
AO—AO52 538 NAUACICSLTTS INST OP TECH c eiw.c LAS ~OR cOMPuTE—ftc F/S WI
A COWUTfl A*CHITECT(fl FO~ DATA—PL Oy COeUTATIOI. (U)

L*ICLASSIF lED MIT/LCS/TM—100
P1000 t~~tO A—O3fl—OOo6

rr~fl_ _ ‘

tU!flDU DI~~~ _

_ _ I

. i I-’ I~ ll~i~
JII2~I.u ~

=

_ _ _ _ ~ ~~3.2 2.2

I

~~~~~

I~IL8

Jfflf L25 IIIIIi•~. ~
MICROCOPY RESOLUTION TEST CI-4 A~ T

NAr~o~ 4L BURL4U Q~ STANO4 ROS - i963- ,~



:1:- ~~~~~~~~~~~~~~~~~
—

~~~~~~
—--

~~~~~~ ~~~~

_ _  

LABOR ATORY FOR MASSACHUSETTS

~~~~ 

COM PUTER SCI ENCE TECHNOLOGY

[bSTRIBUTION STAT M}21T A~~
A~~wv.d far public r

D4aU1butio~ U~limftsd

I
MIT/LcSIIII-100

il~ A ~X1fUTER A1~HI1ECflJI~ FOR I~TA-FWd tI~~1~AT ION

D D C\
r~rFnn~f1fE

DAVID P, MISWAs ii‘-‘ APR il 1978

l~~~ U U L 5
_ _ _ _ _ MARcH 1978 C~ t B

THIS RESEARCH WAS SUPPORTED BY TIE ~WN1CED 1~ SEARCH

A~QJECTS kENCY OF ThE I~PARThENT OF J~ FENSE N~ WAS

MONITORED BY TIE OFFICE OF NAVAL I~ SEARCH I.R~ER

CONTRaCT No. NOOO1’4-7O-A-O~2-OOO6

545 TECHNOLOG Y SQUARE , CAMBRIDG E, MASSACHUSETTS 02139

— ~~~

-- —

SECURITY CLASSIFICATION OF THIS PAGE (lIlian D.i. Bn6.,. ~~

REPJ~ r DOCUMENTATION PAGE I~~~~~U UIWI all ’... £UM ~P
__ BEFORE COMPLE1UIG_PORN

—‘V ull_ il il J.u.uIutI us - nu—~—~ N VU SE A
IT/LCS/TM-lffJ v”~ f~J~i t ~~ -t-k~ ~I TI. £ (aid Subilll.)

______________________ --
S.M.Thesis, May 16. 1975~ A Computer Architecture for Data—Flo~~~~

—

PERPONUING ~~~G. REPORT NComputations

1. AUTNOpI.1

.‘
~~~

‘ 

MIT/LCS/TM—100
IL~~COW I’RACT OS GSANT NUMSESft}

~~ 7a ~Qi P ./Misunas
_j  ( Ø14-7~ -A-~ 362-Ø~~ 6

l. PERFORMIND ORGANIZATION NAM E AND ADDRESS J~~~itOOPIAM ELEMENT PROJECT . TASK
A RIA I WORK UNIT W UMSE RS

MIT/Laboratory for Computer Science
545 Technology Square
Cambrid ge._Ma_02139 __________________________

I t .  CONTROLLING OFFICE NAME AND ADDRESS ~ii—r ium..
Off i ce  of Naval Research ________

Qegartment o~ the Navy 
__________ ______________

~~~
II4

~
!LI P

~~~
ITinrormation ~ystem s Pt~ogram

Arlington, Va 2221.7 109 _______________
i~~. MUNJTQnIN~~ A~~~NCY NAME ~ ADDRE5I(11d711c.j,l ftc. CcnlanJUM4 Of lic.) II. 1ECUI4

~
1
~~
(IASS. (ci Ni

Unclassified 
—

II.. DEC4.AUIFICATION/OOWNGAA DING
$CNEDULE

5. DISTW~WUT1ON STATEMENT .(•1 ml. R.p., *)

Approved for public release ; distribution unlimited

7. DISTRISUTION STATEM ENT (.I Ni. abblrane .nic.d In Block 20, II dUta,.n( baa R~~oø)

S. SUPPLEMENTARY NOTES

I. KEY WORDS (C.nlMsa cø an,sr~• aid. it n.c..aay aid idanlIty by block naab.,)
co mputer architecture
data—flow
parallelism

AS ET~~~CT (C.niinu. ~~ 1 r.va i. .Id. H n.c..a y and idsnhl& by Nail

The structure of a computer which utilizes a data—flow program repre-
sentation as its base language is described. The use of the data—flow repre-
sentation allows ful l  exploitation by the processor of the parallelism and
concurrency achievable through the data-flow form . The unique architecture
of the processor avoids the usual problems of processor switching and
memory/processor interconnection by the use of interconnection networks which
have a great deal of inherent parallelism . The structure of the processor .-~

DO I~~~~~~~J J473 EDITION OF I NOV 55 II OBSOLETE 7
S/N O 1 O 2 ~~O I4 • l5O I I ____________________________________________

SECURITY CLASSIFICATION OF THIS PAGE (IS.ai ~~~~~~~~~~~~~

‘M9 ~~



[~~~ cIITtSP~~~~~T
20. allows a large number of instructions to be active simultaneous~~.
These active instructions pass through the interconnection networks concurrent y
and form streams of instructions for the pipelined functional units.

Due to the cyclic nature of an iterative computation, the possibility of
deadlock can arise in the performance of such a computation within the data—
flow architecture. A deadlock is caused by the interaction of several simultan

- eously active cycles of the same iterative computation. The use of a recursive
rather than iterative representation of a computation avoids the deadlock
problem and provides a more efficient implementation of the computation within
the architecture. For this reason, a program executed by the data—flow
processor is restricted to an acyclic directed graph representation.

\

?~CESS1ON for /
NTIS White SectIon 

~~DOC Buff Section 0
UNAN NOUNCED 0
JuSTIrICATION

BY

OIZTRIB~iT1ONJAYMIABIll1Y tOI~ES
Dist .~~~~~~~ iA~L and/or SPEC%.~A HJ~I- - - - —- 

— - 
—

SICUS~tY CLA$SIFICAflOw OP TWIS PASEfIS.. B.,. ~~~~~~~~



-— ‘-~~~~~~~ —— —

LI

“ ~~ ‘

MIT/LCS/TM- 100

I

A COMPUTER ARCHITECTURE FOR DATA-FLOW COMPUTATION

David P. Misunas

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUT ER SCIENCE

(f ormerly Project MAC)

CAMBRIDGE MASSACHUSETT S 02 1 39 

- .~~~~~~~~~~~~~~~~~ .-~~~~~~~~~- -. — —~~~~~~~~~~~~~~ —“
~~~~~~~~~~~~~~

-- - -- _ _

A COMPUTER ARCHITECT URE FOR DATA-FL (M COMPUTATION

by

David Peter Misunas

ABSTRACT

The structure of a computer which uti lizes a data-flow program repre-
sentation as its base language is described. The use of the data-flow rep-
resentation allows full exploitation by the processor of the parallelism
and concurrency achievable through the data-flow form. The unique archi-
tecture of the processor avoids the usual problems of processor switching
and memory/processor interconnection by the use of interconnection networks
which have a great deal of inherent parallelism. The structure of the pro-
cessor allows a large number of instructions to be active simultaneously.
These active instructions pass through the interconnection networks concur-
rently and form streams of instructions for the pipelined functional units.

Due to the cyclic nature of an iterative computation, the possibili ty
of deadlock can arise in the performance of such a computation within the
data-flow architecture. A deadlock is caused by the interaction of several
simultaneously active cycles of the ’ same iterative computation. The use of
a recursive rather than iterative representation of a computation avoids the
dead lock prob lem and provides a more efficient implementation of the compu-
tation wi thin the architecture. For this reason , a program executed by the
data-flow processor is restricted to an acyclic directed graph representation.

Key Words: computer architecture , data—flow, parallelism

This report reproduces a thesis of the same title submitted to the Department
of Electrical Engineering and Computer Science, M.I.T., on May 16, 1975 , in
partial fulfillment of the requirements for the degree of Master of Science.

_ _ _

.uI3~~~

ACKN~~1LEDGEMENT S

The author wishes to acknowledge the invaluable patience, assistance ,

and support of his thesis supervisor , Professor Jack Dennis. The author is

also greatly appreciative of the valuable interactions he has had with mem-

bers of the Computation Structures Group at Project MAC. Special thanks go

to Jim Rumbaugh, Bob Jacobsen, and Dave Isaman.

The work reported in this thesis was carried out at Project MAC , M.I.T.

and was supported by the Advanced Research Projects Agency , Department of

Defence , under Office of Naval Research contract number N00014-70-A-0362-0006.

=1~~~

-4-

TABLE OF CONTENTS

1. Introduction 5
1.1 Architecture of Parallel Systems 5
1.2 The Data-Flow Approach 12
1.3 Outline of the Thesis 14

2. The Data-Flow Language 16
2.1 Data-Flow Programs 16
2.2 Structure Values 19
2.3 Data-Flow Procedure Representation 25

3. Architecture of the Data-Flow Processor 34
3.1 Instruction Processing 34

3.1.1 Instruction Representation 36
3.1.2 Operation of an Instruction Cell 38
3.1.3 Network Structure 44

3.2 Structure Handling 48
3.2.1 Simple Structures 49
3.2.2 Extension to More Complex Structures 57

3.3 Multi-Level Memory Structure 58
3.3.1 Specifica tion of the Memory System 62
3.3.2 Organization of the Active Memories 67
3.3.3 Operation of a Structure Cell Block 68
3.3.4 Operation of an Instruction Cell Block 72

3.4 Procedure Representation 80

4. Recursive vs. Iterative Representation 87
4.1 The Nature of the Deadlock Problem 87
4.2 Performance of the Architecture 91
4.3 Example: An Iterative Computation 96
4.4 Recursive Representation 98

5. Topics for Further Research 102

Bibliography 105

F ~~~ ~~~~~~~~~

-5-
L

Chapter 1

INTRODUCTION

1.1 Architecture of Parallel $ystems

Highly parallel computer systems have evolved in a manner which often

necessitates the placing of unusual constraints on programs and data. Par-

allel machines such as the Illiac IV [7] and the CDC Star (18] can realize

their full potential only for data represented in array or vector format.

In these architectures , the programmer is forced to use such data represen-

tations , even when inappropriate , to achieve highly parallel execution.

A number of methods have been developed to exploit simultaneous or

concurrent operation , however, the implementation of these techniques within

a traditiona l von Neumann architecture has not fully utilized their poten-

tial. This applies both to the various procedures for increasing the per-

formance of a single processor and those for exploiting multiple processors

in a computer system.

Three techniques are currently popular for increasing the parallel ac-

tivity within a single processor. These are:

1. pipelining of operations

2. overlapped memory access

3. instruction lookahead

The pipelining of an arithmetic operation distr ibutes the performance

of the operation over time rather than space. That is , rather than utiliz-

ing several functiona l units of a specific type to increase the processing

rate , one larger functional unit is emp loyed , and the operation is broken

r ,-

~~~~~~~~

-

~~~~

—----

~~~ ~~~~~~~~~~~~~

-6-

into a number of smaller operations which are performed simultaneously upon

a stream of values. Although the performance of a single operation can ac-

tually take longer in a pipelined functional unit , the fact that a large

number of operations are being performed concurrently can produce a very

high processing rate.

In order to fully utilize the technique of pipelining, the data must

be represented as a vector ; if there are gaps in the stream of values sup-

plied to the pipeline , the processing rate can actually be decreased from

that of a single conventional functional unit. Current stream-oriented

processors as the CDC Star [18] and the TI ASC [341 do not have the capa-

bility to form data into streams , that burden must be born by the programmer.

The technique of overlapped memory access merely extends the concept

of pipelining to the fetching of instructions from meaory. If the memory

of a computer system is interleaved ; that is, if the memory is divided into

a number of sections , and the instructions and data of a program are dis-

tributed over the sections , then several items can be accessed simultaneous-

ly. If the instructionE of a program are arranged so conse’utive instruc-

tions are contained in separate memories, then instruction fetching can be

pipelined , and instructions can be supplied at a very fast rate. However ,

a problem arises when a conditiona l is encountered because the system does

not know which of the set of possible succeeding instructions to fetch until

after the conditional has been executed .

The use of instruction lookahead in a processor allows the exploitation

of multiple arithmetic units by decomposing the instruction stream into in-

dependent elements. For example , consider the arithmetic expression A ÷ B +



__________________ - _______ _______,
~~~~~~~~~~~~ 

--- -
-

—7—

(C * D). The two computations A + B and C * D can be performed simulta-

neously in separate functional uni t s. The IBM 360 model 91 (5 , 33] and

the CDC 6600 [32 3 have developed techniques for exploiting this property

for short instruction sequences; however , once aga in, any branching in the

program ‘will disrupt the flow of instructions to the functional units and

decrease the processing capability of the architecture.

In illustration of the problems encountered in exploiting these tech-

niques , consider the IBM 360/91 [16]. The functional capability of this

processor is 70 million instructions per second (MIPS). However , the in-

struction decoder can only supp ly instructions at a rate of 16 MIPS using

the technique of lookahead . An average incidence of conditional instruc-

tions reduces the performance of the processor to 6 MIPS. Thus, the pro-

cessing capability of the architecture cannot be fully rea lized , and with

the lookahead of eight instructions which is used , it is difficult to have

an adequate instruction mix to fully utilize the multiple functional units.

Another common technique for increasing the performance of a processor

is that of separa ting the memory system of the processor into levels of mem-

ory. This allows the expensive fast memory , known as a cache, to contain

only the most active instructions and data. In order to exploit this tech-

nique , instructions and data are organized into blocks known as pages , and

these pages are transferred between levels of storage. The utilization of

pages is ‘wasteful in that often not all space in the page is filled (known

as breakage). Also , in order to reference one item on a page. the entire

page must be transferred to the cache , moving a great deal of unnecessary

information. In a multiple processor environment another problem arises ,

-8-

that of several copies of a page existing in the caches of different pro-

cessors. If one copy is altered , the o~~er processors will not have know].-

edge of that fact.

In addition to increasing the performance of a single processor, there

has been a trend toward connecting several processors together to form a

multiprocessor system. Such a system can be either homogeneous; that is,

each processor can be replaced by any other , or non-homogeneous , each pro-

cessor has its own special function. However , in either case there is a

degradation in performance of a multiprocessor system from the possible

performance of the individual processors working on separate problems due

to memory conflict and the necessary operating system. It is claimed that,

in general, for a two processor system , 2.2 times as much hardware is re-

quired as for the two separate processors , and the resulting performance is

1.8 times the performance of a single processor [2].

Homogeneous multiprocessor systems such as array and pipeline processors

have the drawback that they can only achieve their full capability for special

data representations , as has been previously discussed . Let us consider more

conventional methods of connecting processors in a multiprocessor system.

There are three techniques which are commonly utilized :

1. time-shared or common bus

2. crossbar switch

3. multiport memory

A time-shared bus provides a single path interconnecting all units of

a system (Figure 1.1). Any unit which wishes to transfer data to another

unit must obtain control of the bus , transfer the desired information , and

- -- .-~ .

