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I .  INTR ODUCTI ON

The need for detailed terrain models in tactical simulations involving ground
combat has resulted in considerable manual effort being applied to reading
terrain heights from contour maps. An increased demand for terrain models has
led to the examination of ways of making better use of data graphics equipment
such as that used by cartographers(ref.l) and sonic digitizers suitable for map
reading.

There is one obstacle in the way of using the above equipment and thereby
significantly reducing the manual effort required to construct a terrain model.
This is the fact that the programs in use require terrain information at the
intersections of the grid lines of a rectangular grid system, but map reading
equipment produces data in the form of contours. This could be dealt with by
redesigning the tactical simulation programs to use contour information directly,
but it is much more di ff icult to design a simulation which is not based on a
rectangular grid and its running time would be considerably greater. The
alternative is to change the data, i.e. convert the contour information into
grid-point information by a suitable interpolation procedure and leave the program
unchanged. The latter seems to be a more satisfactory approach. There are
many ways of producing a bivariate interpolation function which is an exact fit
to a regular lattice of data points, but an exact fit is rare when the data is
irregularly spaced. This is the problem addressed in this Technical Report.

Some techniques are available(ref.2,3) for drawing contours from both
regularly and irregularly spaced data, but these shed little light on the problem
of converting contour data to grid point data which does not seem to have been
dealt with specifically in the literature. Digitized contour data can, of
course, be treated as irregularly spaced data, an interpolation being carried out
at each grid point using a weighted sum of a number of the surrounding data
points. These methods have been discussed in reference 4. They suffer from a
number of disadvantages for the type of problem dealt with here. For example
they do not make use of the intrinsic regularity of the data. Furthermore,
unless “spot heights” (i.e. degenerate contours at the apex of hills or centres
of depressions) are included in the data and are given special weighting the

• resulting interpolation can flatten these areas by an amount which is noticeable.
This is especially significant in “line of sight” studies where observers utilize

• hill tops. In such situations small discrepancies near the top can make large
differences in the area of visibility.

The solution presented here attempts to use the additional information
contained in the fact that the data, although not on a regular lattice, is not
randomly positioned but organised in the form of contours. It will be shown
that a knowledge of surface slopes will overcome the problem of flattening peaks
and troughs.

The requirement can be summarised as follows : Find a bivariate interpolation
procedure which accepts and makes optimum use of contour data to generate
terrain values on a regular lattice of points , so that a smooth continuous
surface can be fitted to all points .

The uniqueness and especially the minimum curvature properties of bicubic
splines(ref.5) made them prime candi 4ates for the solution of this problem .
The treatment of bicubic splines usually pre-supposes data points at the
intersections of a rectangular mesh. Since data was not available in this form
a new method had to be developed. This was done by the procedure described
below resulting in an accurate and fast algorithm for producing a terrain surface
satisfying all the requirements stated in the summary of the problem given in
the previous paragraph.

~~~~~~~-~~~~~- 
I 

-
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2. THE DATA BASE

Since contours are continuous and this Was to be a digital process the first
step was to decide on the dat a base to be used . This was a selection of (x ,y)
pairs on the contours, each pair being assigned the value z of the contour on
which it lay. The requi red rectangular, and regular grid system onto which the
contour data was to be transferred was superimposed onto the contour map . Each
intersection of a contour and a grid line was taken as a data point (see fi gure 1).
If in addition to this information the slope of the terrain was measured in the
positive direction at the extremities of the grid lines , it would be possible to
fit a unique linear cubic spline to the data points along each x grid-line and
each y grid-line . This defined a network of two sets of splines , one set
running in a direction at ri ght angles to the other. Each line from one set
crossed every line from the other. At the crossing point (XC, YG~ 

of splines

on the grid-lines x = XC, y = data values z (x~) ,z(y~) of the two splines are
not in general identical , (see figure 2). The first real problem was therefore
to determine a way of choosing a value of z between z(xG) and z(y~) which

preserved the continuity and smoothness of both curves while minimizing curvature
over the four new splines. This is done in Section 3.

3. A NECESSARY CONDITION FOR THE INTERSECTION OF TWO SPLINES

Linear spline interpolation can be defined as follows(ref.5) -

Lett~: a = xo <xi < = b

and a set of real numbers ~~~ (1 = 0 , 1 M) be given . A function f ( x) of
class C2 * such that f(x

~
) = z~ and which has given slopes po = f’ (x0) and

= f’ (x~) at the two end points is referred to as a spline function and is
denoted by S~ (f ;x) .  In particular if the interpolating function f(x)  is a cubic
polynomial the spline is called a linear cubic spline . Let L(x ;  Xo , x1, ... x~)

denote the linear space of all functions f(x )  of class C2 on the interval
(XO , xM) which are equal to a cubic polynomial in each of the intervals

( x 11,  x11 I = 1,2, ... M, i.e. piecewise cubic. Then the following theorem
holds(ref.6) -

Theorem 1. For each set ~~~~ z ’ ~M Po, 
~~ 

of values there exists

exactly one f(x) e L(x; xo, ..., x~) such that

f(x.) = z~~, i = 0,1, ..., M , f’ (Xe ) P 0 ,  f’ (xM) =

A continuous curve f(x) has a radius of curvature p (x) given by the expression -

(1 +p (x) f’’ (x)

The reciprocal of thIs expression is the curvature at x. When p is large ,

* This implies that the second derivative of the function exists and is contin-
uous. 

------- ----- -~~~~~~~~~~ 
.
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curvature can be approximated by f’’ (x) . Since this can be positive or negative
the square of the curvature is often used, as in the following theorem :

Theorem 2. Let A and ~zi be defined as before . Then of all the functions
1

f(x) having a constant second derivative on the interval ( a ,bJ and
such that f(x. )  = z~ (i = 0~ 1~ ... , M); the spline function
sA(f ;x) with junction points at the x1 and with S~ (f ;a) =

S~
’ (f ;b) = 0, minimizes the integral

br [f ” (x) 12 dx

This theorem , due to Holladay (ref.7) , is often called the minimum curvature
property .

Consider a three dimensional Cartesian coordinate system in which two linear
cubic splines are defined . One , SA~(f ;x) on the line y = y~ and the other
S~~ (~ ;~ ) on the line x x~ where ,

Ax: a = Xo < x i  < < X .M = b x. * XC 
for all i ,

c = Yo < yi < = d y
~ 
* for all i ,

S~~ (f ;a) = P0 , S~~ (f ;b) =

S~~ (g ;c) = qo , S~~ (g;d) =

Let X
C 

lie in the segment (Xu_ i~ 
x~

) and y~ be in the segment ~~~~~ ~~~ 
We

wish to consider an additional joint in both splines so that the new splines
S~~ , S~ satisfy,

G 1G

= a = Xe < X i  < ... < X U~l 
<X(; < X  < ... < X .~ = b

= c = Yo < Yl < < Y~~1 < YG < yV < ... < Y~ = d

with the requirement that -

S
AX 

(f ;x
G) 

= SAy = Ii

and

5AXG 
SAx except on Ex~~1, x l

SAy 5Ay 
excePt on

In particular note that

-• -—~~-~~~~~ -
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~~G 
x 1) = 

~~~~~ 
x 1)

~~~~~~~~~~~; 
xu) = S~~ (f ; x )

S~y (~~; y~~1) = S~y
(g; y~ _ 1)

S~y (~ ; ‘~,) = S~~ (~ ; 
~~

We now wish to determine four functions -

zi (x) on ( x
1
; XCI

22 (X) Ofl Ix G; x l

Z3 (y) on I 
~~~~~ - 

~~~~

2.4 (y) on Iy~ ; ~~I

Satisfying the relations -

Z”I (Xu l ) = S~~~ (f ; x 1) z
~
i(y

~_ i) = S
~~~~

(
~

;y
~~ i)

~ 
~~~ 

= 

~~
x
G
(
~
; Xu

) ~ 
~
‘v~ 

= 

~~~~~~ 
~~~~

Zi (x
1
) = sAX (f ; X

1
) 23 

~~v-l~ 
= S~y (~ >‘v_ l ) (1)

Z2(Xu) 
= SAX (f ; X

u) 
= ~~~~~~ ~~

Zi (X G) 
= Z2 (XC) 

= z3 — ~4 ~~~ 
= h

and

z’i (xc
) = 22 (x

c)

Z~3 
~~~~~ 

= 2.s (ye)

and such that the functional -

• v (zi (x) , Z2 (x) , z3 (y) , Z4 (y) ) = I z’i ’ (x) ) 2  dx + I z’2 ’ (x) I 2  dx
Xu l  XC

~ 

I Z’3’ (y)12 dy • I Z’4 ’ (y) 12 dy (2)

is minimi zed . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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The latter requirement is in keeping with the minimum curvature property of
the previously defined sections of the splines (i.e. outside the segments
(xe_ i , xe), 

~
‘v-1’ ~~~~~~

The problem is one of determining an extremum , i.e. a functional which
minimizes the overall curvature in four functions, each of which is fixed and
has a fixed slope at one point and which meet at the point (XG, ~~ 

h)
(h arbitrary) with the added provision of continuity of the first derivative in
both the x and y directions in the neighbourhood of (xc, 

~
‘
~~ ‘ h).

