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QREEKR&&: Activation parameters and absolute chemiluminescence yields

for the thermolysis of dimethyldioxetanone (]) were determined. The
composite activation energy for the formation of excited singlet acetone
was found to be 3-4 kcal/mol greater than the activation energy for the
thermal disappearance of i. These results are interpreted in terms of

two parallel competitive pathways for dioxetanone decomposition, the more

highly activated one of which Teads to electronically excited acetone.
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The thermal unimolecular reaction of the 1,2-dioxetane ring system }
to generate electronically excited state carbonyl containing compounds is
by far the most carefully and extensively studied of all chemiluminescent
reactions.’: The mechanism for this intriguing transformation has been
hotly debated by proponents of stepwise and concerted decomposition paths.
The ammunition i@ this controversy ranges from purely theoretical calcu]ations:x
to experimental substituent, solvent, and isotope effects.v 0f pivotal
importance to the dissection of the reaction path have been studies of
kinetics and of excited state yields for variously substituted dioxetanes. ' f
In a previous report we showed that the major chemiluminescent pathway fo?ﬁé:::::;\\i
dimethyldioxetanone in the presence of an easily oxidized fluorescer is |

chemically initiated electron exchange 1um1’nescence.4 In this communication

we describe our findings on the uncatalyzed unimolecular thermal fragmentation
of dimethyldioxetanone (l) to acetone and 002.5 This reaction of this
remarkable molecule proceeds through at least two distinct experimentally
distinguishable transition states. The routing of the reactant through

each path and, consequently, the ultimate yield of electronically excited
acetone formed, depend critically upon the temperature at which the thermolysis
is carried out. These results permit detailed analysis of the reaction

coordinate for thermolysis of this system.
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The activation energy for the thermal decomposition of ] was determined
by two different techniques in a series of four solvents. First, the total
rate of reaction of l was measured at several temperatures by monitoring
the chemiluminescence decay.6 Standard Arrhenius analysis of the decay
rate constants gives the activation energies, Ea’ shown in Table 1. Second,
the activation energy for that fraction of the total reaction that leads
to electronically excited singlet states, ECh]’ was determined by probing
the effect of temperature on the instantaneous chemiluminescence intensity.
Critically, and in contrast to the activation parameters of simply substituted
dioxetanes studied thus far, ECh] for l is 3-4 kcal/mol greater than Ea’
and this difference is independent of the solvent.

The yield of excited state acetone from thermolysis of l also demonstrates
the unusual effect of temperature. Thermolysis of l in C2013F3 at 30.0°C
generates electronically excited singlet and triplet acetone with efficiencies
of 0.1% and 1.5%, respectively.8 The singlet excited acetone yield, ¢§,
depends significantly upon the reaction temperature, as is shown in Table 2.
These data afford a temperature coefficient for ¢§ of +4.2 + 0.2 kcal/mol,
which represents the difference in activation energies between a higher
energy path leading to 1ight generation and the dark decomposition of l.

This is the first reported example of a temperature dependent singlet excited

state yield from the thermal unimolecular reaction of the 1,2-dioxetane ring

(o)
systen




While trace amounts of catalytic 1'mpuv'1't1'es]O might be expected to
induce a parallel dark path of dioxetanone decomposition, and hence result
in a lowering of the apparent activation energy, Ea, several experimental
observations make such an explanation of our results exceedingly unlikely.
Significantly, identical results were obtained for the four solvents,
purified by different techm‘ques,H of Table 1. Thus solvent impurity
catalysis would fortuitously have to be equally efficient in all four
solvents. Also, the decomposition rate was independent (+1%) of the initial
concentration of l, thereby excluding a possible catalytic impurity in the
dioxetanone sample. Furthermore, addition of the chelating agent Na4EDTA
to the reaction mixture had no effect on the observed rate constant. In
fact, the powerful catalytic effect of added cupric 1‘on,]2 the metal ion
most effective in catalyzing dioxetane decomposition,‘0 was completely
suppressed by added Na4EDTA. Finally, the entropy of activation for the
thermolysis of ] is -1+ 3 eu for the four solvents in Table 1. This value
is inconsistent with a bimolecular catalysis path, for which a large
negative activation entropy would be expected.

