . . U B where all b in the same B .mfrom Brown ’~. paper L4J. )  have the same characteristic vector).

Pieces = We define the solution vector , x, of
{{rN ,bE ,rS ,gW ,1}.(bN .bE ,wS ,gW ,1},{rN .wE,rS ,b~.11, an exact cover S by

{gN,wE ,bS ,rW ,2),(gN ,wE .wS ,rW ,2},(gN ,wE ,bS .gW ,2), x = j snB1I, ISflB2L•~
•iSflBm I - .(gN .wE ,rS ,bW ,3}.{rN ,wE ,wS ,bW .3},{gN ,wE ,rS,rW ,3},

(gN ,wE .gS ,bW ,4},{rN .wE ,gS ,bW .4}.(gN,gE .gS ,rW ,4}}. The trick is to com pute the set X of
solution vectors x before the solutions
S are known.

Generators is given by a rotation
mapping N to E to S to N, and a reflec- If we construct the matrix cj~~.tion (corresponding to a rotation
exchanging vertical faces , in the actual where the ~th column is the chara~teris-puzzle) mapping N to s to N. tic vector c corresponding to B~ 1 then

the solutions x in non-negative integers
4. Counting Arguments of the equations

Given an arbitrary collection of msets B, the set of exact covers is given c
by j—l jj

X
j 

= It j l (4.2)

- B , ~S 
= UB, disjoint(s)) (4.1) are the needed solution vectors (see

Since u(~..Moves(Pieces) 2Figure) = 
[18] for proof). If X is the set of solu-
tions to 4.2, then formula 4.3 gives theFigure~ in formula 2.2, it is a special same result as formula 4.1.

case of 4.1 (except for the further col-
• lection of solutions into equivalence mclasses). The exact cover problem is NP- u cs is — -

~ 
5~ where S~ ~complete Lli . It can be so~Lved in x€X j—i.exponential time by backtracking. We (4.3)

introduce it here to formalize some
counting arguments that can potentially I

~
jl x~ uS = -~B, disjoint(s))

__________________________________________ The effect is to break the main problem
into smaller ones, each with smaller

A poorly-formed puzzle definition might spaces to search. This results, in some
not have moves or pieces sufficient to cases, in a substantial reduction of
cover Figure , in which case there are computing time.
trivially no solutions.

5 
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Suppose the smaller problems of for-
mula 4.3 are still too difficult. Pick a 1
second partitioning ~~~~~~~~~~~~ getting 1
a second partitioning ~~~~~ .,B~~,. of B and attempt to solve
and a second set of vectors X ’. Then
formula 4.3 generalizes to 1 6

1

~SlS 
= S.. where ~~~~~~~~~~ in non-ne ative integers . There are nox~ X l~ i~ m 13 13

x ’ - X ’ l~ j �m ’ such 1 x vectors x . Thus formula 5. 1
(4.4) tells us there are no solutions to the

puzzle.
m

l s.. I = 
~~
‘ 

~-‘ C S  I = Xj, Some “common sense” arguments used
i 1  ~ ~ j]. ~ in solving puzzles drop out of formula

5.1. Suppose M Moves for Puzzle 3, the
~B, disjoint(S).) . Soma Cube. Then the parti t ion of Figur e

is
Both the sets B. B. ’ and S.. are smaller ,1 3 13 

~[ l) , C2J,[3),[4),~ 5,6) ,[7J,~ 000 ,...,222)).continuing to restrict each of the sub-
problem spaces. This process can be The characteristic vectors give , forcontinued prof itably until the increase equation 4.2,in the number of subproblems dominates
the computation. 1 0 0 0 0 O I l 1 1 1