A necessary condition for an extremum can be obtained from the “Calculus of
Variations” (see reference 8). A set of curves C = (Zi (x) , Z2 (x) , Z3 (y) , Z4 (y) )
providing an extremum must satisfy the Euler-Poisson equation which for
functionals of the form -

ti
v(z(t)) = ( F(1, ~~~, ~~

‘
, . 2~n)) dt

J to

is the nth order differential equation -

d d2
• F

2 
- F , •

~~ ~~~? ~~~ ‘‘ + 

~~

.. + (~~1) fl 
— F (n) 0 (3)

• where F~ denotes the partial derivative of F with respect to p.

For the functional (2) the set C must satisfy the four equations -

F2 
- 4~ F2, + 

~~? ~~~ ‘‘ = 0 (i = 1,2) 
1

(4)
F - ~ -+ b~ 

~~~~~~~, = 0 (i = 3,4) j
obtained by repeated use of equation (3). The general solutions of these
fourth order differential equations are the four functions -

= z~ (x , C
~~

, C~2, C~3, C~~) (i = 1,2)

= ~~~~ C11, C12, C13, C.4) (i = 3,4)

each of which involves four arbitrary constants. These will be obtained from
the boundary conditions and the fundamental necessary condition for an extremum ,

= 0.
Since the F are functions of z’.’ alone, we have -

1

F = 0 and F~ = 0 (1 = 1, . . . ,  4)
i i

so that the equations (4) become -
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= 0 (i = 1,2) F,, = 0 (i = 3,4)

or

z 1~
4
~ (x ) = 0 (i = 1,2) 44) (y) = 0 (i = 3,4) * 

-

The selutions are therefore the cubic polynomials -

z
~(x) = a . .  x~ Ci = 1 ,2)

z
~
(y) = 

;~~0 

a . .  >‘~ ~ = 3,4)

The equation (1) provide only 13 independent relations, therefore 3 additional
conditions are required to solve for the sixteen coefficients.

The four z. terminate or begin on the line x = x~, y = 
~~~~~~ 

By considering

the arbitrary variations &z
~
, &z~~, 

6z and the fundamental necessary condition

for an extrcnw m , namely ~v = 0, (see Appendix I) the following relations can be
der ived -

d d d d+ F,, - — F ,, - = 0
dx Z i X = XC

_ dx Z2 X = XC
+ dy z3 y = y

~
- dy z4 y = y

~
+

F,, — F,, = 0
Z1 X = X~~- Z2 X = XG

+ (5)

- ~~~
, ,  = 0

Z3 Z4 Y Y ~~

Since F,, = 2z~’ and therefore -~~~~~ F2’~ = 2z~’’, the equations (5) can be

written as -

, , ,  , , ,  , , ,  I , ,
z 1 (x c) — z2 (xc ) + Z 3 — Z4 (ye) =

2 (x e) - zY (X C) 0 (6)

Z~3~ ~~~ 
— Z4 0

or si nce
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(x) = 2a
~2 + 6a13 x , z’

1’’ (x) = 6a~3 (i = 1,2)

and

S .
z~ (y) = 2a12 + 6a13 y, z~ (y) = 6a.3 (i = 3,4)

these can be written as,

ai3 - a23 + a33 - a43 0 1
2ai 2 + 6a13 X6

- 2a22 - 6a2 3 XG 0 (7)

2a32 + 6a33 
~~~~~~~~ 

2a.,2 - 6a4 3 = 0 J
These provide the remaining 3 relations required to uniquely determine the sixteen
coefficients a13 . These can readi ly be shown (after arranging the ~~ for
convenience in the subsequent reduction) to satisfy -

(cJ~, =

where -

~i
’ = I a i o ,a2o ,a:;o ,a4 o, a l l , a21 ,a31 ,a41 , a12 , a2 2 , a32 , a33 ,a13 ,a23 , a42 ,a.43 1

Izi (xu l ),z2x u),z3(yv_ 1),14(yv)Jz
’i (xu_ 1),z’2(xu),z

’3(yv l ),z
’4(yv),0,...,0l

and

I K K2 K 3
u-i u-i u-i

1 K 2
• U U U

1 
2 3

I yv Y
~

1 2xu-i u-I
1 2x

I 
~
2y 3y2

(CI = 1

1 1 K
0 ~G X~3 

X~~ V

1 -i ~G ~~G X~ ..%/~ .Y
~~

~ ~‘G ~G
1 1 — 1 —i

1 -I 
~~G 2K 0 ~“G G

-1 -i 
~~G % 

2
~G~~~G

2 -2 eKG 6KG
2 6y0 -2

_____________ _________ ~~~- - - -~-- -- —— - ---- - —- -~~~~~~~~~~ - • -  - - -1
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This matri x was then reduced to triangular form by elementary row operations
(see Appendix I I ) ,  the same operations being applied to Jj . Thus a set of
relations defining the a. . could be written down. These are shown in

1)
Appendix I I I , together with a program for determining the values of the ~~
for any given boundary values .

4. BICUBIC SPLINE INTERPOLATION F ROM CONTOUR DATA

The primary aim of this Technical Report was to Establish the result given in
Section 3. There are a number of ways of making use of this result to define a
surface which is representative of the surface described by the original
contours . To make best use of the properties engendered by the process used to
derive the lattice point data, piecewise bicubic interpo1~tion should be used.
This is described below .

4.1 Use of the lattice-point data alone

Consider a rectangular area on which a data base has been established as
in Section 2 and on which the value of z has been determined by the method
of Section 3, for each of the lattice points (x.,y

3
) i = 1, .. ., I - 1,

j  = 1, ... , J - 1. And furthermore that there be given values -

z(x
~
,Y.) i = 0,1, j  = 0, . . . , J

j  = 0,J, i = 1, ..., I

P13 
= z

~
(x.,y.) i = 0,!, j  = 0, .. ., (8)

= Z~~(X~~IY J
) 3 = O,J , ~ = 0, ..., I

= z (x . , y . )  i = 0,1, j  = O,J 
-

(See figure 3 which displays the position of the data graphically). Then it
has been shown(ref.6) that given the above values, the following theorem
holds :

Theorem 3. There exists exactly one piecewise bicubic function z(x ,y) of
the form -

1+2 J+2
z (x ,y~ = 

~~~~~ ~~~~~~~~

m 0  n=O

where the and 
~
‘ are piecewise cubic and of class C2 on

R: xo x ~ x1, Yo ‘
~~~ 

y ‘~ y~ .

This theorem establishes the existence and uniqueness of the desired function.
Furthermore an efficient computationa l scheme for its evaluation has been
given in the same paper. Wi thin a g iven rectangle R13 : x~~ 1 ~ x 4 x~ ;

~~y ~~y . ,  the interpolating function z(x ,y) equals a bicubi c polynomial ,

Ci~
(X

~Y) = ~~~~~~ ~~~(x - x~~1) Th (y - y ) fl (9)

m,nwO

—---

~

_-

~

---• --_-- _ —  -•.
~~ - — - - ~~—-~~ -_ - - 
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The problem has been reduced to the easily handled case of a regular mesh
at the cost of being removed one step further from the original data since
the values z(x ,y) forming the data base of Section 2 are no longer involved
explicitly.

