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\J SUMMARY

A method is described which gives a refined stress analysis of a flexible lug loaded
by a rigid pin. Using the finite element approach the flexibility of the lug is assessed:
the contact pressure distribution is then determined by an iterative procedure which allows
Jor compatibility of displacement between pin and lug. Having found the contact pressure
the stress distribution throughout the lug is determined by a routine finite element analysis.
This method is applicable to cases of neat, clearance or interference fit pins. Numerical
results for neat fit pins show reasonable agreement with some test data.
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Vector of radial displacements at boundary nodes

Radial strain

Tangential strain

Radial stress

Tangential stress

Shear stress

Poisson’s ratio

Angular co-ordinate

Matrix of Influence Coefficients relating radial loads to radial dispiacements
A vector of radial loads

Initial load distribution

Modified load distribution

Matrix relating X displacements of nodes to radial loads
Matrix relating Y displacements of nodes to radial loads
Matrix of X Co-ordinates of node points

Matrix of Y Co-ordinates of node points

Displacement in X direction at node i due to load distribution
Displacement in Y direction at node i due to load distribution
Young’s modulus

Fit of pin in lug

Node number defining extent of contact arc

Stress concentration factor

Pin load

Radius

Radial displacement of node i due to a unit radial load at node j
Radial vector to displaced node on lug hole boundary

Radius of Lug

Radius of pin

Vertical translation of lug

Thickness of lug.
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1. INTRODUCTION

The pin-loaded lug shown in Figure 1 is a common form of connection in aircraft structures.
Until recently, the stress analysis of a lug was usually carried out in a rather simple fashion
consideration usually being given only to its ultimate strength which was assessed by assuming
simple stress distributions possibly modified by empirical factors. However, when considering
the fatigue performance of a lug, or its strength in a cracked condition, an accurate knowledge
of the stress distribution is required.

When the contact pressures applied by the pin to the lug are known then the stress analysis
of the lug can be carried out using the finite element method. It has been often assumed that
the contact pressure p, for a lug with the force applied along the centre line, is given by

p = (2P/=Rt) cos 0 |0] < =/2 (1)
p=0 | 6| > =/2
where P is the Pin load

Ris the radius of the pin
t is the thickness of the lug
0 is the angular Co-ordinate shown in Figure 2.

Intuitively, it might be expected that the actual contact pressure would resemble that given
by equation (1). However equation (1) has two important defects:

1) It does not include the influence of flexibility of the pin and lug on the contact pressure.

2) The area of contact between pin and lug is assumed fixed, no allowance being made

for changing areas of contact between pin and lug as a result of the type of fit or size
of load applied to the pin.

Also, experimental results, reference (1), have shown that the lug stresses and strains vary
non-linearly with pin load whilst equation (1) predicts a linear variation.

A method for determining the contact pressures for the case of flexible lug loaded by a
rigid pin is described in references (2) and (3). A procedure in which the flexibility of both the lug
and the pin is considered is given in reference (1). Both of these methods use the finite element
approach. Reference (4) gives details of a photo-elastic investigation and provides some data
which can be compared with theoretical results.

The present work arose out of the need to develop an accurate method for lug stress analysis
which could be used in conjunction with an existing general purpose finite element program
described in reference (5). The method is similar in principle to that described in references (2)
and (3) but differs in the details of the computer implementation. It is also restricted to the case
of a flexible lug loaded by a rigid pin. This is considered a reasonable approximation for an
aluminium alloy lug loaded by a steel pin which is a common situation in aircraft structures.
Also, it is assumed that frictional forces between the pin and the lug can be ignored and that
the problem can be treated as a two-dimensional (plane stress) one. A particular lug is considered
here for the case of neat, clearance and interference fit pins. For the neat fit pin the theoretical
results are compared with some strain gauge results.

2. METHOD
2.1 Description of the lug

The method is described by its application to the particular lug shown in Figure 3; this is




of 7079-T6 aluminium alloy and formed part of a rudder actuator fitting of a large transport
aircraft. Relevant properties of the alloy lug were taken to be

Young's modulus E = 71:02 x 103 MPa
Poisson’s ratio v = 0-32

The line of action of the pin load is taken to lie along the centre line of the lug. The straight

end of the lug is constrained in a way that leads to a uniform stress being applied at that end.

4 Since the structure is symmetric about the centre line only half of it need be considered in the

P % analysis. The finite element idealization of the lug based on linear strain triangles is shown in

3 Figure 4; also shown is the cartesian co-ordinate system which has its origin set at the centre

: of the lug hole. On the inside of the lug hole are a series of boundary nodes at which forces
and displacements between the pin and lug are to be considered. These nodes are numbered 1
to 17. The method, involves an iterative procedure, which determines the forces required at
these boundary nodes to produce prescribed displacements: this is achieved by setting up a
matrix of influence coefficients which defines the flexibility of the lug. In the following, as far as
possible, the notation is chosen to agree with that used in the computer program.

2.2 Matrix of Influence Coefficients

The radial force applied at boundary node j is denoted by Pg;(j = 1, NPOINT); this is
taken to be positive when applying pressure on the lug. Also the x and y displacements at
boundary node i are denoted by DISPX; and DISPY; (i = 1, NPOINT). The following matrix
equations relate these quantities:

{DISPX} = [XA] {PR} @)
{DISPY} = [YA]{Pg} ?)

where [XA] and [YA] are square matrices of order NPOINT x NPOINT. A typical element,
XA, of the first matrix is simply the value of DISPX; for Pr; = 1 with all other values of Pg
equal to zero; an analogous interpretation holds for YAy. These matrices, [XA4] and [YA],
can be determined from a finite element analysis for NPOINT load cases, each case corresponding
to a unit radial load at one node.

