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Abstract

The Eight-queens, the Mutilated
Checkerboard of Golomb, Instant Insanity,
and the various figures that can be built
out of the seven Soma pieces are all
examples of space-filling puzzles. Such
puzzles may be described in terms of sets
and groups. Puzzle solution is then seen
to be a special case of finding an exact
cover for a set. The latter can be
solved by backtrack algorithms. Certain
well-known combinatorics-reducing count-
ing arguments applicable to the puzzles
are formalized relative to the exact cover
problem. Then the special group structure
of the space-filling puzzles is used to
choose specific counting arguments and to
pick representatives for symmetrically
equivalent solutions.

1. Introduction

The Soma Cube (3,5,6,9,10,14,16,17,
257, Instant Insanity [4,i73 and Eight
Queens [12,17,26 | are all examples of
space-fillin% puzzles. There are others
(8,11,13,15,19,20,22,23,24 ). 1In general
terms each puzzle consists of a set of
pieces and the challenge is to build a
specific figure or configuration out of
them.

For example, the seven Soma Cube
pieces are shown in Figure 1l; some of the
puzzles that one can attempt to construct
are shown in Figure 2.

It is straightforward to formulate
exhaustive algorithms for the puzzles.
Our primary objective is to improve the
efficiency of these algorithms. We will
do this by a preliminary analysis that
has the effect of pruning the search tree
before the search begins., Such pruning
can in general benef%t bothbacktracking
and heuristic search algorithms,.

5 6 7

Figure |I: Pieces of the Soma Cube

The problem is interesting relative
to Simon's definition of well-structured-
ness [(19]. The basic components of this
definition are (1) test for solution
state, (2) characterization of start,
goal and intermediate states, (3) repre-
sentation of necessary state transitions,
(4) representation of knowledge about the
problem, (5) real-world accuracy of the
model, (6) practical amounts of computa-
tion required.

The problem of space-filling puzzles
can be formalized to the first five cri-
teria. As we expose previously hidden
structure in the problem space, we progress
in measurable steps toward satisfaction of
the sixth component. In the more general
sense of Simon, well-structuredness is
seen as a relation between the problem
and solver. As the solver gains know-
ledge, the amount of apparent structure
increases.

The steps to solution are:

(1) Describe the puzzles in terms
of groups and sets.
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(2) Formalize certain well-known
counting arguments in terms of
the exact cover problem .1 ..

(3) Use the groups to pick parti-
cular counting arguments
specifically applicable to
puzzles, and

(4) Pick a representative for
each class of symmetrically
equivalent solutions.

2. A Formal Solution

Space-filling puzzles can be des-
cribed in terms of the component pieces,
the figure to be constructed, and the ways
pieces can be moved in space.

One has successfully constructed a
figure when certain conditions have each
been satisfied exactly once. The Soma
Cube is the 3 x 3 x 3 cube in Figure 2.
To build it, one must satisfy 34 condi-
tions: each of the seven pieces must be
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Figure 2. Puzzles for the Soma Cube Pieces

used and each of the 27 unit cubes in the
figure must be occupied. Thus the set of
conditions can be used to describe the
figure to be built.

A piece can be described by the set
of conditions it satisfies. Such a de-
scription is not unique; the piece
satisfies different conditions when it is
in different positions in the figure.

The moves in space that carry pieces
from one position to another may be
thought of as functions over the set of
conditions. Thus the givens are:

(1) Figure: a finite set of con-
itIons to be satisfied for a
particular puzzle.

(2) Pieces: a set of subsets of
Figure, each subset describ-
ing a different piece, in a
particular position,

(3) Moves: a set of functions
carrying pieces from one posi-
tion to another.

Underlying the figure there is some-
times a larger (perhaps even infinite)
set of conditions describing a geometric
space-filling. A space-filling is a
regular pattern of objects that fit to-
gether to f£ill up the entire space in
which they are embedded. For the Soma
Cube it is the infinite set of unit cubes
filling three-dimensional Cartesian
space. Another example is given in Fig-
ure 3. There are many such examples, in
higher dimensional spaces, and even non-
Euclidean spaces.

Figure 3. A Space-filling
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The functions in Moves are permutations on
this larger set and are closed under the
operation of functional composition; thus
they form a group. For the Soma Cube,
Moves consists of translations, rotations
and reflections in 3-space.

A puzzle may then be formally solved
as follows:

(1) Use Moves to generate all
possible placements of pieces,

(2) Find subsets of placements
that
(a) fill Figure and
(b) don't intersect.