4.2 Retaining the data base

In order to fit a surface to both the data base points and the lattice
points it would be necessary to divide the X-Y plane over the region of int-
crest into rectangular areas by connecting the data base points
(x
~~>~3

), y
3 

= ~~ on grid line y = y~ to adjoining grid lines r = 

~n..1 and

- 
~~~ by means of perpendiculars, and likewise the data base points

~(x~~i3
)~ x1 Xm IS on grid line x = with adjoining grid lines x =

X1,1. The values of z and either p or q at the corners of the
resulting rectangles could be determined and hence linear cubic splines for
these connecting lines derived. Also the values of z and p or q at the
intersections of such connecting lines could be obtained. Some means would
then have to be devised to obtain the s.. at the corners of each of the

13
rectan~~vs formed by this process . Then within each such rectangle a bicubic
spJ:~ta of the form given by equation (9) would be used as the interpolating
Lunct ion . The increased effort which would be involved (if in fact a
suitab le method for determining the 5i j  could be devised) does not seem

warranted by the expected increase in accuracy.

5. DISCUSSION AND COMPARISON WITH INVERS E DISTANCE WE IGHTED INTE RPOLATION

The existing approaches to the problem of interpolating from irregularly
spaced data have been summarized in reference 4. The most successful one is
based on assigning a weighted sum of local values to the point at which inter-
polation is required. The weighting function may be a pure inverse distance
function , where in the neighbourhood of a data point the interpolated value is

• computed from the difference of two almost equal numbers, which results in
significant computational error. Another disadvantage for terrain modelling

• work is the fact that the method imposes zero directional derivatives at each
data point ; a suitable choice of exponent would alleviate this problem to some
extent. It has been discovered empirically that a value of 2 for the exponent
is best. Modifications to improve the weighting function include:

(a) adding a small constant to the denominator to improve the performance
near data points,

(b) using an exponential form to improve smoothness while using only a small
number of local data points ,

(c) including direction in the weighting function, and

(d) (of particular relevance to the current application) attempting to correct
the undesirable property of zero di rectional derivatives at the data
points by the introduction of slope into the weighting function.

The process described in reference 4 for implementing method (d) was somewhat
arbitary and considering the importance of slope in “line of sight” work
especially at b i l l  tops where it is critical , it was considered that a new
approach was required , and this has been provided in Section 3.

To illustrate the difference between various methods, an example taken from
reference 3 of an analytic surface representing “a steep hill rising from a
plain” defined by the funciton -

z ~~~~~~~~ 
+ (y-5) 2 1

- --~~~~~-- - - . --—--
~~~
- - - --—--—,. -- --.

•

--—~~~~~-~~ 
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was used. Contours at intervals of 0.2 were calculated with a data base
extracted using the technique described in Section 2. The relevant calculations
for the bicubic spline method are described in Appendix IV.2 , and the results are
illustrated in figure 4.

Two interpolation procedures based on inverse distance weighting functions were ‘ -

also used. The first was the simple case with w(d) = d
2 given by(ref.4).

= [
~ 

d 2z’ ] /~ 
d~~ if d

~ * 
0 for all N data points

-
• Z(P) i=l i=l

= z. if d. = 0
I I

— where P is the point at which interpolation is required

i = 1, ..., N are data points

is the distance between P and the .th data point

N is the number of data points

This method is poor for the current application since it produces a dip in
place of a crest at the critical point - the apex of the hill. This flattening
of hill tops and valley floors which is characteristic of weighted inverse
distance smoothing is alleviated to some extent by incorporating two quantities

A. and B. which represent the desired slopes in the x and y directions at the ~
th

data point and are weighted averages of the divided differences of z about that
point . They are given by the expressions (see reference 4) -

A =  

- x)~~

B. = [
~ 

~ ~~~ - z  - 

~‘~II 
d~~

where d(D., Di is the distance between the ~th and jth data points. The inter-

polating function then becomes -

N N

= [
~ 

d~ (z’ + ~~z
1
)j  / ~~ d 2  If d

~ ~ 
0 for all u data points

Z(P) 1=1 i=l

= xi If d. = 0
1
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whore

- t A ~ (x - x~) + B1(y - 

~~~~~~ [~ + dj

and

V = O.i[max{z9 - min !z~~ j / ( max k2 + Bth½

This method removes the dip produced by the previous function and achieves a
value of 0.901 at the apex. The curve fitted by the bicubic splines method
however achieves the value 0.968 giving a better approximation to the desired
curve with a value of 1.0 at the apex. The data used and the values of the
interpolation functions at selected points are shown in Table 2.

6. CONCLUSIONS

A method has been developed which enables more efficient use to be made of the
data from automatic map reading instruments. This can now be processed by the
means outlined in this Technical Report into a form which can be used directly
in existing terrain and vegetation models.

The technique for determining the minimum curvature solution for the inter-
section of two splines has more general applicability. For example it would
provide a good method of estimating the values of missing data points in a
regular mesh data set.

— - - • -•- ~~~~~~~~~ 
_ _  _ _  

•
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NOTATION

a .. i = 1, 2, .. ., 4, j = 0,1, ..., 3. The 3
th coefficient

1) thin the i of the four cubic functions.

the vector (ai o ,a2o ,a3o ,a4o ,ai ,a2 ,a3 ,a4 ,ai~ ,a22 ,a32
a33 ,a1 ~ ,a23 ,a42 ,a43) 

—

• 
k. the vector (xi (x 1),z2 (xc) , Z3 (y~~ 1)~~z+ (y~ ) , z’i (x

~~ i ) , z
~ 

(xu)
z3 (y~_ 1)~ z4(y~),O,O, .. ., 0)

aF( x, z . ,  z . z . )
F 1 1 1  i = 1 , 2a z .

— aF(y1 Z j~~ Zj  z
~ ) 

= 34

F , F ‘s simi lar definitions to those for Fz. z. z.

H1~~ interchange the ~
th ~th rows

H.(k) multiply every element in the 
~th 

row by a non-zero scalar k

II1~~(k) add to the elements of the ~~ row k (a scalar) times the

corresponding elements of the j  row

z’ (x1)

a z (x . , y. )

ax

z’ (y1)

• az(x.,y.)

ay

R. k an element in row i , column j  as modified at operation
number k

R
~ 

R.K the term in 1~. corresponding to Rijk

az(x.;y.)

y respectively refer to the three Cartesian coordinate axes
zJ

X )  ,~~~

particular values of x and y

~~~~~~~~ the coordinates of the inserted joint

the segment containing the value

___ ___ _  _ _



- 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—---

~~—. —

- 13 - WRE-TR-1837(A)

yv the segment containing the value

• z(x. y.) the value of z at the point (x., y.)
1 1 1  1 1

a particular value Z (X
i ) 1  or z(x

~ , ~~~ for a fixed j

a particular value z(y~) . or z(x 1, Y~) for a fi xed i

xl z~~(x) i = 1,2 ] The four functions to be optimized with
zi (y) I = 3,4 .) respect to curvature

the value Zk (X i )  k = 1,2
or zk (Yi) k 3~4 

—•--—---‘ — - •~~~ •-- --- ~~——• ____________—-

~~

-• - - -
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APPENDIX I

A PARTICULAR CASE OF WE F~J’1DAMENTAL NECESSARY CONDITION

FOR AN EXTREMUM

An increment ~v of a functional of the form v(z(x) ) can be written as -

= v(z(x)  + 6z) - v(z(x) )

If it is possible to resolve this into two components so that -

= L(z(x) , 6z) + M(z(x) , &z) max I6zt

where L(z(x), &z) is a linear functional in &z
max (&z( is the maximum value of 6z

and

M(z(x), &z) ‘ 0 whenever max I&zI + 0

then L(z(x) , &z) is called the variation of the functional and is denoted by Sv.
If the variation of a functional exists and if v takes on a minimum or a maximum
along z zo (x) then 8v = 0 along z = zo(x)(ref.8). This is the fundamental
necessary condition for an extremuin and is readily extended to functionals
involving several independent functions.

