e ——

AD=ADS1 060 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT O==£TC F/6 9/2
CWUTA‘I‘IONAL SOLUTIONS TO A NON-UNIFORM TIME=DELAY LINEAR SYST=<ETC(U)
W M CHAN: N E NAMI» U M MENDEL rnuo-u-c-oos'r
UNCLASSIFIED AFOSR=TR=78-0201




ity

£_CORY;

!
L

-

n
1

o
|

ADA05106£,

* UNCLASSIELILED

© CURITY CLASSIFICATION OF THIS PAGE (When Data qu'n-rl)

P l

= (/1) REPORT DOCUMENTATION PAGE 7 WY/ vt ot otae vomn

1 ?gvoaf’m}wﬂ.n 2. GOVTY AccEsION N RECIPIENT'S CATALOG NUMBER

4 _TITLE (and Subtitle) L) }){3 OF REPORT & PERIOD COVERED
[[COMPUTAT IONAL - OLUTIONH TO A YCN-YNIFORM &

S
HTIME- DELAY LlNLAR SYSTEM. Interim rcﬁf-zs
| ISR sl b T = - 2o v J' 6. P 3G. REPORT NUMBER

7. AUTHOR(s) '
it 'ﬁ F4dip 40) 2 B—71 —
W. M /Chan N. L /Nahl -t J M /Mendel) CV ZAFOSR 75-2797 47

2 —
s ——— Y

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:gGRQAM ﬁhEMENT,PNOJECT, TASK
A £

University of Southern California /F il Qs'_l"
Lepartment of Electrical Engineering 61102F [2304)

Los Angeles, CA 90007

PORT DATE

1. CONTROLLING OFFICE NAME AND ADDRESS
Air Force Office of Scientific Research/NM
Bolling AFB, DC 20332

13, NUMBER OF PAGES g

2117

14 MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Office) 15. SECURITY CLASS. (of this feport)

~_ UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

% 20. ABSTRACT (Contlnue on reverse side If necessary and identily by block number)

Two computational methcds are considered for a class of non-uniform, continuous,
multiple time-delay linear systems, which have been developed in the modeling of lossless
ayered media. ‘}n the first approach.__\-be"dlscretlzer‘the time axis and insertystates of
intermediate delays, to arrive at a set of standard finite-difference equations. For our
particular system, matrix multiplications can be reduced to simple scalar multiplications.
the second approach,-we definegmapping rules for the transﬁrmanon of states at an
interfaces, and keep a state reference table for look-up and branching. The proced:?

DD ,an'ss 1473  eoition oF 1 NoOV 65 |soasouzgéz ‘5'60 UNCI AqqulFlC)f




SECURITY C-LASSlFICAﬂON OF THIS PAGE(When Date Entered)

20. Abstract

S

is similar to ray-tracing. Several experimental results are presented to show
the trade-off between storage requirement and CPU time-spent for the two methods.

| ACCH SSION for_ »__‘_-______“__4/‘
White Sectin rv
(TIS 0
1 I
O
bcseridlis
BY
DISTRIBLTION AVAY ABIMTY C0BES i
e 1
| !
‘ |

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'* PAGE(When Data Enterad)

 ——




! AFOSR-TR- 78- 020 1
‘ Presented at Symposium on Applications of Computer Methods in
Engineering, University of Southern California, Los Angeles,
California 90007, August 23-26, 1977.

-

v 8
k COMPUTATIONAL SOLUTIONS TO A NON-UNIFORM TIME-DELAY
LINEAR SYSTEM

w. M. chan, ¥ N, E. Nani? and 7. M. Mender™
please;
AppT for public T
dist:'i::ir,‘u -mlimited.
Summary

Two computational methods are considered for a class of non-
uniform, continuous, multiple time-delay linear systems, which have
been developed in the modeling of lossless layered media. In the
first approach, we discretize the time axis and insert states of
intermediate delays, to arrive at a set of standard finite-difference
equations. For our particular system, matrix multiplications can be
reduced to simple scalar multiplications. In the second approach,
we define mapping rules for the transformation of states at an inter-
faces, and keep a state reference table for look-up and branching.

2 The procedure is similar to ray-tracing. Several experimental re-
i sults are presented to show the trade;off between storage requirement
and CPU time-spent for the two methods.