~~-— ~-— --~ —-- ---~~~ -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-_—
~
,.- ‘. 

~~~~~~
.,

Ii

[
processor

]
S

[~
rocessor

]

me~ory

~

mjry
j

Figure 1.1. Structure of a time-shared bus.

L
oces

~~ J • . • [processor

memory

—0

—0
Figure 1.2. Structure of a crossbar switch .

S
-

- - -

‘T~ T~
~~~~

- --

~
-— --. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-10-

then release the bus. This technique is the cheapest , least complex , and

easiest to modify . However , the capability of the entire system is limited

by the bus transfer rate , and the expansion of the system may actually de-

grade the overall system performance . Also , this system is the least fault

tolerant , failure of the bus has catastrophic results.

Extending this concept by adding more buses to the system to the point

where each memory has a bus which can be connected to any processor , we re-

alize a structure known as a crossbar switch (Figure 1.2). Although the

possibility of conflict still exists in this configuration , it is possible

for a number of transfers to occur simultaneous ly. This structure has the

potential for the highest system transfer rate, and expansion of the system

should improve its overall efficiency. However, the crossbar switch is a

complex and expensive device and can utilize as much as 25 per cent of the

system hardware [8]. Also , the complexity of the switch grows as the pro-

duct of the number of processors and memories.

An interconnection technique which is often used in large time sharing

systems is that of the multiport memory structure. The memory modules of

the system have more than one access port and contain control circuitry to

resolve conflicts between requests received on separate ports (Figure 1.3).

No special switching circuitry is required in this configuration. However ,

the memory units are very expensive , and the size of the system and config-

uration options are limited by the number and type of memory ports available.

The methods of structuring multip le processor systems and improving the

performance of a processor all have serious drawbacks to the full exploita-

tion of the capabilities of the processors. In this thesis an approach to

- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~


~~~ rocessor 1 . • • I ~rocessorJ

memory • • • memory

Figure 1.3. Structure of a multiport memory system.

~~
- -~~~~

-. -- — - ,--~~~~~~~
. 

~~~~~~~~~ - - - - . .~~~~~~~~~~ -.~~~~~~~~~~~ , -. - - —  . -


-12-

the structuring of a computer system which offers attractive solutions to

many of these problems is presented .

1.2 The Data-Flow Approach

Studies of concurrent operation within a computer system and of the

representation of parallelism in a programming language have yielded a new

form of program representation , known as data flow . Execution of a data-

flow program is data-driven; that is, each instruction is enabled for exe-

cution just when each required operand has been supplied by the execution

of a predecessor instruction. Data-flow representations for programs have

been descr ibed by Karp and Miller [19], Rodriguez [28], Adams [1], Dennis

and Fosseen (12], Bährs [6), Kosinski (20), and Dennis [9).

In order to take advantage of the parallelism inherent in an elemen-

tary data-flow representation, the architecture of the elementary data-flow

nrocessor was developed by Dennis and Misunas [131. The class of programs

implemen ted by this processor incorpora tes no fancy capabilities such as

recursion , data structures , conditionals , or iteration. However , the lan-

guage and its corresponding archi’.ecture are well-suited for the represen-

tation of signal processing computations such as filtering, waveform gener-

ation , and fas t Four ier transf orms , in which a group of operations is to be

performed once for each sample (in time) of the signals being processed.

In the development of the basic data-f low processor we added condition-

al and iterative constructs to the language and architecture ~l4). Also,

the basic data-flow architecture incorporates a multi-level memory ystem

in which the active memory is operated as a cache, and individual instruc-

r~
.

-13-

tions are retrieved from the auxiliary memory as they are required for corn-

putation.

An extension of the architectural concepts to a general-purpose com-

puter , incorporating procedures , recursive program activation , and data

structures has been completed recently [Il, 24 , 26 , 27] and is the subject

of this thesis.

The prob lems of processor switching and memory/processor interconnec-

tion are avoided within the data-flow architecture by the use of intercon-

nection networks which have a great deal of inherent parallelism. Sections

of the machine communicate by means of fixed size information packets , and

delays in packet transmission within the networks do not affect the utili-

zation of the hardware. The interconnection networks are large, but grow

at a much slower rate than a crossbar switch and require none of the global

control circuitry necessary for the switch.

The structure of a data-flow processor allows a large number of instruc-

tions to be active simultaneously. These active instructions pass through

the networks concurrently and form streams of instructions for the pipelined

functional units.

The processor does not utilize an instruction register or instruction

decoder; an instruction proceeds on its own when its operands are ready and

delivers its results to other instructions which are waiting for them. No

software operating system is necessary within the architecture. Processor

alloca tion , the formation of instructions into streams for the functional

units, and the transfer of information between levels of memory is efficiently

-- _~~~~~~-.,- .-

-14-

accomplished by the hardware of the machine.

The configuration of component parts in a data-flow processor is read-

ily chosen to fit a desired application , allowing the architecture to be

applicable to a wide variety of prob lems. The processor is also expandable,

and the performance of the processor increases linearly with an increase

in size.

The exploitation of data dependencies in programs has been investigated

previously by Shaprio , Saint , and Presberg [30], Miller and Cocke [22), Seeber

and Lindquist [31], and Rumbaugh [29]. Indeed , such is the goal of the look-

ahead techniques utilized in architectures such as the IBM 360/91 and the

CDC 6600. The approach taken in the data-flow processor differs from these

approaches in that it utilizes a radically different concept of computer

organization which offers attractive solutions to many of the problems en-

countered in adapting von Neumann machines for parallel computation, an

architecture in which parallelism and concurrency are inherent in the struc-

ture of the processor .

1.3 Outline of the Thesis

The organization of the remaining chapters of the thesis is as follows:

Chapter 2 presents the data-flow language chosen as the base language

of the processor. A program in the language is represented as an acycljc

directed graph , eliminating the problems associated with the execution of

cyclic program structures within a highly parallel architecture. The data-

flow language has a capability greater than that of Algol 60 and is a gen-

eralization of pure Lisp.

_ _ _ _ _ _ _ _ _ _ _ _ --- ._ - . _ , . .
~~~



-15-

Chapter 3 describes the architecture of the data-flow processor. The

machine is presented in stages, examining first tue execution of instruc-

tions within the processor and then the implementation of data structures.

The structure of a multi-level memory system is considered next , and to

comp lete the presentation, the implementation of procedures is described .

Chapter 4 illustrates the reason for restricting a program executed

within the data-flow processor to an acyclic directed graph representation.

The performance tradeof f s  within the processor between cyclic and acyclic

program structures are examined to demonstra te the necessity of such a

restriction.

The final chapter summarizes the architectural concepts and discusses

topics for future research.

_ _ . _ - _ . _ A



-~~~

-16-

Chapter 2

THE DATA1-FLOW LA NGUAGE

The data-flow language presented in this chapter serves as the base

language for the architecture to be described in the following chapter. The

semantics of the language is identical to that of the data-flow procedure

language developed by Dennis [9]. The only major difference arises in the

manner in which simultaneous procedure activations are differentiated . The

model proposed by Dennis distinguishes between the data utilized by separate

activations of a procedure through the use of a unique color associated with

all data of each activation. The model described in this chapter is imple-

memtation oriented and therefore uses a technique simi lar to the “copy rule”

of Algol.

2.1 Data-Flow Programs

A program in the data-flow language is composed of two kinds of elements,

called actors and links. An actor of the language can be either an operator ,

a decider , or a gate (Figure 2.1). Each actor has a number of input arcs

which supply values necessary for its execution and one output arc upon which

results are placed . A small dot or circle represents a link which has one

input arc upon which it receives results from an actor and a number of out-

put arcs over which it distributes copies of the result to other actors

(Figure 2.2).

Values are conveyed over the arcs of the program by tokens which are

represented by large solid dots. An actor with a token on each of its input 

- - . .  ~~ ,- -~~
,

- - - ---- —- ----~-— . .. ~~~~~~~~~~~~~~~~~ .- *-~~~~--- ...——--.- — _ , _ _ . .44



_____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. .

-17-

(a) operator (b) decider

(c) T-gate (d) F-gate

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(e) merge (f) Eoolean operator

Figure 2.1. Actors of the data-flow language.

A A
(a) data link (b) control link

Figure 2.2. Links of the data-flow language.

_____



r 
. .—— _ - - - .-

~~~~~~~~~~~

--- -

-18-

arcs , and no token on its output arc , is enab led and sometime later will .

fire, removing the tokens from its input arcs , computing a result u~sing the

vnlues carried by the input tokens , and associating the result with a token

placed on its output arc. In a similar manner , a link is enabled when a

token is present on its input arc , and no token is present on any of its

output arcs. It fires by removing the token from its input arc and asso-

ciating copies of the value carried by the input token with tokens placed

on its output arcs.

The data-flow language util izes two types of tokens : data ~~kens and

control tokens. A data token carries a data value which is produced by an

operator (Figure 2.la) as a result of some arithmetic operation. A control

token is generated at a decider (Figure 2.lb) which , when the decider re-

ceives a data value on each input arc , applies its associated predicate and

produces either a ~~~~~~~~~~~ or false-valued control token on its output arc.

Control tokens direct the flow of data tokens by means of either a T-

gate , F-gate or merge actor (Figure 2.lc , d , e). A T-gate will pass the

data token on its input arc to its output arc when it receives a control

token carrying the value ~~~~~~~~~~ over its control input arc. It will absorb

the data token on its input arc and place nothing on its output arc if a

false-valued control token is received. Similarly, an F-gate will, pass its

input data token to its output arc only on receipt of a false-valued token

on the control input. Upon receipt of a ~~~~-valued token, it will absorb

the data token.

A merge actor (Figure 2.le) has a true input , a false input , and a

control input. It passes to its output arc a data token from the input arc

corresponding to the value of the control token received . Any tokens on the

- - . .

~

-

~

_ -

~

-- - _ - -.
~~~.-- .~~- - - -- - .—



-19-

other input are not affected .

In illustration of the capability of the data-flow language , consider

the iterative data-flow program in Figure 2.3 for the following computation:

input x , y
n : 0
while ~oy do

x :=x-y
n :~ n+1

end
output x, n

Upon exiting the body of the iteration , n is equal to the original va lue

of x divided by y ,  and x is equal to the remainder.

In the data-flow program the control input arcs of the three merge ac-

tors carry false-valued control tokens in the initial configuration to allow

the input values of x and y and the constant 0 to be admitted as initial val-

ues for the iteration. Once these values have been received , the predicate

~~~ is tested. If it is true, the value of y and the new value of x are

cycled back into the body of the iteration through the T-gates and two merge

nodes. Concurrently , the remaining T-gate and merge node return an incre-

mented value of the iteration count n. When the output of the decider is

false, the current values of x and ii are delivered through the two F-gates,

and the initial configuration is restored .

2.2 Structure Values

The values conveyed by tokens over the arcs of a data-flow program are

either elementary values or structure values, and each value has art asso-

ciated ~~~~~~~~ designating its type. The set of elementary values E contains

E = T U I U R U Q

~~--~~~--,~~~--~~.— ~~~~~~~~~~~~~~~ .~~
_ _ _ _

-

-20-

\

1*.
‘ p

(+1)

Figure 2.3. An iterative da ta-flow program.

I

-21-

where:

T = truth values
I = integers
R reals
Q = strings

A structure value in a data-flow program is represented as an Ficyclic

directed graph having one node with the property that each node of the

graph can be reached by a directed path from the root node. Each node of

the graph is either a structure node or an elementary node. A structure

node serves as the root node for a substructure of the struc ture and con-

sists of a set of selector-value pairs

S [(s
1~
, v1) ... (s , v)~

where

5
i E

~~~~~
Q

v~~E E U S U (~~J)

and a . is the selector of node v
i
. An elementary node has no emanating arcs;

rather , an elementary value is associated with the node. A node with no em-

anating arcs and no associated elementary value has value (
~jJj.

A structure value is represented by a data token carrying a unique point-

er to the root node of the structure. In Figure 2.4 the structure a contains

.hree elementary values a, b, and c, designated by the simple selector L and

the compound selectors R L  and R R  respectively. Structure node y of struc-

ture a is shared with structure ~ and is designated by a different selector

in ~~than in a.

A simple selector associated with a node can be either an integer or a

string. A compound selector is formed by the concatenation of a number of

simple selectors and specifies a path through the structure which can be 



-22-

Figure 2.4. An example of two structures sharing
a common substructure.



—— 
~~~~~~~~~~ 

— - .-------- .

~—~--~- —
~~

~~~~~
- ______

-23-

followed by applying the simple selectors in the stated order .

The structure values of a data-flow program are located within a heap

[9]. The state of the program at any point in time is represented by a to-

ken distribution on the graph of the program and a heap . During each exe-

cution step of the program , some link or actor will fire , resulting in a

new token distribution and , in some cases , a modified heap.

A node of the heap is accessible to a program only if some token car-

ries a pointer to the node or the node can be reached by a directed path

from some accessible node. Upon completion of an execution step of a pro-

gram , any nodes of the heap made inaccessible by that step are deleted to-

gether with any emanating branches.

In order to generate and perform operations upon structure values, a num-

ber of new actors must be defined . The structure actors presented herein

are not necessarily the only ones one might desire , however, they provide

the necessary basic operations for the creation and manipulation of a struc-

ture and serve to illustrate the manner in which structures are handled with-

in the data-flow architecture. The operation of each of the structure actors

of the data-flow language is presented in Figures 2.5 to 2.8.

Structures are created through use of the construct actor (Figure 2.5).

The actor accepts an elementary or structure value from each input and places

on its output a structure containing the input values as components. Each

input is labeled with the selector in the new structure to be associated with

the value arriving on that input.

A value is retrieved from a structure by the select actor (Figure 2.6).

The value in the input structure designated by the selector argument is

placed on the output of the actor. The result can be either an elementary

I,



-
~~~

,---.,.-•- ‘•--- .-. -.-— -—— --.--—— ••—--
~~~~_ _ _  

~~~~~- .. - - .- . --

-24-

3~~~~

/
construct construct

ía

Figure 2.5. Operation of the construct actor.

select s 5 X select s s x

Figure 2.6. Operation of the select actor .

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ .~~~~ 

_ _ _ _ _ _ _  — -.- -— ,-•- .- - ~~UI~~

-25-

value or a structure value. If the argument of the actor is a multiple se-

lector , the actor produces on its output the value at the end of the path

designated by the multiple selector. The action of the actor is undefined

if the input structure does not contain the specified selector(s).

Structure values in a data-flow program are not modified ; rather, new

structure values are created which are modifications of the original values,

while the original values are preserved . The append and dej~ete actors provide

the means of creating these new structure values.

The structure produced by the firing of an append actor is a version of

the input structure which contains a new or modified component (Figure 2.7).

If the specified node of the input structure has a selector corresponding to

the selector argument of the actor, the value designated by that selector in

the new structure is the input value. Otherwise the specified selector-

value pair is added to the node of the new structure. Identical elements

of the input and output structures are shared between the two structures.

