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1. INTRODUCTION

The need for detailed terrain models in tactical simulations involving ground
combat has resulted in considerable manual effort being applied to reading
terrain heights from contour maps. An increased demand for terrain models has
led to the examination of ways of making better use of data graphics equipment
such as that used by cartographers(ref.1) and sonic digitizers suitable for map
reading.

There is one obstacle in the way of using the above equipment and thereby
significantly reducing the manual effort required to construct a terrain model.
This is the fact that the programs in use require terrain information at the
intersections of the grid lines of a rectangular grid system, but map reading
equipment produces data in the form of contours. This could be dealt with by
redesigning the tactical simulation programs to use contour information directly,
but it is much more difficult to design a simulation which is not based on a
rectangular grid and its running time would be considerably greater. The
alternative is to change the data, i.e. convert the contour information into
grid-point information by a suitable interpolation procedure and leave the program
unchanged. The latter seems to be a more satisfactory approach. There are
many ways of producing a bivariate interpolation function which is an exact fit
to a regular lattice of data points, but an exact fit is rare when the data is
irregularly spaced. This is the problem addressed in this Technical Report.

Some techniques are available(ref.2,3) for drawing contours from both
regularly and irregularly spaced data, but these shed little light on the problem
of converting contour data to grid point data which does not seem to have been
dealt with specifically in the literature. Digitized contour data can, of
course, be treated as irregularly spaced data, an interpolation being carried out
at each grid point using a weighted sum of a number of the surrounding data
points. These methods have been discussed in reference 4. They suffer from a
number of disadvantages for the type of problem dealt with here. For example
they do not make use of the intrinsic regularity of the data. Furthermore,
unless "spot heights'" (i.e. degenerate contours at the apex of hills or centres
of depressions) are included in the data and are given special weighting the
resulting interpolation can flatten these areas by an amount which is noticeable.
This is especially significant in "line of sight" studies where observers utilize
hill tops. In such situations small discrepancies near the top can make large
differences in the area of visibility.

The solution presented here attempts to use the additional information
contained in the fact that the data, although not on a regular lattice, is not
randomly positioned but organised in the form of contours. It will be shown
that a knowledge of surface slopes will overcome the problem of flattening peaks
and troughs.

The requirement can be summarised as follows: Find a bivariate interpolation
procedure which accepts and makes optimum use of contour data to generate
terrain values on a regular lattice of points, so that a smooth continuous
surface can be fitted to all points.

The uniqueness and especially the minimum curvature properties of bicubic
splines (ref.5) made them prime candiates for the solution of this problem.

The treatment of bicubic splines usually pre-supposes data points at the
intersections of a rectangular mesh. Since data was not available in this form
a new method had to be developed. This was done by the procedure described
below resulting in an accurate and fast algorithm for producing a terrain surface
satisfying all the requirements stated in the summary of the problem given in

the previous paragraph.
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2. THE DATA BASE

Since contours are continuous and this was to be a digital process the first
step was to decide on the data base to be used. This was a selection of (x,Yy)
pairs on the contours, each pair being assigned the value z of the contour on
; which it lay. The required rectangular, and regular grid system onto which the
F contour data was to be transferred was superimposed onto the contour map. Each

intersection of a contour and a grid line was taken as a data point (see figure 1).
If in addition to this information the slope of the terrain was measured in the
positive direction at the extremities of the grid lines, it would be possible to
fit a unique linear cubic spline to the data points along each x grid-line and
each y grid-line. This defined a network of two sets of splines, one set
running in a direction at right angles to the other. Each line from one set
crossed every line from the other. At the crossing point (xG, yG) of splines

on the grid-lines x = Xg» ¥ = Y data values z(xG),z(yG) of the two splines are

not in general identical, (see figure 2). The first real problem was therefore
to determine a way of choosing a value of z between z(xG) and z(yG) which

preserved the continuity and smoothness of both curves while minimizing curvature
over the four new splines. This is done in Section 3.

3. A NECESSARY CONDITION FOR THE INTERSECTION OF TWO SPLINES

Linear spline interpolation can be defined as follows(ref.5) -
Let A: a = x <x3 <...... <3xM = b

: and a set of real numbers fzif (i=0,1, ...... M) be given. A function f(x) of
: class C** such that f(xi) =y and which has given slopes po = f (xo) and

pM = f'(xM) at the two end points is referred to as a spline function and is
denoted by SA(f;x). In particular if the interpolating function f(x) is a cubic
polynomial the spline is called a linear cubic spline. Let L(x; Xo, X3, ... xM)

denote the linear space of all functions f(x) of class C? on the interval
(xo , xM) which are equal to a cubic polynomial in each of the intervals

[xi-l’ xil i=1,2, ... M, i.e. piecewise cubic. Then the following theorem
holds (ref.6) - !
Theorem 1. For each set {z°, z', ..., %%, Po s pMi of values there exists 3

exactly one f(x) € L(Xx; X0, ..., xM) such that

: fix) « 2.4 01 L) m, ) s gy

A continuous curve f(x) has a radius of curvature p(x) given by the expression -

Teyy 372
pro = (F LN

The reciprocal of this cxpression is the curvature at x. When p is large,

Lot b o

* This implies that the second derivative of the function exists and is contin-
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curvature can be approximated by £ ' (x). Since this can be positive or negative ,
the square of the curvature is often used, as in the following theorem: |
Theorem 2. Let A and Izil be defined as before. Then of all the functions ’
f(x) having a constant second derivative on the interval [a,b] and
such that f(xi) =z (i=0,1, ..., M); the spline function
Sp(f;x) with junction points at the x, and with SZ:(f;a) =

Sp (£;b) = 0, minimizes the integral

b
j’ [£'(x)]? dx

a

This theorem, due to Holladay(ref.7), is often called the minimum curvature

property.
Consider a three dimensional Cartesian coordinate system in which two linear

cubic splines are defined. One, SAx(f;x) on the line y = Ye and the other
SAy(g;y) on the line x = Xg where,

il et S 8 bbbl s i i N

for all i,

Ox: a b X, # x

1
&

A
o,

A

A
-
"

G

d Y; * Ye for all i,

"

&
A

=
A

by: ¢

A
<
=
]

Spc(£:8) = po, Sy (£50) = p,
' - ' by =
SAy(g;c) = Qo, SAy(g,d) qN
Let Xg lie in the segment (xu-l’ xu) and e be in the segment (yv—l’ yv). We

wish to consider an additional joint in both splines so that the new splines
sAx ’ SAVG satisfy,

G
AxG = g = X3 <Xi <,,,<xu_1<xG<xu<...<X.M = b
Byg ® & & 3§ SYLE ks ST R¥e TF, S aes Ly, = ,
with the requirement that -
A A ;
Sax (EiXg) = Sp, (&) = h ,
G G
and
SAXG = Sp, except on [xu-l’ xu]
SAWG = SAy except on [Yv-l’ yv]
In particular note that % ;
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s'AxG(%; i) G X

Po i oA
’ A
SAyG(g; yV-l

' A
SAVG(E; Yv)

We now wish to determine four functions

21 (x)
z2 (x)
z3 (y)

za (y)

Satisfying the relations -

z"(xu-l) % SAXG(ﬁ; xu—l)

= SA*(f; x)
Y e G tgiy, j)