The functional under consideration in the main body of the text is

V(Z i  (x) ,z2 (x),z3 (y),z4(y)) = [z~
’ (x)12 dx + 1u [z ’2’(x)]2 dx

• J x
~..1 J X

G

+ (G ( z ’3 ’ (y)] 2 dy + (V 
~~~~~~ ~y)] 2 dy (I .1)

JI G

It can be seen that it consists of the sum of four functionals of the form -

t—t i
v(z( t)) r F(t, z, z’ , z’’) dt

J t.to

For functionals of this form with one fi xed and one moveable boundary point , the
fundamental necessary condition for an ext remum becomes (see reference 8) -

(P . z’ F 2s - z ’’ F , s + z ’ f ~~~~~~~ 
5ti +(P

~. — . ~j -F~i . J ~~~ 6zi +( F 1~I l t_t 6z ’i = 0

(1.2)



Now using the linearity of the variation of a functional and interchanging the
limits of integration, the variation Sv of equation (1.1) can be written as -

x +6x x +Sx y+ &y
= E~ f ( z ~ ’ (x)12 dx - 

~ f 1z 2 (x))2 dx + 

~ f EzY (y))2 dy

.ix J x  J y
u—I u v—i

‘ ‘ 2- t ~f ( Z 4  (y)J dy

j yv

so that , using equation (1.2)

= (_i)~~~[~~
F - z~ F ,  - z~’ iT , + z~ f F i .j  

x x G * 
6 XG

+ I F ~ -~~— F ~~J & z +(F ,, J S z’
I Z . dx z. i G z. x=x *
L~ i i_ i  

- * 
i G GX_ X

~ S
4

+ (~ l)
i f l L  LF - z~ F~~ 

— z’
~’ F~; 

+ zk ~~ 
F
1~.] 

y y ~* ~

I .  d .  I
+ - 

~~~~~~ 
‘
~z~’J 

* 

S + I F~~ I y=y G* S Z
y

Now S x and S y are zero but S ZG~ 
S z’ (the derivative of the variation with

XG

respect to x) and &z’ (the derivative of the variation with respect to y) are

all arbitrary so that their coefficients must be identically zero. Noting that
F i  i = 1,2,3,4, are zero this can be written as -

i

d d d d
—F ,. - Fe . + F,, - F,, = 0
dx z, XX X

G 
dx z2 X X

~
+ dy Z3 

~~~~~~~~~~ 
dy 

~~
‘ ~

‘
~
‘G4

(1.3)

F - F = 0 (1.4)
xl X X ~.- Z2

* Indicates derivative from either lef t or right as requirM
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P z~?~~r=y - F

~~s I y ~y +  0 (1.5)

These are the forms used in the text . 
•

a
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APPENDIX II

THE REDUCTION OF (CI TO TRIANGULAR FORM

The columns of the matrix [ci and the corresponding terms of the vectors ~and J~ were initially arranged to facilitate the reduction described in thisAppendix. The notati on used for elementary row operations is as follows :

.th .thinterchange the i and j  rows

H.(k) multiply every element in the ~
th row by a non-zero scalar k

H. . (k) add to the elements of the 1th row k (a scalar) times the
thcorresponding elements of the j row.

An element in row i, column j ,  as modified at operation number k (below) is
denoted by Rjjk and the corresponding tern in J~, by R. R.K .

The following list shows the operation followed by the changed row and the
corresponding element of b -

(1) It9~~ (—1) : OiO,O,~
l
~
x
~
_xI , O,O,—YC, xG — X1 2 , 0,0,0, x~ — X 1~~~ 0, y 2

-Z ~

(2) H10,2 (—l ) : O,0,O,— l ,O, ~~~~~~~~~~ 
~~G’ 0, XG

2 
— X2

2
, 0,0,0, X

G 
—

‘ 
~~G ’  Z2

(3) H1 ~~~~ (—1): 0’°’0’ 1’°’°’~G~~’ ‘ ~
‘G’ 0,0 ,y

~
2 

— >‘~ ‘ ~
‘G 

— 
~~~~~ ~O,0~

_y
~
2

— 2 3

(4) Ih ,~~ (1) : 4 x “0”, xG
_xt , 0,0, Y2 _YG,xG —xi 2 ,0,0,O,XG

3 
X1 ~ ,0 ,y2 2 1G

Z 4 — Z 1

(5) II, o ,~~ (1) : 5 x “0”, XG
_X2 , 0, Y2 >‘G O~ XG

2 — X 2 2 
, 0,0,0, xG — x~ Y2 2 _~~~~2

y2 3 
— 1G ’  Z4 — z2

(6) H1 1,4(1): 6 x “0”, ~~— Y i  , y2 _y~ ,0 ,0 ,Y~
2 _Y 1 2 y~~ —y i 3 ,0 ,O ,y2 2 _y~

2

— Z3

(7) H, ,ç  (— x i ) : 1 ,7 x “0” , ~~~~~ 
2 

, 0,0,0, —2 x~ , 0,0,0, 21 — X~ z1

(8) I~ ,~~ (x~ — x G) . 7 x “0”, I2~~IG~ 
(xG

_ x I  )
2 

, O,0,0,x
~
3 —X t ~~~— (x G

_x l  ) 3 xi 2 0,

12
2 

- >‘G ’  ~ 2 3 
- y

~ ; z4—Z1 - (x G_x s )z~
(9) I1,3,3 (—l) : 5 x “0” , _ 1 ,O ,0 ,2(x G

_ x l ) , _2x G, 0 ,O , 3(x G
2 _x 1 2 ) , _3xG

2 ,o ,O; —z ’1

(10) HI o ,6 (x i_ X G):  7 x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Y2 2 YG
2
~

y2 
~~~~~~ 

, 24 - 22 ~(x G
_ x2) Z2

(11) Fl2 ,6 ( — X 2 ) : 0,1,7 x “O” , — X 2 2 ,0,O,0,— 2x33 , 0,0; z2—x 2 z~

(12) 1113,6(1): 8 x “0”, 2 (X G _ X l ) ,  2(x2_xG),0,O,3(xG
2_x1 2), 3(x22 —xG

2),O,0;
2 2 - 2 1
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(13) 113 ,7 (—Ii ) : 0,0 , 1,7 x “0” , _yi 2 
, — 2yi ~ ,4 x “0” ; Z3 — Yi 13

(14) H 11,7 (y l _y
~) :  7 x “0” , y2—Y~,o,o,(Y~—yI)2 YG —yl — (YG—yl )3Y1 ,O,O,

(Y2 2 — Y G
2 )

~ Y2
3
~
YG

3 ; Z4 _ Z 3 _ ( YG_y 1 )z~
(15) H 14, , (—1) : 7 x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — z ~
(16) H4,e (—y2): 0,0,0,1,10 x “0”, —y22 ,— 2y23 ; 14—y2 z

(17) 1114,8(1): 10 x “0”, 
~~~~~~~ 

3(y~
2 _y1 2 ) , 0 ,0 ,2 (y2 _y~~~, 3(y2 2 —y G

2 );

(18) H11 ,8(yG_y2): 10 x “0”, (YG YI)2 1yG
3 _y1 3 _ (y

G Y1)3y1 2 ,0,0,_ (yG
_y2)2 ,

y2 3 -yG
3 - (y2 -YG) 3y2 ; z4_ z3 _ (y~ _y1 ) z3 _ (y2 _y

6) 2~

(19) H I o , 8 (y G_y2 ) : 9 x “0” , (xG
_ x2) 2 ,O ,O , O ,xG

3 _x 2 3 _ ( x G
_ x2) 3~~ 2 , — (YG—y2)2 ,

y2 3 1G — (y2 
~~~ 

312
2 ; 24 — z2 — (xG—x 2 ) z — (y2 

~~~ 
Z4

(20) H9 ,s(y ~ _ y 2 ) :  8 x “0” , (x G
_x l ) 2 , 0,0,0, xG

3 _x1 3 _ (x
G
_xl )3x12 ,O,_ (yG

_y2)2,

y2 _y
~

3 _ (y2 _y
~ ) 3Y2 ; Z4 — Z1 _ ( x

G
_ x 1) z

~
_ (y2 —y G) ~~

(21) Hi s (½) : 8 x “0” , 1, — 1 , 0 , 0 , 3xG, ~ 3XG, 0, 0; 0

(22) H 16(½) : 10 X O~~ 1, 3
~G’ O~ 0~ -1, 3

~G’ 0

(2 3) ~~~~~ (interchange 9 and 15)