1. Introduction

In the development of time-domain state space modeis for loss-
less layered media, Mendel et. al. [1] have arrived at a class of
non-uniform, multiple, continuous, time-delay linear equations.,
These equations are termed Causal Functional Equations. In this
paper we will discuss two computational methods to obtain a solution
for this class of equations,

The immediate application of this solution is to generate
synthetic seismograms for geophysical study (e.g., in testing decon-
volution algorithms and inversion techniques)., As mentioned in the
paper by Mendel et. al. [1], this class of equations can also be used
to model lossless transmission lines and certain acoustic, optical
and electromagnetic systems.

In the next section we will give a formulation of this class of
equations and discuss some of its characteristics. In Section 3 we
discuss the method of discretization of the time-axis and the proce-

I. Department of Electrical Engineering-Systems, University of
Southern California, Los Angeles, California 90007.




dure to obtain a standard unit-
delay finite-difference equations.
A ray tracing technique using
mapping rules for states is dis-

cussed in Section 4.

lm") Iy(')
In Section

5 we make a comparison between

; / e
the two methods in terms of sim- //////

plicity, storage requirement and CPU \‘\\ \ AN ‘r\
VAN \

time-spent.

Some experimental re-
sults are presented, We conclude

with a summary of results and a sam-

ple plot of unit pulse response for
layered earth media.

2. Causal Functional Equations

,{fj;fw /s

A system of K layered

~~ \\ L\u\" K(?.b\\ ﬁ -

media is depicted in Figure 1. ///“"“"" ’],////

For each layer,
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we define two

Intertace ~Qlry

[momxl-' (r)

\
\ )\
intertace =21(r)

= e Sy

Interface ~3(ry

Interfoce~(K-2)(r, 2

Interfoce =K~ Weg.)

* lnrertace = X (r,)

states: u; (t) and d:(t), which Figure 1. System of K layered

are the upgomg an

d

downgoing media.

states at the (j-1)th and jth

interfaces respectively.

The reflection and transmission characteris-

tics at an interface are modeled by the reflection coefficients, r..
Within the layer, the state only suffer a time delay, Tj -
detailed description can be found in Mendel et. al. [1].

The Causal

where

and

d(t+ 1)
u(t+1) =

y(t) =

ne

dit+1)

ne>

a(t+ 1)

Hne

d(t)

ne>

u(t)

Al = sub

-diag (l+r l+r

Functional Equations are:

Al d(t) + AZ u(t) + g m(t)

A dt) + A, ut)

.}l' u(t) + T m(t)

col(dl(t + 1'1), dz(t + 'rz), ey dK(t + TK))
col(ul(t + 1’1), uz(t + 'rz), 5 e uK(t + TK))
col(d, (t),d,(t), ..., dK(t))

col(ul(t). uz(t). se uK(t))
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(2)

(3)

(4)

(5)
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A, = -diag (r ,T,...,T ) (6)

P 1 K-1
A3=diag (rl,rz,....rK) (7)
A4= super -diag (l-rl,l-rz,...,l-rK_l) (8)
g =col(1+ro,0,0,...,0) (9)
h =col(1-r0,0,0,...,0) (10)
The notation is:
it 0 0. 0 0
sub-diag = ‘ , super-diag = , diag =
0 20 0 0 0

with the non-zero entries given in the above equations. Matrices A,
A, A3z, Ay are KxK, g, h are Kx1. Physically, Egs. (1)-(3) des-
cribe the interactions and transformations of the downgoing and up-
going states in a layered media. These equations are continuous-
time equations with non-uniform, multiple time-delays. They are
linear in the states; hence, we may decompose them in suitable form
and apply the principle of superposition to obtain a solution. The
output response, y(t), can be obtained by the convolution of the input
wave form, m(t), and the impulse response of the system, which is
itself a sequence of non-uniformly spaced impulses along the time-
axis. In general, those impulses will become more densely populated
on the time-axis as time increases.

3. Finite-Difference Technique

The system of equations in Section 2 can be converted into
standard finite-difference equations (FDE) by discretization of time.
Since the delay terms are non-uniform and not multiple of one an- |
other, we may have to choose a very small time interval, A, for
discretization. Below, we show the procedure to arrive at the de- |
sired FDE: |

First, let us find A, the greatest common factor of the delay
terms, such that 7;=k;4, i= 1,2,...,K. The k; are positive integers.
Let t=kA and define x(k)=x(kA). We make the following transformations
in Equ. (1) and (2):

dt+1) = dik+k,)
alt+1) = ulk+k)