- ' A
= SAy(g: yv)

on [xu_l; xG]
on [xG; xu]
on Ly, 43 ¥gl

on [yg; vyl

’ ’ A
23y, ) SAyG(g,yv_l)

A0 = Sy (B x A0 = Sy @ )
A A
21 (x,_4) sAxG(f; X,-1) z3(y,_1) SAYG(g; yv_l)
n(x,) = sAxG(?; x,) u(y,) = sAyG(Q; y,)
21 (xg) = z2(xg) z3(yg) = zalyg) = h
and
zi(xc) = zQ(xG)
2 (yg) = za(yg)

and such that the functional -

v(zi1(x), z2(x), z3(y), za(y)) =

Y
*/G [23" (»)]?
yv—l

is minimized.

u-1

Yy
dy f Vi ol dy
Y6

xG X
[ [z" (x)]? dx +[u [z (0]? dx
X X

(1)

(2)
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The latter requirement is in keeping with the minimum curvature property of
the previously defined sections of the splines (i.e. outside the segments
(Xyo10 X0 Oyogs 7))

The problem is one of determining an extremum, i.e. a functional which
minimizes the overall curvature in four functions, each of which is fixed and
has a fixed slope at one point and which meet at the point (x,, Yg» h)

(h arbitrary) with the added provision of continuity of the first derivative in
both the x and y directions in the neighbourhood of (xG, Ygr h).

A necessary condition for an extremum can be obtained from the "Calculus of
Variations" (see reference 8). A set of curves C = (21 (x), 22(x), z3(y), 2z (¥))
providing an extremum must satisfy the Euler-Poisson equation which for
functionals of the form -

t1

v(z(t)) = .[ Plt, 2,02, wres z(“)) dt
to

is the nth order differential equation -

n

d d? nd n
Fz -‘d—t'Fzr -""a‘;! szr + ...+ (-1) 'd—xn Fz(n) = 0 (3)

where Fp denotes the partial derivative of F with respect to p.

For the functional (2) the set C must satisfy the four equations -

F -LF'+‘41!’F” = 0 = 152)
z dx " z. axt z. i
i i i
(4)
R Vel e TR
z; dy z :57 i 2
obtained by repeated use of equation (3). The general solutions of these
fourth order differential equations are the four functions -
T T T T T T
o O T T R
each of which involves four arbitrary constants. These will be obtained from

the boundary conditions and the fundamental necessary condition for an extremum,
v = 0.
Since the F are functions of z;r alone, we have -

P, « 0andFy .5 0 i « 1, .., %)
i i

so that the equations (4) become -

B A B SN A R 4V MR, 1810 AT e

v
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d? 1 d? :

o Fz;: =401 = 1,2) '3;1 Fz;, = 0 (1 = 3,4)
or

P = 006G = 1,2 Py = 0d = 38

The sclutions are therefore the cubic polynomials

3
2 R
23(x) = Z aij X (i 1,2)
j=0
3
2 j g
Zi(y) T Z aij i (1 55 3)4)

(8
[}
(=]

The equation (1) provide only 13 independent relations, therefore 3 additional
conditions are required to solve for the sixteen coefficients.
The four z, terminate or begin on the line x = Xg» ¥ =Yg By considering

the arbitrary variations 826, Bz;G, Gz;G and the fundamental necessary condition

for an extremum, namely 8v = 0, (see Appendix I) the following relations can be
derived -

d d )
- F -<-F s S=F | -5 F = 0
dx "z’ |x = xg- dx 22 | x = xgt  dy z3' |y = Yoo za'ly = Yot
F i ¥ - F 1 = 0 &
21 [ x = X5 22 [ X = Xg* (5)
F oo - F = 0
Z3 |y = yG"' 3 | Y = yG+
P
: ’ d : 5
Since Fz;. = Zzi' and therefore — F r+ = 223'2 the equations (5) can be
written as -
21 (xg) - 1" (xg) v ) - Wy =0
21’ (%) - 22" (xg) = 0 (6)

0

i«

23’ (yg) - 2’ (¥g)

or since
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2 (x) = 2a,, + 6a

i . 2. (x) = 6a, i = 1,2

i3 *» % i3
and

L 1 .
2, (y) = 2a,,+6a,.y,z; (¥) 6a., (i = 3,4)

these can be written as,

ai3 - a3 + az3 - a3 = 0
2a;, + 6a;3 xG- 2a32 - 6azs XG = 0 (7)
2a3; + 6a3; yG-Zan - 6as3 e 0

These provide the remaining 3 relations required to uniquely determine the sixteen
coefficients a ;. These can readily be shown (after arranging the aij for

convenience in the subsequent reduction) to satisfy -

(Cla = b
where -
af = [ano,azo,ano,aAO,all,azl.aax,a4|,alz,azz,832.333,813,323,342,343]
’ ) ’ ' U
lz:(xu_l),Zz(xu),Z3(yv_1),24(yv),z|(xu_l),Zz(xu),zg(yv_l),z.(yv),o,...,ol
and
2 3
T ! u X1 X 7
1 % “ x
3 u3
) Ye1 Vo1 v
2 3
1 Vv yv y\l
2
1 2xu—1 3xu_‘
1 2x a?
u
2
! 2vv-13vv-l
lC] - ! 2yv 3v:
1 r & 2 3 T R
L Y6 %G *G Y6 Yo
i - 2 8.3 .8
! ? *s G s *6 Vg VG
1 & 3 3 P
Yo Yo Ye Yo Ye VG
1.1 < -1
3 )
1 22 3xg -3,
% 2 ke et
-1 -1 2VG QVG 2VG :ivG
2 -2 OxG-GxG
3 2 6yg 2 4wG_J
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This matrix was then reduced to triangular form by elementary row operations
(see Appendix II), the same operations being applied to k. Thus a set of
relations defining the aij could be written down. These are shown in

Appendix III, together with a program for determining the values of the aij

for any given boundary values.

4. BICUBIC SPLINE INTERPOLATION FROM CONTOUR DATA

The primary aim of this Technical Report was to Establish the result given in
Section 3. There are a number of ways of making use of this result to define a
surface which is representative of the surface described by the original
contours. To make best use of the properties engendered by the process used to
derive the lattice point data, piecewise bicubic interpolation should be used.
This is described below.

4.1 Use of the lattice-point data alone

Consider a rectangular area on which a data base has been established as
in Section 2 and on which the value of z has been determined by the method

of Section 3, for each of the lattice points (xi,yj) I (e T (R
B (R [ And furthermore that there be given values -
) A 3
z(xi,yj) i =t 0ST Q5 ey
gl (0 fr L R [ |
le = zx(xi’yj) 1 = O’I) J = 0) Ll LR ) J < (8)
qij = zy(xi,yj) I 0 ) £ TR SR+ PSS SRR |
sij = zxy(xi’yj) i =101, 3§ = 0,J |

(See figure 3 which displays the position of the data graphically). Then it
has been shown(ref.6) that given the above values, the following theorem

holds:
Theorem 3. There exists exactly one piecewise bicubic function z(x,y) of
the form -
142 J+2
2(xy) = Z Z B, @ () ¥ )
m=0 n=0

where the ¢ and ¥ are piecewise cubic and of class c? on

R: xo<x<x1. Yo Sy Ry,

This theorem establishes the existcnce and uniqueness of the desired function.
Furthermore an efficient computational scheme for its evaluation has been

given in the same paper. Within a given rectangle Rij: X1 <x < X5
yj_] Sy < yj, the interpolating function z(x,y) equals a bicubic polynomial,
& -+ P m z n
¢ (x,¥) Z m{C R Wl R A 9)

m,n=0
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The problem has been reduced to the easily handled case of a regular mesh
at the cost of being removed one step further from the original data since
the values z(x,y) forming the data base of Section 2 are no longer involved
explicitly.