It is more convenient to define a single matrix [4] relating radial displacements &g; (taken
positive when directed outwards from the origin) to the radial loads; this is given by
{8r} = [A]{Pr} (C))
Matrix [A4] can be obtained from [XA] and [YA]. Referring to Figure 5, the radial distance
to node i after its displacement due to a unit radial load at node j is given by
RDIS;; = J{(XCOORD; + XAij)? + (YCOORD; + YAi)% )

where XCOORD; and YCOORD; are X and Y co-ordinates of point i. The ijth element of
[A] is simply the displacement of node i for this loading:

Aiyj = RDISij — RLUG (6)

where RLUG is the radius of the hole.
It is necessary to obtain the radial loads around the lug in terms of the radial displacements.
This requires inversion of matrix [4] and leads to the equation

{Pr} = [4]7 {8r} W)

2.3 Initial Load distribution

To begin, it is necessary to assume an initial distribution of contact pressure. The distribution
given by equation (1) is assumed and is referred to as the ‘Sinusoidal distribution’. Replacing
the distributed loads by discrete radial loads P; at the appropriate boundary nodes the corres-
ponding cartesian displacements DISPX; and DISPY; at all boundary nodes are found from
equations (2) and (3).
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2.4 Establishing compatibility in displacement of Pin and Lug

Generally, the displacements calculated above will not be compatible, either because they
involve some parts of the lug lying inside the pin boundary or because they give a separation
between pin and lug at points where a non-zero contact pressure has been assumed. This in-
compatibility is demonstrated in Figure 6, where the position of the lug hole prior to loading
and its (exaggerated) shape subsequent to an applied load are both shown. Here the pin is shown
as a dotted outline and corresponds to the case of an interference fit. The fit is denoted by F
and is based on the difference in radii between pin and hole; it is positive for clearance. Hence
the pin radius is given by

RPIN = RLUG-F (8)

After loading, the elongated shape of the lug hole has undergone a maximum Y displacement
DISPY, at boundary node 1 which is at the vertex of the lug. This point is now at a radial
distance, d, from the corresponding point on the pin, where d is given by

d = F — DISPY, ©)

The deflected shape of the lug is translated vertically an amount d such that there is zero
relative displacement between the bottom of the pin and the bottom of the deflected lug shape.
Consider the displacement of boundary node i shown in Figure 7 whose co-ordinates are
XCOORD;, YCOORD;. Under an applied loading, node i is displaced an amount DISPX;,
DISPY;; after a vertical translation d, the cartesian co-ordinates are given by:

XCOORD:; + DISPX; (10)
YCOORD; + DISPY; + F — DISPY, (1)

Hence thg radial distance from the centre of the pin to the boundary node i on the deflected *
lug is given by ;
RH; = J{(XCOORD; + DISPX;)* + (YCOORD; + DISPY; + F — DISPY,)?} (12)
Thus, to make boundary node i conform to the rigid shape of the pin a radial displacement
Sri must be applied; this is given by:

8ri = RPIN — RH; (13)

For the purposes of determining the required radial corrections it is necessary to establish
the length over which the lug and pin are in contact. It is assumed that the pin and lug are in
contact from node 1 up to a node designated ICL. For a neat fitting pin, ICL is the node which
has angular co-ordinates of /2. In the case of clearance or interference fits, /CL is the next
highest node to that at which the current pressure distribution is down to zero. Corrective dis-
placements given by equation (13) are applied to all nodes up to /CL and any higher numbered
nodes for which 8g; is positive. Beyond ICL all nodes for which 8r; is negative and thus there
is a separation between pin and lug, no corrective displacements are applied and &g; is set to
zero. Note however that negative values of 3g; may be applied within the contact length.

In Figure 6 the segment AB is the portion of the lug over which the corrective displacements
are applied. Over segment BC there is no contact between pin and lug and hence no corrections
are applied.

2.5 Modification of load Distribution

The loads that result from the corrective displacements are obtained from equation (7),
and are added to the originally assumed load distribution. No corrective loads are added at
points for which the corrective displacements are zero. Hence the modified load distribution
{Pn} is given by:

{Pum} = [A] ' {dr} + {P} (14)

(In the program the inverse matrix has been overwritten on the original matrix.)
Generally this load distribution will give a different resultant pin force to that required.
Before proceeding, the load distribution as given by equation (14) is scaled to return the correct
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total pin force. For neat and clearance fit cases the {P s} are simply scaled linearly by the ratio
of the required pin load to the pin load given by {Pas}. This will not, however, work for inter-
ference fits. The corrective load distribution [A4] ' {g} for even small interference fits, can
produce a large resultant load in the opposite direction to the applied sine load. If the magnitude
of the sine load is not sufficiently large then the resultant pin force will be in the opposite direction
to that required. To obtain solutions in the required direction it is necessary to scale up the
initial sine load until the resultant pin load from equation (14) is just greater than the required
pin load. How close the resultant load is to the required load depends on the smallness of
increments in which the sine load is scaled up. These increments are usually set at 0-1 of the
initial sine load.
This completes the first iteration.

2.6 Further Iterations

The load distribution just determined becomes the input for the second iteration. The
corresponding deflections are found from equations (2) and (3). The corrective displacements
required are found from equations (12) and (13). The modified load distribution is found from
equation (14). After scaling, the third iteration begins. Iterations are continued until successive
load distributions show negligible change.

3. PROGRAM

This program requires a data file /NPUT. The form of INPUT is shown in Appendix I.
In this data file it is necessary to specify the number of points around the lug, the number of
iterations to be carried out, the type of fit and the required pin load as well as geometrical data.
In addition, an initial approximate load distribution is required. A sinusoidal load distribution
has been used for the results in this analysis; hov.ever a single concentrated load at the vertex
of the lug will give the same results (but requiring more iterations) and is more convenient to
set up in the data. Also required is a matrix of influence coefficients which, as already men-
tioned, is obtained from a standard finite element analysis of the lug.

For each iteration, the radial loads, the X and Y components of the radial load, the X
and Y displacements, the contact pressure and pin loads are printed in file OUTPUT. Another
output file is CHECK; this is simply an echo of the input data.

A listing of the program is given in Appendix II.

4. RESULTS

Distributions of contact pressure around the particular lug shown in Figure 3 have been
obtained for neat, clearance and interference fits for various pin loads. Tables 1 to 6 contain
the results for various fits for a pin load of 50,000 N. For comparison purposes these contact
pressures are shown in Figure 8. In Tables 7 to 9 are the results for a clearance fit of 0-05 mm
with varying pin loads from 25,000 N to 200,000 N; these distributions of contact pressure are
plotted in Figure 9. Results for an interference fit of —0-04 mm for pin loads varying from
30,000 N to 200,000 N are shown in Tables 10-12 and are plotted in Figure 10.

Returning to the standard finite element analysis, the stresses around the lug are obtained for
the cases corresponding to pin loads of 50,000 N. These results are contained in Tables 13 to 18
and are plotted in Figures 11 to 16. Here, the stresses are in the polar co-ordinate system where
or, or and opr denote respectively the radial and tangential direct stresses and the shear stress.