(3) Collect solutions that can be
mapped onto each other by
Moves.

That is, the solution is the set

{Moves(S)|S - WMoves(Pieces),
US = Figure, disjoint(S)} § (2.1)

Because Moves places pieces through-
out the entire space-filling, some of the
sets may be infinite. A finite version
can be given in terms of the symmetry
subgroup of Moves., It is given by the
set of functions:

Symmetry = {f£|f € Moves, f(Figure) =
Figurel.

$ Let S be a set of objects in the domain
of a function f£. Then it is convenient
to extend f to apply to S, yielding a set

of values: £(S) dgf {f(s)]|s € S}. Note
that this definition is applicable to
sets of sets, and so on. Further, let F
be a set of functions, then F(x) dgt
(f(x)|f € F}.

E.g., Moves(Pieces) = {{m(p)|p € Pieces}|
m € Moves]}.

For any set of sets S, disjoint(S) def
(Vs,t € S) s # t implies sNt = ¢; and
def U s. The effect of U is to remove
SES
one level of set bracketing, e.g.,
u{{1,2}, (4{51}} = {1,2,4,{(5}].

us

Then we get a new solution formula:

_Symmetry(S)|S = (Moves(Pieces)) 0
oFigure s - pigure, disjoint(S)}*(z,Z)
It is formula 2.2 that yields an exhaus-
tive backtracking algorithm and serves as

a basis for the improved versions to be
developed. The natural one-to-one corres-

pggqence between 2.1 and 2.2 is given in

3. Applying the Formal Model

The elements in Figure may be given
individual names, and the rest of the
givens defined in terms of them. The
functions in Moves need be only partially
specified since a move outside of Figure
can be ignored. Furthermore we need only
provide Generators for the group of Moves
since they can be iterated over Pieces to
get all that lie within Figure. Popular
puzzles fall into two classes: Those
where one kind of piece is used as often
as necessary, and those where there is a
fixed set of individual pieces each to be
used exactly once. Both fit within the
formalism but are represented somewhat
differently.

Puzzle 1 (Mutilated Checkerboard)
How many different ways can a 4 x &
checkerboard missing two diagonally oppo-
site corners be covered with dominoes the
size of two squares [117?

a domino

Figure

Figure.4: Mutilated Checkerboard

-

¥ zFigure = {p|p < Figure].
3
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£2,3,.:.14,15]
£02,31};

Figure

Pieces

Generators = {translate,rotate} where

x {1 993 & 5 6 .7 8.8
translat:e(x)T 2 3 & @& 6 7 8 a0
rotate (x) 4 81216 3 711 15 2

10 11 12 13 14 15 16

11 12 614 15 16 O
61014 1 5 913

Puzzle 2 (N queens) How many differ-
ent ways can N queens be placed on an
N x N chessboard so that no pair is
mutually threatening? The representation
is in terms of the files of queen attack
(¢ = column, r = row, p = positively
sloping diagonal, n = negatively sloping
diagonal). Once N queens are placed,
some diagonals are still unthreatened,

a 4 x 4 chessboard

a queen's space

Figure 5: N Queens

: The condition (; stands for 'outside
the puzzle."

thus we add a "free'" diagonal to Pieces.

Figure = {ci|05i<N} U {ri|05i<N}
o {py | -N<i<N} U (nj|-N<i<N}

Pieces = {{cy,Ty,P_ysRgls{Pgl}
Generators

X % . e T
translate(x) for 1N [ic; g Py Dy Ty

for i=N ! Q Q r,

rotate(x) r; N, Py Syog
reflect(x) Cn-i By Py Ty

Notice we included reflections this
time, giving a larger symmetry group and
leading to fewer non-equivalent solutions.

How many different ways N hyper-~
rooks can be placed on an M+l dimensional
hyper-chessboard of side N is similar to
the N queens problem. There are several
formalizations of the problem, each with
a different view of symmetry. Some have
been solved in closed form {15]. Others
are known Eo be very difficult (for exam-
ple, the N4 hyper-rooks problem is
equivalent to enumerating the N x N Latin
squares (2]). These problems can also be
expressed as space-filling puzzles.

Puzzle 3 (The Soma Cube) How many
different ways can a 3 x 3 x 3 cube (or
any other object in Figure 2) be built
out of the seven pieces in Figure 1?

Place a corner of the puzzle at the
origin in 3-space, and let the coordinate
triples of each cube describe it. The
pieces themselves are numbered 1 - 7.