(24) H1 3 ,9 (2 ( xl _x G) ) :  9 x “0” , 2 ( x 2 _ x I ) , O ,O , _ 3(x u _x
G) 2 , 3( x2 2 _ x

G
2 )+6( xG_x1 )x G,

0,0; z~~— z ~

(25) H1s,9 (_ (xG
_ x l) 2 ) :  9 x “0” ,(x G

_ x l ) 2 ,O ,0 ,2 (xl _ x G)3 ,(x G
_ x l ) 2 3xG,

• (y2 2 _Y
~
2 )_ (y2 _Y

~)2Y2 ,y2
3_Y

~
3 _ (Yz_Y

~)3y2
2 ;

Z4 - + (xG
_xl ) z’~ - (12 

~~ ~

(26) H lo (1 . / (x G
_ x2 ) 2 ): 9 x “0” , 1,O ,0 ,O ,(x G

3 _x2 3 _ (x G
_ x2 ) 3x2 2 )/ ( xG

_ x3) 2 ,
((y2 2 _ y

G
2 )_ (y2 -YG)2y2)/ (xG

_x2 )2 ,((y23 -yG
3)—(y2—yG)3y2

2 )/
(xG —x2 ) 2 ; (z4 _ z2 _ (xG _ x 2 ) z

~
_ (y2 _y

G)z~ )/ ( xG
_x2 ) 2

(27) H13 .10 (2(x 1 —x2)): 12 x “0”, -3(xi _xG) ,3x2
2_3x

G
2+6(XG_x1)xG

_ 2(x2_2d1 )

R10l426, -2(x2-xI)R101526, -2(x2—xl)R101626; z~-z~
-2(X2-XI ) R10R26

(28) H is , 1 o (_ (x G_x l )2 ) :  12 x “0” ,2(x l _x G) 3 ,(x G
_ x I ) 2 3xG_ (x G

_ x l) 2 Rl0 1426 ,
(y2 2 -yG

2 )
~~
(y2 _YG) 2y2 (xG X 1) 2 R 101526 ,y2 3 YG

3 .(y2 yG)3y2 2

_ (x G
_ x l) 2 Rl01626; 14 -Zi _ ( x

G
_ x 1) z

~ 
-(y~ _y

G)~~
_ (x G

_ x 1) RlOR26

(29) ~~~~~~~~ (interchange 16 and 11)

(30) H u4 ~~1 I ( _ 2 ( y ~ _ y 1 ) ) :  11 x “0” , -3( YG-y 1) 2 , 0 ,0,2 (y2 -y I ) ,  
~~~~~~~~ 

+

3
~G’ 

z4 -
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(31) H16 I i ( - (y~ -y 1 ) 2 ) :  11 x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y2 3 —y G

3 - (y2 —YG)3y2 *(YG-y1 ) 3YG
; z4_ z3 _ (yG

_yz )z3

~(y2 _y
G) z~

(32) II~4 ~l 2  
~~~~~~~~~~~~ 

)
2

) : 12 x °‘3~~G~~’ 
) 2 

‘—3
~~G~~ ’ 

)
2 , 2 (y2 —Y1 ) ~3(y2 2 _ Y~

2 ) +

6(y c-yiiyc - 

~~~~~~~~ 
z~~z~

(33) Il~~ .12  (-2y 1 y& )
~ 

12 x “0”, -2(yt 
~~ 

,2(y1 
~~ ‘~~G~~’ 

)
2 
- (Y G Y2 ) 2

2y~
3 -2y23 ~3Y2 2 

~~~~~~ 
>‘G &’l 2

~ G~~
2 ~~ -

~ G~~ ’
Z4_23 _ (yG

_yI )z~ — (Y 2_ y ~ )z~

(34) H1 3 (-1./3(xi  _x
G

) 2 ) :  12 x “0”, 1, (3x22 _3X
~

2 +6(x
G

_xl )xG
_ 2(x2 -Xi )

R 10l426/_ 3( x I _ x G)2 ,_ 2 ( x2_ x i)R 10 1526 /_ 3(x l _x G
)2 ,

— 2 ( X 2 — X l  )R10l626/—3(xi _ X
G ) ; I z~—z~ -2(x2—xl )R 10R26 1

• / _ 3 ( x l_ x G ) 2

(35) H14 ,13 (_3(yG
_yl )2 ) :  13 x “O”,_ 3(yG_yl )

2 (l+Rl3l434). 2y2
_ 2y1_3(y

G
_yI )2

R131534, 3Y22 -3YG
2 
~~~~~~~ 

)y~
_ 3(y~

_y1 )2

(l+R13l634) ; Z4 Z 3 3(Y G_y I ) R 13R34

(36) Il Is~ IJ (—2(xI—x (4~): 13 x “0”, (x 6-xt ) 2 3xG
_ ( x

G
_ x l ) 2 R10 1426 - 2(xI_xG)

3

R13 1434 , (y2 2 _y~
2 )_ (y2 _y~ ) 2 y 2 _ ( x ~ _ x I ) 2 Rl01526_ 2(xI _ x ~ ) 3

Rl31534 , (y2 3 _y~
3 ) _ ( y2 _y ~) 3y2 2 _ [x~

_ x I ) 2 R101626

_2 (xl _x
G)

3 R13l634; z4_zl _ (xG
_xl )zi_Cy2 _y

G)z4
_ (xG

_xI )2

R1OR2Ô - 2(xu _ x
G)

3 R13R34

• (37) ~I I ~ ‘1 3  ( 2 (y 1  -y~ ) ’) :  13 x “0”, 2(yi 
~~~ 

(l+R131434), 
~~~~~ 

)
2 
- (YG y2 ) 2 +

2(y,-Y&
~ 

R131534,2yG
3 _2y2 3 +3y22 >‘G~

3
~’ 

y~ (Y1-21~) 
+

2(y~ -y(~)
3 (l+Rl 31634); Z4 Z3 _ (YG

_yl )Zc _ (12-Y C)

z~+2(yi ~~~~ 
R13R34

(38) H14(l./_3(y
G
_yI )2 (l+R1 31434)*): 13 x “0”, 1 2y2 _ 2y1 _ 3(yG

_yl )2 R131534] F38,

I 3y2 2 _3y
G

2 +6(y G_yl  
~~~~~~~~~ 

)
2 (l+R 13l634))

F38; [z4_z3 3(yG
_yi )2R13R34J F38

* Factor referred to as F38

(39) I11~~,14(-R15i436): 14 x “0”, R151536-Rl51436.R141538, R151636-Rl5l436.

Rl41638; R15R36-R151436.R14R38

(40) H16 , 1 4  (-R161437): 14 x “0”, R161537-R161437 .R141538,Rl61637-R161437.