Experimental data in the form of strain gauge readings are available for this lug and are
shown in Table 19; these are for the case of a neat fitting pin with a pin load of 50,000 N. The
location of the gauges is shown in Figure 17. These strain gauges have been placed to measure
radial strains ez and tangential strains ep and correspond to radial lines through boundary
nodes 1, 5 and 9 (angles of 6 = 0°, 45” and 90° respectively). Theoretical stresses can be con-
verted to strains by the relations:

er = (op — vior)/E

er = (o — v.op)/E
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where E is Young's modulus and v is Poisson’s ratio. These strains have been calculated and
are shown in Table 20. In Figure 18 are shown the plots for these theoretical strains, the experi-
mental strains have been superimposed on these plots and show reasonably good agreement.

In reference (4) stress concentration factors obtained from photo-elastic methods are given
for various lug geometries. These stress concentratior: factors are for the tangential stress at
the edge of the lug hole for an angle of 6 = 90°. In Appendix 111, theoretical stress concentration
factors have been calculated for clearance, neat and interference fits, the pin load being 50,000 N.
For the geor try of the lug in Figure (3), the only direct comparison of results that can be made
is that of a neat fit. Here the experimental value is approximately 2-4 and the trend is for higher
stress concentration factors for clearance fits and lower factors for interference fits.

DISCUSSION

The procedure by which the contact load distribution is obtained in the program is an
iterative one. This is due to the non-linear nature of the contact problem. Solutions tend to
oscillate about the exact solution and slowly converge to it. It was found necessary to perform
up to 1000 iterations until two consecutive iterations agreed closely. There were some cases
for which the solution would not converge and these will be mentioned later.

To examine the influence of the type of fit on the load distribution the various load distri-
butions corresponding to clearance, neat and interference have been plotted on Figure 8. Firstly.
considering the curve for the clearance fit, it is seen that this curve exhibits a characteristic
peak at 0 = 0° which then drops off at 15°. This is followed by a steep increase of contact pressure
to a maximum at 60°; this then reduces rapidly and the pin is free from the lug beyond 85",
In the case of a neat fit, the peaks in the curve have flattened out and the contact arc has in-
creased. This trend continues for the cases of interference fits. With the higher interference fits
the maximum contact pressure between the pin and lug increases as does the length of arc in
contact. For an interference fit of —0-07 mm the contact arc is 160°.

Consider now the effect of the magnitude of the pin load on the load distribution. As the
pin load is increased the area of pin and lug in contact will change, the lug tends to wrap itself
around the pin to a greater extent. This is demonstrated in Figure 9. However, in the case of
an interference fit, (—0-04 mm) as shown in Figure 10, the contact length decreases with increase
in load.

For the case of a neat fit, use of the load distribution in our finite element model has given
results that compare reasonably with experimental values. Tangential strains are within 7°,
of the experimental values; however there are larger discrepancies in the radial strains. Stress
concentration factors obtained from photo-elasticity, reference (4), are in general agreement
for cases of clearance, neat and interference fits. Specific values of stress concentration factors
for clearance and interference fits for the geometry of the present lug are not given; however
the trend is toward higher stress concentrations with increase of clearance and lower stress
concentrations for interference fits. For the case of a neat fit the experimental value of stress
concentration is within 10°, of the theoretical value.

The effect of various fits on the stress distribution is now considered for a constant pin
load of 50,000 N. Consider firstly the stress distribution shown in Figure 11 for the case of a
neat fit. The maximum stresses are the tangential stresses on the inside of the lug hole at boundary
node 9 (0 = 90°). Comparison with Figure 12 for the case of a clearance fit shows that the
tangential stresses at 90° are greater for the clearance than for the neat fit while the tangential
stresses at 07 and 45° (are smaller for the clearance than for the neat fit). Radial stresses at
0 = 45" and 0 = 0 are similar for the clearance and neat fit cases, though not, of course, at
0 =90".

Comparing now the stresses for the neat fit (Fig. 11) with the stresses resulting from an
interference of —0-04 mm (Fig. 13), it is apparent that the tangential stresses at ¢ = 90 with
the interference fit are lower than those with the neat fit, while the tangential stresses at 0 and
45° are slightly greater with the interference fit as were the radial stresses. Over all. the effect
of —0:04 mm interference is to reduce the maximum stresses. However for higher interference
fits, as shown in Figures 14 to 16, progressively all stresses are increased including the tangential
stresses at 90°.

From the point of view of minimising the stresses in the lug for a given pin load it seems
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that the smaller interference fits are optimum. A plot of maximum tangential stress versus
interference is shown on Figure 19. However, in the case of fatigue it is the increment of stress
during a stress cycle that is important. The increment in tangential stress Ao7 has been calculated
in Appendix 1V and also plotted in Figure 19, this corresponds to a stress cycle starting from
zero pin luad. As can be seen from Figure 19 the minimum value of this increment corresponds
to higher interference fits of —0-07 mm; for fatigue it seems that the higher interference fits
are optimum.

Factors determining the accuracy ~f the theoretical load distribution are now considered.
In part, the accuracy is dependent on the number of points used in determining the load dis-
tribution. For clearance fits the small contact arc may result in only 7 or 8 points determining
the shape of the load distribution. Also the arc length between adjacent points is relatively
large in comparison with the contact arc. This makes convergence of the solution more difficult
since jumps in contact length from one point to the next have a substantial effect on the shape
of the load distribution. For neat and interference fits the longer contact arc ensures that more
points are used to determine the solution and this improves the accuracy.

The accuracy of the load distribution is also determined by the accuracy of the individual
terms A4;; comprising the matrix of influence coefficients and subsequent inversion. In this analysis
the values of these terms were only taken to four significant figures. This was just acceptable:
however six significant figures is suggested. Fortunately, no difficulty was encountered in achieving
an accurate inversion of the matrix of influence coefficients. In this analysis solutions would
not converge for levels of interference above —0-07 mm for loads of 50,000 N or for loads
lower than 30,000 N with small amounts of interference.

Loss of accuracy may also occur in the program in equations (6) and (13) where the result
is the difference between two almost equal numbers. In this program satisfactory results were
obtained using single precision arithmetic. The program was run a PDP-10 cemputer where
the word length is 36 Bits and gives at least eight significant figures for single precision. For
computers with wordlengths less than this, double precision is advisatie.