__________________________ 
Jj o 1 0 0 0 o h I l l

5. Applying Counting Arguments 1 1 0 0 1 0 0 O Il Il
‘1° 0 0 1 0 0~ x = I

There is no reason to believe that it 0 0 0 0 1 0 1
~ 2is possible in general to pick partition- 1 10 0 0 0 0 l~ jings of .~B that lead to an efficient hf ~ 4 4 4  4 4search. Nevertheless there are good par-

titionings for popular puzzles [3 ,4,11, 1~
ture imposed on B by the group of moves which has i i 1
25]. This seems to be due to the struc- hi
that generates it: the single x ..~b 1

ure solution 1 2B = (~Moves(Pieces)) 2~
’
~~ . Ii 1

In terms of the givens of the space- Upon examining the corresponding setsf illings , formula 4.3 becomes
m one finds that the algorithm will attempt

u [Symme try(S) Is = US. where to use only one each of pieces 1,2,3,4,7
xEX j=l ~ and two from a set where p ieces 5 and 6

are combined.
S~ 

c B~~ S~ J = x
3 (5.1) 

Similarly, let M = Moves for Puzzle
1. We get the trivial partitioning ofUS = Figure , disjoint(S)) Figure

Let H be an arbitrary subgroup H c CC 2 ,3,4,5,6,7,8,9,lO ,ll,12 ,l3,14,15flMoves. Then the set
which leads to the single equation 4.2[M(a) fl Figure~a € Figure) (5.2)

2x 14, or x — 7• is a disjoint partitioning of Figure and
can be used in the counting arguments. telling us to use exactly seven pieces to

attempt to solve the puzzle.• Suppose , for example, we take the
diagonal translation subgroup of Moves While we do not know how to derive afor puzzle 1. Then we get good partitioning of Figure, we do know

when a partitioning is good. The criter-1t1, t2 , t3, t4) — ion is that the number of trial solutions
in formula 5.1 is small. Specifically,[J,3,6,8,9,ll,l4,16), not too many vectors x, small (preferably

(2 ,4,5,7,10,12,13,15)) zero) components X
j 

and where they are

and characteristic vector non-zero, small corresponding sets Bj.

6

..

- - - -  ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ...-,--- - --~~~~ -..- - -,  - .4.~



The pa r t i t i ons  generated by subgroups are duplicates. That does not , however ,
(as in 5.2) distribute the piece place- have any substantial effect on the time
ments fairly uniformLy among the ~~~ to solution so long as the equation solver

does not dup licate e f fo r t  in dealing wi ththus preventing any one of them from them.being very large . In fac t  a related
par t i t ioning :B 1’ ... B~~~’)  of B can be There are 72 solution vectors  x. If
computed directly from the subgroup. Let there were no column dup lications there

. would be 11 vectors.  In both cases theFigure= .M( p ) 2 p -. coeff ic ients  x. are zero or one . The
computation of3 formula 5.1 takes the same

~Moves(Pieces)). amount of effort in either case.

Then each B~ B~ for some j. That is, As an indication of the effectiveness
of this counting technique , we can comparethe characteristic vector is constant the total number of possible configura-over the elements of each Bk

’ (proof in tions allowed , with and without our118). We can then compute Cik
’ from counting analysis. For the Soma Cube ,

the part i t ioning (instead of vice versa)  using each p iece once , we have 144 x 144
and carry out the computations of for- 

~ 72 ~ 72 ~ 96 ~ 96 x 64 = 6.3 x 1013
mulas 4 .2  and 5. 1. possible assemblies. But using our anal-

For example, let M be the rotation 
ysis as in the previous paragraphs , the
theoretical maximum becomes the sum of 11subgroup (order 24) of Moves for the Soma

Cube about its center . The partitioning products with smaller factors , yie lding a
of Figure is total of 1.2 x ioll assemblies. This

gain of two orders of magnitude can be
Cl] ,~.2), ~3) , ~4),(5) , 6 ) , L7 ), piece names further enhanced by elimination of
.000 ,002 ,020 ,022 ,200 ,202 , ver tices symmetry and by efficient backtracking

