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AN OPTICAL PARTICLE-SIZING COUNTER FOR

IN~-SITU MEASUREMENTS

By

Don Holve and Sidney A. Self

High Temperature Gasdynamics Laboratory
Mechanical Engineering Department
Stanford University
Stanford, California

ABSTRACT

A particle sizing counter is described, sultable for in-situ measurements
in two phase flows of laboratory scale. It employs near-forward scatter from
the focus of a He~-Ne laser beam, together with pulse height-analysis of the
signals from individual particles. A novel and essential feature of the
technique is a numerical inversion scheme to unfold the dependence of the
scattered signals on particle trajectory through the measurement volume. The
inversion procedure is performed by an on-line computer, and utilizes a prior
calibration with monodisperse aerosols of known size. s presently configured,
the instrument has a demonstrated capability of deter§;:§n size distributions
in the diameter range 2-25 um, at concentrations up to ~1Q em=3. The
measured dependence of response on particle diameter agrees well with cal-
culations from Mie scattering theory. It is anticipated that the technique
can be extended to cover particle diameters up to at least 50 um, and down to
0.5 um and concentrations up to 106 cm~3. It should also be adaptable to hot

flows and absorbing, irregular particles.
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1.0 INTRODUCTION

The measurement of particle size distributions in two phase flows is
of considerable current interest, especially in connection with energy conver-
sion devices such as liquid spray and pulverized fuel combustors, and parti-
culate cleanup devices such as electrostatic precipitators. While the parti-
culate characteristics, such as mean diameter, size distribution, mass loading

etc., may vary quite widely in such systems, the sizes of interest generally

fall in the range 0.5 - 50 um, with concentrations up to 106 cm-'3 (for the
] smaller sizes). |
The available measurement techniques [1,2] also vary widely in type and

capability. Several, including microscopy, cascade impactors, Coulter counters,
mobility analyzers and commercial optical counters require a sample to be
extracted from the flow. This poses problems related to obtaining a represen-
tative sample, especially for the larger sizes and in hot, high velocity

: flows. Also, many sampling methods are cumbersome and slow in operation.

For these reasons optical techniques are of especial interest since, in princi-

ple, they are capable of making in situ measurements with continuous and rapid

G

readout. Moreover, by using lasers, they are adaptable to high temperature
systems having high thermal radiation background.

Optical techniques all depend on Mie scattering [3,4], and can be broadly
divided into imaging and non-imaging types. The former, including flash photo-
graphy [5] and holography [6], are limited in practice to sizes X 30 um, and
’ pose a difficult data reduction problem. Non-imaging methods can be subdivided
into two classes: those which measure on a large number of particles simul- 3
taneously, and those which count and size individual particles, one at a time.

The former type includes the well-established transmissometer (7, 8],

i which measures the extinction of a light beam and yields a value for the
integrated projected area of the particles in the beam. It does not allow

b point measurements, and requires another measure, such as the mass loading,

to yield a mean diameter. Other techniques have been described [9-11] which

I measure the angular distribution of light scattered from a large number of

particles simultaneously present in a small measurement volume. They yield
' either some moments of the distribution [9,10] or require the angular distri-
bution to be unfolded to give the size distribution [11].




|
|
|
|
|
|
|
|
|
|
|

Sampling-type optical counter-sizers for gas flows have been commercially

available for some years. The sample is diluted as necessary, and constrained
to flow through a small jet (~ 1 mm dia.) which is uniformly illuminated with
a collimated white light beam. The scattered light pulses are collected,
usually in forward scatter, detected and pulse-height analyzed to give a number-
size distribution. Apart from a limitation to particles £ 10 um and the need
for sampling and sample dilution, the main problem with such counters [12,13]

is the achievement of a response which is insensitive to particle refractive
index.

A novel interferometric approach to in-situ particle counting-sizing has
been suggested by Farmer [14,15] and by Durst [16], making use of the shape
of the signals scattered by single particles passing through the fringes in
the cross-over volume of a dual beam laser anemometer. A simple analysis [14]
suggests that the signal visibility is a monotonic function of the ratio
particle diameter/fringe spacing, in a certain range, and is independent of
scattering angle and refractive index. However, more detailed analyses [17]
from Mie theory and experiments [18] indicate a complicated dependence on these
parameters, which raises questions concerning the method's utility except,
perhaps, in a suitably engineered forward scatter geometry.