6. CONCLUSION

A method has been developed for the solution of the non-linear pin-lug contact problem.
This has allowed a finite element analysis of a pin loaded lug which has provided the stress
distribution around the lug. The method is, however, restricted to the concept of a flexible lug
loaded by a rigid pin. The example used of an aluminium alloy lug loaded by a steel pin appears
to fit within this concept, as a comparison between experimental and theoretical result shows
agrement within 7-109,.
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APPENDIX I

The data file INPUT requires the following:
] Variables Format
P NPOINT, NLL, NITER 315
RPIN, F, ANGLE, QS, THICK 5F12-5
PLL(1) E12-5
} PS(I) El2-5
i XA (L,J) 6E12-5
YA (I, J) 6E12-5
where
i NPOINT is the number of points around half the lug
E | NLL Set to 1; this was left in to allow several load cases to be considered at
once; however the exira programming has not yet been implemented.
[ NITER " is the number of iterations to be made
RPIN is the radius of the pin
F is the fit of the pin in the lug. negative for interference
ANGLE is the angle in degrees between adjacent points
i oS is the total pin load corresponding to the sine load distribution.
THICK is the thickness of the lug
PLL(1) Set this to the required pin load for the complete lug.
PS(I) Radial force at point I due to sinusoidal loading
i XA (1,J) X displacement at point / due to a unit radial load at point J.
YA (1,J) Y displacement at point / due to a unit radial load at point J.
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PROGRAM TO SOLVE CONTACT PROBLEM BEIWEEN PIN AND LUG

COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(12),SCALE
COMMON/PRINTR/JSCA,JSCRB,JSCC -

INTEGER TAPNM1(2),TAPNM2(2),TAPNM3(2)

DATA TAPNML1/6HINPUTS/,TAPNM2/6HCHECKS/ , TAPNM3/THOUTPUTS/
DATA JSCA/1/,JS5CB/2/,JSCC/3/
OPEN(UNIT=JSCA,FILESTAPNML,pCCESS='SEQIN"')
OPEN(UNIT=JSCB,FILE=STAPNM2,ACCESS='SEQOUT")
OPEN(UNIT=JSCC,FILE=TAPNM3,ACCESS='SEQOUT")
OPEN(UNIT=4,FILE="DISDATS")

SCALE=,12

CALL READ
CALL SINE(NPOINT)
CALL COOQORD

CALL MATA
D0 1002 KKK=1,NITER

CALL PDINC
CALL RAD
CALL RLOAD

CALL TLOADC(])
IF(1,EN.1)GOTO 542

CALL DISP
CALL WRITE

CONTINUE

END

SUBROUTINE READ

COMMON/BLOCKL/NPOINT ,NLL,NITER,KKK,PLL(12),SCALE
COMMUON/BLOCK2/XA(27,20),YA(28,20),A(20,23)
COMMUN/BLOCK4/XDISPS(27),YDISPS(28),PS(22)
COMMUN/BLUCK6/RPIN,F,ANGLE,QS,QT,R(20),THICK
COMMON/PRINTR/JSCA, JSC3,JSCC

FORMAT(315)

FORMAT(7F12.5)

FORMAT(6E12.5)

READ IN NUMBER OF POINTS, 2IN LOAD AND NUMBER OF ITERATIONS

READ(JSCA»1Z)INPOINT,NLLSNITER
WRITE(JSCB, L3INPOINT,NLL,N]ITER

READ Il RADIUS OF PIN, FIT ,PIN LOAD, QS AND THICKNESS OF LUG
FIT IS NEGATIVE FOR INTERFERENCE,

READ(JSCA»22)RPINF,ANGLE,»QS,THICK




WRITE(JSCB,22)RPIN,F,ANGLE,QS,» THICK
READ IN PARTICULAR FIN LOADS

aaoa

READ(JSCA,IZ)(PLLC(I), I=1,NLL)
WRITE(JSCB,32) (PLL(I)»1Im1,NLL)
530 190 1s1,NPOINT

READ IN RADIAL LOADS FOR SINUSOIDAL LOADING QS
( OR ANY OTHER APPROXIMATE LOADING I1,E, CONCENTRATED
LOAD AT VERTEX OF LUG wlLL WORK )

READ(JSCA,30)PS(])
29 ARITE(JSCH,32)PS(1)

READ IN X AND Y DISPLACEMENTS OF EACH POINT DUE TO UNIT LOADS

aaaas aoooaoan

DO 248 1=1,NPOINT
READ(JSCA,3@)(XACI,J)»J=1/NPOINT)
WRITE(JSCB,32)(XA(1,0),J=21,NPOINT)
READ(CJSCA»3Z)(YACI,J)s»JsL)NPOINT)

200 WRITE(JSCB,32)(YA(],J),J=1,NPQINT)
RETURN
END
SUBROUTINE SINE(NPOINT)
COMMON/BLOCK2/XAt20,20),YA(20,208).,AL20,22)
COMMON/BLOCK4/XDISPS(22),YD]SPS(208).PS(22)

FORM DISPLACEMENTS CORRESPONDING TO RADIAL SINE LOAD
OR ANY OTHER APPROXIMATE LOAD DISTRIBUTION

aaaaq

00 220 1=1,NPOINT
SUMX=0,
SUMY=0,
DO 148 J=1,NPOINT
SUMX=SUMX+XA(I,J)*PS(J)
100 SUMY=SUMY<+YA(T,J)®*PS(J)
XDISPS(I)=SUMX
YDISPS(])=SUMY
2090 CONTINUE
RETURN
END
SUBROUTINE COORD
COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(12),SCALE
COMMUN/BLOCK3/XCOORD(22),YCOORD(20)
COMMON/BLOCKS/RPIN,F,ANGLE,»QS,QT,R(28),THICK

RLUG IS RADIUS OF HOLE

aoaQ

RLUG=RPIN+F
THETA=D.

NOW CALCULATE COORDS OF UNDEFLECTED LUG

oo

00 190 [=1,WNPOINT

XCOORD(I)= RLUGSSIND(THETA)

YCOURD(I)==-RLUG*COSD(THETA)
100 THETA=THETA«ANGLE

RETURN

END
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200

aoaooan

7777

10

aaoa

SUBROUTINE MATA
COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(1D),SCALE
COMMON/BLOCK2/XA(20,20),YA(208,20),A(20,20)
COMMON/BLOCK3/XCOORD(22),YCOORD(20)

MATRIX A IS A SET OF RADIAL DJSPLACEMENTS FOR UNIT
RADIAL LOADS,

00 2490 [=1,NPOINT
00 242 J=1,NPOINT

WE MUST NOW DETERMINE WHICH RADIAL OISPLACEMENTS
ARE POSITIVE AND NEGATIVE

RADIAL COMPRESSION IS TAKEN TO BE POSITIVE,

R IS RADIAL VECTOR TO POINT

RDIS IS RADIAL VECTOR TO DISPLACED POINT

R=SWURT((XCOORD(I))w®2+(YCOORD(]))®e2)
RDIS=SAQRT((XCOORD(I)eXA(],J)) @824 (YCOQORD(I)*YA(],J))®*2)
ACl,J)=RDIS=-R

CONTINUE

CALL GENINV(A,NPOINT,22.,0D+JRROR,CONOU)