Next, for each state with kj>1, we insert states of intermediate
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delays to obtain a unit-delay system. Specifically, we make the
following changes:

di(k+ki) + col (di(k+ki),di(k+ki- Psias .,di(k+ e 123,84, %K.
u,(k+k,) + col (ui(k+1),ui(k+2)',...,ui(k+ki)), fal l ... K
The above ordering of d;(k) and u;(k) preserves the structure of the

matrices Aj,A,A3 and Agy. After staking up the states into vectors
d(k+1) and u(k+1), we arrive at the following equations:

Ldk+1) = A d(R) + AL ul) + g' m(k) (11)
uk+1) = Al d(k) + .A. (k) (12)
y(k) = g‘ ak) + r, mik) (13)
where
: | )
dk+1) £ col (d (k+k )yevn,d (k+1) 1d (ktk,),oun,d (k+1) ] ...
= g beid 1 I e 2 St
A (k+i ), en, d (k4 1)) (14)
- . | !
ak+1) 2 col (uy(kt 1)y eweyuy(tky) fupet 1)y uyltky) | oo
Wk +1), oo, w (kK )) (15)
and

| |
Ai = sub-disg (L, Loes,d P2 R diuee, b fone 32, hlieia, )

1 K-1
(16)
o : | | 1
AZ = -diag (ro.O,...,O :rl,O,...,O ; .rK 1’ 5y v 55 ) ( LT}
' | 1
A3-dxag (0.....0,1'1:0,...,0,r2=...:0....,O,rK) (18)
| Sl ” ) 1 !
A4 = super-dtag(l,...,l,(l-rl): -..= l,....l.(l—rK_l):1.....1)
(19)
1 | | |
£ =col(l+ro.0,....0:0,...,0:...:0,...,0) ( 20)
h' = col (1-:0,0,....05o,...,oi...io....,o> (21)
= ) | 1 1 | 1
Let L=X k., then, dk),u(k),g ,h are Lx1, A, AL A LA, are
=1 = - 22
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To obtain the system's
unit pulse response we set

m(0)=1, and m(k)=0, k=21, = interface-i tr, )
Qur computational algorithm RN . ol IRy s -{!--—('-0)

for observation time up to ST ... “j‘_x_’_”___"_(“o)
TMAX is: ik )

Interface-i(r, )

(1) Initialization: k=0

1 Figure 2. Illustration to show in-

d(l) = g : g

sertion of new state vari-
¥ able for the ith layer
M =9 (42) where k, =34,
y(0) = 1,
(2) Recursive Step: k=1,2, ..., T—NZA;—)E'
dk+1) = id(k) + A u(k)
uk+1) = Al d(k) + A u(k)
1| ( 23)
y(k) = h" u(k)
Repeat.

Since each row of matrices Al,AZ,A3 and A4 has only one
non-zero element, the multiplication indicated in Eq. (23) is just a
collectxon of scalar multiplications. The non-zero entries of the
four A matrices are related and can be obtained from a single
array, A with elements (ro 3) New values of u(k) and d(k) can
be stored back into the state vectors; thus, we only need three arrays
for A, u(k), and d(k).

For our particular system, the insertion of states corresponds
to the dividing of a layer into equal sub-layers by inserting inter-
faces whose reflection coefficients are zero. This phenomenon can
be observed from the Al matrices in Eqs. (16)-(19). The particular
ordering of the states u(k) and d(k) can be understood from the way
the states are defined and is illustrated for the case k; =34 in Figure 2,

4. Ray Tracing Technique

In this section, we utilize the properties of linearity and the
causal nature of our equations to develop a ray tracing technique,
Instead of focusing on the interaction of states, we decompose Egs.
(1)-(3) and define the following mapping rules to track how a state
propagates at an interface:

N




r_ m(t) =+ y(t) j=0

0
d.(t . aqt - At + 7. s e B 24
J() I‘J J() uJ( TJ) J ( )
(l+rj) dj(t) - dj+1(t+Tj+1) e s T |
(-t u,(®) =+ y(t) j=1
uj(t) (l-rj_l)uj(t) - uj_l(t+'rj_l) T a0 Ges (1251
I b

L u,.(t + d.(t+T.
§u1 J() J( J)

We illustrate the interpretation of these mapping rules for
dj(t), in Eq. (24) in Figure 3.