4.2 Retaining the data base

In order to fit a surface to both the data base points and the lattice
points it would be necessary to divide the X-Y plane over the region of int-
erest into rectangular areas by connecting the data base points
1(xi,yj), yj =y, on grid line y = Yn to adjoining grid lines y = ¥ 1 and
Y * Yae1
I(xi.yj), X, = xm}, on grid line x = X with adjoining grid lines x = x

by means of perpendiculars, and likewise the data base points

m-1°

X = The values of z and either p or q at the corners of the

X
m+1
resulting rectangles could be determined and hence linear cubic splines for
these connecting lines derived. Also the values of z and p or q at the
intersections of such connecting lines could be obtained. Some means would
then have to be devised to obtain the sij at the corners of each of the

rectangles rormed by this process. Then within each such rectangle a bicubic

sp)iae of the form given by equation (9) would be used as the interpolating
function. The increased effort which would be involved (if in fact a
suitable method for determining the sij could be devised) does not seem

warranted by the expected increase in accuracy.

5. DISCUSSION AND COMPARISON WITH INVERSE DISTANCE WEIGHTED INTERPOLATION

The existing approaches to the problem of interpolating from irregularly

spaced data have been summarized in reference 4. The most successful one is
based on assigning a weighted sum of local values to the point at which inter-
polation is required. The weighting function may be a pure inverse distance

function, where in the neighbourhood of a data point the interpolated value is
computed from the difference of two almost equal numbers, which results in
significant computational error. Another disadvantage for terrain modelling
work is the fact that the method imposes zero directional derivatives at each
data point; a suitable choice of exponent would alleviate this problem to some
extent. It has been discovered empirically that a value of 2 for the exponent
is best. Modifications to improve the weighting function include:

(a) adding a small constant to the denominator to improve the performance
near data points,

(b) using an exponential form to improve smoothness while using only a small
number of local data points,

(c) including direction in the weighting function, and

(d) (of particular relevance to the current application) attempting to correct
the undesirable property of zero directional derivatives at the data
points by the introduction of slope into the weighting function.

The process described in reference 4 for implementing method (d) was somewhat
arbitary and considering the importance of slope in '"line of sight'" work
especially at hill tops where it is critical, it was considered that a new
approach was required, and this has been provided in Section 3.

To illustrate the difference between various methods, an example taken from
reference 3 of an analytic surface representing '"a steep hill rising from a
plain'" defined by the funciton -

o L8} + (y-5)*]

L e .
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was used. Contours at intervals of 0.2 were calculated with a data base
extracted using the technique described in Section 2, The relevant calculations
for the bicubic spline method are described in Appendix IV.2, and the results are
illustrated in figure 4.

Two interpolation procedures based on inverse distance weighting functions were

also used. The first was the simple case with w(d) = d-z given by(ref.4).

\ .
{Z d'izzl}/z d;z if d; # 0 for all N data points

Z(P) | i=1 i=1

=ak gy ifd. =0
i

\

where P is the point at which interpolation is required
zi i=1, ..., N are data points
di is the distance between P and the ith data point
N is the number of data points

This method is poor for the current application since it produces a dip in
place of a crest at the critical point - the apex of the hill. This flattening
of hill tops and valley floors which is characteristic of weighted inverse
distance smoothing is alleviated to some extent by incorporating two quantities
Ai and Bi which represent the desired slopes in the x and y directions at the ith

data point and are weighted averages of the divided differences of z about that

point. They are given by the expressions (see reference 4) -
A INE s el s et N
a6 ST
i d 0., DJ* i
& J i
gt j=1
j# A
N a2z - 20y - ¥y A
B, = d;?
i }E: dip,, D.]? :J /Z{: i
i
i=1 j*1
A i
th

where d(Dj, Di) is the distance between the i~ and jth data points. The inter-

polating function then becomes -

N N
ey : T
2 {:L d;’ & + Azl)} /Z d;’ If di # 0 for all u data points

Z(P) A i=1 i=1

s 2 Ifd, =0
1

W T R PR Ty o
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AV AR [Ai(x - xi) + Bi(y - yi)l Ly Z diJ

and

vV = 0.1[max{zif - minfzif]/lmaxiAi + B;}]!5
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This method removes the dip produced by the previous function and achieves a
value of 0.901 at the apex. The curve fitted by the bicubic splines method
however achieves the value 0.968 giving a better approximation to the desired
curve with a value of 1.0 at the apex. The data used and the values of the

interpolation functions at selected points are shown in Table 2.

6. CONCLUSIONS

A method has been developed which enables more efficient use to be made of the
data from automatic map reading instruments. This can now be processed by the
means outlined in this Technical Report intoc a form which can be used directly

in existing terrain and vegetation models.

The technique for determining the minimum curvature solution for the inter-
section of two splines has more general applicability. For example it would

provide a good method of estimating the values of missing data points in a

regular mesh data set.
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Fz' iz an
i i

i,j
H, (k)

H, j(k)

ij
R ik

5

L
1]

(xgsYg22¢)

X
u-1"%u

ST T
NOTATION
A A .th e
T (R RO A T P el ) L e The j coefficient

.th

in the i of the four cubic functions.

the vector (ajo,a20,aso ;340,311 ,321,331,34),212,322,332,
233 ,a13,323,342,343)

the vector (z:(xu_l).Zz(xu).zs(yv_l).za(yv),21(xu_l),z;(xu)
23 (v, ;)2 (7,),0,0, ..., 0)

9F (x1 23y 24 zi)

i=1,2
b} z,
OF (y1 2i5 25 zi) g T
N i= 3,4

i
similar definitions to those for Fz
i

interchange the ith jth TOWS

multiply every element in the ith row by a non-zero scalar k

th

add to the elements of the i~ row k (a scalar) times the

corresponding elements of the jth TOoW

z'(xi)

9z (x;,¥;)
ax

2’ (¥;)

9z(x;,y;)

___5;__1_

an element in row i, column j as modified at operation
number k

the term in L corresponding to Rijk
9z(x,,y.)
x Oy

respectively refer to the three Cartesian coordinate axes

particular values of x and y

the coordinates of the inserted joint

the segment containing the value Xg
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A i
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the segment containing the value Yg

the value of z at the point (xi, yi)

a particular value z(xi). or z(xi, yj) for a fixed j

a particular value z(yi), or z(xi. yj) for a fixed i

zi(x) i=1,2 }
zi(y) i=3,4

The four functions to be optimized with
respect to curvature

the value zk(xi) k =1,2
or zk(yi) k = 3,4
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APPENDIX I

1 A PARTICULAR CASE OF THE FUNDAMENTAL NECESSARY CONDITION
FOR AN EXTREMUM

An increment Av of a functional of the form v(z(x)) can be written as -
&v = v(z(x) + 8z) - v(z(x))
If it is possible to resolve this into two components so that -
Ov = L(z(x), 6z) + M(z(x), 8z) max |8z

where L(z(x), 6z) is a linear functional in &8z
max | 6z| is the maximum value of 6z

and
M(z(x), 8z) > O whenever max |8z * 0

then L(z(x), 8z) is called the variation of the functional and is denoted by dv.
If the variation of a functional exists and if v takes on a minimum or a maximum
along z = 29 (x) then 8v = 0 along z = zo(x)(ref.8). This is the fundamental
necessary condition for an extremum and is readily extended to functionals
involving several independent functions.