Figure =

{000,001,002,010,011,012,020,021,022,
100,101,102,110,111,112,120,121,122,
200,201,202 210 1211,212,220,221,222,
% 2.8, &, 8 b, 71

Pieces =

({000,100,010,1},
{000,100.200.010,23,
{000,100,200.110.3} ,
{000.100,110.210.4}
{000,100,010.101.5]
£000.100,010.001.733.

Generators contains two rotations, a
translation, and a reflection similar to
that of Puzzle 1. The piece names 1 -~ 7
are invariant under the moves except that
the reflection of 5 is 6 and vice versa.

— ———— " .
SRR e g 1 AR S




Puzzle 4 (Instant Insanity) The puz-
zle consists of four colored cubes, The
solution is achieved when the cubes are
aligned (say stacked up) so that each of
the four colors appears on each side of
the stack. The sides that happen to be
faced up or down are ignored. The basic
objects out of which one builds Instant
Insanity are color/direction pairs and
piece names. Let the colors be {r,w,b,g]
(meaning red, white, blue, green), and
the four directions be {N,E,S,W}, and the
piece names be {1,2,3,4}. Then

Figure = (rN,rE,rS,rW,wN,wE,wS,wW,
bN,bE,bS,bW,gN,gE,gS,gW,
1’2’3’4}

Each original colored cube has three
initial positions in Pieces correspond-
ing to each opposite pair of faces in the
ignored (vertical) orientation. (Unfor-
tunately the published literature on
Instant Insanity and some commercial ver-
sions of the puzzle do not have the same
coloring. The one given here is taken
from Brown'c paper [4].)

Pieces =

{{rN,bE,rS,gW,1}, {bN,bE,wS,gW,1},{rN,wE,rS,bk,1},
{gN,wE,bS,rW,2}, {gN,wE,wS,rW,2}, {gN,wE,bS,q¥,2},
{gN,wE,rS,bW,3}, {rN,wE,wS,bW,3}, {gN,wE,rS,rW,3},
{gN,wE,gS,bW,4}, {rN,wE,gS,bW,4},{gN,gE,gS,rW,4}}.

Generators is given by a rotation
mapping N to E to S to N, and a reflec-
tion (corresponding to a rotation
exchanging vertical faces, in the actual
puzzle) mapping N to S to N.

4. Counting Arguments

Given an arbitrary collection of

reduce, or even eliminate the backtrack-
ing search for puzzle solutions.

We first introduce the concepts of a
solution vector for an exact cover S, and
a characteristic vector for an element of
B. Both kinds of vectors are dependent
on a partitioning of UB. We can compute
the characteristic vectors of B directly,
use them to compute the solution vectors
of the exact covers S, and then use the
results to reformulate the search algo-
rithm,

Let {tl,tz,...,tn] be an arbitrary

disjoint partitioning of UB. The charac-
teristic vector, ¢, of an element, b, of
B relative to the partitioning {tl,...,tn}

is defined by
c = | |bnty |, [bney,. .. fbne | 1L

Now partition B itself according to the
characteristic vectors (that is, B =
B; U BZ...U Bm where all b in the same B,

have the same characteristic vector).

We define the solution vector, x, of
an exact cover S by

X = nlymﬂ,|smzh.nlwmﬂ

The trick is to compute the set X of
solution vectors x before the solutions
S are known.

I1f we construct the matrix cij

where the jth column is the characteris-
tic vector c corresponding to Bj’ then

the solutions x in non-negative integers
of the equations

sets B, the set of exact covers is given % c,.x, = |t,]| (4.2)
by T S

{s|s <« B, us = UB, disjoint(S)} (4.1)

Since U(Woves(Pieces) (IzFigure)

Figure? in formula 2.2, it is a special
case of 4.1 (except for the further col-
lection of solutions into equivalence
classes). The exact cover problem is NP-
complete {l1]. It can be solved in
exponential time by backtracking. We
introduce it here to formalize some
counting arguments that can potentially

¥ A poorly-formed puzzle definition might
not have moves or pieces sufficient to
cover Figure, in which case there are
trivially no solutions.

are the needed solution vectors (see

[18) for proof). If X is the set of solu-
tions to 2.2, then formula 4.3 gives the
same result as formula 4.1.

m
J (S|s = US, where S, < B.,
X€X j=11 I (%.3)

|le = %y, US = UB, disjoint(S)}

The effect is to break the main problem
into smaller ones, each with smaller
spaces to search. This results, in some
cases, in a substantial reduction of
computing time.