Apart from this interferometric method, there appear to be two basic
types of approach to devising an in sftu particle sizing counter. In the first,
the absolute scattered signal amplitude in a single collection-detection
channel is employed, as in commercial, sampling type optical counters. In
the second, use is made of the relative amplitudes of the scattered signals
in two or more detector channels set at different angles [19].

In this paper we describe the development of an in-situ, forward scatter
laser particle sizing counter following the former approach. It has a demon-
strated capability on cold, small scale, low velocity flows of sizing particles
in the range 2 - 25 um at concentrations up to at least 105 cm-3. In its
present form the instrument will accommodate flows up to 40 cm in width. By
adjusting the instrumental parameters to suit the particle characteristics, it
should be possible to extend the range downwards to ~ 0.5 um and upwards to
2 50 ym, and handle concentrations to 106 cm_3. Moreover, estimates indicate
that the instrument should be applicable to hot, radiant flows, at least on

laboratory scale systems.
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There are two major factors involved in the practical realization of
an instrument of this type. The first concerns the control of the size and
shape of the effective measurement volume, and the uniformity of response
for different particle trajectories through it; this is discussed in Section 2.
The second relates to the attainment of a response which is, as near as possible,
monotonic with particle size, and which has minimal sensitivity to particle
refractive index; this is treated in Section 3. As discussed later, these
two factors are coupled in such a way that the optimum trade-off is a function
of the size range and concentration to be measured.

From the discussion of Section 2 it transpires that the response for
different trajectories is quite non-uniform. Hence, as experimental tests
show, a flow of monodisperse particles yields a signal amplitude-count distri-
bution with a sharp cut-off at some maximum signal value, and a spread to
lower values. It has been found possible, however, to use a numerical inversion
scheme, based on experimental calibrations with monodisperse particles, to
unfold this distribution of signal amplitudes to obtain the true size. This
technique, which is a vital feature of the present scheme is developed in
Section 4.

Section 5 details the results of calibration tests on monodispersions
and polydispersions. The latter demonstrate the instrument's ability to
correctlv resolve the structure in the distribution.

The paper is concluded with a discussion of the extension of the technique

to a wider size range and its application to hot flow systems.




2.0 MEASUREMENT VOLUME CONSIDERATIONS

The characteristics of the measurement volume are a crucial factor in

ki i

the design of an in-situ optical sizing counter because the particle trajec-
tories are not controlled as they are in a sampling-type optical counter.

i The effective measurement volume is determined in part by the intensity
distribution in the illuminating beam, and in part by the geometry of the

: collection optics, including stops and apertures. Ideally, the measurement

% volume should be of roughly spherical or cubical shape with a uniform illumin-
ation intensity, and a uniform light collection efficiency for points within the
volume. Otherwise, the peak scattered intensity will depend on trajectory,

so that signals from large particles traversing the edge of the volume may be i

f comparable with those from small particles traversing the center.

The linear dimensions of the measurement volume should be several (2 or
3) times larger than that of the largest particles to be measured, so that
the fraction of such particles which follow edge trajectories yielding sub-
standard signals is small. For a measurement volume satisfying this criterion,
there will clearly be a limit of useful operation set by the occurrence of a
significant fraction of coincidences when two particles are simultaneously
present in the volume, giving rise to erroneous signals. This condition,
3 which sets a limit to the maximum mea_urable concentration of the more numer-
ous small particles, is analyzed in Appendix I. It should be emphasized that
the capability of handling concentrations up to the range of 105 - 106 cm_3
is necessary for many flow systems of interest. Roughly, it can be said
that for an effective measurement volume of Vmcm3, the maximum concentration 7
that can Ei mefiured without significant interference due to coincidence is
Nmax ~ Vm em .