In a similar manner , the structure appearing on the output arc of a

delete actor Is a version of the input structure in which the specified node

contains one fewer component (Figure 2.8). The specified node in the new

structure is missing the selector-value pair designated by the selector arg-

ument. As with the ~~~~~~ actor , identical elements are shared between the

input and output structures.

2.3 Data-Flow Procedure Representation

In this section we present an approach to the description of procedures

within the data-flow language. Procedures of the language are represented

as acyclic directed graphs in a manner which is very attractive from both 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.~~~~~~~~~~~ . ..

~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _

-26-

append a append s

I ~!

Figure 2.7.  Operation of the appen4. actor . . ‘ 
-

delete a delete •

I

Figure 2.8. OperatIon of the delete actor .

—~~~ a~~~~~ --- - . - - - —.,
~~~~~ -. . - *—.-— -—~~~~-


F.,-

-27-

a semantic viewpoint and an implementation viewpoint. Simi lar descri ptions

of a base language in terms of tree structures have been presented by Dennis

[10), Ameras inghe [3], Ellis (15] , and Henderson [17). The application of

such an approach to the description of a data-flow computation has not been

previously considered , yet the extension to a data-flow representation ap-

pears to be very attractive.

A data-flow procedure is a data-flow program with a single input arc

over which the argument arr ives and a single output arc upon which the re-

sult is placed. The body of a procedure is represented as a data structure ,

and the procedure is referenced by a token carrying a pointer to the struc-

tured representation. Every procedure in the language is determinate; that

is, the same result is produced by every activation of the procedure which

receives the same input values.

To provide for procedure activation and termination, the apply and re-

turn actors are introduced into the data-flow language. The operation of

these actors is shown in Figure 2.9. The apply actor receives two inputs ,

a procedure and an argument , which may be either an elementary value or a

structure value . Upon f i r ing , the actor creates an argument structure of the

argument and the des t ina tion for the resul t of the application , and this ar-

gument structure is given to the procedure as input. If no instruction fol-

lows the apply actor in the program , the value designated by the destination

selector in the argument structure passed to the procedure is nil. Upon

comp letion of the execution of the procedure , the result is sent to the

specified destination by a return actor within the procedure body .

The data-flow representation of the following simple procedure is shown

in Figure 2.10:

- -~~~~~-.. -~~~~~~~~-- - _

F
—--

~~~

--- -...- --,-

~

—-,, 

~~~~~~~~~~~~~~~~~~~~~~~ 

,,-—-,---.---,~•-— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-28-

r
~~~~k_fr ~~~~ \_/ ‘~~~~T!r~~~’ d~stapply apply 

\

:

Ir
il

a 

(~)

return
A A

4k

\ / \ / P/ \ / _ __ 4= ~4 V ~app 
~~ apply

~~~~~~~~~~~~~~~~~~~~~

Figure 2.9. Operation of the apply and return actors.

- - - — ---—-- -~~---
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

— ---—- - —- ------- --- _ _

~~

__ ___‘_-;

~~~~~~~ . 
-
~~~~~~ 

—
~~~ 

—- —-
~~~~~~

----
~

---- - ---

I l
~

-29-

select dest select arg

5

F F T T

return return

Figure 2.10. Data-flow representation of a simple procedure.



-30-

P: procedure (x)
if x’(5 2

then return x
else return x

end P

When the procedure of Figure 2.10 is applied , it receives on its input arc

a structure containing two elements. The first element, designated by the

selector arg, is the argument x of the procedure. The second element, dest ,

is the destination address for the result. The procedure shown in Figure

2.10 has been called with the argument 5 and the destination A.

The first operations performed by the procedure are select operations

which send the argument to the procedure body and the destination address

to the return instructions. The procedure body tests the argument to see

if it is less than five. If so, it is squared , and the resulting value is

returned . If the argument is greater than or equal to five, the original

value is returned .

In a structured representation of the procedure, each node of the struc-

ture represents one instruction of the program and has selectors to specify

the operation code , each operand , any constants , and the des tinations for

the result. The destination selectors designate the nodes of the program

graph which are to receive copies of the result generated by the instruction.

Each destination selector also specifies the identifier of the operand in

the destination which is waiting for the result (i.e. dl-1 indicates that

this is the first destination specified in the instruction , and the result

is to go to the first operand of the designated destination instruction).

A destination instruction may be shared if it receives more than one operand .

A structured representation of the data-flow procedure of Figure 2.10 is 

— .~~~~ .. . A



-•~~~~~~-•-~~~,- . - . . .  — • . - —----
. , . —-- -.--

-31-

given in Figure 2.11.

In the structured representation of the procedure, the gate actors are

not represented by separate instructions , but are incorporated into the in-

structions representing the return and square actors as part of the operand

specification. The value within a gated operand designated by the selector

gate specifies the type of gate represented , and the selec tors control and

data designate the control value and data value received. This method of

representation allows a more efficient execution of the instruction within

the data-flow processor and is discussed further in Section 3.1.1.

Initially, all operands of the program structure of Figure 2.11 have

value ~fl to indicate that they are empty. An instruction is enabled for

execution when no operands of the instruction contain the value ~~~ and
each control value received matches the associated gate value.

Upon being enabled , an instruction is ready to be processed . Some

arbitrary time later, the specified operation is performed on the operands

of the instruction , and the result is sent to all instructions indicated

by the destination address selectors of the instruction. At each destina-

tion, the result is appended to the correct nil-valued operand (designated

by the operand number in the destination selector), and the instruction

containing that operand is enabled if all operands are present and the cor-

rect control values have been received. If the destination operand is gated ,

the type of value received determines whether it is to be appended to the

node designa ted by the selector control or the one designated by the selector

data.

If the control values received by an instruction do not match their

associated gate values, the instruction is not enabled , and it and its suc-



- •• -— ~~~~j :.:~~~~~~~ 
- ----•-------

~~~
——-

~
---‘— -

~~~ 
..

~~~ ~~~~~~~~ 
-. .—

~~
------ . - .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-32-
P

I I 1 I

Inst opl d l - l  d2-l

F— I T ~ I I I
Inst opl const dI-l d2-l inst opi const dl-l d2-2 d3-l

inst op1 const dl-l d2-l d3-2 d4-l

~~~~t 

~de control 2ata

-

inst opl op2 Inst op1 op2

gate control d~ ta gaL control d~ ta et gate con~~ ol dLtar~~~~~~~~~~~~~~~~~~~~~~~ j 1

Figure 2.11. Structured representation of the program
of Figure 2.10.

~~~~~~~~~~~~~~~~~~~~~~ --_-- ~~~~~., - - -~~- --— -- -- --... . ---



-33-

cessors are not executed in the activation.

Many simultaneous activations of a data-flow procedure may exist as a

result of concurrent or recursive procedure app lication. In order to avoid

the possibility of interaction between tokens from separate activations , a

new copy of a procedure is created for each activation , the argument struc-~

ture is transmitted to the new copy , and after  a result is returned , the

copy is discarded . 

.. —. ~~—-~~~ - — — — —~~~~~~~~~
- _  ,-, —.-—~~~~~~—,—, - - - - — , ,.-



____

-34-

Chapter 3

ARCHITECTURE OF THE DATA-FLOW PROCESSOR

The data-flow processor described in this chapter is designed to direct-

ly execute programs expressed in the data-flow language presented in Chapter

2. The structure of the processor is presented in four stages. The first

section of the chapter discusses the representation of instructions within

the processor and the execution of individua l instructions representing

operators and deciders of a program . The next section extends the descrip-

tion to include the processing of structures. The third section presents

the multi-level memory structure utilized by the processor in which the mem-

ories of the instruction and structure processing sections of the processor

act as caches for the most active instructions and structure values. The

final section describes the implementation of procedures within the archi-

tecture.

3.1 Instruction Processing

The instructions of a data-flow program are stored and executed in the

instruction processing section of the processor (Figure 3.1). Instructions

awaiting execution are contained in the Instruction Me~~ry. Upon becoming

ready for execution , an instruction enters the Arbitration Network and is

conveyed by the Arbitration Network to the correct Operation or Decision

Unit. The results of an operation are distributed to the desired destina-

tion instructions by a Distribution Network. Similarly, the results of a

decision are distributed by a Control Network 

- -.. -~~~~..- .- - -— --. .——--. - 



-35-

__________________ 
operation

Operation II~ 

packets

Units J ___________________

I Decision _______

control 1 Units
packets

data /~~~ntrol \ decision
packets Ne twork packe ts

1• • •I

~~~
_

Instruction
_ F

~~ Distribution • Instruction • Arbitration I

~~ Network Memory Ketwork

~~~~~~ Instructton ~~~

Figure 3.1. Organization of the instruction processing section
of the data-flow processor.

—- _ _
~~~ —.—-- -  

, .. --. —-~~--— -- - — , ~~~~~~ —-—— ,-~~---... .

‘.—~~~~~ —,——— ..-——--- -——,--

-36-

3.1.1 Instruction Representation

The instructions of a program being executed are stored in the Instruc-

tion Memory of the processor. The Instruction Memory contains a number of

Instruction Cells , each holding one instruction of the data-flow program.

Each Instruction Cell consists of a number of registers , say five (Figure

3.2) and hold s the instruction in the specified forma t together with spaces

for receiving its operands. An Instruction Cell is designated by an identi-

fier which specifies a path to that Cell through the Distribution and Control

Networks.

Each instruction corresponds to an operator, a decider , or a Boolean

operator of a data-flow program. As in the structured representation of

the program , the gate and merge actors are not represented by separate in-

structions; rather, the function of the gates is incorporated into the in-

structions associated with operators and deciders in a manner that will be

described shortly , and the function of the merge actors is implemented for

free by the nature of the Distribution Network.

The first register of an Instruction Cell hold s an instruction which

encodes in its operation code the f unc tion to be performed , that is, the

type of actor represented by the Cell. The register specifies in Its des-

tination field the Cell identifier of an instruction which is to receive

one copy of the result .

Each other register of the Cell can hold either a data operand , a Bool-

ean operand and one destination , or two destinations. A register can also

be empty, indicating tha t it is not used by the instruction currently oc-

cupying the Cell. The use of the register is Indicated by a code in the

first field of the register. If four data operands are used in an Instruc-

~
.-~ ~~~~~~~~~~~~~~~~~~~~~~~~

— . - ~~~~~~~~~~~~~~~~~~~~~~~~ -. _____

operation code destination

data gi vi.

Boot g2 ci destination

dest destination destination

empty -

r data contains a data operand -

[Bool contains a Boolean operand and
— use code a destination

I dest contains two destinations

L empty not used by this ins truction

Figure 3.2. Format of fields in an Instruction Cell.

— —.-- ..— --. —.— —S _S__ __ -_~~~-_S .__._. ~~~~~~~~~~~~~~~~~~~~~ ~~~ ..— -

-38-

tion , only one destination can be specified , and that destination must be a

distribution instruction (Figure 3.3) if more than one destination is desired

for the result.

A register containing the components designated by an operand se lector

in an instruction consists of two parts , a gating code gi., g2 and either a

data receiver vi or a control receiver ci. The gating codes permi t repre-

sentation of gate actors that control the reception of operand values by

the operator or decider represented by the Instruction Cell. The meanings

of the code values are as followo:

code value meaning

no the associated operand is not gated

true an operand value is accepted by arrival of a true
control value ; discarded by arrival of a ~~ lse value

false an operand value is accepted by arriva l of a false
control value; discarded by arrival of a true value

const the operand is a constant value

The structure of a data or control receiver (Figure 3.4) provides space

to receive a data or Boolean value , and two flag field s in which the arrival

of data and control values is recorded . The ~~~~ flag is changed from off

to true or false by a true or false control value. The value flag is changed

from ~~~ to on by a data or Boolean value according to the type of receiver .

An initial configuration of Instruction Cells corresponding to the data-

f low program of Figure 2.11 is given in Figure 3.5.

3.1.2 Operation of an Instruction Cell

The function of each Instruction Cell is to receive data and control val-

ues , and , when the Cell becomes enabled , to transmit the contents of the Cell

-.-- .-— ..~~~~

-39-

•
- F— I I I I

ins t opl op2 op3 op4 des t

5

)

I T I
a inst opl dl d7

Figure 3 .3. Use of the distribution instruction .

-., --
~~~~~~~

—
~~~~~

. - - , , - ---~~~~~~~~ - ~~~ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-

--— ,

-40-

I

.

_ _ _ _ _ _ _ _ 1

value (data or Boolean)

value flag {.~L&
~~~~~~~~~~~~~~~~~~

r off no control value received
gate flag 

~ 
true true control value received -

L false false control value received

Figure 3.4. Structure of a receiver . 

- . - - . — —  ~~~- _ _ _



_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-41-
Cell  0 Cel l  3

O dist 1/2 0 return -

1 dest 2/2 - I data false ( )

2 data no ( ) 2 data false ( )

3 empty - 3 empty -

4 empty - 4 emp ty -

Cell 1 Cell 4
0 select 3/1 0 less 3/i

1 dest 6/1. - 1 dest 3/2 6/ 1

2 data no ( ) 2 deat 6/2

3 data .onst dest 3 data no ( )

4 empty - 4 data const 5

Cell 2 Cell 5

0 select J 3/2 0 square 6/2

I dest 4/3 5/i I data true ( )

2 data no () 2 emp ty -

3 data ~onst arg 3 empty -

4 empty - 4 empty -

Cell 6 
__________

0 return -

I data true ( )
1/2 ~ register 2

2 da ta no C )  of Cell l

3 empty -

4 empty -

Figure 3.5. Initial configuration of Instruction Cells for the
data-flow program of Figure 2.11. 

- —.~~~~~~~~~~~~~~~~~~ -,-,.-,--— - ,,-
~~~~~~

-.. - -- . .

- - .—~~~~~~~~

-42-

to a Functional Unit (either an Operation Unit or a Decision Unit, determined

by the actor type). An Instruction Cell becomes enabled just when all its

registers are enabled . A register specified to act an an instruction reg-

ister is always enabled. Registers specified to act as operand registers

change state with the arrival of vaiues directed to them. The state tran-

sitions and enabiing rules for data operand registers are defined in Figure

3.6.

In FIgure 3.6 the contents of an operand register are represented as

follows :

~~: (off , ~~) i~~~] empty

It t~~~~
1. 1’

true: (true, ~) ~~~~~~~ * filled and enabled

t va lue
1

I
value flag ~ receiver

I gate flag j

L._~~ gating code

The asterisk indicates that the register is enabled. Events denoting the

arrival of data and control values are labelled thug:

d data value
t true control value
f false control value

Note that upon arrival of a data value and a control value that does not

match the gating code of the register, the register enters a trap state

which indicates that the instruction contained in the Cell is not to be

executed . In a correct program , if one register of a given Cell enters

r . ~
- . , .

