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Presented at Symposium on A pplications of Computer Methods in

Engin eer~p~g, Univers i ty  of South~ rr California , Los Angeles ,
California 90007 , August  Z3-26 , 1977.

COMPUTATIONA L SOLUTIONS TO A NON-UNIFORM TIME-DELA Y
LINEA R SYSTEM

W . M. Chan , N. E. Nahi~
1
~ and J. M. Mendei~~

b liC re10as~~
~or

Summary

Two computational methods are considered for a class of non-
un iform, continuous , multiple time-delay linear systems, which have
been developed in the modeling of lossless layered media. In the
firs t  approach , we discre t ize  the time axis and insert  states of
intermediate delays , to ar r ive  at a set of standard f ini te-difference
equations. For our particular system, matrix multiplications can be
reduced to simple scalar multiplications. In the second approach ,
we defin e mapp ing rules for the t ransformation of states at an inter-
faces , and keep a state referenc e table for look-up and branching.
The procedure is s imilar to ray-tracing.  Several experimental re-
suits are  presented to show the trade-off  between s torage  requirement
and CPU time-spent for  the two methods.

1. Introduction

In the development of time-domain state space model’ for loss-
less layered media , Mendel et. al. [1] have arrived at a class of
non-uniform , multiple , continuous , time-delay linear equations.
These equations are  termed Causal Functional Equations. In this
paper we will discuss two computational methods to obtain a solution
for this class of equations .

The immediate application of this solution is to generate
synth etic seismograms for geop hysical study (e .g. , in testing decon-
volution algorithms and inversion techniques).  As mentioned in the
paper by Mendel et. al. [1], this class of equations can also be used
to model lossless transmission lines and certain acoustic , optical
and electromagnetic systems.

In the n ext section we will give a formulat ion of this class of
equations and discuss some of its characteristics.  In Section 3 we
discuss the method of discretization of the time-axis and the proce-

I. Department of Electr ical  Engineering-Systems , University of
Southern California , Los Angeles , Cal i forn ia  90007.
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dure  to obtain a standard unit -
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A ray t rac ing technique using 
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cussed in Section 4. In _________________

the two methods in terms of $ u n  -
plicity, s torage r equirement and CPU •

~~~~~~~ 2( r ~~\,~~ \ ‘ \time-spent. Some experimental re-
~~~~ 3suits are  presented. We conclude

with a summary of results and a sam-
pie plot of unit pulse response for 

- ~.V&ø c s-(M -2~( ,  ,~layer ed earth media. //~~J
’
~ ~~~~~~~ ~~

~~~~~~~ 

; ; 

s2 . Causal Functional Equations
L~~yI ’ ~ (r , ’Q

A system of K layered ‘

~
- -

~~ , 
-

media is depicted in Figure 1.
For each layer , we define two
states: u~(t) and d~(t) .  which Figure 1. System of K layered
are the upgoing and downgoing media.
states at the (j - l) t h  and jth
interfaces respectively. The r eflection and transmis sion charac teri s  -
tics at an interface are modeled by the reflection coefficient s , r .
Within the layer , the state only suffer a time delay, i~~ . A moi~e
detailed description can be found in Mendel et. al. [ 1] .

The Causal Functional Equations are:

d ( t + T )  = A 1 d(t)  + A 2 ~.i(t) + £ m(t) ( 1 )

u(t 4- T) = A 3 d(t) + A4 u( t )  ( 2

1(t) = h u(t)  + r
~ 

in(t) ( 3

where

d(t + T) ~ coi(d 1(t +  T 1), d 2( t +  
~~~~~~ 

.. . , d
K ( t +  T

K
))

u(t 
~i) col(u 1(t + ~~~ u 2(t + 

~2~’ . , u
K

(t + 
( 4

d(t) ~ col(d 1(t), d 2 (t),  . . . , d
K

(t))

~ coi(u 1( t ) ,  u 2 ( t ) ,  . . . , u
K

( t ))

and

A 1 = sub_d1ag ( 1÷ r 1J l+ r 2~~...~~1+r ~~~1) ( 5 )