RETURN

END

SUBROUTINE GENINV(A,N,MsD»IRROR,CONO)

THIS INVERSION ROUTINE WAS WRITTEN BY D,W,G, MOORE
COMPUTING CENTRE, UNIVERSITY OF WESTERN AUSTRALIA

DIMENSION A(M,M),IPIV(102),IND(100,2)
IF(N,LE.3.0R,N,GT.M,0R,M,GT,108) GOTO 80
CALL OVERFL(JJI)

ASSIGN 7777 T0 GOBACK

GOTO 7779

IRROR=C

00 19 I=1,N

IPIV(]I)=D

20 220 1=1,N

AMAX=2,0

SEARCH SUB-MATRIX FOR LARGEST ELEMENT AS PIVQT

20 78 J=1,N
IFCIPIV(J))122,33,70
D0 64 K=1,N
IF(IPIV(K)=-1)42,6C,123

TH1S ROW HAS BEEN A 2]VOT

IF(ASSCA(J,K)) LE.AMAX)GOTO 60
IROW=J

ICOL=K

AMAX=ABS(A(J,K))

CONTINUE

CONTINUE

PIVOT FOUND

IPIVCICOL)I=IPIV(ICOL) *1




100
139
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140
180

190
220

C
232

240

259
260
270

8000
80
102
103

7779

7780

IF(IROW.EQ.]COL)GOTO 130
MAKE PIVOT A DIAGONAL ELEMENT BY ROW [NTERCHANGE

D=-D

D0 199 K=1,N
AMAX=A(IROW,K)
ACIROW,K)=2A(1COL,K)
ACICOL,K)SAMAX
INDCI,1)s[ROW
IND(I,2)=1COL
AMAX=A(CICOL,ICOL)
IF(D,LT.2.1E=15)D%0,
IFCAMAX,LT.0,1E=15)AMAXED,
D=D®#AMAX
ACICOoL,1COL)=1,0

DIVIDE RQW BY PIvOT

00 14Q Ksi,N
ACICOL,K)=ACICOL,K)/ZAMAX

DO 2¢0 J=1,N
IF(JLEQ.ICOLIGOTQ 222
AMAX=A(J, ICOL?

A(J,ICOL) =D,

DO 192 Ksi,N
ACJ,K)EA(J,K)=ACICOL,K)®AMAX
CONT INUE

FOR INVERSE OF A, INTERCHANGE COLUMNS

00 260 [=1,N
JeN+1-1
IROW=IND(J, 1)
IFCINDCJ,1).EQ,IND(J,2))G0TQ 260
[CUL=IND(J,2)

DO 252 K=1,N
AMAX=A(K, IROW)

A(K, IROW)=A(K, ICOL)
A(K, [COL)=AMAX
CONTINUE

CALL OVERFL(JJJ)
IF(JJJINE«2) IRROR=Y
ASSIGN 80Y@ TO GOBACK
CONSAV=CQONO

GOTQ 7779
CONO=CONSAV#COND
RETURN

[RRQOR=2

RETURN

[RRQR=3

RETURN

CONTINUE

IRKOR=4

RETURN

CONO=2,

DO 7780 J=1,N

DO 7786 J=1,N .
CONO=CONQ+A(]l,J)we2
CONO=SQRT(CONO)
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450

500
550

BEST AVAILABLE
ENJ

SUBROUTINE PDINC
COMMUN/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(12),SCALE
COMMUN/BLOCK4/XDISPS(22),YD]SPS(20),PS(22)
COMMON/BLOCK5/DISPX(28),DISPY(23),P(20)

THIS ROUTINE UPDATES LOADS AND DISPLACEMENTS

IF(KKK,GT.1)G0TO 200

D0 148 [=1,NPOINT
DISPX(1)sSCALE#*XDISPS(])
DISPY(I)=SCALE®#YDISPS(])
P(1)=SCALE®*PS(])

RETURN

END

SUBROUTINE RAD
COMMON/BLOCK3/XCOORD(29),YCQORD(20)
COMMUN/BLOCKS/01ISPX(28),01ISPY(28),P(20)
COMMUN/BLOCK6/RPIN,F,ANGLE,QS,QT,R(23),THICK
IF(F.GT.8.)GQTO 1402

IF(F.LT.8.)G0TO0 359

NEAT FIT - CONTACT LENGTH OVER 9P DEGREES

[CL=10 .
GOTO 5502

FIND CONTACT LENGTH FOR CLEARANCE

120
1=1+1
IF(P(1).EQ,0,)G0TO 250
IFC(I.EQ.NPOINT)GOTO 227
GOTO 152

ICL=NPOINT

GOTO 328

ICL=ls1

SHOULD BE ICL=l , HOWEVER ICL=1¢1 ALLOWS SOLUTION TO CONVERGE
NO ERROR IN THIS ASSUMPTION PROVIDED SOLUTION DOES CONVERGE

CONTINUE
GOTO 55@

FIND CONTACT LENGTH FOR [NTERFERENCE

I=¢

I[=]+1
IF(PC]).EQ.2,)GOTO 522
IFC(I.EQ.NPOINT)IGOTO 450
GOTO 402

ICL=NPOINT

GOTO 55€¢

ICL=1+1

CONTINUE

FORM RADIAL ODISPLACEMENTS THAT ARE 10 BE APPLIED TO LUG
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200
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riEtass. BEST AVAILABLE COPY

DRPINsSRPIN

00 140 [=1,NPOINT

THETA=THETA+11,25
RH=SURT((XCOORD(I)+DISPX(1))#®2+4(YCOORD(I)*DISPY(])
=DISPY(1)+F)wa2)

RCI)IRPIN-RH

REMOVE TENSILE RADIAL DISPLACEMENT CORRECTIONS
OUTSIDE CONTACT LENGTH

IFCIWLT.ICL)GOTO 100

IF(RPIN.LT,RHIR(]) =0,

CONTINUE

RETURN

END

SUBROUTINE RLOAD
COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(12),SCALE
COMMON/BLOCK2/XA(20,20),YA(20,20),A(20,29)
COMMON/BLOCKS5/DISPX(28),01SPY(20),P(20)
COMMON/BLOCK&/RPIN,F,ANGLE,QS,QT,R(22),THICK