~~~-w
---

~~~~~~
. -- -- -

-43-

no: (2.~~ .2W 1 1 ~~
—

~~‘
(~ L~ 2!!) ~~~~~~~ *

> (false , trap~)~~~~~~~
true : (2.L~, .2.~~) L~ ~1 _L)1. ~~~~~ 2f f) I I d ~

(true, ~~) ~~~~~ *

~
‘
~~~(false , off) [ 

~ 
d >(false , trap)~~~~~~~

______ 
> (true , trap) ~~~~~~~

false: (QLL , .2L~
) I ]i—~i. (false , off) 

~ d > (false , on) ~~~~~~~~~~~~~~

off) I I d
> (t 

~~~) ~~~~VA

const: (.2ff ~ ~) ~~~~~~~~*

Figure 3.6. State transition and enabling rules for data
operand registers.

- — -~~~~~~ , - -~~~~~

— — — — - •—- : - - — — -- --- — - - —
~~~~

.. --- ,- .—--.- — 
~~~~~~ — ----- —-‘--

-44-

the trap state , all will enter the trap state.

To illustrate the operation of an Instruction Cell , let us examine the

data-flow program of Figure 3.5. Cell 0 of the program is enabled upon

receiving the identifier of a structure cx in register 2. The entire con-

tents of the enabled Cell are transmitted as an operation packet to some

distribution Operation Unit (Figure 3.7). The Operation Unit merely cre-

ates two data packets, each consisting of a destination address and one

result , and sends each to the appropriate register specified in the des-

tination address fields of the instruction. Upon receipt by the Memory of

the data packets directed to Cells 1 and 2, both Cell s are enabled , and each

transmits its contents as an operation packet to an Operation Unit capable

of performing the ~~~~~~ operation. - -

Cell 4 represents a decider which , when enabled, transmits its contents

as a decision packet to a Decision Unit. The Decision Unit , upon receiving

a decision packet, performs the specified test and sends the resulting con-

trol packets to the designated Cells.

3.1.3 Network Structure

To connect the Instruction Cells of the Memory to the Operation and De-

cision Unitg , a network , called the Arbitration Network , provides a path front

each Instruction Cell to each Operation or Decision Unit. Operation and de-

cision packets are transmitted from Instruction Cells into the Arbitration

Network. The network is capable of accepting many packets simultaneously

and delivers each packet to the correct Functional Unit.

Upon receiving an operation packet , an Operation Unit performs the func-

-- .— . - _ - -

~~~~~~

-

~~~~‘

-45-

Cell. I

0 select 3/1

1 dest 6/i

11/21
4 2 data no J ()

I aJ 3 data consj dest

da ta
Cell 0 packe t 4 empty -

0 dist 1/2

1 des t 2/2 . -

cx
>:

~~~ 

I 

- 

‘ ~

fdest 2/2 1
4 empty - a Cell 2

L : j 0 select 3/2
operation packet

1 dest 4/3 5/1.
12/21
t cxl  ‘~*2 data !!2 I ( )
data 4
packe t 3 data cons

i 
arg

4 empty -

Figure 3.7. Operation of an Instruction Cell.



, — . 
_ _ _ _ _

-46-

tion specified by the operation code on the operand s of the packet and pro-

duces a data packet for each destination specified in the instruction. A

Distribution Network concurrently accepts data packets from the Operation

Units and , using the destination address of each packet , delivers it to the

specified Instruction Cell. Similarly , the control packets produced by a

Decision Unit are sent to the Control Network for delivery to the designated

Instruction Cells .

A simplified structure of the Arbitration and Distribution Networks is

presented in Figure 3.8. The networks are composed of three types of units.

An arbitration unit passes packets arriving at its input ports one-at-a-

time to its output port, using a round-robin discipline to resolve any con-

flicts. A switch unit passes a packet at its input to one of its outputs ,

controlled by some property of the packet. In the Arbitration Network this

property is the operation code , whereas in the Distribution Network , the

switch units are controlled by the destination address. A buffer unit stores

a packe t until the succeed ing switch or arbitration unit is ready to accept

it.

Due to the large number of inputs to the Arbitration Network , we wish

to transfer data between the Memory Cells and the Arbitration Network in

serial forma t to reduce the number of wires necessary. However , in order

to maintain a high rate of packet flow at the output ports , we wish to trans-

fer packets to the Functiona l Units  in parallel format. For this reason ,

serial-to-parallel conversion is done gradually wi thin the buffer  units as

a packet travels through the Arbitration Network. Parallel-to-serial con-

version is performed in the Distribution Network for similar reasons. 

- — . — .
~~~~--~~~—- -— - . -


r

-47-

~~;~ruction
{:

_

~~ +:f1~
.3
~~~€~~

<
E~

_)~O 

}I

~~::iona l

(a) Arbitration Network

from 
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {

Re8~ster 

Memory
Operation . 

- Register
Units Units

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {R ~~~~ ter

(b) Distribution Network

Figure 3.8. Structure of the Arbitration and
Distribution Networks.

-48-

The structure of the Control Network is similar to that of the Distri-

bution Network. However, all packets within the Control Network contain

simple Boolean values , and hence the parallel-to-serial conversion and buf-

fering of the Distribution Network is not needed , and the Control Network

is composed of only switch and arbitration units.

3.2 Structure Handling

The physical representation of a structure within a computer system may

be viewed in several different ways . One extreme involves implementing the

structure as it is represented in the data-flow model , that is, as an acyclic

directed graph in which each node is either a structure node or an elementary

node. In such an implementation , each node of the graph occupies a number

of storage locations within the processor. The location(s) containing a

structure node hold the identifiers of the locations containing nodes which

are successors of that node. The location representing an elementary node

holds an elementary value. The nodes of a structure represented in this

fashion m~~ r ~e scattered throughout the memory of the processor.

Altet-~a~ively , all elementary values of a structure may be stored to-

gether in a group of locations. The first few locations of the group then

contain a mapping function which allows one to find the location of a spe-

cific element within the group. This method is often used for the repre-

sentation of arrays within a conventional computer system.

The first approach has the problem that the storage of a structure in

such a manner can occupy a great deal of space within the memory. Not only

must the data be stored , but a large number of structure nodes and associated

pointers must also be located within the memory. Accessing an elementary

— . — —._-

F -

-49-

value in a graph can take a long time as a path is followed over the arcs

of the graph to the desired node. On the other hand , a single structure

represented by the second approach occupies much less room, but the repre-

sentation of several structures in such a manner can be very expensive in

terms of space since components of a structure cannot be shared as they can

in the graph approach.

It would seem that perhaps a combination of these two methods could be

efficiently utilized ; tha t is , a structure representation in which each node

of the structure is a small block of data . In the remainder of this section

we present an approach in which da ta structures , described as acyclic di-

rected graphs, are implemented in such a hybrid manner.

3.2.1 Simple Structures

The storage of structures and the execution of the structure actors de-

scribed in Section 2.2 occurs in a separate structure processing section

within the data-flow processor. The structure processing section consists

of a Structure Operation Unit and a Structure Memory and attendant Arbitra-

tion and Distribution Networks. This section of the processor is viewed as

an Operation Unit by the Instruction Memory; that is , packets specifying

structure operations are sent to the section, and data packets are returned .

The organization of the data-flow processor with the addition of the struc-

ture processing capability is shown in Figure 3.9.

Packets specifying structure operations are received by the Structure

Memory and the Structure Operation Unit . Instructions which require the

creation of new structure nodes are processed by the Structure Operation

- ~~ ~~~ -. -- -- -

-50-

~ Operation
l Units

control ~
Decision

packets I I Units
da ta

packets decision
/ Control \ packets
/ Network \

F I operation_,,A
• packets

Distribution • Instruction . Arbitration _____

Network : Memory : Network

instruction
packets ~~

á~~.data‘
~~~ .....~~packets operation~~~~.

instruction packets
packets

~~~~~~~ itration ’ Structure ~~~~~~~~istributio~~~~~~~

operation instruction
packets packets

L~!~~~~~~~~~

Figure 3.9. Organization of the data-flow processor without
multi-level memory.

-—“.. -. —

-~~ n—--~- ~~~~~~~~ r-

-51-

Unit. The unit controls the performance of the instruction specified in each

operation packe t through instruction packets sent to the Structure Memory and

sends as data packets the identifiers of the resulting structures to the in-

struction processing section. All structure operations other than the allo-

cation of a new node are performed within the Structure Memory.

To illustrate the operation of the structure processing section of the

processor, in this section we shall limit our consideration to structures

represented as binary trees. A selector of such a structure can have one

of two values , L (left) and R (right). Such structures are well-known from

their use in Lisp [21].

A node of a structure is contained in a two register Cell known as a

Structure Cell and designated by a Cell identifier. The two registers of

the Cell contain the lef t and right components of the structure , respec-

tively; and hence no selector need be stored in a register. The first

field of a register is a use code which indicates whether the item stored

in the second field is the identifier of ano ther Cell or an elementary va l-

ue or the register is empty. A memory representation of the simple struc-

ture of Figure 2.4 is presented in Figure 3.10.

The Structure Memory is composed of a number of Structure Cells in a

manner similar to the .wa y the Instruction Memory is formed of a number of

Instruction Cells. Each Structure Cell is capable of holding one node of a

structure , and the identifier of the Cell specifies a path through the Dis-

tribution Network to the Cell. The Structure Memory receives instruction

packets from the Instruction Memory and the Structure Operation Unit command-

ing a specific Structure Cell to execute some structure operation upon the

node located in the Cell.

— ---~~~ ---.--- --- -- - --—--- ------- -— — ----~~~~~~~ -~ -

-52-

•1

Cell a Cell ~

I I:::: I 1
Cell y

elein b

elem C

Figure 3.10. Memory representation of the structure
of Figure 2 .4 . -

L.~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - ;
~~~~~~~~~~~~~~~~~~~ ~~

-.,,- 
~~~~~~ 

-.-.--.— -—.
.. —.-

~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~~~~

-53-

Each Structure Cell within the Structure Memory is capable of perform-

ing one of two operations upon the structure node contained in the Cell.

The possible operations are:

1. select. Upon receipt of an instruction packet specifying a select

operation

{select dest}

a Structure Cell follows one of two procedures, controlled by

whether a is a simple or compound selector.

a. If s is a simple selector , the content c of the register desig-

nated by a is used to form a data packet

dest
I c

which is presented to the Arbitration Network for transmission

to the instruction processing section of the processor.

b. If s is a compound selector
~l~2

”
~~~~

’ the content ~ of the

register designated by s
~ 

is the identifier of some other

Structure Cell and is used to form the instruction packet

I D
~ select dest
I s ...s
~ 2 n

which is presented to the Arbitration Network for transmission

to the input Distribution Network of the Structure Memory.

The process is then repeated with the selector at Struc-

ture Cell ~~.

2. alter. The receipt of an alter instruction

~



-54-

f alter
lJ 

S

J x

indicates that the Structure Cell is to contain a copy of the node

~ with the component of ~ designated by the selector s set to x.

First , a copy of node p is retrieved from the auxiliary memory

through use of a retrieve command packet in the manner to be de-

scribed in Section 3.3.3. Once the copy of P is present in the

Cell, the value contained in the register designated by the selec-

tor s is changed to x, and the use code of the register is set to

the appropriate value (elem, struc, or empty), designated by the

tag of x. If ~ is 0, no node is requested from the auxiliary

memory ; the current contents of the Structure Cell are altered in

the manner described.

The format of an instruction packet received at the input Distribution

Network of the Structure Memory differs from the format of an operation

packet transmitted to a Functional Unit or the Structure Operation Unit due

to the fact that the operation code of an instruction packet does not con-

trol the switching within the Distribution Network; rather , the Cell identi-

fier is used to direct an instruction packet toward the correct Struc ture

Cell. Hence, an instruction packet in the Distribution Network has the fol-

lowing format

1~
}

where a is the identifier of some Structure Cell in the Structure Memory

and i specifies one of the two operations which can be performed by a Struc-

ture Cell and contains the necessary operands.



_ _ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-55-

Packets containing instructions that designate s tructure operations

are transmitted to the structure processing section of the processor from

the Instruction Memory. A packet specifying a select instruction is trans-

mitted directly to the Structure Memory as an instruction packet. Struc-

ture operation packets representing the other structure instructions are

transmitted to the Structure Operation Unit. The necessity of processing

each operation packe t wi thin the Structure Operation Unit is due to the

required allocation of one or more free Structure Cells for the execution

of each instruction with the exception of the select instruction. The

Structure Opera tion Unit performs the allocation of a free Cell simp ly by

accepting the identifier of a Cell over the ~~4 
port. The manner in which

these identifiers are provided and Structure Cells are freed for use by

new structures is described in Section 3.3.2.

Now that we have considered the operation of a Structure Cell wi thin

the Structure Memory , we can describe the execution of each of the remain-

ing structure actors of Section 2.2 merely by listing the procedure followed

by the Structure Operation Unit  in processing the instruction. For the pur-

poses of this discussion , it is assumed that all selectors are simple selec-

tors.

A construct instruction

construct dest

~ 
si: a

I s2: y

specifies that a new node is to be created with components a and y ,  desig-

nated by the selectors si and s2. The instruction is implemented by the

Structure Operation Uni t as a number of alter operations in the following

manner: 

.~~~~~~~~ ..~~~~~~~~~ ~ -•~~ -- --



-56-

1. Accept an identifier ~ from the wild port.

2. Transmit to the Structure Memory the instruction packets

[alter1 falt e r
4 al ~. and 

~ 
s2

i ;j
transferring the values a and y to the correct registers of 

~~ .

3. Transmit to the instruction processing section the data packet:

dest

An operation packet containing an append instruction is of the following

format

~ppend desti

{

~~~~~~~~~~~~

j

~

where s is the selector of the element in Structure Cell a which is to be

replaced by x in the new structure . The procedure followed by the Structure

Operation Unit in execution of the instruction is as follows:

I. Accept an identifier ~ from the unid port.

2. Transmi t the instruction packe t

1 1 3

alter

I x
L a

to the Structure Memory to copy node a into Cell ~ and change the

component of ~ designated by the selector a to x.

3. Transmi t to the instruction processing section the data packet:

fd-est
- -

~~~~~~~~~~
-_-

~~~
_ .

~~~~~
.- _ - _

~~~~~~~~-- _ - ~~~~~~~~~~~~~~~~~~


-57-

An operation packet specifying a delete instruction

f delete dest
I s

I a

is processed in a similar manner:

1. Accept an identifier ~ from the unid port.

2. Transmi t the instruction packet

I~~~~1~~ alter~~~

1 0
L a

to the Structure Memory, indicating that the use code of the regis-

ter designated by s in Cell
~

is to be set to empty.

3. Transmit the data packet . -

{d;st}

to the instruction processing section .

3.2.2 Extension to More Complex Structures

The extension of the descr ibed techniques for the implementation of

data structures to larger and more complex structures is straightforward .

In order to implement structures with a fixed maximum number of arcs eman-

ating from each node , the size of a Structure Cell is increased to accom-

modate the new node size. The use of arbitrary (to a fixed maximum size)

integers or character strings as selectors can be acconinodated through the

addition of a selector field to each register. A Structure Cell must then

have the capability to choose from the node contained in the Cell an i tem

whose selector matches a specified selector. These extensions allow the

—_-~~~~~ - -

- _ ,- ,-
~

- --
~

—--—
~

.

-58-

representation of fairly powerful structures , including the data-flow pro-

cedures presented in Section 3.4. A further extension to allow a node to

have arbitrary number of emanating arcs introduces a great deal of comp lex-

ity since it might be necessary to use several Cells to hold the identifiers

of all Cells which contain successors of the node . To avoid this complex-

ity , a node of a structure in the data-flow processor is of fixed size , and

each arc emanating from the node has a fixed size selector associated with

it.