R14l638; R16R37-R16l437.R14R38

(41) H,s(I./R151539): 14 x “O”,l, 1 R151636-R15l436.R14l6381 /R151539;

(R15R36-R151436.R14R381 /R151539

(42) 1116,15 (-R161540): 15 x “0”, R161637-R161437.R141638-R161S40.R151641;

R16R37-R161437. R14R38-R161540.R15R41

(43) Il,6 (I./1 R161637-R161437.R141638-Ri61540.R15l641J )

- • .
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This sequence of operations reduces I Cl to the partioned form -

• III
8x8 I

~~~~~~~~~~~~~~~~ 
[DI

• (01 l6x8
• 8x8 I

Where III is a diagonal matrix, [01 is a zero matri x and ID) is given by,
- 

-x12 —2x1 3 —

-X3 2

-vi2 -2y13

~~ —2y~
3

2xi 3xi2

2x2 3x32

2vi 3v1 2

2y3 3y~
2

[DI = 1 -: 
1 3

~G 

3X
G ~

3X
G : .:~

1 t 4 *5 *5
1 t7 *5

• I t9

I

The terms t 1, t2 .. ., t9 are given by -

= [x G
3 _x2 3 _ (x G

_ x2)3x2 2 1/ ( xG
_ x2) 2 

= XG+2x2 R101426

= (Y 2 2 _y~
2 _ (y2 _Y~) 2y 2 ]/ ( x~

_ x2) 2 
= _ (y

G_yZ )2 / (X G_xZ )2 R101526

t3 [ y2 3 _y~
3 _ (y2 -y~)3y2 2 J / ( x ~

_ x2) 2 
= R101626

= ( 3x2 2 _3x
G

2 +6 (xG
_ x l ) x G_ 2(x 2 _ x l ) R101426 1/(3(xl _ x G)2 ) R R13l434

= _ 2(x 2 _xl ) R101526/( _ 3(xl_x G)2 ) = R131534

= _ 2(x 2 -.xl ) R10l626/(_3(xl _x
G) 2 ) = R131634

= (2(y~-y~ ~~~~~~~ 
) 2 Rl3 1534) /[ 

~~~~~~ 
)
2 (l+R131434)I

I 3(y3 2 _y
~
2 )+6(y~_ YI 

~~~~~~~~~ 
)
2 ( 1+R 131634))/I 

~
3(YG Yi ) 3 (1+R131434))

(R151636 - R151436.R141638)/R151539
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The vector ~~~ becomes -

- 
zI — x I z~

z2 — x2 z

z3— y1 z~

1 4 Y 2  Z4

2’~

z~

z3

0

I z4_ z2 _ (x G_x 3) z
~

_ (y2 _ yG)z~I / ( xG—xa ) 2

I z~ -z’i -2(X2 -xi )R10R26 1 /1 -3(x~ _ x
G) I

1 z z3 . 3(yG_y I ) 2 R13R341 /( 3(yG
_ y I ) 2 (l+ Rl31434)J

(R 15R36-Rl5 1436 .R14R38)/Rl5 1539

— (R16R37-R16 1437.R14R38 -R 16 1540.R 15R4 1)/R 161642

A table showing the operations which affect each row in the order in which they
were used (last on the right) is given below :

Row Operation numbers

1 7

2 11

3 13
4 16

5-8 Not changed
9 1,4 ,8,20 ,23

10 2,5,10,19,26

11 3,6 , 14 ,18,29
12 Not changed
13 9, 12 ,24 ,27 ,34
14 15, 17 ,30 ,32 ,35,38
iS 21,23,25,28,36,39,41

16 22 ,29 ,31,33,37,40 ,42 ,43

L S~~._ _ _

— — a— — — -~• 
— .— — -

~~ 
—•-——--- . —------ — --——
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APPENDIX III

THE COMPIJFING ALGORITHM AND PROGRAi44E FOR WE INTERSECTION OF TWO SPLINES

From the reduction of (ci and k~ given in Appendix II the relations defining
the sixteen components a1~ of the vector ~~ , in the equation (ci ~ =

Section 3 of the main text , can be written down. These are, in order of
calculation , and using the row element terminology introduced in Appendix II.

— I R16R37-Rl61437.R14R38-R161540.R15R411 /
[ R161637-R161437.Rl4 l638-Rl6l540.Rl51641)

842 = R1SR41 - t9 ~~ 3

a23 R14R38 - t8 843 - ti 842

a13  = R13R34 - t6 a~ — t5 842 - t4 a23

a33 = a23 + 843 — a13

833 = 3
~G 

843 + 842 - 3
~
’G a33

a22 — R1OR26 - t3 a~ - t2 a~3 - ti 823

ai2 = 3XG ~2 3  - 3x~ a 13 + a22

where the t. terms are defined in Appendix II.

Writing p., , 1 - 1,2,3,4 for the variables x2 ,x2 , yj ,  Y2 respectively

all = z~ - 2p~ a12 
- 3p. 2 a~3 for i = 1,2 ,3,4

= - Pj  z + 2p1
3 a13 + p1

2 a12 for i = 1,2 ,3,4

During the reduction of IC] to triangular form certain restrictions were
introduced by the fact that the scalars k in the elementary row operations
H.(jO , H~~(k) were required to be non-zero so that we have -

(7) x ~ * 0

(8) x ~ * XG

(10) x2 *

(11) x2 * 0

(13) 11 * 0

(14) Y~ *

(16) Y2 * 0

(18) 1G * 12

(27) xi * X2

(38) R131434 * -1

~

-.

~

•- 
_
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(39) R151436 * 0

(40) R161437 * 0

(41) R151539 * 0

(42) R161540 * 0 ;

and from the calculation of 8.4 3 •

R161637 - R16l437.R14 1638-R161540.R15 164l * 0

The basic computing routine ROUTINE 1 incorporates checks for the above
conditions.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •
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SURROUT1NE Ru HE1 (X1 ,X2 ,Y1,Y2, XG,YC,Z1,Z1D,Z2,Z2P,Z3,Z3fl,Z4,Zlsfl,
1 NFLAG )

C 
C THIS SURROUTINE ACCEPTS ROIINDARY VALU ES XI ,YI ,Z I AN!~ A PARTIA L

• C DERIVAT IVE OF Z(X I .,YI ) I-1,..li ANn F iNDS INTERPOLATION FUNCT I ONS
C TO DETERMINE THE VALUE OF Z AT THE Pflt~IT (Xfl,YC).
C
C ERROR FLAGS:

• C NFLA G ERROR
C 1 X1— fl
C 2 X 1—X C
C 3 X2 — X G
C Ii X2— 0
C 5 Y 1— 0
C 6 Yl —Y G
C 7 Y2— 0
C 8 Y2—YG
C 9 Xl—X2
C 10 R131ie31e—1
C 11 R151I36— 0

• 
• C 12 R1611i37— 0

C 13 R151339—O
• C 14 R161540.0

• C 14 k161631—R161437.R11i1638—Rl61540.R151641~ O
C
C DIF IS THE MAXIMUM DIFFERENCE RETWEEU THE THEORETICALLY EQUIVALENT
C VALUES OF ZG1,ZG2,ZG3 AND ZG4.
C- 
C

IMPLICIT REAL*R (A—U ,O—Z )
C