NOW FORM RADIAL LOADS

ISW=0

D0 242 [=1,NPOINT
SUH=”- "

00 108 J=1,NPOINT
SUM=SUM+AC(],J)&R(J)

REMOVE LOADS FOR WHICH
RADIAL DISPLACEMENTS ARE £ERO

IF(RCI).EQ,0,)SUM=D,

ADD INITIAL LLOAD TO IBTAIN TOTAL LOAD
P(I)=P(I)+SUM

REMOVE TENSILE LOADS

IF(PCI).LT.0,)P
IF(PCI).EQ.2,)1
IFCISW,EQ.1)P(]
CONTINUE

RETURN

END

SUBROUTINE TLOAD(K)
COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(17),SCALE
COMMON/BLOCKS5/01SPX(2@),DISPY(2@),P(20)
COMMON/BLUOCKO/RPIN,F ,ANGLE,»QS»QT,R(20),THICK

~r N} ~
n 2

THIS ROUTINE ADJUSTS THE LOAD
DISTRIBUTION TO GIVE THE REQUIRED TOTAL LOAD

K=d

ICOUNT=2
ICOUNT=ICOUNT+]
THETA=2Q,
OT=pP(1)




100

NQOOQ aaaaoao

50
200

300

350

2O aaQ

aaa

p81%
200

BES

DO 1v@ [32,NPOINT
THETA = THETA+ANGLE
QT=QT+P(])®(COSD(THETA))
CONTINUE
IF(KKK,GT.1)GOTO 2582

THE THEORY HERE IS THAT WE ARE CLOSE ENOUGHT TO THE LOAD
TO MAKE AN ASSUMPTION OF LINEAR LOAD WITH LOAD DISTRIBUTION
RELATIONSHIP

IF(F,LT.#.)GOTO0 352

JSE A FACTOR X FOR NEAT OR CLEARANCE FITS
X=ABS(PLL(1)/(QTa2.,))

D0 240 1s1,NROINT

P(1)=P(])%X

IFCICOUNT.GT,122)G0T) 3929
IF(XeLTB.99,03:.X.GT,1,01)GOT0Q 52
RETURN

USE FACTQR SCALE FOR INTERFERENCE FITS
CONTINUE

QTT=2.sQ7

IFCQTT,LT.PLLC(L))GOTD 4020

TAKE FIRST VALUE GREATER THAN PLL(1)

GOTO 302 ;

SCALE ]S NOW SET FOR ALL OTHER JTERAT]IONS

[F(KKK,GT.1)G0TO 302

SCALE=SCALE+,1

IF(SCALE.GT,1272.)G0TY 302

K=1

RETURN

END

SUSROUTINE 0OISP
COMMON/BLOCKL/NPOINT,NLL,NITER,KKK,PLL(12),SCALE
COMMON/BLOCK2/XA(20,22),YA(22,20),A(20,22)
COMMON/BLOCKS/01SPX(22),DISPY(28),P(20)

FORM SET OF DISPLACEVMENTS CORRESPONDING TO LOAD DISTRIBUTION

DO 240 I1s1,NPOINT

SuMx=¢g,

SUMY=2,

00 140 J=1,NPOINT

SUMX=SUMX+XA(I,J)®P(J)
SUMY=SUMY+YA(T,J)®P ()

DISPX(])=SUMX

DISPY(I)=SUMY

RETURN

EMD

SUBROUTINE WRITE

COMMUN/BLOCKL/NPOINT NLL,NITER,KKK,PLL(13),SCALE
COMMON/BLOCKS/0ISPX(22),01ISPY(23),P(20)
COMMUN/BLOCK&/RPIN,F,ANGLE,QS,QT,R(28),THICK
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104
200

COMMON/PRINTR/JSCA,JSC3,JSCC

DIMENSION AP(22),APX(22),APY(28),APRESS(20),FX(42),FY(4D)
KM1=1000

IF(KKK,LT.KM])GOTO 222

FORMAT(' ITERATION ',14,12X,'FORGCE N,',12X,
'DISPLACEMENT MM, ',12X,'CONTACT PRESSURE MPA,'//)
FORMAT (' PIN LOAD ',2X,F1@.2,208X,' FIT '42X,F10.6,20X,
' RPIN ',2X,F13.677)

FORMAT(' POINT',»5X,'RLOAD"',9X, " "XLOAD ',8X,' YLOAD ',8X,
' XDISPL':8X,"' YDISPL',4X,»'CONTACT PRESSURE'//)
FORMAT(2X,14,F13,2,2(2X,F13,2),2(2X+,E13.:6),2X,F13.2)
FORMAT(1H /77)

F1 AND F2 ARE CONVERSINN FACTORS FOK UN]TS

F124,44822

F2=25.4
AP(1)=F1#(2.3eP (1))
D0 99 1=2,NPOINT
AP(I)=F1e(P(]))
ATT=F1#(2.0#Q7)
T=F2#(THICK)
RLEF2#(RPIN+F)

NOW FORM CONTACT PRESSURE

§$257,296/(RLeANGLE®T)

00 95 I=1,NPOINT
APRESS(1)=AP(])#S
WRITE(JSCC,12) KKK
FIT=F2%#(F)

RP=F2#(RPIN)
WRITE(JSCC,23)aTT»FIT,RP
ARITE(JSCC,43)

THETA=C,

00 148 1=z1,NPOINT

APX(1)= AP(1)#SIND(THETA)
APY(])=-AP(])#COSD(THETA)
THETA=THETA+ANGLE
DX=Fce(D]ISPX(]))
DY=sF2#(DISPY (1))
WRITEC(JSCC:53)1+ARP(1),APXCI),APY(I)»DX,DY»APRESS(I)
WARITE(JSCC,6D2)

RETURN

END




APPENDIX III

Stress concentration factors

Referring to Figure 4 with o} being the tangential stress at point 9, then the stress con-
centration factor is given by:

SRR

where P/A is the nominal stress
Referring to the dimensions given in Figure 3, the minimum cross sectional area of the lug
is given by:

A =2 x(29-591 — 16-866) x 12:700 x 10-® m?
= 3:232 x 10-* m?

For a pin load of 50,000 N, the nominal stress is P/4 = 1-547 x 108 Pa.
For the pin load of 50,000 N the following stress concentration factors are given for
various fits.