3.3 Multi-Level Memory Structure

Each node of a data-flow procedure will fire at most once during exe-

cution of the procedure within the data-flow processor. A large number of

nodes of the procedure will not fire at all if any conditionals are present

in the program. Thus , it would be wasteful to assign an Instruction Cell to

each instruction of a procedure when the procedure is activated. For this

reason the instruction procesBing section of the data-flow processor incor-

porates a multi-level memory system such that only the active instructions

of a program occupy the Instruction Cells of the processor. Similarly , in

order to assure maximum use of the Structure Cells of the processor, the

structure processing section utilizes a multi-level memory to insure that

only active structure nodes occupy the Structure Cells. Ind ividua l instruc-

tions and structure nodes are retrieved from their respective auxiliary mem-

ories as they become required for computation. Instructions are returned to -
-

the auxiliary memory only when the Instruction Cells holding them are re-

quired for more active parts of the program. Structure nodes are sent to

the auxiliary memory upon creation through execution of an append, delete,

-59-

or construct instruction.

The structure of the instruction processing section of the data-flow

processor with the addition of a multi-level memory system is shown in Fig-

ure 3.11. Data-flow programs are located within the Packet Memory System ,

and each instruction of a program is sent to the Instruction Memory as a

retrieve packet when it is needed for program execution , designated by the

arrival of an operand of the instruction at some Instruction Cell. Instruc-

tions which occupy Instruction Cells needed for more active instructions are

returned to the Packe t Memory System as store packets. Each instruction so

discarded is later retrieved from the Packet Memory System upon arrival at

the Instruction Memory of another of its operands. The Memory Coc*nand Net-

work provides the correct sequencing of store and retrieve comnands trans-

mitted to the Packet Memory System.

The multi-level memory system of the structure processing section of

the processor (Figure 3.12) operates in a manner similar to tha t of the

multi-level memory in the instruction processing section. A Structure Cell

is transferred to the Structure Memory from the Packet Memory System when

required for execution of an instruction. A newly created structure node

is returned to the Packet Memory System after the execution of an append,

delete, or construct instruction. The identifiers of free nodes are main-

tained within the Packet Memory System and are requested by. the Structure

Operation Unit at the getid port. Upon receiving such a request, the Pack-

et Memory System returns the identifier of a free node to the Operation Unit

at i ts unid port . The new identifier is used for the creation of a new

structure node during execution of an instruction specified in a structure

operation packet.

--- _ ~~~~~~~~~~~~~~~~~~~~~~~

- Operation

Units

Decision
data control Units
packets packets

[~~ kO 1
Distribution Instruction Arbitration
Network Memory • Ne twork

~~~~~~~~~~~

retrieve \ Memory Command
packets Network

_________________ store
unid packets
packets

command getid

Packet Memory 
______________retrieve store (

- System

unid

Figure 3.11. Organization of the instruction processing
section without multi-level memory.



-61-

unid ___________________________________ command
packets I packet s

unid getid KPacket Memory

System
~ store retrieve

command

. 1

_

i’

store /~~~mory Command \ retrieve
packets 1 Ne twork \ packe ts

• . .

i l i l o c k O l

Arbitration Structure • Distribution
Network • Memory 

• 
Network

LIoCkmI

instruction
packets

operation - instruction
packets _________________________ 

packets

Structure I
Operation I-
Unit

unid getid

1~ I

Figure 3.12. Organization of the structure processing
section with multi-leve l memory. -

~

. ~~~~~~~~~~~~ - , - -_ _~~~~~— .-~~~~~~ ~~~~
—

~~~~ _ .~~~~
-- - -

. : :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
_u

~~~~

- 62-

The addition of a multi-level memory system to each section of the

processor does not affect the manner in which instructions are processed

within the machine. The operation of Instruction Cells and Structure Cells

proceeds in the manner described in Sections 3.1 and 3.2. The multi-level

memory structure merely assures that the individual Instruction Cells and

Structure Cells are more highly utilized during execution of a program.

3.3.1 Specification of the Memory Sys tem

The techniques of conveying information through a computer system in

fixed size packets and of breaking the system into a large number of iden-

tical units to exploit the achievable concurrency can also be app lied to the

structure of a computer system memory. Such a structure, known as a Packet

Memory System , has been proposed by Dennis [111.

The Packet Memory System shown in Figure 3.13 contains programs and data

represented as acyclic direc ted graphs in the manner described in Sections

2.2 and 2.3. The restriction to acyclic graphs permits the reference count

technique of memory management to be used , rather than a general garbage

collector. Each node of a graph has an associated reference count which is

equa l to the number of arcs terminating on the node plus the number of ref- - -

erences to the node existing in the processor . When a node becomes inacces-

sible due to the execution of some instruction of the prOgram, the reference I
count of the node will become 0.

The direc ted graphs are represented within the Packet M~~ory System

through a collection of items I , each of which is designated by an element

from a set of unique identifiers U. An item can be one of three types:

1. empty. The item contains the value a~j~ flowever , the item may or

~

_ - -.-. -

~

, - - . - -_-
~~~~~~~~~~~~~~~~~~~~~~ -_ .-~~~~~~~~~~~~~ - _ _



-~~~~~~~~~~-.-.-~~~-- - , - ~~~~~~~~~~- 

-63-

Processor

retrieve 1~~~~ I store unid
packets I packets packets

command
packets

command getid

Packet Memory
retrieve store ~—

System

rc unid

I _ _

Figure 3.13. Structure of a Packe t Memory System.



-. -~~

-64-

may not be accessible.

2. elementary value. u: 
~~~~ 

e, r3

where: u E U unique identifier of the i tem (unid)
e E E elementary value
r E I reference count

3. structure value . u0: {struc , U1, ..., u , r3

where : u0 , U
1

, . . ., u E U

r E l

The unique identifiers of inaccessible items are maintained in a collection

T of free unique identifiers.

The state of the Packet Memory System is represented by the pair [I-T ,

T). The initial state is [0, U)~1 all items of the Memory are empty, and

their identifiers are free.

The operation of the Packet Memory System is described by considering

the four types of transactions performed by the Memory System:

1. Store transaction.

A store packet fi , elem, e, 13 or
[i , struc, u1, , u , 13

presented at the store port of the Packe t Memory System requests

storage of the item with unid i:

(elem , e, 13 or

(struc, u1, ..., U , I)

However , the storage of the item is not effective until a store

command packet

(i , store)

is received by the Packe t Memory System at its command port, and

any prior retrieval requests have taken affect.

- 65-

2. Retrieval transaction.

An i tem wi th unid i is retrieved from the Packet Memory Sy stem by

means or a retrieve command packet

f i , retr~ or

[i , retr, j)

presented at the command port of the Memory. A retrieve packet

conveying the contents of the item identified by i is eventually

delivered at the retrieve port of the Memory. In the f irst case ,

the unid i controls delivery of the retrieve packet , in the second ,

the identifier j specifies the destination for the packet.

3. Reference count transaction.

The incrementing or decrementing of the reference count of an item

with unid I is accomplished by an

(i ,
~)

or
[i , ~~3

command packet delivered at the command port. If the new reference

count of the item identified by i is 0:

a. If the item is a structure

I: [struc, U1, . . . , u , o3
the command packets

(u1, ~i~)
, [U , ~~~~~~

appear at the reference coun t (rc) port.

b. Unid i is added to T.

4. Unique identifier generation.

A free unique identifier is requested by means of a command packet

- - .~~~~~ - V-- ..-- ,.~~~- —-— .— - -
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-66-

(m , getid)

presented at the g~~id port, where m designates the uni t requesting

the identifier. A unid i is removed from T and appears in a unid

packet

(m , i3

at the unid port of the Memory System . This transaction can only

occur i f T j & O .

The Packet Memory System may be organized as a set of smaller Packet

Memory System modules among which packets are distributed by a Distribution

Network and formed , into common streams by an Arbitration Network. Such an

organization permits the system to handle large numbers of storage and re-

trieval requests concurrently and is discussed further in [11].

To insure the proper maintanence of items in the Packet Memory System ,

the Structure Memory and Instruction Memory must send the appropriate dwn

and ~~ command packets to the Memory System of the structure processing

section as references to items are deleted and created during instruction

execution. A reference to an item is deleted by the execution in the Struc-

ture Memory of any instruction representing a structure actor. A reference

to an item is created In the Structure Memory by execution of a select in-

struction if the selected item is a structure value. A reference to an ite~i

can be created in the Instruction Memory through execution of a data distri-

bution instruction containing a unid as its operand. We must require that

upon the enabling of such an instruction , the Instruction Cell containing

the instruction provide a command packet of the form (unid 
~~) 

for each

destination in excess of one.



- - - -~~~~~~~ -~~~~- 
,
~~~

-67-

3.3.2 Organization of the Active Memories

The use of a multi-level memory system wi thin each section of the data-

flow processor requires that the Instruction Memory and Structure Memory act

as caches for the most active instructions and structure nodes. For appli-

cation of the cache principle to the architecture, the Instruction and Struc-

ture Cells of the processor are organized into groups of Cells, known as Cell

Blocks.

A packet destined for the Instruction Memory or Structure Memory can no

longer identify its destination by use of a Cell identifier. Each packe t in

the processor contains a node identifier which specifies a destination in the

processor. A node identifier specifying a destination in either the Structure

Memory or the Instruction Memory is the unique identifier of the node to which

the packet is destined. The identifier is divided into two parts , a major

address and a minor address, each containing a portion of the identifier. One

Cell Block of each section of the processor is associated with each possible

major address. However, the two memories may be of different size and hence

use different sizes of major address.

All instructions having the same major address are processed by the In-

struction Cells of the corresponding Instruction Cell Block. Thus, the Dis-

tribution and Control Networks use the major address to direct data packets ,

control packets , and retrieve packets to the appropriate Instruction Cell

Blocks. Similarly, all structure nodes with the same major address are pro-

cessed within the same Structure Cell Block, and the major address serves to

direct retrieve and instruction packets to the correct Cell Block. The packet

delivered to a Cell Block inc ludes the minor address , which serves an an

identifier for that packe t within the Cell Block.

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-68-

Store packets leaving a Cell Block have the form [m , x3, where m is

either a comp lete identifier or a minor address, and x is the contents of

a Cell. If m is a minor address , the major address of the Cell Block is

appended to the packet as it travels through the Arbitration Network. In

the same way , a minor address within a command packet leaving a Cell Block

is augmented by the major address of the Cell Block as the packet travels

through the Memory Command Ne twork.

3.3.3 Operation of a Structure Cell Block

Let us consider the organization of the Structure Cell Block shown in

Figure 3.14. Each Structure Cell of the Cell Block is able to hold any

structure node whose major address is that of the Cell Block. Since many

more structure nodes share a major address than there are Cells in a Cell

Block , the Cell Block includes an Association Table which has an entry

[m , i) for each Structure Cell; m is the minor address of the node to which

the Cell is assigned , and i is a Cell status indicator whose values have

significance as follows:

status value meaning

free the Cell is not assigned to any nod e

engaged the Cell has been engaged for the node having

minor address m by arrival of an instruction

packet

occupied the Cell is occupied by a node with minor ad-

dress m

The Stack element of a Cell Block holds an ordering of the Structure

Cells as cand idates for disp lacement of their contents by more active nodes.

~ 

—- -- -.- - -~~~~~~~~~~~~ --~~~~~~~~~~~~~



-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-69-

Idata,
~~ operation ,

instruction1~ ( l instruction
packets - Lpackets

— 
I Association [

~tructurej 
—

Table

Distribution 
__________ ~~

— Arbitration
Ne twork Structure Network

___________ 
~ Cell J-i

;:~~~ 

Stack 

~~ 

~~~~~tor:

Memory
Command
Network

Figure 3.14. Organization of a Structure Cell Block.

-,— -.---, -, ,

-70-

Only Cells in occupied status are candidates for displacement.

Whenever a node in the Structure Memory is created through execution

of a construct , .append , or delete instruction , a store packe t conveying

the contents of the node and a store command packe t are sent to the Packe t

Memory System. Hence, when an item in the Structure Memory is chosen for

preemption , it is not necessary to return it to the Packet Memory System .

Operation of a Structure Cell Block can be specified by giving two

procedures -- one initiated by arrival of an instruction packet from the

Instruction Memory , the Structure Operation Unit , or another Cell of the

Structure Memory , the other activated by arrival of a retrieve packet from

the Packet Memory System.

Procedure 1: L~rival of an instruction packet

I n 1
~~~ 

dest
L w

where n designates the minor address of the node to be operated

upon

op designates the operation to be performed : select or alter

des t provides a node identifier for the va lue resulting front

a select operation

w consists of the necessary operands for the performance

of the operation ~~
step 1. If the Association Table does not have an entry with minor address

n , go to step 3. If there is an entry with minor address n , let

p be the Cell corresponding to the entry; continue with step 2.

step 2. If ~~ specifies an alter operatic. ri and the final operand in w is

not 0, go to step 6; otherwise go to step 7.



