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Activ ation parameters and absolute chemiluminescence yields

for the thermolysis of dimethyldioxetanone (
~

) were determined . The

composite activation energy for the formation of excited sing let acetone

was found to be 3-4 kcal/mol greater than the activation energy for the

thermal disappearance of 1. These results are interpreted in terms of

two parallel competitive pathways for dioxetanone decomposition , the more

highly activuted one of which l eads to electron ically excited acetone.

+ CO2 + h~
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Sir:
V
The thermal unimol ecular reaction of the l ,.2-dioietane ring system

to generate electronically excited state carbonyl conta ning compounds is

by far the most carefully and extensively studied of all chemiluminescent

reactions.t The mechanism for this intriguing transformation has been

hotly debated by proponents of stepwise and concerted decomposition paths.

The avi un iti on ig this controversy ranges from purely theoretical calculation?

to experimental substituent , solvent , and isotope effects.~ Of pivotal

importance to the dissection of the reaction path have been studies of

kinetics and of excited state yields for variously substituted dioxetanes.

In a previous report we showed that the major chemiluminescent pathway for

dimethyldioxetanone in the presence of an easily oxidized fluorescer is

chemically initiated electron exchange luminescence. 4 In this communication

we describe our findings on the uncatalyzed unimo l ecular thermal fragmentation

of dimethyldioxetanone (
~

) to acetone and CO2.5 This reaction of this

remarkable molecule proceeds through at least two distinct experimentally

distinguishable transition states. The routing of the reactant through

each path and , consequently, the ultimate yield of electronically excited

acetone formed , depend critically upon the temperature at which the thermolysis

is carried out. These results permi t detailed analysis of the reaction

coordina te for thermolysis of this system.

L
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2

— ,JL~ 
+ CO2 (1)

The activation energy for the therma l decomposition of was determined

by two different techniques in a series of four solvents. First , the total

rate of reaction of was measured at several temperatures by monitoring

the chemiluminescence decay .6 Standard Arrhenius analysis of the decay

rate constants gives the activation energies , Ea~ 
shown in Table 1. Second ,

the activation energy for that fraction of the total reaction that leads

to electron ically excited singlet states, EChl l was determined by probing

the effect of temperature on the instantaneous chemiluminescence intensity .7

Critically, and in contrast to the activation parameters of simply substituted

dioxetanes studied thus far, EChl for is 3-4 kcal/mo l greater than Ea~
and this difference is independent of the solvent.

The yield of excited state acetone from thermolysis of also demonstrates

the unusual effect of temperature . Thermolysis of in C2C1 3F3 at 30.0°C

generates electronically excited singlet and triplet acetone with efficiencies

of 0.1% and 1.5%, respectively.8 The singlet excited acetone yield , 4~ ,

depends si gnificantly upon the reaction temperature, as is shown in Table 2.

These data afford a temperature coefficient for of +4.2 ± 0.2 kcal /mol ,

which represents the difference in activation energies between a higher

energy path leading to light generation and the dark decomposition of

This is the first reported example of a temperature dependent singlet excited

state yield from the therma l unimolecu lar reaction of the 1 ,2-dioxetane ring
0

sys t’-’n•
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While trace amounts of catalytic impurities ’0 might be expected to

induce a parallel dark path of dioxetanone decomposition , and hence result

in a l owering of the apparent activation energy , Ea~ 
several experimental

observations make such an explanation of our results exceedingly unlikely.

4 Significantly, identical results were obtained for the four solvents ,

• purified by different techniques ,~ of Table 1. Thus solvent impurity

catalysis would fortuitously have to be equally efficient in all four

solvents. Also , the decomposition rate was independent (±1%) of the initial

concentration of 4,, thereby excluding a possible catalytic impurity in the

dioxetanone sample. Furthermore , addition of the chelating agent Na4EDTA

to the reaction mixture had no effect on the observed rate constant. In

fact , the powerful catalytic effect of added cupric ion ,’2 the metal ion

most effective in catalyzing dioxetane decomposition ,1° was compl etely

suppressed by added Na4EDTA. Finally, the entropy of activation for the

thermolysis of ~ is -l ± 3 eu for the four solvents in Table 1. This value

is inconsistent with a bimolec ular catalysis path , for which a large

negative activation entropy would be expected .