Fit (mm) o3 (MPa) K
0-05 395-9 2-559
0-00(Neat) 3334 2-155

—-0-04 2308 1-492
—-0-05 236-7 1-530
—0-06 252-6 1-632
-0-07 279-4 1-806

The experimental value of K for a neat fit given in reference (4) is approximately 2-4.




APPENDIX 1V

Tangential Stresses due to Interference only, zero pin load

From reference (6) the tangential stress at the pin-lug interface due to an interference pin
with zero pin load is given by:

or _ 4 d\?
e ) s
Ee Ee[ ) (w) ] ]

and o 7 1
Ee E(1 — d\?
e L
E, w
where E,, v, are Youngs modulus and Poisson’s ratio for pin

E, v are Youngs modulus and Poisson’s ratio for lug

d is diameter of lug hole
w is width of lug
e = 2F/d.

Here we take E; = 206-8 x 103 MPa and v, = 0-30, while £ and v have the same values as
previously given. ‘
Substituting
or = 32:75 x 102 x F MPa

Interference (mm) ar (MPa)
—0-04 131-0
—-0-05 163-7
—0-06 196-7
-0-07 229-3

The following maximum values of or have been extracted from tables 13-20; from these
values Aor is calculated. Aoy is given by:

Aor = ormax — or (zero pin load)

Fit (mm) ormax(MP2) | Aoz (MPa)

0-05 395-9 395-9
0-00 333-4 333-4
—-0-04 230-8 99-8
—0-05 236-7 73-0
-0-06 263-3 66-8

-0-07 294-9 65-6
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TABLE 13
Stresses in Lug with Neat Fit Pin; Pin Load of 50,000 N

Radial line through

Radial line through

Radial line through

Radial Point 1 Point § Point 9
Distance
(mm) R or ORT oR or ORT oR op ORT
(MPa) | (MPa) | (MPa)| (MPa) | (MPa)|(MPa)| (MPa) | (MPa) | (MPa)
16-86 —107-2 | 151-3 | —3-8 | —125-1 | 1596 | —1-2 | —42-8 | 3334 | — 4-8
17-62 — 94-3)147-2 | —0-7| —110-1 | 1579 | —3-5| —34:6 | 294-2 | — 8-0
18-38 — 860 | 1429 | —1-3| —101-0 | 154-3 [ —5-8 | —22-0 | 257-8 | —16-0
19-65 — 70-3|141-5| —0-9 | — 80-4 | 151-8| —8-3 | —13-6| 2187 —16-2
20-92 — 59-0|139-8] —1-1| — 67-0|146-3 | —9-8 | — 5-2|183:-5| —17-4
22-70 — 42-8|141°'4| —1:0| — 46-5| 1440 —9-6 | — 4-3 {1499 | —12-8
24-48 — 3031424 —1-0| — 31-6 | 1396 | —8-8| — 0-8 | 121-:4 | —10-3
27-05 — 13:9|146-5| —0-5| — 13-9|140-1 | —4-9 | — 1-4| 84-2 | — 4-7
29-59 0-5{151-4 —-0-7 0-01142:6} —1-5 1.4} 48-3| — 0-8
TABLE 14
Stresses in Lug with 0.05 mm Clearance Fit Pin; Pin Load of 50,000 N
Radial line through Radial line through Radial line through
Radial Point 1 Point 5 Point 9
Distance
(mm) oR or ORT oR or ORT oR or oRT
(MPa) |(MPa)|(MPa)| (MPa) |(MPa)|(MPa)| (MPa) | (MPa) | (MPa)
16-86 —118-1| 98-9 | —1-8 | —133-9 | 137:7 |- 0-7| —=9:0 | 3959 | —4-7
17-62 —103-3 | 106-7{ —1-7 | -117-1 | 140-9 {— 5-0 | —0-7 | 341-0| —1-4
18-38 - 9-5| 1119 | —1-6 | —109-0 | 140-9 |— 8-2 | 13-8 |289-7| —-7-4
19-65 — 78-7 1204 | —1:6 | — 86-6 | 143-0 [—13-0 | 14-4 | 235-5| —5-2
20-92 — 668 )126:5| —1-5}| — 73:0] 140-3 |—15-8 | 19:5 | 190-0 | —-7-5
22-70 — 48-2 | 1358 | —1-4| — 49-9 | 140-5 (--16-0 | 11:6 | 146-8 | —3-7
24-48 — 34-2|143-8 | —1:2 | — 33-7|137-6 [—14-8 9:7 [ 110-3 | =3-1
27-05 — 157156 | —0-7| — 14:6 | 140-8 |— 8-1 26 606 | —1-2
29-59 0-5|170-0 [ —0-7 0-1(146-6 |— 1-8 1-4 10-7 | —=0-8




LM

TABLE 15
Stresses in Lug with —0.04 mm Interference Fit Pin; Pin Load of 50,000 N

Radial line through Radial line through Radial line through
Radial Point 1 Point 5 Point 9
Distance
(mm) oR ar ORT oR or ORT oR or ORT
(MPa) | (MPa)|(MPa)| (MPa) |(MPa)|(MPa)| (MPa) | (MPa) | (MPa)
16-86 —128-6 | 2111 | —4-6 | ~125-2|218-9 | —1-7 [—-114-4 | 230-8 | —1-4
17-62 —110-1 [ 202-1 , —1-4 | —108-7 | 208-9 [ —1-2 | —95-9 [ 219:9 | —1-5
18-38 - 99-4 | 1914 | —2-1 | - 97-7|197-8 | —2-2 | —85-9 | 207:6 | —3-4
19-65 — 78-8 (1811 | —1-4 | — 76-9 | 185-6 | —2-3 | —65-0 | 193-:0 | —3-9
20-92 — 64:4|170-0 | —1-8| — 62:6 | 172:5| —2-9 | —51:1|176:9 | —4-4
22-70 — 45-2(161-'4 | —1-2 | — 43-6(161-9 | —2:6 | —33-8|162:0 | —2-7
24-48 — 30-5})152-3) —1-4}] — 2961509 | —2:6 | —20-4 | 147-2 | —1-8
27-05 — 13-7 (1460 | —0-7 | — 13-1 | 1426 | —1-5| — 8:-6 | 135-8 1-7
29-59 0-5 | 142-2 0-6 0-0( 1356 —1-3 0-8 | 128-7 3-8
TABLE 16
Stresses in Lug with —0.05 mm Interference Fit Pin; Pin Load of 50,000 N
Radial line through Radial line through Radial line through
Radial Point 1 Point 5 Point 9
Distance