Intertoce ~{J-1) ——————— | nles loCe - (K- 1)

/
iy Layer | ; Sy
Apllhemin odgt) —=y (1) d; (0 \ /rjditN) —=u;l1 4 7)) L AVAR AU el AL 7
- S v . (K
n..vm,;m—.c,nor,)"‘"""“ o uu,)q,(u--dm“.,;.gl"""""“’ BASEMENT inlerioce:th)
Layer 1
Intertace 1 Loyer j+I
Intertace{J+1)
(a) (b) (c)

Figure 3. The transformation of d.(t) into neighboring states at
(a) the surface, (b) jth interface, and (c) bottom interface.

In order to use Eqgs. (24) and (25), we need to have a state
reference table., Each element of the states in the table, called an
event, is characterized by its time and amplitude. A subroutine,
ISMAL, picks up the event of the next smallest time and processes
it according to the mapping rules, which are coded into the UP and
DOWN subroutines. The new events generated are stored back into
the table. As each event branches into two new events, the table
grows geometrically, To restrict the growth of the table, we use
two tolerance parameters, AMIN and 6T, and collapse events that
occur at the same time point before we store them back into the
table. AMIN controls the amplitude of the computed event. If that
amplitude is less than AMIN, it is set to zero. &T controls the time
separation of two events below which they are considered to occur at
the same time. The output is observed up to a pre-determined time,
TMAX.




5. Comparison of the Two Methods

If we expand the matrix multiplications in the Section 3 method,
we obtain the Section 4 mapping rules, from step k to k+1; hence,
the two methods are related. In the discrete method we keep the
history in the state vectors, and in the ray-tracing technique we use
a state reference table.

The discrete method is simple, easy to implement and recur-
sive; however, due to the non-uniform nature of the delay-terms, we
may have to use a A small enough such that it is a submultiple of
all the delay terms. The storage requirement is usually not exces-
sive. However, we may be computing zero for a lot of points on
the time axis where no events occur. Thus the CPU time may be
larger than for the ray-tracing technique.

The ray-tracing technique requires a slightly more complex
program to implement it. Its major disadvantage is the huge storage
requirement for the state reference table. Since this technique com-
putes only the actual event points, it can be very efficient and fast
for short observation time.

We present below three experimental results in testing the two
methods, using a PDP-10 KI interactive system:

Experiment 1: 3 layers, TMAX=5.00 minutes, A=0.001 minute,
AMIN=10-20, §T=10"° minutes.

T (0.3, 0.001, 0.5) minutes

(0. 8, e 3, 03, 05)

r

This experiment illustrates the potential problem of computing arti-
ficial zero points for FDE. The first non-zero data occurs at
k=600!

Experiment 2: 3 layers, TMAX =10 minutes, A=0.01 minute,
AMIN=10"7, 8T=10"5 minutes.

a
1}

(0.03, 0.01, 0.05) minutes
(0:8, =3, .35 .5)

a2}
"

This experiment illustrates storage problem for ray tracing technique.

Experiment 3: 19 layers, TMAX=2,20 minutes, A=0,001,
AMIN=10-5, 8T =102 minutes,




¢ = (.0l6. 080, .004, 023 ,@22 .005, .042, .028, .006,
SOd8s S0 006N G007 0720 005, 1080, 027, 038,
.014) minutes

= (99, 028 LS i061, 082 034" <068, ~.016, 168, -.008,

+ 108, .088, 114, ~.087, 026, -.,112, -.220, .076, .1856,
.039, -.229)

This experiment illustrates the problems of CPU and storage for a
large number of layers case.

Experiments FDE Ray Tracing

(1) CPU 4 min., 46.05 sec, 4.70 sec.
Storage 7400 8726
Number of Output 5000 436

(2) CPU 2.35 sec. 2.85 sec.
Storage 1027 3434
Number of Output 1000 163

(3) CPU 1 min. 20.80 sec. 1 min. 4.56 sec.
Storage 3538 73902
Number of Qutput 2200 976

6. Conclusions

In this paper we have presented two computational methods for
a class of causal functional equations. They are the discrete method
of finite-difference equations and the continuous method of ray-tracing.
The FDE has low storage requirement but may run into high CPU
time-spent if the sampling interval, A, is too small. The ray
tracing technique has a large storage requirement but can be very
efficient for short observation time and small number of layers cases.
The actual choice of a particular method will depend on the input
data set. A sample plot of the unit impulse response for Experi-
ments 1 and 2 is illustrated in Figure 4.
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Figuré 4. Unit Impulse Response for Experiments 1 & 2. Observe the
rapid decay in amplitudes of the impulses.
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