C- --COMPUTE POWERS TO SAVE REPEATED CALCI’LAT I ON OF THESE VA Lu ES

X12—X1**2
X22=X2**2
XG2 .X G**2
X13.X12*X1
X23=X22*X2
XG3*XG2*XG
Y17 Y 1**2
Y22=Y2**2
YG2~ YG **2
Y13.Y 12*Y 1
Y23 .Y22*Y2
YG3 .YG2*YG

C
C- --TERMS REQU I RED FOR LAST STAGES OF TRIANGI’LAR REDUCTION 

F26=1 .1 (XG—X2 )**2
R01 Ie26 XG+2,*X2
R01526~ (Y22—YG2— (Y2—YG)*2 . *y~ )*F26
R01626— (Y23—YG3— (Y2—YG)*3 ,
R0R265 (Z4—Z2— (XG—X2)*Z2P— (Y2—YG)*Z4ri)*F26
F31e.1./(—3. *(X1—XG)**2)
R31l,3Is~ (3.*(X22—XG2)+2. *(XG—X1)*3. *XG—2 .*(X2—X1)*RO1 426)*F31e
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• BEST AVA1LA~1E COPY
u31s3Ii =~ pn1r,2r ,*7 .* ( x 2 — x l)*fls,
U~ 1 ( , 3 b=—I ~O 1 (~~ (~*~ . *( X2—X i ) *r 3I~lflI~U~=( Z ”P — 7 •1~~—~~. *( X~ —X 1 )*t’flfl~ i )*r31,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ) ** “ *r f l p .7r .
— * ( Y 1— X C )  * * ~ * fl 3 ‘~ 3 t~

• •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F~~~= 1 . /(3 . * ( v c — v 1 ) * * 2 * ( — 1 .— I ~3 1Ii~~t j ) )
Rl i , ( 2 . *Y .*y1 .*(yc ’!1)**~~*P31flhi)*r3~

• I~I,I~~ ’=( ZI~r— Z ~ n—3 .* (y c — y 1)~~~2* r3n3 r~ )*r3fIt’ . 15 ~
) 
~1~5 I ~ 3 6—f ~5 1~i3 (; *~ t~ 1538

I~U~1 ~ IiU=Rfl 15 i7—fl (~ 14 ~7*flIj 1538
J 1 ~~4 1 =( f l51r3~ — r~~143h* I 11’38 )/ i :c lc3q
I I ~Ii 1= ( f l I ( — U ’~ h i  3~ *~ 4 f l3~ )/ I~51• ~Y1

C S

c—--—— zI:Iw PIVII) i  CIl1.CI~S 
?;i LAG = ~IF (”l .IT ’.O . )COTO1UI
1’FLAC =tW 1AC + ~I1 (X 1_ X f l . lT P .fl .)UIflT ri~ 0fl
~J F I .A(’ =flil )\ (‘,+ 1
I i( (‘~2 — X (~) .1C~.t1 . ) r f lT O lPf l
r I. Ar= l• AC’

Ir (X’~.ifl .fl . )C PT 0 b0~
~!FLA C r UFI J \C+l
I i( Vt . .0 )COTO1Ofl
1!rI.AC=?!FI. ~r+ 1

I i  ( (Y 1— ”C) . r r~. ~~~ . i(’PTDI 00
f~FIAC =f lFL A C+ I
Ii (V2. ID .0. )flOT(” ’V~
NIL AC =NFI• AC+i
IF ((Y2—YC). iri .n . )“oTn lf lO
UI I. AC sPIF I
Ir (R31l~3I~.co .— ’ .)CflTOlflO
91 LAr —NI LAC +1
Ir(R51I;36.Er i .0 . )CflTO 100
IILAG=N FLAG+ 1
I F ( f l ( 1 t 137.Ifl. fl . )COT O 100
tiF I. AC =111 L AC +1
I F ( Rc1~ 3q . ro. 0 ,) cOTO 10o
1IILAC =NFLAC+I
Ir ( R615 Iiu.r r) .~~. )GOTO 1O()

_ _ _ _ _ _  _ _ _ _  •
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• NFLAG— NFLAG+ 1
IF(R6 1637— R614 37* R141 638— R61 5 1e0* R5 1641 .EO .0. )GOTO 100
GOTO1O

100 WRITE (3,19)NFLAG
• RETURN

19 FORMAT (I6)
C
C COMPUTE COEFFICIENTS A ( I ,J) 

10 A43a (R6R37—R61437*RIsR38—R61540*R5R41)/
1(R61637—R61Ie37*R41638—Rl 151s0*R5161e1)

AIs 2~ R5RIs1— R51Rl41*A k3
A 23—fl 4 R3 8 R4 1638 *A 43-. R 41538 *A I; 2
A13 R3R311—R31634*A43—R31534*41s2_R3143IteA23
A 33=—A1 3+A23+A 1 3

• A 32 —— 3 .*VG *A 33+A42 +3
• A22=R0R26—R01626*A43—R01526*A42—R011i26*A23

A12 A22 — 3 . *XG*A13+3. *Xc *A23
A 11=Z 1D—2 .*X 1*A12— 3 .*X12*A13
A21.Z2D—2.*X2 *A22—3.*X22 *A23
A3 1.Z3 0—2. *Y1 *A32 — 3 . *Y12*A33
A 1s1— Z 4D — 2 . *y 2*A 4 2 — 3 . *Y22 * f l 4 3
A10~ Z 1—X 1*Z 1t )+2.  *X 13*A1 3+X12*A12
A20=Z2—X2*Z2D+2, *X23efl23+X22*A22
A30=Z3—Y1*Z30+2. *y13*fl33+y 12*A32 

COMPUTE VALU ES OF HEIGHT AT (XG ,YG )
ZGI A 1O4A 11*XG+A 12eXG2 +A 13*X63
ZG2 A2O+A21*XG+A22*XG2+A23*XG3
Z63 A30+A3 1*Y G+A32 *YG2+A33 *YG 3
ZG4 A4O+A Iil*VG+A1s2*YG2+A1e3*Yfl3

C
C FIND MAXIMUM DIFFERENCE BETWEEN TUE ZGI 

• D1—UARS (ZC1—ZG2 )
02=DABS(ZG1-ZG3)
03-DARS (ZG1-ZG4)
Die DARS (ZG2—ZG3)
05—PARS (ZG2-ZGIe )
06=DARS(ZG3—ZC4)
D I F ~ flMAX 1( Dl, 02, 93, fl1~ , 95, 96 )

C
C OUTPu T 

WR lIE ( 3, 12 )A 1O, A11,A12, A13,
1 A20,A2 1,A22 ,A23 ,
1 A30,A3 1,A32 ,A33 ,
1 A40 ,Ak1,A1e2,A1e3

W R ITE( 3, 12 ) XC, YG
12 FORMAT (4F15.4)

W R ITE (3,12)ZG1,ZG2,ZG3 ,ZGIe,DI F
RETU RN
END

j
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APPENDI X IV

AN EXAMPLE

IV.1 An example: the intersection of two splines

Consider the two splines S~~ (f;x), S~ (g;y) defined in Section 3 of the
C ~

‘G
text. Given the values -

(xU l I yG,zl (x l) , z’l (x l+)) = (10.1, 11, 10, 0.2)

(x
e, ~~~~~ 

z2 (xu), z~
(xu

_) = (11.5, 11, 12.1, —0.2)

(Yv_ 1,xG, z3 (Yv_ i ) , z’3 (yv_ l +) )  = (10.3, 11, 12.2, 0.4)

(YV ,xG,z4 (yV
) , L*(YV— ) )  = (11.4, 11, 11.6, —0 .11)

(xG,yG) = (ll.,11.)

we wish to find the functions z1 (x),  Z2 Cx) , z3 (y) , Z4 (y) satisfying the
conditions (1) in Section 3 of the text . The situation is depicted
graphically in figure 2.

ROUTINE 1 is used to evaluate the coefficients a.. and hence the values
13

of zG calculated from each of the four cubic equations zi, z2, z3 and Z4.
Also the coeffi cients a1~ are used to compute the product FCI ~ and the
resultant vector ~~ . is compared with the expected vector J~. These values,
calculated using an IBM 370/168 computer in both sinFle and double
precision , are shown in Table 1. The derivatives zI (x)I x..x , z’2 (x)I -X_X

G

z3 (y)I - , z’4(y)l 
= ~.,, are also tabulated. In general the results show

• 
~~~~