The functional under consideration in the main body of the text is

TR TR

X X
v(z1 (x),22 (x),23 (¥),24 (¥)) = [ 6 (2 )]? dx + [ Y22 x0))? dx
: Xu-1 xG
; Y y
? Vid' m? gy (1.1)

[z3' (n1? dy +j’
s

5

i v-1
E : "

It can be seen that it consists of the sum of four functionals of the form -
t=t;

v(z(t)) = f F(t, z, 2, ') dt
t=to

For functionals of this form with one fixed and one moveable boundary point, the
fundamental necessary condition for an extremum becomes (see reference 8) -

' re. . v d_ d_ ¥4
[F-z on -2 sz ' +2 dt in ' lf-’tl 5ty +[ Fz' - 3t on ' lt'tl 6z +[ on ' ]'t"t| 8z 0
(1.2)

-
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Now using the linearity of the variation of a functional and interchanging the
limits of integration, the variation 8v of equation (I.1) can be written as -

xc+8x i xG+5x o G+8y =
A = A /' [z ()% dx - A j' [z2' (x)]? dx + A jy [z3" (»))? dy
xu—l xu yv—l

yetdy ,,
. Afc [z (»)1? dy
y

v

so that, using equation (I.2)

2 —
e i+1 ’ T - e d
Av = g (-1) {LF - Zi oni -z ]z,i, & 255 Fz'i"‘ ) xG

= *
i=1 o
+l-Fzr -TF”_J & ZG+[F2'.']x=x*6 z'x }
id o x# i G G
G
4 -
L i+l ’ ' v d
+ ;I (-1) i“F - Zi lei - 2 Foi,»r + 2z, d Fz;l] ) yG
i=3 y=yg*
+l-l~': -g—'l-'zu‘l Gz(.+[Fu|_ .0 z'}
. Wana Al Yerdy A G
=Yg

Now & xg and 5 yg are zero but 6 25, 8 z; " (the derivative of the variation with
G

respect to x) and 52; (the derivative of the variation with respect to y) are
G
all arbitrary so that their coefficients must be identically zero. Noting that
Fzr i=1,2,3,4, are zero this can be written as -
i

d d d
£—F - — — F - ===l = 0
dx 2y’ x=xg- ~ dx en X=X+ Ydy 2y y=yg- ~ dy 22" | y=yg*
(1.3)
" X=Xc- e X=X+ o (1.4)




£ o

Fab ' Yore in" y=yg

These are the forms used in the text.
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(1.5)
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| APPENDIX II |
THE REDUCTION OF [C] TO TRIANGULAR FORM E

The columns of the matrix [Cl and the corresponding terms of the vectors a ¥
and R were initially arranged to facilitate the reduction described in this

h

Appendix. The notation used for elementary row operations is as follows: .
i Hi j interchange the ith and jth rows 1
i » 3
| |
; Hi(k) multiply every element in the ith row by a non-zero scalar k :

H. .(k) add to the elements of the it

; 5 th
i corresponding elements of the j  row.

row k (a scalar) times the

An element in row i, column j, as modified at operation number k (below) is
denoted by Rijk and the corresponding term in k by Ri Rk'

The following list shows the operation followed by the changed row and the
corresponding element of b -

(1) Mo,y (-1): 0,0,0,-1,xc-x1, 0,0,-y, x5* - xi?, 0,0,0, x> - x*, 0, -y,

i 'YGS; -2

, (2) Hios2(-1): 0,0,0,-1,0, x5-x2,0, -y5, 0, x5* - x2?, 0,0,0, x:* - x?,
g, ¥g i -m ;

(3) Hip,s (-2 0,0,0,-1,0,0,yc-y1, -¥q, 0,055 - yi?, yo' - v1°,0,0,-y42,
-Yg' s -2

R R T

(4) Ho,a (1): 4 x "0", xp-x1, 0,0, y2-yg,x.'-x12,0,0,0,x>-x1%,0,y27 -y 2,

3 5 s
Y2 yG ’ 24 -2)

T R T T T T P I XY

(5) Hio,a(1): 5 x 0", xg-Xz, 0, y2-y; 0, x5*-x2?, 0,0,0, x5*-x2”, y2?-y.*,

y2? - )’GS; 24 - 22
(6) Hll)4 (1): 6 x "0"; YG'YI; )’2')’6.0,0,)'(;2-)'12’ yGJ’YIJ;O:O:y22'szl
Y23'YGJ; Z4 - 23
E (7) Mi,s(=%1): 13,7 x 70", %%, 0,0,0, <2 x1®, 0,0,0,; 21 - x¢3:¢
(8) Hy,s (xi 'XG): 7% 0, y2‘YGn (XG-X|)2, O:OxO’XGJ‘XIS:(XG-Xl )3 Xlz, 0,
),22 = yGZ’ Yz’ o5 YG:‘; Za-21 - (XG-XI)Zl

T R T W T

(9) Hy3,s(-1): 5 x "0", -1,0,0,2(xG-x.),-ZxG,o,o,s(xG’-x,’).-3xG’,o,o; -2

| (10) Hlo.o(xz-xc): 7 x "0",yz-yG,0,(xG—xz)2,0.0:0,x63-Xzs-(xc-xz)3xzz. Yzz-ycz.
; y2’-yg's 2 - 22 ~(xg-x2) 2 o

‘ (11) Hy,6 (-x2): 0,1,7 x "0",-x22,0,0,0,-2x3%, 0,0; 2z3-Xp23

i (12) Hiy,6(1): 8 x "0, 2(xg-x1), 2(x2-%3),0,0,3(x5-x1?), 3(x2*-x5"),0,0;

’ ’
| 22 - 2
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(13) Hy,72(-y:1): 0,0,1,7 x 0", -y1?, -2y1%,4 x "0"; z3-y: z3
(14) Hiyyr (ri-yg): 7 x 0", y2-¥,0,0,(yg-y1)?, yg' -y’ -(yg-¥1)3n1?,0,0,
(Yzz-)’Gz), YZS‘YGa; ZQ-ZJ'(YG'YI)ZS {
(15) HIQ 27 ('1): 7 x "0""'1‘03032()'6')’1)ss(sz'ylz)90:0»'2)'6"3)'62; -Z; '
(16) Ha,s (-y2): 0,0,0,1,10 x "0", -y2?,-2y2>; z4a-y» z4
(17) Hia,s(1): 10 x "0, 2(yg-y1), 3(v5 -y17),0,0,2(y2-y5), 3(y2°-y4’);
2 - 23
(18) Hir,a(ygy2): 10 x "0", (yg-¥1)?,yg -y1’-(yg-y1)3y1?,0,0,-(ys-y2)*,
¥2* -y - 2-yg)3y2®;  za-23-(yg-y1)z5-(ya-y;) 24
(19) Hloﬂﬂ(yc'yz): 9 x "0, (xc'x2)2’oto’otxca'x23'(xc'x2) szzs -()'G-Yz)z,
y2? -y - (2-yg)3va®; 24 - z-(xg-x2)z2 - (y2-yg)ze
(20) H900 (YG-)'z): 8 x "0": (XG-XI)Z, 090:0; XG:’-Xls"(XG"X])sxlz,0,-()’G'Y2)2,
y2' -y -2-yg)3y2’ s za-zi-(xg-x1)z1-(y2-yg) %
(21) Hls(k): 8§ x"o", 1, -1, 0, O, SXG’ ‘SXG» 0, 0; O
(22) His(}): 10 x "0", 1, 3ys, 0, O, -1, -3yg: O
(23) Hg,15: (interchange 9 and 15)
(24) Hyiz,e (2(x1-x5)): 9 x "0", 2(x2-%1),0,0,~3(x1-x5)*,3(x2” -x5" )+6 (xg-x1 ) X,
0,0; 7 - 21
(25) His »9 ('(xG'xl)z): 9 x "0"s(xG'xl )2 »0,0,2(xa -XG)S,(XG-XI )2 3xG:

(Yzz-Ycz)-(Yz-yq)ZYz.st'YGS'(Yz-YG)3Y22;
Zo-21+(Xg-x1)21 -(y2-yg) za

(26) Hio (1./(xg-x2)?): 9 x "0", 1,0,0,0, (x5 -x2* - (X5-X2)3x2? )/ (x5-x2)?,

(2?-y6")- (2-¥)2y2)/ (xg=x2)?, ((y2* -y’ ) - (2 -y () 3y2 %)/

(xg-x2)"; (za-zz~(xG-xz)zS-(yz-yG)zi)/(xG-xz)’

(27) Hys,10(2(x1-%2)): 12 x "0", -3(x1-xG)2,3xz’-3xc’+6(xc-x.)xc-z(x,-x.)
R101426, -2(x2-X;)R101526, -2(x2-X; )R101626; 2z3-27
-2(x2-x1) R10R26

(28) Hgs,lo(-(xG—x;)Z): 12 x "o",2(x.-xG)’,(xG-x.)‘ 3xG-(xG-x,)2 R101426,

(2?-yg" )= (Y2-yg) 22 - (x5-x1)*R101526,y2> -y’ - (y2 -y ) 3y2
-(xG-x,)’R1o1626; z.-z.-(xG-x.)z;-(ya-yG)zﬁ-(xG-xl)’R1oaze

(29) Hy1,16: (interchange 16 and 11)

(30) H14 ’ll('z(yG'YI)): 11 x "0"» 'S(YG"YI )2s 0.0.2()’2-)'1)» 3)'12-3)'62 5 Z(YG'Yl)

3ygs 24 - 23
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(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

Hye 1|(‘(YG‘Y1)2):

Hia 12 (S(YG'yl )2):

“10.12('2Y1-YG)3)1

H.3(-1./3(x.-xG)2):

Hna,ls(-3(YG‘Yl)2):

”lSnll(‘z(Xl’XG)J):

”lﬁ’IJ(Z(YI'YG)J):

- 20 -

11 x "0",2(y1-yg)*,0,0,y2” -y =22 (Y2-y5)+ (¥g-v1)?,
y2® -y - 2=y 3y  +(yg-y1)? 3ygi  za-23-(¥g-y1)z'
- (y2-yg) 24
12 x "0",3(yg-y1)?,-3(yg-v1)?,2(v2-y1),3(02* -y5') +
6(yg-y1)yg - 3lygn)?; za-z3
12 x "0", -2(y1-yg)*,2n-yg)’ s g ) -(yg-r2)?,
2yS’-2y2°+3y2 v+ 3yayg(n-2yQ)+2(n -y’
24-23-(YG'Y1)23 - (Y2°YG)Z;
12 x "0, 1, (3%7 -3xS1 +6(X X1 )X -2(%; -X1)
R101426/-3(x1-xg)* ,-2(x2 -x1 )R101526/-3 (x1 ~x)*,
—2(x;—x|)R101626/-3(x1-xG)2; [ 22-2} -2(x2 ~x1 )R10R26]
/-3(x1-x5)?
13 x "0",-3(yg-y1)? (1+R131434), 2y2-2y1-3(yc-y1)?
R131534, 3y,*-3y 2 +6(yg-y1)y5-3(ygy1)’
(1+R131634); z4' -2z3-3(y-y1)? R13R34

13 x "0", (xg-x1)® 3xg-(Xg-x1)?R101426 - 2(xi-xg)>
R131434, (yzz.yG’)-(y,.yG)zyz-(xG-x,)’R101526-2(x.-xG)3
R131534, (yz“-yG’)-(yz-yG)syzz-(xG-x.)’R101626
-2(x1-xG)3 R131634; z4-z;—(xG—X1)zﬁ-(yz-yG)zz-(xG-xn)2
R10R26 - z(x.-xG)3 R13R34

13 x "0, 2(yi-yg)® (1+R131434), (y5-y1)*-(yg-y2)® +
2(y1-yg)’ R131534,2y°-2y:°+3y2? yo+3y1 ys(ni-2yg) +
2(y1-yg)" (1+R131634);  za-z3-(yg-y1)23-(y2-Yg)
z'u:(yl-yc)3 R13R34

H..(l./-s(yc-y.)’(1+R131434)*): 13 x "o, [2y2-2y1-3(yG-y|)2 R131534] F38,

Hys ,14 (-R151436):

Hy6 ,14 (-R161437):

[ 3y2? -3y’ +6(yg-y1)yg-3(yg-y1)® (1+R131634)]
F38; lzz-zQ-S(yG-y.)’R13R34] F38

* Factor referred to as F38

14 x "0", R151536-R151436.R141538, R151636-R151436.

R141638; R15R36-R151436.R14R38

14 x "0", R161537-R161437.R141538,R161637-R161437.

R141638; R16R37-R161437.R14R38

His (1./R151539): 14 x "0",1, [R151636-R151436.R141638] /R151539;
[ R15R36-R151436.R14R38] /R151539

Hy6 5,15 (-R161540) :

15 x "0", R161637-R161437.R141638-R161540.R151641;

R16R37-R161437.R14R38-R161540.R15R41

Hie (1./l R161637-R161437.R141638-R161540.R151641) )
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This sequence of operations reduces [C] to the partioned form -

|
[}
8x8 :
i ) ' D]
[0] | 16x8
8x8 :
Where [I) is a diagonal matrix, [0] is a zero matrix and [D] is
& -x2 -2xp3
-xzz -2!23
-vnz -2V13
va?  -2y,?
2x) 3’112
2x2 :!xz2
2vi 3N12
2y Wt
[p] = 1 5 . 3
G G
1 ty 2 t3
1 s -1 ~3vg
1 1 -1 -1
1 t4 ts t¢
1 t7 1Y
1 t9
| 1
The terms t;, t, ..., ty are given by -
ty = [xca-xzs-(xc-xz)SXzzl/(xG-x:)z = Xxg*2xa = R101426
t: = v’y -n-ygdnl/(xgx)? = -(gr)?/(xgx)? =

ty = [yz’-y(;’-(yz-yG)Syz’]/(xG-xz)2 = R101626

WRE-TR-1837(A)

given by,

=

R101526

ts = [3x:2-3xcz+6(xG-xx)xG-Z(xz—xl) R101426]/(3(x,-xc)') = R131434
ts = -2(xz-xl)R101526/(-3(x;-xG)’) = R131534
te = -2(xa-x1)R101626/(-3(x1-xG)z) = R131634

ty = [2(y2-y1)-3(yg-v1)® R131534] /[ -3(y-y1)? (1+R131434)]

ts = [30y2"-y")+6(yg-y1)yg-3(yg-y1)® (1+R131634)] /[ -3(y;-y1)? (14R131434)]

ty

(R151636 - R151436.R141638)/R151539
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The vector b becomes -

-
r 2 =X 2'1
; 22-X2 22
A 23-Y1 23

2a-Y2 24

[ za-22- (xg-%2)22- (2 -y ) 28] / (x5-%2)?