,",;‘..,'.. it WSy et




Sugpose the smaller problems of for-~
mula 4.3 are still too difficult. Pick a
second partitioning {ti,...,té.:, getting

a second partitioning iBi,...,Bé.} of B

and a second set of vectors X'. Then

formula 4.3 generalizes to

{s|s= L S,. where S,.=B,’B.",
x=X lsism * a3 "+ J
% 2x’ l<j<m'
(4.4)
m L1 S
1;1ISIJ l - Kj o J:l Sl_] | = Xi 5

JUS = B, disjoint(S)} .

Both the sets B Bj' and S, are smaller,
continuing to restrict each of the sub-

problem spaces. This process can be
continued profitably until the increase
in the number of subproblems dominates
the computation.

5. Applying Counting Arguments

There is no reason to believe that it
is possible in general to pick partition-
ings of UB that lead to an efficient
search. Nevertheless there are good par-
titionings for popular puzzles (3,4,11,
25]. This seems to be due to the struc-
ture imposed on B by the group of moves
that generates it:

B = (WMoves(Pieces)) i 2Figure .

In terms of the givens of the space-
fillings, formula 4.3 becomes

m
U Sj where

. (Symmetry(S)|s =
€X j=1

X

e B L

US = Figure, disjoint(S)}

(5.1)

Let M be an arbitrary subgroup M <
Moves. Then the set

{M(a) N Figure|a € Figure} (5.2)

is a disjoint partitioning of Figure and
can be used in the counting arguments.

Suppose, for example, we take the

diagonal translation subgroup of Moves
for puzzle 1. Then we get

[tl,tz,t3,t4} .
{(1,3,6,8,9,11,14,16],
{(2,4,5,7,10,12,13,15}}

and characteristic vector

it
and attempt to solve

1 l 6
gl P EE 0
in non-ne%ative integers. There are no
such 1 x vectors x. Thus formula 5.1
tells us there are no solutions to the
puzzle.

Some ''common sense' arguments used
in solving puzzles drop out of formula
5.1, Suppose M = Moves for Puzzle 3, the
Soma Cube. Then the partition of Figure
is

[€1),02},03),.04},(5,6},171,1000,...,222}}.

The characteristic vectors give, for
equation 4.2,

100000 l|1 f
010000 il

001000 A1

000100(:x=1
000010/ ‘52 |

00000 1|| 1
344444l ii 27,
1]

1

which has l 1

the single x =|1
solution } %,

Upon examining the corresponding sets By,

one finds that the algorithm will attempt
to use only one each of pieces 1,2,3,4,7
and two from a set where pieces 5 and 6
are combined.

Similarly, let M = Moves for Puzzle
1. We get the trivial partitioning of
Figure

({2,3,4,5,6,7,8,9,10,11,12,13,14,15}}
which leads to the single equation 4.2
2x =14, or x = 7

telling us to use exactly seven pieces to
attempt to solve the puzzle.

While we do not know how to derive a
good partitioning of Figure, we do know
when a partitioning is good. The criter-
ion is that the number of trial solutions
in formula 5.1 is small. Sgecifieally,
not too many vectors x, small (preferably
zero) components x,, and where they are

non-zero, small corresponding sets Bj'

S ——
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The partitions generated by subgroups
(as in 5.2) distribute the piece place-
ments fairly uniformly among the B.,

thus preventing any one of them from
being very large. In fact a relaced
partitioning _Bl'...Bn.'; of B can be

computed directly from the subgroup. Let

(Bf,.ooBLi) = (M(p) 1 278 p

Moves (Pieces) .

Then each B& < Bj for some j. That is,

the characteristic vector is constant
over the elements of each B (proof in
t187). We can then compute Cik from

the partitioning (instead of vice versa)
and carry out the computations of for-
mulas 4.2 and 5.1.

For example, let M be the rotation
subgroup (order 24) of Moves for the Soma
Cube about its center. The partitioning
Ltl,...,tn} of Figure is

{{1},(2},(3},14},{(5},16},{7}, piece names

{000,002,020,022,200,202, vertices
220,222},
{100,010,001,102,012,021 edges
130,210,201,1%2,212,221}
{110,101,011,112,121 ,211 } faces
{111 3 center
and the equation 4.2 is
111111100000000000
1000000011111100000
1000000000000011110
100000000000000000°1
1000000000000000000O
1000000000000000000D
100000000000000000O
H000011100112200020
Ho112312322222023¢%1
j21211106232110031013
1110000010000011001
0000000000000 o;! (1
00000000000000 i i 1
00000000000000 | 10
11000000000000| h 1]
0011110000000 0] &5
00000011110000;|ex=)1:
0000000000111T1: I 1]
1100110011001 1| I8
2212212226210 12 (i
11221122113120! 6
00101010101100] U L

The principal difference between
this solution and the one getting Jcif“
|

are duplicates. That does not, however,
have any substantial effect on the time

to solution so long as the equation solver
does not duplicate effort in dealing with
them.