.~ z-—- ‘T T T ~T~ :: ~~ T’ T’ .~~~~~~~~~~ ~~~
‘
~~~~~

‘

—71-

step 3. If the Association Table shows that no Structure Cell has status

free, go to step 4. Otherwise let p be a Cell, wi th status free;

go to step 5.

step 4. Use the Stack to choose a Cell p in occupied status for preemption.

step 5. If ~p, specifies an alter operation and the final operand in w is

0, set the status of Cell p to [n occupied]; go to step 7. Other-

wise continue with step 6.

step 6. Change the entry in the Association Table for Cell p to (n , engaged~ .

Transmit the appropriate retrieve command packet to the Packet Mem-

ory System via the Memory Command Network.

step 7. Transmit the contents of the instruction packet to the Cell p. If

the status of the Cell is engaged , await the arrival of a retrieve

packet; otherwise continue with step 8.

step 8. If Cell p is occupied , perform the structure operation specified

by ~~ on the contents of Cell p. Change the order of Cells in the

Stack to make Cell p the last candidate for displacement.

Procedure 2: Arrival of a retrieve packet [n , x3 with minor address n and

content x.

step 1. Let p be the Structure Cell with entry [it, engaged] in the Associa-

tion Table.

step 2. Transmit the contents of the retrieve packet to the Cell p.

step 3. Change the Association Table entry for Cell p from (n engage~)

to [n , occupied] .

step 4. Perform the operation specified by the instruction present at Cell

p upon the new contents of the Cell. Change the order of Cells in

the Stack to make Cell p the last candidate for displacement.

-72-

3.3.4 Operation of an Instruction Cell Block

The composition of an Instruction Cell Block in the Instruction Memory

is similar to that of a Structure Cell Block , consisting of a number of In-

struction Cells , an Assoc iation Table , and a Stack (Figure 3.15). The In-

struction Cell Block acts as a cache in a manner similar to the operation of

a Structure Cell Block. However, an instruction in an Instruction Cell Block

is not retained in a Cell after being sent to a Functional Unit; rather, the

Cell is freed for use by another instruction. Also, an item in an Instruc-

tion Cell Block is returned to the Packe t Memory System only if the Cell it

occupies is needed for a more active instruction.

The Association Table of an Instruction Cell Block must have greater

capability than one in a Structure Cell Block in order to keep track of in-

structions which have been returned to the Packet Memory System. The pos-

sible values of the status indicator in the Association Table of an Instruc-

tion Cell Block are :

free
engaged

occupied

absent

The first three status values have the same meaning as the corresponding

values in a Structure Cell Block. The status absent is used to indicate

that the associated instruction has been displaced from the Cell Block to

the Packet Memory System.

Since an Association Table in an Instruction Cell Block can contain an

undetermined number of items with status absent, the structure of the A~so-

ciation Table must be extended beyond that utilized in a Structure Cell

Block. The Association Table of an Instruction Cell Block is divided into two

r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘

~~~~~~~~~~~

— —

~~~

—

~~

-

~~~~~

-73-

Control
Network

fdectston,
I— ~operation

data ( control flinstruction
packets packets Ipackets

[Instruction
sfr Association (Cell 

____

Table

Distribution 
__________ 

Arbitration
i lnstructioni

Network [Cell k-li 
Network

• -
~~~~~~~ —

I Stack I
packe ts

Memory
Command
Networ k

Figure 3.15. Organization of an Instruction Cell Block.

_ _ _ _ _ _ _ _ J

-74-

sections (Figure 3.16). The first section corresponds to the Association

Table of a Structure Cell Block and contains an entry for each Instruction

Cell , giving its status . The second section holds one node of the absen t

list. This list contains the identifiers of all instructions with status

absent, those which were displaced from the Cell Block before receiving all

operands necessary for their enabling. Each entry in the absent list is

of the form Cm , i], where m is the minor address of the instruction and i

is the unid within the Packet Memory System to which it has been displaced.

If more absent items are associated with a Cell Block than can be ac-

cociunodated in the Association Table, the absent list is continued in the

Packe t Memory System. If the absent list of a given Association Table has

overflowed into the Packet Memory System, it may be necessary to retrieve

the nodes of the list from the Packet Memory System to discover if a given

instruction has status absent. The last entry in the Association Table of

an Instruction Cell Block is the unique identifier in the Packet Memory Sys-

tem of the first node of the portion of the absent list located in the Mem-

ory System. If the value of the last entry is j~ j , the absent list is com-

pletely contained in the Association Table.

The number of Instruction Cells in an Instruction Cell Block and the

size of the Association Table must be properly chosen in a data-flow pro-

cessor so tha t only a small number of instructions associated with a Cell

Block have status absent at any one time. This insures that the absent list

for a Cell Block is , in most cases, completely contained in the Association

Table of that Cell Block.

A data or control packet received by an Instruction Cell Block may not

be completely processed at one time if its destination instruction is not

r”~ ~~~~~~~~~~

‘

~~~

‘

~~~

‘—

~~~
.-

~~
----- - -

~~~ 
—..-

~~~~~~
.- —

~~~
-- - —. -.--

-75-

Association Table

status of Instruction Cells

I

first node of the absent list

~~

l . m nex

~~~~~~~~

l.’.

~~~~~~~~~

xt

Packet Memory Sys tem

Figure 3.16. Structure of the Association Table for
an Instruction Cell Block.

T~ T ~~~~~~~~~~~~~~~~
----_- -

~~~

.,

-76-

listed in the Association Table of the Cell Block and the absent list is

not completely contained in the Association Table. If such is the case , the

processing of the packet will be interrupted to retrieve nodes of the absent

list from the Packet Memory System , and a number of retrieve packets convey-

ing instructions may be processed before the requested node of the absent

list arrives.

The minor address of a retrieve packet conveying a node of the absent

list is 0, distinguishing the packet from retrieve packets conveying instruc-

tions.

Once again, operation of the Cell Block is specified by a number of pro-

cedures. Procedures 3 and 4 maintain and search the absent list and are used

when necessary by Procedures 1 and 2. Each of the first two procedures is

activated by the arrival of a packet at the Cell Block -- one by the arrival

of a data or.. control packet , and the other by arrival of a retrieve packet

from the Packe t Memory System.

Procedure 1: Arrival of a data or control packet [n , y) where n is a minor

address , and y is the packet content.

step 1. Does the f irst  section of the Association Table have an entry with

minor address n. If so , let p be the Instruction Cell corresponding

to the entry and go to step 5. Otherwise continue with step 2.

step 2. If the Association Table shows that no Instruction Cell has status

free, go to step 3. Otherwise let p be a Cell with status free.

Let the Association Table entry for p be [ - ,  free]; go to step 4.

step 3. Use the Stack to choose a Cell p in occupied status for preemption;

return Cell p to the Packet Memory System through execution of

Procedure 3; then continue with step 4.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-77-

step 4. Make an entry [n , engagedi for Cell p in the Association Table.

Determine whether the instruction with minor address n has status

absent through execution of Procedure 4.

step 5. Update the operand register of Cell p having minor address n ac-

cording to the content y of the data or control packet (the rules

for updating are given in Figure 3.6). If Cell p is occupied ,

the state change of the register must be consistent with the in-

struction code, or the program is invalid. If Cell p is engaged ,

the change must be consistent with the register status left by

preceeding packet arrivals.

step 6. If all operand registers of Cell p are in the trap state as defined

in Figure 3.6, set the Association Table entry for Cell p to (n ,

freel . Otherwise continue with step 7.

step 7. If Cell p is occupied:

a. If all three registers are enabled (according to the rules of

Figure 3.6), the Cell p is enabled; transmit an operation or

decision packet to the Arbitration Network and set the status

of Cell p to free.

b. If the Cell p is not enabled , change the order of Cell s in the

Stack to make Cell p the last candidate for displacement .

Procedure 2: Arrival of a retrieve packet [n , x3 with minor address n and

content x.

step 1. If the minor address n is 0, the packet is a node of the absent

list and has been requested and is processed by Procedure 4. If

the minor address is not 0, continue with step 2.

step 2. Let p be the Instruction Ce 1. with entry (n , engaged) in the Asso- 



r - . -_

~~~~

- _
~~

.-

~

_ _ _ _ _ _ _ _ _ __ _

-78-

ciation Table.

~~~~ 3. The status of the operand registers of Cell p must be consistent

with the content x of the retrieve packet, or the program is in-

valid. Update the contents of Cell p to incorporate the instruc-

tion and operand status information in the retrieve packet.

step 4. Change the Association Table entry for Cell p from [n , engaged)

to [n , occupied).

step 5. If all operand registers of Cell p are in the trap state as defined

in Figure 3.6, set the Association Table entry for Cell p to [n ,

free). Otherwise continue with step 6.

step 6. If all registers of Cell p are enabled , then Cell p is enabled:

transmit the Cell contents to the Arbitration Network and set the

status of the Cell to free.

Procedur 3: Return Cell p with status [n , occupied) to the Packet Memory

System.

step 1. Transmit a [0, getid~ command packet to the Packet Memory System to

obtain a free unid. The major address of the Cell Block is appended

to the minor address 0 of the command packet as it travels through

the Memory Command Network.

!~~ P 2. Process all retrieve packets received (Procedure 2) until a unid

packet [0, i) arrives at the Cell Block. Upon its arrival, trans-

mit to the Packet Memory System the store packet [i , x), where x

is the contents of Cell p. Transmit the store command packet

f i , store) to the Memory Command Network.

step. 3. Is the portion of the Association Table holding the absent entries

full? If not, go to step 5. Otherwise transmit another (0, g~tid)

a-



-79-

command packet to the Packet Memory System and continue to process

retrieve packets with Procedure 2.

step 4. Upon receipt of the unid packe t (0, j ) ,  transmit the content z of

the second section of the Association Table to the Packet Memory

System as a store packet (j, z). Send the store command packet

(j, storel to the Packet Memory System. Set the last entry in the

Association Table to j.

step 5. Add the entry [n , i) to the absent list in the Association Table.

Procedure 4: Search the absent list for an entry with minor address n.

step 1. Let ~ be the value of the last entry of the Association Table.

step 2. Does the node of the absent list located in the Association Table

contain an entry with minor address n? If not, go to step 3. Other-

wise let the entry with minor address nbe (n , in); go to step 6.

step 3. Let a be the value of the last entry of the Association Table. If

a is nil , go to step 5. Otherwise transmit the retrieve command

packet (a, retr, 0) to the Packet Memory System through the Memory

Command Network and continue to process retrieve packets using

Procedure 2.

step 4. Upon receipt of the requested retrieve packet, set the last entry

of the Association Table to the value designated by the selector

next in the retrieve packet. Let z be the content of the absent

list located in the Association Table; transait the store packet

[a, z) and the store command packet [cx, stor~~ to the Packet Memory

System through the Arbitration Network and the Memory Command Net-

work. Transmit the content of the retrieve packet to the absent

list in the Association Table; go to step 2.



.

~~~~~~~~~~~~~~~~~~~~~~~~~

--._-—

~~~~~~~~~~

-

~~~

- -
--

-80-

step 5. Set the last entry of the Association Table to ~3 ; transmit the

command packet (n , retr) to the Packet Memory System via the Mem-

ory Command Network; go to step 8.

step 6. Transmit the command packet (in , retr , n) to the Packet ~~rnory Sys-

tem through the Memory Command Network; transmit the command packe t

(in , £!~~3 to the Packet Memory System.

step 7. Delete the entry fn , in) from the . absent items in the Association

Table. If no absent items are left in the Association Table and

~;# ~j J , send the command packets (~ , retr , 0) and [
~

,
~~

) to the

Memory Command Network, and upon receipt of the retrieve packet ,

transmit it to the absent list in the Association Table. Other-

wise set the last entry of the Association Table to ~~~.

step 8. Return to Procedure 1.

3.4 Procedure Imp lementation

All programs executed within the data-flow processor are data-flow pro-

cedures. Although this restriction to programs represented as acyclic di-

rec ted graphs rules out the performance of an iterative computation , we shall

see in Chapter 4 that this is not a serious restriction , and that iterative

computation can be efficiently expressed and performed through recursive

procedure activation.

The procedures of the data-flow language are represented as acyclic

directed graphs in the manner described in Section 2.3. A procedure can

thus be manipulated as a structure within the structure processing section

r~f th e processor through use of the structure operations construct,
~~~~~~

~~~~~~~~~~~~~~~~~ and select defined in Section 2.2. A compiler can construct a data-

- . — - ---~~~-- — —- — --- . — — -—- —S- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——.~~~~-
-, ‘ - . - . -- - - - -

~~~~~~~~



-81-

f low program as a structure within the Structure Memory, and modified ver-

sions of a program can be readily created .

Each instruction of a data-flow procedure is represented as one node

in the program structure. An operand in an instruction , consisting of a

gating code and a receiver, occupies one register in an Instruction Cell ,

and its components are located in the same register of a Structure Cell

containing the instruction . A destination identifier occupies a complete

register in a Structure Cell , whereas it occupies only a portion of a reg-

ister in an Instruction Cell. This is necessary to allow a procedure to

be processed as a structure in the Structure Memory, yet occupy the minimum

amount of space in the Instruction Memory. The changes in format of an in-

struction occur as it is transferred into and out of an Instruction Cell ,

hence the format of the instruction is that of the structured representation

at aU times when it is not resident in an Instruction Cell.

The formation of programs within the structure processing section of

the data-flow processor and their subsequent execution in the instruction

processing section requires that the Packet Memory Systems of the two sec-

dons be combined for efficient operation. The organization of the complete

data-flow processor with combined Packet Memories is shown in Figure 3.17.

Although we could eliminate the Instruction Memory and extend the Ca-

pability and complexity of the Structure Memory to allow it to execute a

data-flow procedure by means of the structure operations described for in-

struction execution in Section 2.3, there are a number of reasons for con-

tinuing to process instructions in a sep.rate Instruction Memory. First ,

each instruction is only used once and then discarded from the Instruction

Memory , whereas structure nodes are retained within the Structure Memory

“— — -

~

-— -—- - , -.- “-- ,- . -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-82-

____________________________________________ Operation ______

LUnits

I Decisioncontrol -II Unitspacke ts
data decision ...—..

~~

packets / Control \ packets

/ Network
operation

a .. packets ~~~~~~~~~~~~~

______ 
Distribution >1 Instruction Arbitration 

________

Network . Memory Network

retrieve . . . instruction

~ 
packets 

\Memory Command/ packets

data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ operation A
packets packets ‘j , ~

J, . packets ~~~~—

unid packets iai cocnmand l getidl store packets
- Ufl storel (

— retrievel Memory 
~etid2unid2 ~~~~~~~~ ________________

________________ retrieve2
~ ~~~~~ comniand2store packets .1% retrieve packets

command I
unid packets/ Memory~~\ command 

____

— packets /Command Network\ packets

Arbitration : Structure - Distribution
Network Memory • Network

instruction packets
operation instruction
packets packets

) Structure

~ unid getid 
~

Opera tion Unit

Figure 3.17. Organization of the data-flow processor.

.. —.-————— — ——— ———— - ---- ~~~~~~~ ~~~~~~~ 

-

— .--
~

— , — --  .———-— —



—V--. -.- . - . — .-.—- .~ — —.- ~~~~~~~~~~~~~~~~~

-83-

after being used. Hence the algorithm to handle the Association Table

and Stack in an Instruction Cell Block d i f fe rs  greatly from the one used

in a Structure Cell Block. Second , the operations performed by an Instruc-

tion Cell are very dissimilar to those performed by a Structure Cell , and

the complexity of a Cell designed to handle both would be excessive. Third ,

•the use of specialized Instruction Cells allows the function of gates to be

incorporated into the instructions associated with operators and deciders ,

rather than using separate instructions for the representation of gate ac-

tors. Last, the use of separate memories reduces somewhat the size of each

Arbitration and Distribution Network , increasing the utilization of each

memory [24].

Each node of a program structure representing a data-flow procedure is

identified by its unique identifier within the Packet Memory System of the

processor. The contents of the nodes designated by destination selectors in

an instruction are the unique identifiers of the destination instructions.

A procedure in the data-flow processor is identified by the unid of its

first instruction.

There are a number of possible approaches to the execution of a proce-

dure in the data-flow processor. The “copy rule” for procedure activation

could be strictly followed , creat ing a unique copy of the procedure for each

activation. Or, a unique activation record could be formed , containing the

data associated with an activation. Both of these approaches have the same

major problems. The copying of an arbitrary program structure or activation

record is not easily accomplished within the processor due to the presence

of shared nodes. Also , using a separate structure for each activation is

wasteful ; such a structure would not be fully utilized since the number of 



-84-

unexecuted instruc tions in a program increases at a rapid rate with the

number of conditionals in the program, and the version of a program stored

in the Packet Memory System is only modified when instructions of the pro-

gram are displaced from the Instruction Memory. In a properly structured

processor, the number of instructions returned to the Packet Memory System

should be small.

The approach presented in this thesis , while not as elegant as a strict

implementation of the copy rule, is more efficient in that a new copy of an

instruction is created only when necessary to avoid conflict. One copy of

a procedure is maintained in the Packet. Memory System, and each activation

of the procedure retrieves its instructions from that copy. A procedure

activation is uniquely identified by the unid of its argument structure. The

node identifier of an instruction sent to the Instruction Memory is formed

by a concatenation of the argument structure identifier and the instruction

identifier. The argument structure identifier must be associated with all

instruction identifiers during execution of the procedure.