(mm) OR or ORT OR or ORT OR or ORT
(MPa) |(MPa)|(MPa)| (MPa) |(MPa)|(MPa)| (MPa) | (MPa) | (MPa)
16-86 —134-8 | 2326 | —5-2 | —132-5236-9 | —1-8 [—116-3 | 236:7 | —1-6
17-62 —115-2 | 221-3 | —1-4| —114-7 | 225-7 | —1-1 | —99-0 | 224-7 0-0
18-38 —103-6 | 208-1 | —2-3 | —103-0 | 213-1 | —2-1 | —88-1 | 212:0 | —0-4
19-65 — 82:0)1954] —1-4| — 80-7|199-1 | —2-2 | —67-5| 197 4 0-5
20-92 — 669 |181-9| —~1-9 | — 65-5|184-2 | —2-7 | —53-3 | 182-2 0-7
22-70 — 46-8 | 171-1 | —1-3 | — 45-4 | 171-7 | —2-3 | —35-8 | 169-1 2:5
24-48 — 3141598 —1-5| — 30-7 | 158-:9 | —2-4 | —21-7 | 155-8 30
27-05 — 14-1 | 151-4 | —=0-7 | — 13-5| 1486 | —1:4 | — 9-2 | 1479 5-0
29-59 0-5 | 145-6 07 0:0(139-8| —1-4 0-7 | 144-7 <2




TABLE 17

Stresses in Lug with —0.06 mm Interference Fit Pin; Pin Load of 50,000 N

Radial line through Radial line through Radial line through
Radial Point 1 Point § Point 9
Distance
(mm) OR or ORT OR or ORT OR ar ORT
(MPa) | (MPa) | (MPa)| (MPa) |(MPa)|(MPa)| (MPa) | (MPa)| (MPa)
16-86 —141-8 | 263-3 | —6-0 | —143-1 | 260-0 | —2-1 |—121-9 | 2526 | —1-7
17-62 —121-4 | 248-1 | —1-3 | —123-9 | 247-2 | —1-1 |—104-2 | 239- . 1-0
18-38 —108-5 | 231-5 | —24 | —111-1 | 233-0 | —2-2 | —92-1 | 225-3 1-2
19-65 — 85-8 2153 —1-3| — 87-0|216-9 | —2-0| —71-0 | 209-7 3-1
20-92 — 69:7)198-8 | —1:9) —-70-5]200-2 | —2-5| —55-8 | 1941 3-9
22-70 — 48-9 | 185-3 | —1-2 | — 48-8 | 185-8 | —2-1 | —37-8 | 181-2 6-0
24-48 — 32-8|171-5| —1-5( — 329 |171-3 | —2-3 | —22- 168-5 6-5
27-05 — 14-7|160-3 | —=7-5| — 14-5|159-3 | —1-4 | — 9-7 | 1621 7-5
29-59 0-6 | 152-0 0-7 0-0| 1489 | —1-5 0-7 | 160-9 6-4
TABLE 18
Stresses in Lug with —0.07 mm Interference Fit Pin; Pin Load of 50,000 N
Radial line through Radial line through Radial line through
Radial Point 1 Point 5 Point 9
Distance

(mm) oR or ORT ar or ORT OR or ORT
(MPa) | (MPa) | (MPa)| (MPa) |(MPa)|(MPa)| (MPa) | (MPa) | (MPa)
16-86 —156-0 | 294-9 | —6-8 | —158-1 | 290-4 | —2-3 |—132-7 | ?79:4 | —1-9
17-62 —133-6 | 277-2 | —1-4 | —136-8 | 275:7 | —1-2 |—113:6 | 264-2 1-5
18-38 —119-2 | 258-2 | —2:6 | —122-5| 259-5 | —2-4 |—100-1 | 248-5 2-0
19-65 — 94-21239-5} —1:4) — 9592412 | —2:2 | =77-2 ] 2309 4-6
20-92 — 76-51220-5| —2-1 | — 77-5|222:0 | —2-8 | —60-5 | 213-6 5-8
22-70 — 53-5|1204-9 | —1-3| — 53-7|205:6| —2-3 | —41-0| 199:6 8-3
24-48 — 359|180 | —1-7| — 36-1 | 188-9 | —2-5| —24-7 | 1858 89
27-05 — 16-1 | 1758 —-0-8| — 159 | 1749 | —1-5| —10-5 | 179-5 9-4
29-59 0:6 | 166-0 0-8 0-0|162:8 | —1:7 0-8) 1789 7-4




: TABLE 19
g " Experimental Strains in Lug for Neat Fit Pin; Pin Load of 50,000 N
3 t. Gauge Location
E % Gauge Type of Value
' Number | Distance from | Angular strain of strain
centre of Lug | coordinates | measured 107 m/m
hole (mm) degrees
; 1 18-14 90 Tangential 4-12
! 2 18-42 45 =~ 2-25
3 18-24 0 % 2-25
| 4 28-38 90 - 0-67
| 5 27-95 45 = 2-14
j 6 27-88 0 < 1-86
7 17-63 90 Radial -2-48
8 17-77 45 e —-1-80
9 17-64 0 i -1-20
TABLE 20
Theoretical strains in lug for neat Fit Pin; Pin load of 50,000 N
Radial Radial line Radial line Radial line
dickasice through point 1 through point 5 through point 9
(mm)
€R €T €R (o €R €T
10-3m/m | 10~ m/m | 10-3m/m | 10-3*m/m | 10-3*m/m | 10~ m/m
16-86 —2-192 2-614 —2-481 2-811 —2-106 4-888
17-62 —1-992 2-499 —2-262 2-720 —1-813 4-299
18-38 —1-855 2-400 —-2-117 2-627 —1-473 3-730
19-65 —1-628 2-310 —1-817 2-500 —1-178 3-142
20-92 —1-463 2:235 —1:604 2-363 —0-900 2-607
22-70 —1-240 2-185 —1-304 2-237 —0-737 2151
24-48 —1-069 2-142 —-1-075 2-108 —0-558 1-713
27-05 —0-856 2:125 —-0-827 2-036 —0-399 1-192
29-59 —-0-674 2-130 —0-642 2-008 —-0-197 0-674
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FIG.5 RADIAL DISPLACEMENT OF POINT i DUE TO UNIT RADIAL LOAD AT
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FIG. 7 DISPLACEMENT OF POINT i RELATIVE TO THE CENTRE OF THE PIN
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FIG. 11 THEORETICAL STRESSES FOR A NEAT FIT ; PIN LOAD IS 50kN
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