There are 72 solution vectors x. If
there were no column duplications there
would be 11 vectors. In both cases the
coefficients x. are zero or one. The
computation of”formula 5.1 takes the same
amount of effort in either case.

As an indication of the effectiveness
of this counting technique, we can compare
the total number of possible configura-
tions allowed, with and without our
counting analysis. For the Soma Cube,
using each piece once, we have 144 x 144

x 72 x 72 x 96 x 96 x 64 = 6.3 x 1013
possible assemblies. But using our anal-
ysis as in the previous paragraphs, the
theoretical maximum becomes the sum of 11
products with smaller factors, yielding a

total of 1.2 x 1011 assemblies. This
gain of two orders of magnitude can be
further enhanced by elimination of
symmetry and by efficient backtracking
schemes.

6. Elimination of Symmetry

In formula 2.2 we have for each
class computed, |[Symmetry(S)| = 1. 1t is
sufficient to compute a single representa-
tive of each class where it is greater
than one. We can, at the same time, re-
duce the search space and therefore
computation effort. The approach is to
carry out the counting argument with the
subgroup M of section 5 equal to the
symmetry group, and then use the informa-
tion to change each subproblem in formula
5.1 into a simpler, less symmetric,
space-filling puzzle. We can then iter-
ate the process if necessary.

Let M = Symmetry. Compute the
corresponding partition of Figure from
formula 5.2, and compute the vectors x
from formula 4.2. Each vector is treated

separately. Pick one. Suppose there is
a k such that x =1 and |Bk| =
|Symmetry|. Pick a b € B,. Then if we

discard By the coefficient X and com-
pute

{s'js' = jiksj’ where Sj < Bj’ ISj|=xj,

US' = Figure-b disjoint(S')],

it is as though we had started out to
solve for Figure-b  without piece place-

directly is that four columns of ”Cij ments Bk’ The sets S' U {b] are the
T T g Tome— m— ———— -
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needed solution representatives, for a

given solution vector x. None of these
representatives are equivalent tu solu-
tion representatives for another x.

Suppose x, = 1 but [B | < |Symmetry]|.

We can carry out the above but stop short
of computing the S' since the S' _ (b}

will not necessarily be unique representa-
tives. Instead we carry out the counting
argument again with subgroup M given by
the intersection of Symmetry with the
symmetry group of Figure - b. We con-
tinue in this manner until the symmetry

is removed or we exhaust Figure,

Suppose,
X = 1. Pick any X 7 1L

have to treat subsets of Bk of size Xy

finally, that there is no
We shall now

as piece placements to carry out the
symmetry reduction above. Compute

iSymmetry(H)lHaBk,|H|=xk,disjoint(H)]

and then for each member we replace Bk

with a set of "super pieces"

By * ({UG|G < Symmetry(H)}
and set

5 * 183
It is as though we had to set out to

solve the original puzzle but with the
contributions from By already stuck to-

gether. We can then apply the preceding
algorithms to remove the symmetry.

For the Soma Cube, the symmetry
group has order 48 and so do the sets Bk

for piece 2. Thus symmetry can be
eliminated in a single step by solving
for the puzzle less piece 2, at the same
time reducing the computational effort
by a factor of 48.

7. Conclusions

We have developed a model of space-
filling puzzles and given algorithms for
their solutiuns. The central problem is
partitioning the puzzle to yield useful
counting arguments. It was shown that
some guidance for the choice can be taken
by considering subgroups of the set of
spatial moves. The same mechanism can be
used for an efficient removal of unwanted
symmetry. It is this dependence on groups
of spatial moves that makes space-fillin
puzzles more easily solvable than genera
exact set cover problems.

There remain some interesting ques-
tions. Can the problem be better solved
directly in terms of the (perhaps infi-
nite) model of equation 2.1?

What is the optimal sequence of par-
titionin,s leading to a minimal overall
effort .7 in using formula 4.4? And,
what is its relation to the subgroups M
of section 57

The matrices cij appear to have

very special and easily solved form. Can
this be formalized to yield a more effi-
cient equation solver for this class of
problems?

The group Moves arises from geo-

metrical models. Can one characterize
them in a way that simplifies the task?
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