0

0

[ 23 -2} -2 (x2 - x1 )R10R26] /[ -3 (x1 -x;)]

? [ 24-23-3(yg-y1)*R13R34] /[ -3(y5-y1)? (1+R131434)]

. (R15R36-R151436.R14R38) /R151539

(R16R37-R161437.R14R38-R161540.R15R41) /R161642 i

A table showing the operations which affect each row in the order in which they

- were used (last on the right) is given below:
: Row Operation numbers
1 7
2 11
3 13
4 16
3 5-8 Not changed
4 9 1,4,8,20,23
_ 10 2,5,10,19,26
] 11 3,6,14,18,29
5 12 Not changed
13 9,12,24,27,34
; 14 15,17,30,32,35,38
; 15 21,23,25,28,36,39,41
: 16 22,29,31,33,37,40,42,43
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APPENDIX III
THE COMPUTING ALGORITHM AND PROGRAMME FOR THE INTERSECTION OF TWO SPLINES

From the reduction of [C] and b given in Appendix II the relations defining
the sixteen components aij of the vector a in the equation [C] a = b,

Section 3 of the main text, can be written down. These are, in order of
calculation, and using the row element terminology introduced in Appendix II.

as3 = [R16R37-R161437.R14R38-R161540.R15R41] /
[R161637-R161437.R141638-R161540.R151641]

as2 = RI15R41 - ty as3

azs3 = RI14R38 - ts ag3 - t7 as2

a3 R13R34 - tg aq3 - ts 342 - ts azs
833 = a3 + a3 - 313

832 = 3y, a43 + a4; - 3yq 833

822 = RIOR26 - t3 aq3 - t2 ag2 - t1 az;
arz = 3X; @3 - 3X; ar3 + a

where the t, terms are defined in Appendix II.
Writing Pi’ i=1,2,3,4 for the variables x; ,X2, Y3, Y2 respectively

' 3 2 oL
8, = ﬁ"”ian @i a4 fori = 1,2,3,4

- - ’ 3 2 =
a, 2, - Py 2 + Zpi a5 * Py 84, for i 1,2,3,4

During the reduction of [C] to triangular form certain restrictions were
introduced by the fact that the scalars k in the elementary row operations
Hi(k), Hij (k) were required to be non-zero so that we have -

(7) X1 * 0
(10) X2 + XG
(11) x, # 0
(13) y, # 0
(14) y» # y,
(18) yo #* ya
27) x3 #* xa

(38) R131434 +# -1

i ot s e
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(39) R151436

o

(40) R161437

(41) R151539

+ O # #

o o
.

(42) R161540
and from the calculation of a4;
R161637 - R161437.R141638-R161540.R151641 # 0 é

The basic computing routine ROUTINE 1 incorporates checks for the above
conditions.
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y SUBROUTINE RTINE1(X1,X2,Y1,Y2,XG,YC,Z1,210,22,220,23,230,246,Z4D,
1 NFLAG)

THIS SUBROUTINE ACCEPTS BOUNDPARY VALUES XI,Yl,ZI ANP A PARTIAL
DERIVATIVE OF Z(Xt1,Yl) I=1,..4 AND FINPS INTFRPOLATION FUNCTIONS
TO DETERMINE THE VALUE OF Z AT THE POINT (XG,YG),

ERROR FLAGS:
NFLAG ERROR

1 X1=0 {
: 2 X1=XC @
4 3 X2=XG :
L X2=0
5 Y1=0
6 Y1=YG
7 Y2=0
8 Y2=YG
9 X1=X2
10 R131434=1
11 R151436=0
; 12 R161437=0
] 13 R151339=0
14 R161540=0
14 R161637-R161437.R141638-R161540.R151641=0

DIF IS THE MAXIMUM DIFFERENCE RETWEEN THE THEORETICALLY EQUIVALENT
VALUES OF ZG1,ZG2,ZG3 AND ZG&,

OOOOOODOHODOOOOOOODOOODHNOOHOODOHOO

IMPLICIT REAL*8(A-H,0-Z)

€

3 C- ~-COMPUTE POWERS TO SAVE REPEATED CALCULATION OF THESE VALUES-=----
1 X12=X1%#2
b X22aX2w%?

, XG2=XGww2
X13=X12+X1
X23=X22%X2
XG3=XG2*XG
Y12=Y1#=2
Y22=Y2**2
YG2=YGw*2
Y13=Y12+Y1
Y23=Y22+Y2
YG3=YG2+YG

I C

C- -TERMS REQUIRED FOR LAST STAGES OF TRIANGULAR REDPUCTION===c=ecen=--
F26=1./(XG=X2)**2
RO1426=XG+2.*X2
R0O1526=(Y22-YG2-(Y2-YG)*2.*Y2)*F26
R0O1626=(Y23-YG3-(Y2-YG)*3.+#Y22)*F26
ROR26=(ZU=~Z2-(XG=-X2)*Z2D-(Y2~-YG)*ZUN)«F26
F34=1,/(=3.#(X1-XG)**2)
R31434=(3,#(X22=-XG2)+2.*#(XG=X1)*3,*XGC=2,+#(X2=-X1)*R0OI1L26)*F3Y

R VENRE R PR W
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C

BEST AVAILABLE COPY

R3I1H34=~POLN26*2  »(X2=-X1)*F3I
R3I1634==ROVG26*2 , *»(X2-X1) =3

RIRAGE=(Z2D=71N=2 +(¥2=X1)*RNR2M)*F 3
RETUI6=(XC=X1)*x2 %7 *#VC=(XC=-Y1)*x2xPN1 26~
12.#(X1=-XC)*»x3xR31 L5,
RH1S3C=(Y22-YC2)=(Y2=YC)*D2 &Y= (VC=X])%x22PNINIF
1=2.%#(Y1=XC)*w72P315%)
RS5YG36=Y23=-YCR=(V2=YC)%3 , 2V22-(VC=X1)*xx22"N1DF
1=-2.%#(X1-Y0)**x"xP3163Y

RORIE==Z 147 h=(VO=VI)*Z1IN=(V2=YCY*ZUYP=(YC=Y1)*x*2*xPOR2F
1=2 ,#(X1=-XC)x*3#N3N3Y

REIN37=" *(Y1-YC)**x3*«(R3ILNh+7 )
PRIGET7=(YO=-Y1)**2<=(VC=V2)xx24+2 #x(V1=-YM)xxZxP3]157%
REYIE3T7=2 *YC3=2 . *Y 2543, 2aY2D2 4V #V]IaAVYNA(V1=2 aVO)+D *(Y1=Y")2xxT
142, x(YX-YCO)*x3+N31630 .
RERIT=ZH=Z3=(YO-Y1)#Z3N=(VD-YO V4 ZHPa2 4 (VI-YC ) rwT+P IR
30=1./(3.%(YC=-Y1)x*2x(=1,-R37471))
RUTIG38=(2,#Y2=2 4V]1=3 *#(YC=Y1)*+2%xP3]1 34 )»F350
REICS8=(3,2Y22=-3 , *#VO24+6,*YCx(YC=1)=Z  *(YC=Y1)*x2x (P31 35+71,))xr3P
RURSE=(ZHP=Z23D=3 ., *(YG=-Y1)**2*N3N7L )xF3F
RHY1559=R51L36-R51456«P1538