The effect of temperature on the efficiency of chemiluminescence from

dioxetanone 4, is composed of the temperature dependence of the efficiencies

of all steps leading to photon generation. The temperature dependence of

the fluorescence efficiency of acetone is negligible under these conditions. 13

Thus , Ech] measures the composite activation energy for the formation of

excited singlet acetone. The standard Arrhenius activation energy, Ea~
on the other hand , provides a measure of the barrier to the l owest energy

trans 4tiin state available to the system (see below). Our finding that Echi

is 3-4 kcal/mol higher than Ea requires that there be two or more competitive
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pathways with discrete transition states for dioxetanone decomposition.

The position of these transition states along the reaction coordinate

cannot be revealed by this kinetic analysis. Two limitin g situations exist ,

as depicted in Figure 1. In Figure la two competitive concerted reactions

are represented . In this case the measured difference in activation energy

between the light generating and dark paths is equated to the difference

in energies between the two transition states. In the mechanism shown in
• Figure lb . a common rate determining step leads to generation of an

intermediate biradical. This biradical proceeds along a lower energy path

to generate ground state acetone and by a more highly activated route to

produce singlet excited acetone. The temperature dependence of the

instantaneous chemiluminescence intensity for this case is given by eq 2,

I A exp _ (Ea + (E L 
- ED)) /RT (2)

where A is a constant composed of the preexponential factors and instrument

parameters , Ea is the previously defined activation energy for formation

of the intermediate biradical , and EL and ED are the activation energies

for fragmentation of the intermediate to excited and ground state acetone,

respectively. 14 Thus , this analysis indicates that the difference in the

activation energies between the light generating and non-l ight generating

paths is the difference in transition state energies for the two paths

leading from the intermediate biradical .

While our data do not provide a distinction between operation of the

two limiting mechanisms depicted in Figure 1 , several points warrant

discussion. Simple qualitative arguments based upon current theories of

pericyclic reactions put forth by Turro and Devaquet15 predict that for

•

~

-
---- -

~ 
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the concerted path shown in Ficiure la the lower activation energy route

should be the one that leads to excited state generation. This prediction

• is inconsistent with our experimenta l findings and indicates that either

the qualitative model is unreliable or , more likely, that the concerted

path is inoperative. On the other hand , the experimentally observed
4

ordering of transition states for both limiting mechanisms depicted in

Figure 1 is easily understood in terms of the Hammond postulate in which

the most exothermic reaction (formulation of ground state products) has

the l owest activation barrier . However , neither this line of reasoning ,

nor any mechanism yet postulated to explain chemical formation of excited

states , is capable of explaining why the total yield of acetone excited

states from the thermolysis of 4, is nearly twenty times l ower than the

excited acetone yield from the less exothermic thermolysis of tetramethyl-

dioxetane. ’6 This observation remains a mystery in need of further investi-

gation.

In summary , our investigation of the kinetics of the thermal unimolecu lar

reaction of dioxetanone 4, has revealed that dual paths are operative.

Further experimental resolution of the reaction coordinate is difficult.

This reaction may be ideally suited for investigation by ab initio theoretical

methods. Such an analysis is planned .

This work was supported in part by the Office of

Naval Research and in part by the donors of the Petroleum Research Fund ,

administered by the American Chemical Society.
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Activation Parameters for the Thermolysis of

Dioxetanone

Solvent Ea~ 
kcal /mol EChl , kcal /mol

C2C1 3F3 22.3 ~ .3k- 25.6 ± .1

CC] 4 21.3 ± .3~- 24.5 .5

• PhH 21.8 ± .l~- 24.9 ± .4

CH2C12 20.8 ± .l~- 24.8 ± .4

~~ir saturated solutions , ~5 x 1Q~~ H in 4,. ~.Eyring

activation enthalpy : AH* = 21.7 kcal/mol ; activation

entropy , t~S* = 0 ± 1 eu. s-Solutions contained 5%

Na4EDTA.

f~bJe~~. Temperature Dependence of the Singlet Excited Acetone Yield

from Thermolysis of

Temp. , °C x lO~ Temp. , °C x lO~

30.0 10 9.8 5.7

25.1 8.4 4.8 4.8

20.5 7.4 0.3 4.5

15.4 6.3 -5.0 3.9

~-C2Cl 3F3 solutions. Yields were determined relative to the yield at

- 

• 30.0°C. See ref 8a.

~~:— -——— — -- . ~~~~~~ • 
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Figure Caption

Limiting reaction mechanisms for thermal unimolecular fragm entation of

• dimethyldioxetanone to acetone and CO2. Part A represents the concerted

-
. process with two transition states, Part B shows a path proceeding through

an intermediate biradical with at least two exit channels.
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