A 2 = -diag (r
0 , r~ , . . . , r~~~1

) ( 6

A 3 = diag (r l, r Z . . . . . r K
) ( 7 )

A4 = super-diag ( 1 - r
1
, 1 - r2, ..., 1 - r~~~1) ( 8

£ = col ( l + r 0
, 0, 0 , . . . , 0) ( 9 )

h = col (1 -r 0
, 0, 0, . .. , 0) ( 10

The notation is:

sub-diag ~~~~~~~~~~~~~~ super-diag 
=(

~~~

..) ,  diag =(\
\

0)

with the non-zero  entries given in the above equations. Matrices A 1
,

A 2 , A 3, A4 are  K x K , £‘~~ 
are K X l .  Physically, Eqs. ( l ) - ( 3 )  des -

cribe the interactions and t ransformat ions  of the downgoing and up-
going states in a layered media. These equations are  continuous-
time equations with non-uniform , multiple t ime-delays. They are
linear in the states; hence , we may decompose them in suitable form
and apply the principle of superposition to obtain a solution. The
output respons e, y( t ) ,  can be obtained by the convolution of the input
wave form , m(t) ,  and the impulse response of the system, which is
itself a sequenc e of non-uniformly spaced impulses along the time-
axis. In general , those impulses will become more densely populated
on the t ime-axis  as time increases.

3. Fini te-Difference Techniqu e

The system of equations in Section 2 can be converted int o
standard f ini te-difference equations (FDE) by discretization of time.
Sinc e the delay t erms are  non-uniform and not multiple of one an-
other , we may have to choose a very small time interval , A , for
discretization. Below , we show the procedur e to ar r ive  at the de-
sired FDE~

First , let us find A , the greatest common factor  of the delay
terms , such that = k~A ,  i 1, 2, .. . , K. The k~ 

are  positive integers.
Let t = kA and define x(k) = x(kA). We make the following t ransformat ions
in Equ. ( 1 )  and (2) :

d(t +~ ) = d(k+k 1)

u(t +~ ) = u ( k +k .)

N ext , for each state with k~ > l , we Insert states of Intermediate



delays to obtain a uni t-delay system. Specifically,  we make the
following changes:

d . ( k+ k . )  -. col (d . ( k ± k .) , d . ( k + k . - 1) , . . . , d .( k + 1 ) ) ,  i =  l , 2 , . . ., K.

u . ( k + k . ) -s coi (u .( k + l ) , u .(k + 2 ) , . . . , u .( k -~-k .) ) , i = 1 , 2 , . . . , K .

The above ordering of d~(k) and u i(k)  preserves the s t ruc tu re  of the
matrices A 1, A 2 , A 3 and A4 .  After staking up the states into vectors
d(k + 1) and u(k + 1), we a r r ive  at the following equations:

d ( k + l )  = A~ d(k) + A~~ u(k ) + £ rn(k) ( 1 1 )

u (k± l)=A~~d ( k ) + A ~~u(k) ( 1 2 )

~ (k) = u(k) + r 0 m(k) ( 1 3

where

d ( k + 1)  col (d
1

( k + k
1
),...,d

1
( k + 1 )  d

2
( k + k

2
),...,d

2
( k + l )

d
K

( k + k
K
)
~
...,d

K
(k+l)) (14 )

u ( k + l )  col (u
1(k+l),...,u ( k + k 1

) u
2(k+l),...,u2( k + k

2) ...— 1 p 1

( 1 5 )

and

A~ = sub-diag (1, 1,..., 1 I (1 + r 1
), 1,..., 1 ... (1 + rK l ). 1,..., 1)

(16

A~ = -diag (r 0 , 0, . . . , 0 r 1, 0, . .. , 0 1... 
~

r
K l

, 0, . .. , 0) ( 1 7 )

A~ = diag (0 , .. ., 0, r 1 O , .. ., O , r 2 ... O
~~
.. ., O, r

K
) ( 1 8 )

= super-diag (1 , . . . ,  1, (1 - r
1

) ... 1,..., 1 , (1 - rK l
) I ~~~~~ 1)

( 1 9 )

£
1 

= col ( 1+ r 0
, O, .. . , O~ 0, . . . ,0 ... 0, . . . , 0) ( 2 0 )

= col ( l — r 0 , 0, . . . , 0 0 , . . . , 0 ... O , . .. , 0) ( 2 1 )

Let L =  E k. , then , d(k) , u(k) ,j ’, h 1 are  L x i , ~~~~~~~~~~~~~~~ are

L x  L. 

- -~~---~~~-~~~--.-- — - -.



To obtain the system’ s