The only possibility of conflict between separate activations of a pro-

cedure arises when a partially enabled instruction is returned to the Packet

Memory System from an Instruction Cell Block. Conflict is avoided by assign-

ing a new unid to an instruction which is returned to the Packet Memory System

and changing its status in the Cell Block to absent, as described in Section

3.3.4. We are assured that in a correct program an instruction with status

absent will eventually receive another operand and be recalled to the Cell

Block from which it was displaced.

The Structure Operation Unit of the processor is responsible for the

processing of apply and return instructions. An apply instruction can be

transmitted to the Structure Operation Unit from either the Instruction Mem-

L.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ . . .~~- -—-- -~~~~~~~ - . - -.- ~~- - -- _



-85-

ory or from outside the processor. The instruction is of the following format

r apply dest

I P
L a

and specifies that the procedure with root node P is to be applied to the

structure with root node a. The Structure Operation Unit first creates an

argument structure with components a and the destination dest. This argu-

ment structure is then presented to a new activation of P.

Upon reaching a return instruction in the execution of a procedure ,

the Structure Operation Unit is sent an operation packet of the form

return -

des t
I

where dest is the destination specified in the apply instruction which

activated the procedure , and y is the unid of the result structure. The

Structure Operation Unit merely forms a data packet of the destination and

the result and presents the packet to the Distribution Network associated

with the Instruction Memory:

fdest

The process of procedure activation can be examined more closely by

considering the activation of the procedure P shown in Figure 2.11. Upon

receipt by the Structure Operation Unit of an apply instruction

I ~ppiy
I P

a
the following sequence occurs:

I. An argument structure 8 is created with destination dest and

argument a.

~~4g~~ ~~~~~~~~~~~ - — - ——— . --— .~~..——
~~~~

-
~~~~~~~~~~



-86-

2. The data packet

is sent to the Instruction Memory. ~ is an identif ier formed by

the concatenation of the unique identifiers 6 and P. A command

packet (1’, retr, ~
) is sent from the Instruction Memory to the

S 

Packet Memory System to retrieve the instruction P and send it

to destination ~~~ .

Since the initial instruction of P is merely a distribution instruction

which sends the input structure to the select instructions, the Instruction

Cell assigned to ~ is enabled as soon as the retrieve packet conveying P

arrives at the Cell. Upon its becoming enabled:

1. An operation packet of the following format is sent to the Arbitra-

tion Network:

~ 
dist desti

~ 
dest2 -

a

2. The status of the Instruction Cell holding P is set to free.

The execution of the procedure then proceeds in accordance with the rules

presented previously.

S

-a. ~~~~~~ -~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-87-

Chapter 4

RECURSIVE vs. ITERATIVE REPRESENTA~TION

To illustrate the reason for restricting programs within the data-flow

processor to those represented as acyclic directed graphs , this chapter ex-

amines the performance tradeoff between iterative and recursive computation

within the data-flow architecture. The restriction is necessitated by the

threat of deadlock which immediately arises in a cyclic computation such as

iteration. In this chapter we consider the impact on processor performance

of the necessary modifications to an iterative program to assure freedom

from deadlock. The performance of iterative and recursive program struc-

tures within the data-flow processor is then examined to demonstrate the

greater efficiency of the acyclic recursive version.

4.1 The Nature of the Deadlock Problem

A close examination of the architectural basis of the data-flow pro-

cessor immediately brings one face-to-face with one of the classic problems

of parallel computation, that of deadlock. This dead lock problem manifests

itself in a manner which affects the fundamental operation of the processor.

Theref ore, modifications to the architecture are necessary in order to pre-

vent a dead lock condition from arising in a cyclic or stream-oriented corn-

putation.

The nature of the deadlock prob lem and i ts  solution for stream-oriented

computation is thoroughly discussed in [23]. In this section we consider

the implications of this problem for i terative program structures and pre-

sent a solution to the problem. In Section 4.3 we examine the impact of this

_ _ _ _ _ _ _ _ _ _ _ _ _ __



_______________________________

-88-

solution upon the performance of an iterative data-flow program.

The f ir ing rule for an operator or link of a data-flow program states

that the operator or link cannot become enabled unless there is no token

on any output arc of that operator or link. However, the architecture of

the processor described in Chapter 3 provides no mechanism by which an in-

struction can check that the registers specified in its destination address

fields are empty. Consequently, the firing rule can be violated.

The highly parallel and cyclic nature of an iterative computation can

allow several cycles of the iteration to be simultaneously active. Due to

the fac t that the firing rule is not observed , tokens from different cycles

can then interact within the program. In illustration of how a deadlock

condition arises from this interaction , donsider the iterative data-flow

program of Figure 2.3 which represents the following computation:

input x , y
n : 0
while ~~-y do

x := x-y
n

end
output x , n

Upon completion of the program, n is equa l to the origina l value of x divided

by y,  and x is equa l to the remainder. A detailed description of the opera-

tion of this program is presented in Section 2.1.

In the program of Figure 2.3 it is possible for the decider to fire a

significant time before the subtraction operator. Once the decider has fired ,

if the result of the decision is true, a token conveying the value y is re-

turned to the input of the program through the left-most merge actor. If the

subtraction operator has not fired by this time , then two tokens carrying the

value y can be simultaneously present on an input arc of the operator. Within

. .--, .

~ 

. .



-89-

the processor , a data packe t conveying the new value of y destined for the

subtraction operator is stored in a buffer unit of the Distribution Network

since the destination register is occupied. The stored packet blocks access

to succeeding switch units , and a deadlock condition arises if the data pack-

et conveying the value x necessary for the enabling of the subtraction op-

erator is blocked by this stored packet.

Note that such blocking can also occur within the Distribution Network

of the structure processing section of the machine. If a number of opera-

tion packets are destined for the same Structure Cell , they may temporarily

block other packets in the Distribution Network. However , no deadlock con-

dition can arise since a blocking packet will eventually move on and cannot

block packets which are needed by the Cell to which it is destined.

The solution to the deadlock problem in the Instruction Memory requires

the addition of a form of feedback between operators of a program in order

to force the program to observe the firing rule. In the case of the itera-

tive data-flow program of Figure 2.3, the feedback assures that all opera-

tions of one cycle of the iteration are concluded before the next cycle is

initiated . The feedback is accomplished by placing a decider with the nil

predicate on the output link of each gate actor of the program. Each of

these deciders , upon receiving a data value indicating that the gate has

f ired , produces a control-valued control token. All control-valued tokens

so produced are ANDed, and the resulting token is used to reenable the pro-

gram input. The dead lock-free version of the iterative data-flow program

of Figure 2.3 is shown in Figure 4.1.

The merge actors can no longer be ignored in the imp lementation of the

data-flow program since they are now utilized to control the initiation of 



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- .

~~~~~~~~~~ 

-

~~

- - -—-

~ ~~control

(+i)

nil nil nil I/ nil ni l
x n

A A
~

c
’

~A> —01 A

Figure 4.1. Deadlock-free version of the iterative data-flow
program of Figure 2.3.

- —-~~~~- -_~~~~~
rn

~~~~~~_ . A



r

-91-

each cycle of the iteration. Each merge actor has a sate on its output.

This gate allows the merge actor to become enabled only after receiving a

data value and a control-valued control token. Thus, a token indicating

that the previous cycle of the iteration has been completed must be re-

ceived before initiation of a new cycle.

The cost of implementing this deadlock solution Is high, both in terms

of space and time. The instruction register of an Instruction Cell must be

augpiented to allow the receipt (when necessary) of a control-valued token

for the enabling of that register [23]. A number of Boolean operators must

be added to the program to perform the ANDing of the control-valued packets ,

and a merge instruction must be implemented in the architecture.

4.2 Performance of the Architecture

In this section we describe an elementary analysis of the performance

of a data-flow processor. The performance of the processor is examined

through consideration of the flow of packets within the networks of the pro-

cessor. This section is intended to give us a framework within which to

intelligently compare the performance of cyclic and acyclic representations

of a computation and does not touch upon peripheral issues such as the proper

structuring of the networks of the processor. A more detailed analysis of

the performance of a data-flow architecture and rules for the structuring

of the various networks are presented in [24].

The performance of a data-flow processor can be measured through con—

sideration of the minimum elapsed time between the enabling of an instruc-

tion and the arrival of its results at the desired destinations. If the num-

ber of Functiona l Units is chosen and the networks of the processor are struc-



r - .-.-

~ 

-
~

- — . —._ . -- -

~~ 

- ___w — -.-- -- -_ --‘.-- , -- .. -- —~~~~~ ~~~~~~~~~—r -- - -r

-92-

tured so that all instructions pass through the Arbitration Network in this

t ime , then we are assured of maintaining a constant supply of instructions

for the Functional Units. We have also discovered the processing capability

of the machine.

The cycle time of an instruction within the processor is the minimum

elapsed time between the enabling of the instruction and the arrival of

the results of the operation specified by the instruction at their destin-

ation Cells. The cycle time for a given instruction is affected by con-

flict in the networks. For a simple instruction representing an operator

of a data-flow program , the cycle time is equal to the passage time through

the Arbitration Network, the Distribution Network, and an appropriate Op-

eration Unit. The delay in the Operation Unit is fixed for that Operation

Unit. However, the network delays can vary greatly.

The cycle time f or an instruction is found by considering the passage

of the operation packet containing that instruction thrcugb the Arbitration

Network and the passage of the resulting data packets through the Distribu-

tion Network , assuming no conflict arises in either network. The minimum

delay through a network , the Arbitration Network for example, is given by

the summation over the number of stages in the network of the time required

to transfer a packet through each stage:

minimum delay = 
~ 

(no. bits serial + l)(bit transfer time)
stages

The transfer time for a stage is equa l to the number of bits passing through

the stage in serial plus one for a signa l to indicate that the packe t is

ready to be transferred multiplied by the time necessary to transfer a bit.

A similar equation applies to delay in the Distribution Ne twork .



- - - - , .~~~~~~ —---~~~~-- - _------—-- ----.- —- — --5-- —---- - — -‘----5—----- - - —--—5--.-— - - 5—.-- -- 
—---— .- .._ -5 .-—-- ,- ——

-93-

Let us examine the delay within a specific Arbitrat ion Network (Figure

4.2). This network has three stages and seven arbitration units. Packets

travel through stage 0 in four-bit  serial forma t and are gradually converted

to a more parallel format, passing through stage I in two-bit serial and

stage 2 in one-bit serial format. As noted previously , the passage time

for a packe t through each stage is equa l to the number of serial bits plus

one times the bit transfer time t. For this structure , the transfer t imes

are 5t , 3t , and 2t , respectively. The minimum delay through the network is

equal to the summation of the stage delays , or 10 t.

In order to find the time necessary to process all  instructions con-

tained in che Instruction Memory of the processor , T, we must consider the

maximum delay a packet can encounter in passing through the Arbitration

Network. Such a maximum delay can only occur in a network which has a

packe t present at every node in a machine in which every Instruction Cell

Block contains an enabled instruction , p lacing a packet on each input to

the Arbitration Network (Figure 4.3). The maximum delay which can be en-

countered by a packet , say the triangular one , arises only when all other

packets in the network and at the inputs of the ne twork pass through the

output of the network before the triangular one does. In order for this to

happen , not only must the triangular packet lose every conflict , but every

packet on the path it will  follow to the output must also lose every con-

f l i c t .  Thus , finding the maximum delay involves examining how many packets

flow through each stage before the triangular one .

For this network the worst case packet will be the 14th through stage

2 , the 6th through stage 1, and the 2nd through stage 0. Multip lying the

number of packets passing through each stage by the delay in that stage ,



A0 AO52 536 C

I$$CLA$SZFZVD NIjS/TN_1O
I •0A~~ 2 5~8

U
‘ : END

- D A T E

• 5-78
DDC

I

/



1.0 ~~~

I I’ ~~ ~LP.

IIIII~111(1’ .25 IIllI~. HIII~
MICROCOPY RESOL UTION TEST CFi~~T

NA A~NAi BV A E  AL Of ~A NL P~ L~



—- _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~

. 1

-94-.

Stage 0 1 2
Number

Serial 4 2 1.
Bits

Passage 5t 3t 2t
Time

arb

arb

J ar9__~

arb

arb

arb

Figure 4.2. Structur e of an elementary Arbitration Network.

I -95-

.1 arb

arb

J
arb

arb

arb

arb

arb

Figure 4.3. Example of a full Arbitration Network.

-96-

we find that:

T = maximum delay 2(5t) + 6(3t) + 14(2t)

T — 56t

Thus, if all instructions of the processor are enabled, they can pass through

this Arbitration Network in a maxim*~ time of 56t.

However, if we assume that the network size is such that the cycle time

ic slightly less than T, then a number of destination Cells receive their

results and become enabled as the final Cells pass through the Arbitration

Network, and the processing rate of the machine can be measured in terms

of the output rate of the Arbitration Network (assuming the Distribution

and Control Networks have been structured to distribute all results as fast

as they are produced). In such a case, the rate of packet transfer to each

Operation Unit is l/(2t), and the maximum processing rate of the machine

is E1I(2t)](number of Operation Units).

Furthermore , if each arbitration unit has enough inputs to allow a packet

to travel through the previous stage in a time less than that required to ser-

vice all busy inputs, the passage of tie triangular packet through the first

stages of the Arbitration Network will occur siim.iltaneoualy with the trans-

mission of other packets at the output. The time T for the transmission of

all packets in the network to the Operation Units is then 14(2t) — 28t.