that double precision adequately satisfies all the conditions (1) and
• single precision gives a good approximation which may be adequate for some

purposes.
The functions z. i = 1,2,3,4 are plotted in figure 4 using the double

precision results. The unbroken lines represent the sections of the cubics
in the required regions Ixu_l~ 

x
~
I
~ 

E~~_1, ‘) and the dotted curves are

included for interest and show these functions e~ther side of their required
ranges.

IV.2 An example: the interpolation at a local extremum

The function described in reference 3 as a “steep hi l l  rising from a
plain” given by the expression -

-~ (x— 5)2+(y-S)2J
z(x,y) — e (IV.1)

was taken as an example of a local maximum to illustrate the performance of
the form of interpolation, recommended in this Technical Report.

The function was considered to be defined by contours at intervals of
0.2, without “spot heights”, (i.e. no degenerate contour at the point
(5.. 5., 1.)). The sixteen relevant points in the data base, defined as
specified in Section 2 are shown below -
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3.731364 4.042769 4.285279 4.527619 5.472381 5.714721 5.97231 6.268636

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2

These values are used to define the two splines Sa(f;xG), S~(g;y~) from
which the values z~ (x~_i), z

’
~ (xe), Z

1
3 (y~_ 

~~~~~ 
z~ (y ), can be obtained. In

addition to the data in the above table the values p.~, j = 0,m , q1~ , j = 0,M
are needed. These can be obtained from equation (IV.l) noting that z(x,y)
is syi~ etrica1 about the line x = 5, y = 5.

= = 0.507454ax x=3.731364 > ‘ y=3.73l364

= = -0.507454ox x=6.268636 
oy y=6 .268636

• The (for k = 1,2,3,4) are determined by using the following relationship
cited in reference 6 -

~~~~ 
Pi~i 

+ 2(
~~ 

+ ~x~_1)p1 + 

~~~~~ 
p1+1 = 3[~xji~~~~ + ~xj j=1,..,M-1

(IV.2)

where

I i+1 i
— x~,1 - X

j 
and Z

k 
= z~ -

• Using the notation t1 = 2(~x~ + âx1_1), U
i 

= óx~ the above relation can
be written as -

ti t~~ 0 0 0 0 P1 ili - ~~X i Po
U~ t3 U~ 0 0 0 . P2

O 123 t3 U~ o 0 
= 

P3

0 0 124 t.4 U3 0 . j34

O 0 0 U4 t5 1.14 .

0 0 0 0 u4 t6 P~ P6~~~~~~~XS pI

where the are given by the right hand side of equation (IV. 1) .
The sequence of elementary row operations H1 (t 1),  (H1 1_ 1 (-u1), Hj (R

~))
I - 2, .. ., 6, reduces the matri x to triangular form, so that -

~~~~~~~_ • _ •  — •• •~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ •—•- - —~~~~~~ -- -~~- •• ~~~~ 

•
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1 U4/R1 0 0 0 0 
- 

Pi
0 1 u1/Ra 0 0 0

• 0 0 1 u2/R3 0 0 . .
o 0 0 1 u3/P.4 0 . 

=

0 0 0 0 1 124/115 .

0 0 0 0 l p ~

where

Ri = t 1

11. = t~ - u~u~_ 2 /R j _ i  i = 2, ... , 6

and

• l3~ = (Ph - t~xi po )/Ri

= (P
~~

_ u
t P

’
i i )/R1 i = 2 , . . ., 5

P’6 = ((P6-AxSp ,)-u 6 p ’s)/R6

The p
~ 

can therefore be obtained from the sequence -

p~ = - u1_ 1 ~~~~~~ 
i = 5, ... , 1

This enables the z1 to be determined noting that = p~ because of the

symmetry of the function ,

• zi (x,~~~) = z~ (xe) = P4

z3 (y v_ l ) = q3 = P3 z~.(y ~) = q4 = P4

The other required quantities , which can be obtained directly from the data
base are -

(x
~ _ i ,  

~~~~ 
zi (xe_i)) = (4.527619, 5., 0.8)

(xe, y~,, Z2 (X
12

)) = (5.472381, 5., 0. 8)

(XG, yV i ,  z3(y~..1)) (5., 4.527619, 0.8)

(xG, y~,, ~ (y~,)) = (5., 5.472381, 0.8)

This information was used in ROUTINE 1 (see Appendix III) . The value
obtained for z(5., S.) was 0.9682. The curve (IV.1) together with the
interpolating function is shown plotted in figure 5. The derivatives of
both functions are also shown in the same figure.
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TABLE 1. DATA FOR THE INTERSECTION OF THE TWO SPLINES OF EXAMPLE IV. 1

a SIngle* Double* Difference Difference
ij precision precision (%)

a10 2855.74 2853.87822 -1.9 -0.1
• a11 -804.72 -804.18803 0.5 0.5

a12 75.641 75.59007 -0.05 -0.1

a13 -2.3626 -2.3609826 -0.002 -0.1

a~0 -942.69 -937.03649 5.7 0.6
a31 231.21 229.69779 -1.5 -0.7

a22 -18.535 -18.399545 0.14 0.8

a23 0.49121 0.48718173 -0.004 -0.8

a30 -2487.51 -2482.5837 4.9 0.2

a31 697.28 695 .90655 -1.4 -0.2
a33 -64.748 -64.619135 0.13 0.2

a33 2.0012 1.9971962 -0.004 -0.2

a40 1310.9 1308.3311 -2.6 0.2

a,1 -338.65 -337.979 0.67 0.2

a.,3 29.4284 29.370486 -0.06 0.2

a.,3 -0.852638 -0.85097414 0.002 0.2

~~11.74OO 11.741209363968 0.001 0.01

23 11.7371 11.741209563955 0.004 0.04

23 11.7314 11.741209563956 0.01 0.08

z4 11.7454 11.741209563958 -0.004 -0.03

mean z 11.7385 11.741209563957 0.0027 0.02

var z 0.0058 0 0.0058 -

Difference p~~~~~ on Difference

z1 (x-) 1.75721 1.7569590 ~
Z3 (X+) 1.7560 J 

0.00121 1.7569586 J0.0000004

z3 (y-1) -0.73422 -0.7322041

z3 (y+) -0.73347 J
0.00075 

-0.7322034 ]o.oooooo~

—- • -  •~~~~~—~~ • • - -  • - •~~~~~~~~~~~~~~~ •• • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • ~~~~~~~~~• •
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TABLE 1(CONTD.).

~ single Error J~ double Error
precision k~. - ~~~~ precision ~~. 

-

10.0 10.0024 -0.0024 10.0 0

12.10 12.0952 0.0048 12.10 0

12.20 12.1890 0.0110 12.20 0

11.60 11.6040 -0.0040 11.60 0

0.20 0.2002 -0.0002 0.20 0

-0.20 -0.2002 0.0002 -0.20 0

0.40 0.3999 0.0001 0.40 0

-0.110 -0.1099 -0.0001 -0.110 0

o -0.0056 -0 .0056 0 0

0 -0.0083 -0.0083 0 0

0 -0.0142 -0.0142 0 0

0 -0.7229 -0.7229 0 0

0 0.0005 0.0005 0 0

0 -0.0007 -0.0007 0 0

0 0.0000 0.0000 0 0

0 0.0000 0.0000 0 0

* The IBM 370/168 computer uses a 32 bit word on single
precision

~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE 2. DATA AND FUNCTION VALUES FOR EXAMPLE IV.2

Data base for interpolation examples

x y z

4.2852 5.0000 0.6000

4.5276 5.0000 0.8000

5.4723 5.0000 0.8000

5.7147 5.0000 0.6000

5.0000 4.2852 0.6000

5.0000 4.5276 0.8000

5.0000 5.4723 0.8000
• 5.0000 5.7147 0.6000

5.5053 4.4946 0.6000

5.5053 5.5053 0.6000

4.4946 4.4946 0.6000

4.4946 5.5053 0.6000

Simple inverse distance function

x y z

5.0000 5.0 0.7067

5.1500 5.0 0.7108

5.2000 5.0 0.7156

5.3000 5.0 0.7373

5.4000 5.0 0.7789

5.6000 5.0 0.6856

Inverse distance function with gradients

x y z

5. 0000 5.0 0.9013
5.1500 5.0 0.8898

5.3000 5.0 0.8563

5.6000 5.0 0.7099
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— Original digitized contour data points

• Data base

X Lattice point data

_ _ _  

7 

_ _ _

/ 

/:~~

__ 
/

I
___  _

Figure 1. Terrain data types
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Z~(x1 ) Z~~(~~2 )
— ~~~~~~~~~~~~ Z1 (x)

• 

Z3 (Yt ~~~~~x) x=x~

(x~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

ic
z G’~” 

G

• 0~~~~~~~~~~~~~~~~~~~

Figure 2. The intersection of two splines
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So J  SI J
q0,~__

q1,~ q2~~ 
. . . . ~~~~~~~~~~~~

J po,J pI,J

J-1 po,J-1 pI,J-l

-~~ 4-

3 .
z given at all

• — grid line — 4-
intersections

2 P0 ,2 ~~~ 4- 
p12

1 p o t  - ______ ______ ______ —
~~~~~~~~~ ~~— p1 , 1

0 po ,o ~ 
4- p

1qo ~o qi ,o q3 ~~ q1 1  q
1

S0,0 SI0
0 1 2 . . . . I—i I

1

Figure 3. The data required for bicubic spline interpolation on a
rectangular lattice
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12.40
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11.60 — ____  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

11.20 J4~I,
• /~~ 

Dotted sections

• 

discarded

10.80 ,. 
-_________ _________

/ /

/ Key
/ / 

_ _

/ / zi (X)

/ / ~~~~~ Z 2 (X) 
_ _ _ _ _ _10.40 ~~

—-- -/
—~~— z3 (y)

/ — —4—- z~(y)
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Figure 4. The interpolating functions for example IV.1
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