Concerning the distribution of intensity in the illuminating beam,

2 assuming a TEnn)laser, the profile is Gaussian, and by suitable optics can be

] focused to a waist at the measurement station. Using cylindrical coordinates

centered at the waist, the intensity distribution is

I(r,z) = 2P2 exp[— 2(r/w)ﬂ (2.1)

m™w
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where P 1is the beam power and the beam radius (to l/e2 intensity) 1is

252 -1/2

w(z) = v (1 + Qz/mw)") (2.2)

Here v is the beam radius at the waist (z = 0) and is given in terms of

the far field half angle of convergence, Bb, by

(2.3)

Thus a Gaussian intensity profile (which i1s a rcasonably good approximation
to the ideal rectangular profile) with a waist diameter in the range of
interest (~ 100 pm) can be readily created by suitable beam expansion and

focusing, and involves conveniently small beam convergence/divergence angles.

It may be noted that by using cylindrical rather than spherical lenses,
ribbon beams with Gaussian profiles having distinct waist widths in orthogonal
directions (x,y) can also be created, and offer certain advantages.

The intensity distribution along the beam (z) axis is Lorentzian and
falls off much more slowly than with radius. The Rayleigh distance Zps
where the intensity on axis falls to half the central waist intensity, is

z, = Trwi/)\ (2.4)

For waist diameters of interest (2 W~ 100 um) and visible lasers, zp ~ 1 cm,
so that the illumination volume is typically very long compared with its width.
Clearly, then, it is necessary to limit the effective length of the measurement
volume in the z direction by suitable design of the collection optics.

The most direct method of achieving this is to use a lens on a collection
axis at some angle ec to the forward direction of the laser beam, and image
the laser waist onto a pinhole aperture, as shown in Figure 1. Clearly, from
the point of view of limiting the length of the measurement volume, a choice
of ec ~ 90° is most effective. On the other hand, as discussed in Section 3
below, to satisfy the requirements of a monotonic signal/size response, with
least sensitivity to refractive index, a coaxial forward scatter geometry
(6. = 0) is most desirable; moreover the satisfaction of these requirements

e
becomes more difficult as the scattering angle Oc is increased.

L et b e aaiia . L
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In an attempt to retain a coaxial forward scatter geometry, and to
delimit the length of the measurement volume, the use of a central stop on
the collection lens was investigated. However, a practical solution did not
appear possible with this configuration. Consequently it was found necessary
to effect a compromise between the conflicting requirements of limiting the
length of the control volume and achieving a satisfactory response, by using
an off-axis, near-forward scatter geometry with ec in the range 10 - 20°,
as shown in Figure 1.

In the particular system investigated the illumination is provided by
a 2 mW He-Ne TEMoomode laser, which is focused by cylindrical lenses to a
ribbon beam with waist widths (to 1/e2 intensity) of approximately 2 W~
100 ym x 2 wy ~ 300 ym, with a waist length greater than 1 cm. The collec-

_tion axis is in the x-z plane at an angle ec to the z-axis. The collection

lens, consisting of a back-to-back pair of good quality £/2+8, 25 cm focal
length lenses, designed for infinite conjugate ratio, images the center of
the beam waist to the center of a pinhole aperture of diameter 2 W,y ~ 100 ym
diameter, with unity magnification. Thus the viewed volume is approximately
a cylinder of diameter 100 ym intersecting the ribbon beam at an angle Bc,
while the measurement volume is given approximately by the intersection of the
viewed volume and the illuminating beam. From geometrical considerations the
measurement volume can be characterized roughly as a cylinder with slant ends,
of diameter 2 Wy~ 100 ym, length 2 wx/sin ec ~ 1000 um for angles of
interest, and volume V ~ 107> cm-3. The particle flow is directed in the
y-direction.
" The foregoing arguments defininé the measurement volume are, of courée,
only approximate. A rigorous treatment should consider the angular distribu-
tion of intensity scattered from a particle of given size at a given position
in the illuminating beam, and thence a calculation made of the intensity dis-
tribution in the plane of the pinhole produced by the light intercepted by the
collection lens, to obtain the detected signal as a function of particle size
and position. Fortunately, such an involved calculation is circumvented by
the calibration procedures described in Section 5..

In any event, it is clear that the use of forward scatter at small angles
results in a distribution of intensity in the measurement volume which is

quite non-uniform, although the use of a ribbon laser beam reduces the non-

7




uniformity in the y direction. Consequently the scattered signal is trajectory
dependent, and a flow of monodisperse particles yields a signal peak amplitude
count distribution having a sharp cut off at some maximum signal value, corres-
ponding to particles traversing che center of the measurement volume, with a
spread to smaller amplitudes.