The effect of temperature on the efficiency of chemiluminescence from
dioxetanone l is composed of the temperature dependence of the efficiencies
of all steps leading to photon generation. The temperature dependence of
the fluorescence efficiency of acetone is negligible under these cc)nditions.]3
Thus, ECh] measures the composite activation energy for the formation of
excited singlet acetone. The standard Arrhenius activation energy, Ea’
on the other hand, provides a measure of the barrier to the lowest energy
transition state available to the system (see below). Our finding that EChl

is 3-4 kcal/mol higher than Ea requires that there be two or more competitive




pathways with discrete transition states for dioxetanone decomposition.
The position of these transition states along the reaction coordinate
cannot be revealed by this kinetic analysis. Two Timiting situations exist, ]
as depicted in Figure 1. In Figure la two competitive concerted reactions
i‘, are represented. In this case the measured difference in activation energy
between the light generating and dark paths is equated to the difference
in energies between the two transition states. In the mechanism shown in
Figure 1b, a common rate determining step leads to generation of an
intermediate biradical. This biradical proceeds along a lower energy path
to generate ground state acetone and by a more highly activated route to
produce singlet excited acetone. The temperature dependence of the

instantaneous chemiluminescence intensity for this case is given by eq 2,

I=Aexp-(E + (E - Ej)}/RT (2)

where A is a constant composed of the preexponential factors and instrument

parameters, Eais the previously defined activation energy for formation
of the intermediate biradical, and EL and ED are the activation energies
for fragmentation of the intermediate to excited and ground state acetone,
respectively.]4 Thus, this analysis indicates that the difference in the
activation energies between the Tight generating and non-1ight generating
paths is the difference in transition state energies for the two paths
leading from the intermediate biradical.

While our data do not provide a distinction between operation of the
two limiting mechanisms depicted in Figure 1, several points warrant

discussion. Simple qualitative arguments based upon current theories of

pericyclic reactions put forth by Turro and Devaquet]5 predict that for
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the concerted path shown in Figure la the lower activation energy route
should be the one that leads to excited state generation. This prediction
is inconsistent with our experimental findings and indicates that either
the qualitative model is unreliable or, more likely, that the concerted
path is inoperative. On the other hand, the experimentally observed
ordering of transition states for both Timiting mechanisms depicted in
Figure 1 is easily understood in terms of the Hammond postulate in which
the most exothermic reaction (formulation of ground state products) has
the Towest activation barrier. However, neither this line of reasoning,
nor any mechanism yet postulated to explain chemical formation of excited
states, is capable of explaining why the total yield of acetone excited
states from the thermolysis of l is nearly twenty times lower than the
excited acetone yield from the less exothermic thermolysis of tetramethyl-

dioxetane.]6 This observation remains a mystery in need of further investi-

gation.
In summary, our investigation of the kinetics of the thermal unimolecular
reaction of dioxetanone l has revealed that dual paths are operative.
Further experimental resolution of the reaction coordinate is difficult.
This reaction may be ideally suited for investigation by ab initio theoretical

methods. Such an analysis is planned.

Q&KRRKAEQQQEQ&' This work was supported in part by the Office of

Naval Research and in part by the donors of the Petroleum Research Fund,

administered by the American Chemical Society.
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nglgml. Activation Parameters for the Thermolysis of

> a
Dioxetanone l.—

Solvent Ea’ kcal/mol ECh]’ kcal/mol
b
C,C14F, 27.3 + 32 25.6 + .1
ccl, o1.3 & 3% 24.5 + .5
PhH % - e 4.9 & .4
C
CH,CT,, 20.8 = .15 24.8 + .4

ir saturated solutions, A5 x 107% M in 1. Eyring
activation enthalpy: A = 21.7 kcal/mol; activation
entropy, AS¥ = 0 + 1 eu. SSolutions contained 5%

Na4EDTA.

j@ngmg. Temperature Dependence of the Singlet Excited Acetone Yield

from Thermolysis of l.g

Temp., °C ot x 10° Temp., °C o4 x 10*
30.0 10 9.8 5.7
25.1 8.4 4.8 4.8
20.5 7.4 0.3 4.5
15.4 6.3 -5.0 3.9

éC2C13F3 solutions. Yields were determined relative to the yield at

30.0°C. See ref 8a.




Figure Caption

Limiting reaction mechanisms for thermal unimolecular fragmentation of

dimethyldioxetanone to acetone and 602. Part A represents the concerted

process with two transition states, Part B shows a path proceeding through

an intermediate biradical with at least two exit channels.
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