220 ,2 2 2 ) ,  schemes .
[100 010,001,102 012 ,021 edges

l~0,2lO ,2O 1,l~ 2,2l2 ,2h) 6. Elimination of Symmetry
(110 101,011,112 ,121,211) faces
[lllj I center In formula 2.2 we have for each

class computed , l Symmetry(S)I ~ I. It is
and the equation 4.2 is sufficient to compute a single representa-

tive of each class where it is greater
ii 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 than one. We can, at the same time, re-
0 0 0 0 0 0 0 l l ll l l 0 0 0 0 0  duce the search space and ther efor e
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 computation effort. The approach is to
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  carry out the counting argument with theo o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 subgroup M of section 5 equal to the

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 symmetry group , and then use the informa-
ho o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tion to change each subproblem in formula
b 0 0 0 1 1 1 0 0 1 1 2 2 0 0 0 2 0 5.1 into a simpler , less symmetric ,
b 1 1 2 1 1 2 1 2 2 2 2 2 0 2 3 1 1 space-filling puzzle. We can then iter-
‘ 2 1 2 1 1 1 0 2 2 1 1 0 0 3 1 1 1 2 ate the process if necessary.
I l l l 0 0 0 0 0 l 0 0 0 0 0 l l o o l

Let M = Symmetry . Compute the
corresponding partition of Figure from

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 formula 5.2, and compute the vectors x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 from formula 4.2. Each vector is treated
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 1 separately.  Pick one. Suppose there is
1 1 0 0 0 0 0 0 0 0 0 0 0  o i l  1~ a k such that = l and Bk I =

0 0 0 0 0 0 1  1 1 1 0 0 0 0  1
~~~ 

=~~ 1 j Symmetry~~. Pick a b € Bk . Then if we• o o 1 1 1 1 o o o o o o o o

~~ 

p 1 ; .

O 0 0 0 0 0 0 0 0 0 1 1 1 1 I~ 1 discard Bk ,  the coefficient x,~, and corn-l l O O l l O O l l O O l l l  1
~~8 h ~ pute

2 2 1 2 l 2 l 2 l 2 0 2 l 3 I  ~l2j1 1 2 2 1 1 2 2 1 1. 3 1 2 O~ II 6~ (S ’ S’ us • where S~ 
c B~ 1 IS~~~ x~o o 1 0 1 0 1 0 1 0 1 1 0 OI 1 l~ j#k ~

US ’ — Figure-b disjoint(S’)3,
The principal difference between

this solution and the one getting icj it is as though we had started out to
solve for Figure-b without piece place-directly is that four columns of Cjj~ ments Bk. The sets S ’ Li [b) are the
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needed solution representatives , for a ‘rhere remain some interesting ques-
given solution vector x. None of these tions . Can the problem be better solved
representatives are equivaLent t..~ solu- 

directly in terms of the (perhaps infi-
tion representatives for another x. nite) model of equation 2.1?

Suppose X
k 

= 1 but Bk I < I symetryl. What is the optimal sequence of par-
titionin s leading to a minimal overall

We can carry out the above but stop short effort in using formula 4.4? And ,
of computing the S ’ since the S’ Lb J what is its relation to the subgr oups M
will not necessarily be unique representa- of section 5?
tives. Instead we carry out the counting
argument again with subgroup M given by The matrices c.. appear to have
the intersection of Symmetry with the . 
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symmetry group of Figure - b. We con- very special and easily solved form. Can
tinue in this manner until the symmetry this be formalized to yield a more eff i-
is removed or we exhaust Figure. cient equation solver for this class of

probl ems?
Suppose , f inal ly ,  that there is no

w The group Moves arises from geo-x~ = 1. Pick any xk > 1. We shall no 
metrical models . Can one characterize

have to treat subsets of of size xk them in a way that simplifies the task?
as piece placements to carry out the
symmetry reduction above. Compute
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