RE1ISKO=RE1IS37-RO14Z7*R11528
ROIOLYI=(NRSIGIC-RLILIGXRLICIN) /151630
RSRKI=(RHSRIG=-RHILIGCARLER3T)/RHILTD

Ca===ZLRO PIVIDE CHECKS= === == o s mmm o= o e o e e e e e oot

HFLAG=1
IFCX1.00,0.)C0TO10N
HFLAG=HFLAGH?
IF(X1-XC.00.0,)C0TNI00
HELAC=NFILAG+)
IFC(N2=-XG).C0,0.)C0TO1ICO0
HFLAC=HTLAG+]
IF(X2.E0,.0,.)C0TO0N
HFLAC=HFI AC+1
IF(Y1.FN.0.)COTO10N
HELAC=NFLAC+Y
FECCYI-=VE) L0, 0 YCPTNYO0
DFLAC=HFLAC+]
IF(Y2.F0.0.)GOTAINN
HELAC=NFILAG+]
IFCCY2=-YC).[N,0,)r0TOINN
NFLAG=MFLAG+1

IFCR31434 ,E0,=7,)COTOL1N0
MFLAG=NFLAG+1
IT(RS1L36.E0,0,)GNTO100
NFLAG=NFLAG+1
IF(REINZT7.EQ.0.)COTOL100
HFLAG=NFLAG+Y
IF(R515,39,.70.0,)C0T0100
HFLAC=NFLAG+]
IF(R6I5KO.EN,0,)GOTOLN0
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NFLAG=NFLAG+1
IF(R61637-R61437+R41638-R61540+R51641,.EN,.0,)C0TO100
GOTO010

100 WRITE(3,19)NFLAG
RETURN

19 FORMAT(16)

Paanons COMPUTE COEFFICIENTS ALl ,d)=v=mnrsss—cecsssnseneasesarsnmerne
10 At3=(R6R37-R61437+R4R38-R61540+R5RE1)/
1(R61637-R61437*R41638-RA1540#R516L1)

AL2=R5R41-R51641*AL3

A23=RER38-RE1638+AL3-RE1538#AN2

A13=R3R34-R31634*AL3-R31534#AL2-R31L3l +A23
; A33=-A13+A23+AL3
A32=-3, *YG*A33+AL2+3 . #YG*AL3
A22=ROR26-R01626+AL3-R01526%AL2-R0O1L26+A23
A12=A22-3 . *XG*A13+3. *XG*A23
A11=Z1D-2.#X1#A12-3,#X12+A13
A21mZ2D-2.%#X2#A22-3 . #X22%A23
A31=Z3D-2.+*Y1#A32-3,%Y12+A33
Abl=ZLD-2.%Y2#AL2~3. Y22 #AL3
A10=Z1-X1+Z1D+2,#X13#A13+X12+A12
A20=Z2-X2+Z2D+2,*X23%A23+X22*A22

A30=Z3-Y1*Z3D+2,*Y13+A33+Y12#A32

‘ Kot s COMPUTE VALUES OF HEIGHT AT (XG,YG)====m=-=ccmemccaccaaaaan
: ZG1=A10+A11#XG+A12#XG2+A13*XG3
2G2=A20+A21#XG+A22+XG2+A23#XG3
ZG3=A30+A31#YG+A32#YG2+A334YG3
ZGh=ALO+AL1#YG+AU2#YG2+AL3*YC3

Cowmmmm FIND MAXIMUM DIFFERENCE BETWEEN THE ZG|=====mm=-=-ccccceaoaax
D1=PABS(ZG1-ZG2)
N2=DABS(ZG1-ZG3)
D3=NABS(ZG1-ZGk)

f N4=DARS(ZG2-ZG3)

: D5=DARS(2G2-ZGk )

N6=NABS(ZG3-ZCh )

DIF=NMAX1(D1,N2,D3,DN4,D5,N6)

Cmmmmm= LT} T B T
: WRITE(3,12)A10,A11,A12,A13,
- 1 A20,A21,A22,A23,
1 A30,A31,A32,A33,
1 ALO,ALL,AL2,ALS
WRITE(3,12)XG,YG
12 FORMAT(L4F15.4)
WRITE(3,12)26G1,26G2,2G3,ZGk4,DIF
RETURN
END
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IV.1

Iv.2

APPENDIX IV
AN EXAMPLE
An example: the intersection of two splines
Consider the two splines SAxG(f;x), SAYG(g;Y) defined in Section 3 of the

text. Given the values -

(x,_1Yge 21 (X,_q)s21 (x,_4#)) = (10.1, 11, 10, 0.2)

(x,» Ygr 22(x), 22 (x,") (11.5, 11, 12.1, -0.2)

Yy 10%ge23 (V)% (V%)) (10.3, 11, 12.2, 0.4)

(11.4, 11, 11.6, -0.11)

(YV,XG,Zo(yv),Z:(YV'))

(XG.YG) = (11.,11.)

we wish to find the functions z, (x), z2(x), z3(y), za(y) satisfying the
conditions (1) in Section 3 of the text. The situation is depicted
graphically in figure 2.

ROUTINE 1 is used to evaluate the coefficients aij and hence the values

of z calculated from each of the four cubic equations z;, z;, z3 and z4.
Also the coefficients aij are used to compute the product £C] a and the

resultant vector b is compared with the expected vector b. These values,

calculated using an IBM 370/168 computer in both single and doublg

precision, are shown in Table 1. The derivatives z; (x)| __ , 22 () s
X=X .- X=Xxg+

23 ()| G o 24 (y) =y 4+ are also tabulated. In general the results show
y=Yg- Y=Yg

that double precision adequately satisfies all the conditions (1) and
single precision gives a good approximation which may be adequate for some
purposes.

The functions z, i =1,2,3,4 are plotted in figure 4 using the double

precision results. The unbroken lines represent the sections of the cubics
in the required regions [xu-l’ xu], [yv-l’ yv] and the dotted curves are

included for interest and show these functions either side of their required
ranges.

An example: the interpolation at a local extremum

The function described in reference 3 as a '"steep hill rising from a
plain'" given by the expression -

-§(x-5)?+(y-5)%}
z(x,y) = e (Iv.1)

was taken as an example of a local maximum to illustrate the performance of
the form of interpolation, recommended in this Technical Report.

The function was considered to be defined by contours at intervals of
0.2, without "spot heights", (i.e. no degenerate contour at the point
(5., 5., 1.)). The sixteen relevant points in the data base, defined as
specified in Section 2 are shown below -
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3.731364 4.042769 4.285279 4.527619 5.472381 5.714721 5.97231 6.268636
5.0 5.0 S.0 5.0 5.0 5.0 5.0 5.0
0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2

These values are used to define the two splines SA(f;xG), SA(g;yG) from
which the values z} (x,.1)» 73 (x,)» 75 ¥y.q) z"(yv), can be obtained. In
addition to the data in the above table the values pi, i=0,m, qij’ j=0,M

are needed. These can be obtained from equation (IV.1) noting that z(x,y)
is symmetrical about the line x = 5, y = 5.