unit pulse response  we set
rn( 0) = I , and rn(k) = 0 , k ~ 1 . ~n~.r’~ce -i r ,
Our computational al gor i thm — — — .7~-~--- — — ~O)

for  observation t ime up to ~~~~ 
U
:~

K
.i .~

)
_ _IA_(r.O)

TMAX is: 1 d ( K )  ~~u~ X 2 )  Ta
In le r la ce —u( r , )

(1) Initialization: k = 0

1 Figure 2. Illustration to show in-d( 1 ) =
— sertion of new state van-

u’1) - 0 I 22 able for the ith layer
— 

— ‘ ‘ where k. = 3A .
I.

y(O )  = r
0

TMA X(2 )  Recursive  Step: k 1 , 2 , . . . ,  
A

d(k + i )  = A~ d(k) + A~ u(k)

u(k~~1) = A ’ d(k) + A 1 u(k)
( 2 3 )

y(k)  = h u(k)

Repeat.

Since each row of matr ices A 1, A 2 , A 3 and A4 has only one
non-zero element , the multiplication indicated in Eq. (23) is just a
collection of scalar multiplications . The non-zero entries of the
four  A~ matr ices  a re  related and can be obtained f rom a single
ar ray ,  A , with elements (r 0~ A~~). New values of u(k) and d(k) can
be stored back into the state vectors;  thu s, we only need three a r rays
for A. u(k) ,  and d(k) .

For our particular system, the insertion of states corresponds
to the dividing of a layer into equal sub- layers  by inserting inter-
faces  whose r eflection coefficient s are  zero. This phenomenon can
be observed f rom the A ’ matrices in Eqs. ( 16 ) - ( 1 9 ) .  The part icular
ordering of the states u(k) and d(k) can be understood from the way
the states are defined and Is illustrated for the case k~ = 3A in Figure 2.

4. Ray Trac ing  Technique

In this section , we ut i l ize  the propert ies of l inearity and the
causal na ture  of our equations to develop a ray tracing technique.
Instead of focusing on the interaction of states , we dec ompose Eqs.
( i ) - ( 3 )  and define the followIng mappin g rules to t r ack  how a state
propagates at an interface:



r
0
m (t) - y (t )  j = 0

d.(t) r . d.(t) -~ u . ( t + T .) j = 1,. ..,K ( 24

(11- n .) d.(t) -, d . 1 ( t + i .1-1
) j =

( 1 — r 0) u 1(t)  -, y(t )  j = 1

u~(t ) ( 1 - r
i ,

) u~(t) u~..1 ( t +  ¶j .~ ) j = 2,... ,K ( 2 5 )

— r . 1  u.(t) -. d.(t+i .) j = 1,.. .,K

We illustrate the interpretation of these mapping rules for
d.(t), in Eq. (24) in Figure 3.
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Figure 3. The transformation of d~(t) into neighboring states at
(a) the surface, (b) jth interface, and (c) bottom interface.

In order to use Eqs. (24) and (25) ,  we need to have a state
reference table. Each element of the states in the table , called an
event , is character ized by its time and amplitude. A subroutine,
ISMA L, picks up the event of the next smallest time and processes
It according to the mapping rules, which are coded into the UP and
DOWN subroutines. The new events generated are  stored back into
the table. As each event branches into two new event s , the table
grows geometrically. To restrict  the growt h of the table , we use
two tolerance parameters, AMIN and 6T , and collapse event s that
occur at the sam e time point before we store them back into the
table. AMLN controls the amplitude of the computed event. If that
amplitude is less than AMIN , it is set to zero. 6T controls the t ime
separation of two events below which they are  considered to occur at
the same time. The output Is observed up to a pre-determined time ,
T M.AX .

____



5. Comparison of the  Two Methods

LI we expand the matrix multiplications in the Section 3 method ,