4.3 Example: An Iterative Computation

The program modifications described in Section 4.1, necessary to assure

freedom from deadlock in an iterative computation, cause a si~ tificant deg-

radation in the performance of such a computation. Applying the analysis

techniques developed in the previous section to a specific processor allows

-
~~~~~~~-—-~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~



-97-

us to examine the actual nature of the performance degradation.
II

In illustration of the performance of a data-flow processor executing

a cyclic computation, consider a 128 Instruction Cell Block machine in

which an operation packet exits a Cell Block in 16-bit parallel, 4-bit ser-

ial format. For a balanced processor structure, one in which the number

of Functional Units is matched to the processing rate, the processing time

T must be equal to the activation time, that is, the minimum time between

successive activations of an instruction within the processor. Thus, in

order to determine the performance of the processor, we must consider the

structure of the networks and determine the value of the activation time.

The modifications to an iterative program necessary to assure freedom

from deadlock can cause a significant delay to exist between successive

activations of a given insttuction. This delay is due to the fact that

each Instruction Cell which contains a gated operand must, as it sends

out an operation packet, return control packets to preceding actors in

the program which supply values to the gated register(s). Upon receipt of

these control values, the preceding operators are reenabled if their oper-

ands are present. If D is the cycle time for an operation packet, and d is

the cycle time for a control packet; that is, the delay through the Arbi-

tration Network and the Control Network, then the minimum activation time

of an Instruction Cell is Did.

In order to obtain a small activation time, and hence a greater pro-

cessing capability , the networks must be structured with as few stages as

possible. However, a minimum of three stages is required within the net-

works of this processor to perform the serial-to-parallel conversions and

still maintain the necessary throughput from stage to stage. The minimum



r - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-98-

delay analysis of the three stage network structure of the 128 Cell Block

processor is identical to that described in the previous section; the mm-

imum delay in the Arbitration Network is equal to lOt.

Assuming the delay in the Distribution Network is the same as that in

the Arbitration Network, and the minimum delay in the Control Network is ap-

proximately one-half the delay in the Arbitration Network or Distribution

Network, the resulting values for the cycle times and activation time AT

are:

D~~~20t

d 1St

AT~~~D+d=35t

If t 150 nanoseconds, allowing 15 TTL gate delays to accomp lish one

ready/acknowledge cycle, the resulting activation time is:

AT — 35(150 nsec.)

— 5.25 ~secouds

And the maximum processing capability of the architecture containing cyclic

program structures is:

128 instructionsprocessing rate — 5.25 ~iseconds

— 24 MIPS (million instructions per second)

4.4 Recursive Representation

The set of problems which can be expressed iteratively is a subset of

those suited to recursive representation. Therefore, any iterative compu-

tation can be expressed in the data-flow language as a procedure and can

be performed through recursive procedure activation.

Naturally, if the objective of a program is to perform the same opera-



- ______________________________________________

-99-

tion on a large number of items, then in a parallel computer system, a forall

construct can be much more efficiently utilized than an iterative program.

However, if each cycle of an iteration depends upon values generated in pre-

vious cycles, a recursive representation can be utilized to avoid the cyclic

structure and often seems to provide a more readily understandable expression

of the computation.

The acyclic nature of a procedure in the data-flow language assures that

even though the firing rule may not be observed , two tokens cannot simultan-

eously exist on one arc of a properly structured program graph. Hence, no

deadlock condition can arise within an activation of a procedure or between

concurrent or recursive activations of the procedure, and the procedure can

be more efficiently executed in the data-flow architecture than a cyclic

representation of the same computation.

A recursive description of the iterative computation of Figure 2.3

Is stated as follows:

P: proc (l~~e~ P) (x , y, n)
j~ ~~~y then P(x-y,  y ,  ni-i)

else (x, n)

in P(x, y, 0)

A data-flow representation for P is given in Figure 4.4. The argument struc-

ture for the procedure contains three elements. In addition to the argument

and the destination , it holds the unid of P (label P) to allow the procedure

to be reapplied if necessary. The number of gates is reduced in the recursive

version reducing the number of control distribution Cells which are needed

in the program. However, a number of structure operations have been added ,

probably balancing the savings involved in eliminating the gates. The app~y

actor in the program passes as a destination the destination it received , and ,



I

-100-

select arg•x select arg.y select arg.n select dest select proc

/ construct

W I !  ~1~x n f arg dest proc
construct construct

return apply

Figur e 4.4. Recursive version of the data-flow
program of Figure 2.3.

‘4



I
—101—

after the firing of the apply actor, the activation is terminated. When the

result of the decision is finally false and a return instruction is executed ,

the destination to which the values x and n are sent is the destination spec-

if ied by the original calling procedure.

Since no feedback is necessary in the recursive representation, the ac-

tivation time for the 128 Cell Block processor executing a data-flow proce—

dure is equal to the cycle time D, and the resulting performance of the pro-

cessor is:

128 instructionsmaximum processing rate =
3 ~sec.

— 42 MIPS

Not only does a recursive program representation occupy less space in the

data-flow processor than a cyclic program structure, but a processor exe-

cuting programs represented as acyclic directed graphs can realize almost

twice the performance achievable through the execution of cyclic program

structures.

~~~~
-
~~~~~~~~~~ - . . -—~~~~~

.—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ..- - - -—. - - -~~~~~~~~ -~~ - - -



—~ - — —— 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
~~~~~

• ‘,- _-‘- —~—= -~-z-~-.-- 
- - — _ —

-102-

Chapter 5

TOPICS FOR FURTHER RESEARCH
•1

In this thesis the data-flow architecture has been presented as a so-

lution to many of the problems of highly parallel computer systems. The use

of interconnection networks between sections of the processor provides an

attractive approach to the comnunication of information between units corn-

prising a large system and allows an interesting method of analyzing system

performance through the examination of information f low within the networks.

Due to the radical nature of the architecture presented , undoubtably

more questions have been raised by this thesis than have been answered.

These questions range from mild quibblings over the use of certain methods

of representat ion or design choicea to deep semantic and philosophical is-

sues. In this chapter we will point out some of the unanswered questions

and indIcate some of the issues involved.

The data-flow procedure language, while appearing to be a semantically

elegant method of expressing parallelism, is wide open to further study and

extension . The language ne~ds to be expanded by the addition of such actors

as a forall construct to enable it to better express concurrent processing

of the elements of a structure. However, the best choice of semantics for

such constructs is yet to be clearly established. Also, the language does

not currently contain the capability to express nondeterminate computation

a very impor tant featur e for some applications.

Further investigation of the use of the data-flow language is also nec-

essary. Upon initial examination, the representation of such algorithms as

the fast Fourier transform in data-flow form appears very attractive (25].



r

-103-

However, data-flow representations for other computations need to be devel-

oped, examined, and contrasted with more conventional programs.

The data-flow language is designed to serve as the base language of the

data-flow processor. It is not regarded as an acceptable user language. The

development of a user language which can be readily translated into a data-

flow representation is currently under study [35]. The translation of pro-

grams expressed in a language such as Algol 60 to a data-flow representation

is also currently being investigated [4]. Much more work needs to be done

to identify concurrency in problems and to take advantage of that concurrency

through use of the data-flow representation.

An analysis of data-flow programs is necessary for a comp lete under-

standing of the operation of the data-flow processor. In order to determine

the number of instructions which must be maintained in the Packet Memory

System to provide the necessary number of active instructions to allow the

Instruction Memory to operate at its highest rate, one must understand the

parallelism achievable in a given data-flow program and the number of active

instructions a program can be expected to supply at any point in time.

An important issue whtch was discussed briefly in this thesis is the

tradeoff between cyclic and acyclic representations of a computation. Due

to the highly parallel nature of the data-flow architecture, a recursive

version of a computation is performed more efficiently than an iterative

version. It can also be argued that the recursive version is semantically

much cleaner and in many cases, much easier to understand. Further research

is necessary to fully understand the use of concurrent and recursive procedure

activation for the execution of cyclic and stream-oriented computation.

_ _ _ _ _



-104-

The data-flow representation and the architecture of the data-flow pro-

cessor which have been presented in this thesis are very attractive as -a

means of describing parallel computation and structuring a parallel compu-

ter system. The projected performance of the data-flow processor is also

very attractive, and hence, we are hopeful that these concepts will prove

very useful in the construction of future computer systems.

.1 
- -I-

-- —  — -—— -.—----- ~~~ --- — —.- ~~~~~~~~~~ — ---.&~~~~-~~~~~ — .---- ~~—-- — — — —



—~~~--~~~~~-- —~—-~~~~~-“-- - - ----I

-105-

BIBLIOGRAPHY

I. Adams, D. A. A Com~,utation Model With Data Flow SeguenLing. Technical
Report CS 117, Computer Science Department , School of Humanities and
Sciences , Stanford University, Stanford , Calif., December 1968.

• 2. Amdahl, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. AFIPS Conference Proceedings, 30,
AFIPS Press, Montval.e, N. .1., 1967 , 483-485.

3. Amerasinghe , S. N. The Handling of Procedure Variables in a Base lan-
guage. S.M. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge , Mass., September 1972.

4. Amerasinghe, S. N. PhD. Thesis in preparation, Department of Electrical
Engineering and Computer Science, M.I.T., Cambridge, Mass.

5. Anderson, D. N., F. J. Sparacio, and R. M. Tomasulo. The IBM System/360
model 91: Machine philosophy and instruction handling. j

~~ 
Journal of

Research and Development, 11, 1 (January 1967), 8-24.

6. Bahrs, A. Operation patterns (An extensible model of an extensible lan-
guage). $y~iposium on Theoretical Programming, Novosibirsk , USSR, August
1972 (preprln t).

7. Barnes, G. H., R. M. Brown, H. Kato, D. J. Kuck, D. C. Slotnick, and
R. A. Stokes. The Illiac IV computer. IEEE Transactions on Computers,
C—li, 8 (August 1968), 746-757.

8. Comtre Corporation. Mu1tip~ocessors and Parallel Processing (P. Enslow,
Ed.), John Wiley and Sons , New York , N. Y., 1974, 31.

9. Dennis, J. B. First version of a data flow procedure language. Lecture
Notes in Computer Science, 19 (C. Coos and 3. Hartmanis, Eds.), Springer-
Verlag, New York , N. Y., 1974, 362-376.

10. Dennis, 3. B. On the design and specification of a common base language.
Proceedings of the Symposium on Computers and Automata, Polytechnic Press
of the Polytechnic Institute of Brooklyn, 1971, 47-74.

11. Dennis, 3. B. Packet memory system architecture. Paper submitted for
presentation at the 1975 Sagamore Computer Conference on Parallel Pro-
cess ing, August 1975.

12. Dennis, 3. B., and J. B. Fosseen. Introduction to Data Flow Schemas.
November 1973 (submitted for publication).

13. Dennis, 3. B., and D. P. Misunas. A computer architecture for highly
parallel signal processing. Proceedings of the ACM 1974 National Con-
ference, ACM, New York, November 1974, 402-409.



..-.-. --~~--———-—--.-——-,• • - ..--- ~~—-.--— •—-

-106-

14. Dennia , J. B., and D. P. Misunas. A preliminary architecture for a ba-
sic data-flow processor. Proceedings of the Second Annual Symposium on

• Computer Architecture, IEEE, New York , January 1975, 126-132.

15. Ellis, D. 3. Semantic! ~~ Data Structurea ~~~ References. Report TR-
134, Project MAC I M.I.T., Cambridge , Mass., August 1974.

16. Flynn, M. S., A. Podvin, and K. Shimizu. A multiple instruction stream
processor with shared resources. Parallel Processor Systems, Technolo-
gies, and Applications (L. C. Hobbs, et. al., Eds.), Spartan Books, New
York, 1970, 251-286.

17. Henderson, D. A., Jr. fl~ Binding Model: A Semantic Base for Modular
Programming. Report TR-145, Projec t MAC , M.I.T., Cambridge , Mass., Feb-
ruary 1975.

18. Hentz, R. C., and D. P. Tate. Control Data Star-lOO processor design.
Proceedings of the Sixth Annual IEEE Computer Society Internationa l
Conference, IEEE, New York, 1972 , 1-4.

19. Karp, R. M., and R. E. Miller. Properties of a model for parallel com-
putations: determinacy, termination, queing. SLAM Journal ~~ AppliedMathematics, 14, (November 1966), 1390-1411.

20. Kosinaki, P. R. A data flow language for operating systems programming.
Proceedings of ACM SIGPLAN-SICOPS Interface Meeting, SIGPLAN Notices, 8,
9 (September 1973), 89-94.

21. McCarthy, J. Recursive functions of symbolic expressions and their com-
putation by machine. Communications ~~ ~~~~~~~~ ~~~ ~~., 4 (April 1960) , 184-
195.

22. Miller , R. E., and J. Cocke. Configurable computers: A new class of
general purpose machines. Syu~ osium on Theoretical Programming, Novo-sibirsk , USSR, August 1972 (preprint).

23. Misunas, D. P. Deadlock avoidance in a data-flow architecture. Proceed-
ings of the Milwaukee Symposium on Automatic Computation and Control,
IEEE, New York, April 1975, 337-343.

24. Misunas, D. P. Performance analysis of a data-flow computer architecture.
Paper submitted for presentation at the 1975 Sagainore Computer Conference
on Parallel Processing, August 1975.

25. Misunas, D. P. Performance of ~~ Elementary Data-Flow Processor. Com-
putation Structures Group Memo 115, Project MAC, M.I.T., Cambridge, Mass.,
February 1975.

26. Misunas , D. P. Procedure representation in a data-flow processor. Paper
submitted for presentation at the 1975 Sagamore Computer Conference on• Parallel Processing, August 1975.

~

•

~

•-- • • . •--.-~~~ • •~~- - - -- ~~~~~~~~•- ~~~~~



• —• ___________________________
• ~~~~~~~~~~~~~~~~~~~~~

-107-

27. Misunas, D. P. Structure imp lementat ion in a data-flow computer archi-
tecture. Paper submitted for presentation at the 1975 Sagamore Computer

• Conference on Parallel Processing, August 1975.

28. Rodriguez, 3. K. A Graph Model for Parallel Computation. Report TR-64,
Project MAC , M.I.T., Cambridge , Mass., September 1969.

29. Rumbaugh, 3. E. A Parallel Asynchronous Computer Architecture for Data
Flow Programs. Project MAC Technical Report, M.I.T., Cambridge , Mass.,
forthcoming.

30. Shapiro, R. M., H Saint, and D. L. Presberg. Representation of Algorithms
as Cyclic Partial Orderings. Applied Data Research, Inc., Wake field ,
Mass., 1971.

31. Seeber, R. R., and A. B. Lindquist. Associative logic for highly paral-
lel systems. APIPS Conference ~roceedin&s, 24, AFIPS Press, Montvale,N .  3. ,  1963, 489-493.

32. Thornton, S. E. Parallel operation in Control Data 6600. APIPS Confer-
ence Proceedings, 26, Par t II , AFIPS Press, Montvale, N. J., 1964, 33-41.

33. Tomasulo, R. M. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of Research and Development, fl, 1 (January
1967), 25-33.

34. Watson, W. J. The Texas Instruments advanced scientific computer. Pro-
ceedings of the Sixth Annual IEEE Computer Society International Confer-
ence, IEEE, New York, 1972, 291-293.

35. Weng, K. S. S.M. Thesis in preparation, Department of Electrical Engin-
eering and Computer Science, M.I.T., Cambridge, Mass.

J



Official Distribution List

Defense Documentation Center New York Area Office
Cameron Station 715 Broadway — 5th floor
Alexandria, Va 22314 12 copies New York, N. Y. 10003 1 copy

Office of Naval Research Naval Research Laboratory 
-

Information Systems Program Technical Information Division
Code 437 Code 2627
Arlington, Va 22217 2 copies Washington, D. C. 20375 6 copies

Office of Naval Research Dr. A. L. Slafkosky
Code 1021P Scientific Advisor
Arlington, Va 22217 6 copies Commandant of the Marine Corps

(Code RD—i)
Washington, D. C. 20380 1 copy

Off ice of Naval Research
Code 200
Arlington, Va 22217 1 copy Naval Electronics laboratory Center

Advanced Sof tware Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy

Mr. E. H. Cleissner
Naval Ship Research & Development Center

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy

Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP—9l6D)
Branch Off ice, Boston Off ice of Chief of Naval Operations
495 Summer :treet Washington, D. C. 20350 1 copy
Boston, Ma 02210 1 copy

Mr. Kin B. Thompson
Off ice of Naval Research Technical Director
Branch Off ice, Chicago Information Systems Division (OP—91T)
536 South Clark Street Off ice of Chief of Naval Operations
Chicago, Ii 60605 1 copy Washington, D. C. 20350 1 copy

Off ice of Naval Research
• Branch Office, Pasadena

1030 East Green Street
Pasadena, Ca 91106 1 copy