_g_a| . g_za| = 0.507454
X 1x=3.731364 Y ly=3.731364

9z | . Oz 5

-a—;{ = 'a-y— = -0.507454

x=6.268636 y=6.268636

The zik (for k = 1,2,3,4) are determined by using the following relationship
cited in reference 6 -

A 1 A 1‘1
. ik R ?
Oy Py * 2y 0 OB * 081 iy * 3[A"1-1 T ST i

(1v.2)

where

1 is] i
Ax:l = xi.’l-xiandAzk =y o-w

Using the notation t, = 2(A.1<i + Axi-l)’ u, = Axi the above relation can
be written as -

. - ey e -
ti w 0 0 o0 O P By - &x; po
u ta yuw 0 0 O . 82
0 uw t3 u 0 O ’ .| Bs
0 0 u t4 u 0O . Ba
0 0 0 u ts ug . Bs

__0 0 0 0 t | |LPs _ _Bc-AXsP"_l

where the ; are given by the right hand side of equation (IV.1).
The sequence of elementary row operations H; (t;), (Hi §a 1(-ui). Hi (Ri))
i=2, ..., 6, reduces the matrix to triangular form, so that -
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- 1 — 1
» (1 w/R, 0 o -0 o |[e 84
0 1 w/R 0 0 o |]|. 3
0 o0 1 w/Ry 0 o ||. .
0o o 0 1 w/Re 0 . |
0 o 0 0 1 us/Rs ; A
: ,
Lt 0 0 0 1 || Pe] _ﬁo 2 |
where
!
Rk = ¢t
5 Ri = ti - uiui-Z/Ri-l Pom 25 "6 d
; and

Bi = (B1 - &xi po)/Ry
' g - & e
By = By -uw B, /R i=2,...,5 -
Bs = ((Bs - Oxs p1) - us B5)/Rs
: The p, can therefore be obtained from the sequence -
Pse = B'G
’ i
P; * B, - u o pjwl/ni - Sy T

1

This enables the z; to be determined noting that 9 =P; because of the
symmetry of the function,

TR T T
.

f Zﬁ(xu_l) Ps za(xu) Pa

2'3()",_1) q3 = Pp3 z'q(yv) = Q4 = Pa

The other required quantities, which can be obtained directly from the data
base are -

(X412 Ygr 21 (xy 1)) (4.527619, 5., 0.8)

(x,» Yo 22(x))) (5.472381, 5., 0.8)

| (xg» Yy_p» 23V p)) (5., 4.527619, 0.8)

(xgs ¥y» 2a(y,)) (5., 5.472381, 0.8)

4
This information was used in ROUTINE 1 (see Appendix III). The value
obtained for z(5., 5.) was 0.9682. The curve (IV.1) together with the
interpolating function is shown plotted in figure 5. The derivatives of
both functions are also shown in the same figure.
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TABLE 1. DATA FOR THE INTERSECTION OF THE TWO SPLINES OF EXAMPLE IV.1
Single* Double* : Difference
aij precision precision Difference (%)
a0 2855.74 2853.87822 -1.9 -0.1
a, -804.72 -804.18803 0.5 0.5
i 75.641 75.59007 -0.05 -0.1
ay -2.3626 -2.3609826 -0.002 0.1
azo -942.69 -937.03649 5.7 0.6
831 231.21 229.69779 1.5 .7
a3, -18.535 -18.399545 0.14 0.8
S5 0.49121 0.48718773 -0.004 -0.8
azo -2487.51 -2482.5837 4.9 0.2
as, 697.28 695.90655 -1.4 -0.2
a3, -64.748 -64.619135 0.13 0.2
a3 2.0012 1.9971962 -0.004 =02
aso 1310.9 1308.3311 -2.6 0.2
a4, -338.65 -337.979 0.67 0.2
Sas 29.4284 29.370486 -0.06 0.2
343 -0.852638 -0.85097414 0.002 0.2
Z 11.7400 11.741209563968 | 0.001 0.01
2 11.7371 11.741209563955 | 0.004 0.04
Z3 11.7314 11.741209563956 | 0.01 0.08
4 11.7454 11.741209563958 | -0.004 -0.03
mean z 11.7385 11.741209563957 | 0.0027 0.02
var z 0.0058 0 0.0058 -
Single : Double :
precision Difference precision Difference
2y (x-) 1.75721 } 1.7569590 }
23 (x+) 1.7560 0.00121 1.7569586 | J0+0000004
z3 (y-1) -0.73422 -0.7322041
23 (y+) -0.73347 Bl -0.7322034 }°‘°°°°°°7
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TABLE 1(CONTD.).

4 b b s%ngle Error h2 dgu?le Error
| precision | b - by precision | b - b,

| 10.0 10.0024 | -0.0024 10.0 0

i 12.10 12.0952 | 0.0048 12.10 0

12.20 12.1890 | 0.0110 12.20 0

11.60 11.6040 |-0.0040 11.60 0

0.20 0.2002 |-0.0002 0.20 0

-0.20 -0.2002 | 0.0002 -0.20 0

0.40 0.3999 | 0.0001 0.40 0

-0.110 | -0.1099 {-0.0001 -0.110 0

0 -0.0056 |-0.0056 0 0

0 -0.0083 |-0.0083 0 0

0 -0.0142 |-0.0142 0 0

0 -0.7229 |-0.7229 0 0

0 0.0005 | 0.0005 0 0

0 -0.0007 |-0.0007 0 0

0 0.0000 | 0.0000 0 0

0 0.0000 | 0.0000 0 0

* The IBM 370/168 computer uses a 32 bit word on single

precision

i
|
|
i
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TABLE 2. DATA AND FUNCTION VALUES FOR EXAMPLE IV.2

Data base for interpolation examples

X y z
4.2852 | 5.0000 | 0.6000
4.5276 | 5.0000 | 0.8000
5.4723 | 5.0000 | 0.8000
5.7147 | 5.0000 | 0.6000
5.0000 | 4.2852 | 0.6000
5.0000 | 4.5276 | 0.8000
5.0000 | 5.4723 | 0.8000
5.0000 | 5.7147 | 0.6000
5.5053 | 4.4946 | 0.6000 |
5.5053 | 5.5053 | 0.6000 i
4.4946 | 4.4946 | 0.6000
4.4946 | 5.5053 | 0.6000

Simple inverse distance function

X y z
5.0000 5.0 0.7067
5.1500 5.0 0.7108
5.2000 5.0 0.7156
5.3000 5.0 0.7373
5.4000 5.0 0.7789
5.6000 5.0 0.6856

Inverse distance

function with gradients

x y z

5.0000 5.0 0.9013
5.1500 5.0 0.8898
5.3000 5.0 0.8563
5.6000 5.0 0.7099
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Figure 1

— Original digitized contour data points

) Data base

Lattice point data

X%
XK
X
X

Figure 1. Terrain data types
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Figure 2
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Figure 2. The intersection of two splines
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Figure 3
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Figure 3. The data required for bicubic spline interpolation on a
rectangular lattice
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Figure 4. The interpolating functions for example IV.1
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Figure 5. The interpolating functions for example IV.2
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