we obtain the Section 4 mapping rules , f r o m  step k to k ±  1; henc e,
the two methods are related. In the discret e method we keep the
his tory in the state vectors , and in the r ay - t r ac ing  technique we use
a state reference table.

The discrete method is simple, easy to implement and recur-
sive; however , due to the non-uniform na ture  of the delay- terms , we
may have to use a A small enough such that it is a submultiple of
all the delay terms . The storage requirement  is usually not exces-
sive. However, we may be computing zero for a lot of points on
the time axis where no events occur . Thus the CPU time may be
larger than for the ray-tracing technique.

The ray-tracing technique requires a sli ghtly more complex
program to implement it. Its major disadvantage is the hug e storage
requirement for the state re fe rence  table. Since this technigue com-
putes only the actual event point s , it can be very efficient and fast
for short observation t ime.

We pr ’esent below three experimental results in testing the two
methods , using a PDP-l0  KI interactive system:

Experiment 1: 3 layers, TMA X 5. 00 minutes, A = 0. 001 minut e,
A ML I 10 Z0 , 8T = 10 5 minutes.

1 = (0. 3, 0.001 , 0 .5)  minutes

r = (0. 8, - .3 , .3 , .5)

This experiment i l lustrates the potential problem of computing arti-
ficial zero point s for  FDE. The fi rs t  non-zero data occurs at
k =  600

Experiment 2: 3 layers , TMAX = 10 minutes , A = 0 . 0 1  minut e,
AMIN = 10- ’ , 6 T = 10 5 minutes.

= (0.03, 0.01 , 0.05) minutes

r = (0. 8, - . 3 , . 3 , .5 )

This experiment illustrates storage problem for ray tracin g technique.

Experiment 3: 19 layers , T M A X= 2 . 20 minutes , A = 0 . OOl ,
A M I N = l O 5 , 6 T = 1 0 5 minutes.



= ( . 0 1 6 ,  .050 , .004 , . 02 3 , . 0 22 , .015 , .042 , .028 , .006 ,
.038 , .003 , .006 , . 007 , .072 , .005 , . 030 , . 027 , .038 ,
.014)  minutes

r = ( .99 ,  .028 , - .061 , . 082 , .034 , - .068 , - .016 , . 168 , - . 008 ,
° .108, .058 , .114 , - .057 , .026 , - .112 , -. 220 , .076 , .156 ,

.039, -. 22 9)

This experiment illustrates the problems of CPU and storage for a
large  number of layers  case.

Experiments FDE Ray Tracing

( 1 )  CPU 4 m m .  46 .05  sec . 4 .70  sec.

Storage 7400 8726

Number of Output 5000 436

(2) CPU 2.35 sec. 2.85 sec.

Storage 1027 3434

Number of Output 1000 163

( 3) CPU 1 m m .  20.80 sec. 1 m m .  4.56 sec.

Storage 3538 73902

Number of Output 2200 976

6. Conclusions

In this paper we have presented two computational methods for
a class of causal functional equations. They are the d iscre te  method
of finite-difference equations and the continuous method of ray-tracing.
The FDE has low storage requirement but may run into high CPU
time-spent If the sampling interval, A , is too small. The ray
t rac ing  technique has a large storage requirement but can be very
efficient for  short observation t ime and small number of layers cases.
The actual choice of a particular method will depend on the input
data set. A sampl e plot of the unit impulse response  for  Experi-
ments 1 and 2 is i l lustrated in Figure 4.
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F igure  4. Unit Impulse Response for  Experiment s 1 & 2 . Observe  the
rapid decay in amplitudes of the impulses.
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