To overcome this problem of nonuniformity of response within the measure-
ment volume, a numerical inversion scheme, combined with a calibration proce-
dure has been devised, as discussed in Section 4, to unfold the distribution

of signal amplitudes and yield an indicated size distribution which eliminates

the dependence on trajectory.

et




3.0 OPTIMAL COLLECTION GEOMETRY; SCATTERING THEORY

Highly desirable, if not essential, requirements for an effective optical
sizing counter is a monotonically increasing dependence of signal amplitude on
particle size, and insensitivity to the complex refractive index n = n, + inz
of the particle (where the imaginary parc represents absorption).

To find an optimal geometry for satisfying these requirements entails
extensive parametric calculations of the response for different geometries as
a function of particle size and refractive index from Mie scattering theory.
The latter gives the differential scattering amplitude for a spherical particle
in an incident monochromatic plane-polarized wave, as a function of scattering
angle 6, polarization, complex refractive index n, of the particle (rela-
tive to the medium) and the normalized size parameter o = md/\, where d 1is
the diameter and A the wavelength. This scattering amplitude must then be
integrated over the aperture of the collection optics to give the response. |

Unfortunately the Mie scattering function is an extremely complicated and
sensitive function of the parameters 6, o, n, which is difficult to chara- |
cterize in simple terms, although fast computer codes are now available for
its evaluation. However, as discussed by Hodkinson [20], in the limit of
large particles, o 2 3/(n1 - 1), i.e. d 22X ~ 1 um, a very good insight can
be obtained by considering the separate effects of diffraction, refraction and 4
reflection. Fifty per cent of the total scattered power is attributable to
diffraction and i1s distributed in the well known and easily characterized

Fraunhoffer diffraction pattern of a circular disk or aperture, which is the
same as that of a spherical particle and is independent of polarization and of
the refractive index.

For such diffraction, the differential scattering efficiency, defined as
the flux scattered per unit solid angle divided by the flux incident on the

particle projected area, is

2 [2 J,(o sin 0) %
I = a_. 1 (3.1)
diff 47 o sin 6 2

e e

where J1 is the Bessel function of the first kind and order one. This func-

tion represents the familiar central lobe surrounded by bright rings

of decreasing intensity. The first zero or dark ring occurs at

AR s 5 .




o sin 6 = 3.83. For a 2 6, and A = 0.633 um, the first zero occurs for
61 ~ 44°/d(um).
The integrated scattering efficiency is given by
0
2 2
Iint = Z'rr/ Idiff sin 6 do = 1 - Jo (a0 sin 6) - J1 (o sin 6). (3.2)
o

Approximately 85% of the diffracted flux falls in the central lobe.

This result leads to the following attractive concept for particle sizing;
if the flux is collected coaxially by a lens, the signal will be monotonic
with size and independent of refractive index. Moreover, for a lens aperture
of emax’ the signal will be closely proportional to d2 for d(um) 2
44°/Bgax. For instance, for emax ~ 10° corresponding to F/2.8 collection
aperture, this will hold for d 2 4 um. Of course there is also an upper
limit to the size which yields a signal « d2, in view of the need to stop
off the center of the lens to block the unscattered beam.

As mentioned in Section 2, the use of such a coaxial forward scatter
geometry was investigated, but it was abandoned in view of the difficulty of
limiting the axial length of the measurement volume for reasonable collection
apertures. Consequently, to obtain a measurement volume small enough to handle
concentrations of practical interest, one is forced to accept an off-axis
scattering geometry.

This requires computations from the full Mie theory, but the foregoing
analytic results from diffraction theory with coaxial collection lead one to
expect that, provided one keeps the central scattering angle Bc small,
then the response will not depart far from monotonicity and the dependence on
refractive index will be weak. One also anticipates that, in general, the
ugse of a wide collection aperture and the use of white light will also favor
the attainment of the desired requirements, since both will tend to average
over the detailed resonant structure characteristic of Mie scattering.

Lieberman and Allen [21] have reported experimental and theoretical
results for the response of a coaxial, near forward scatter configuration.
corresponding to a commercial sampling-type optical counter employing white
light. Scattered light is collected coaxially between angles of 15.5° and

28°. The relative response as a function of particle diameter for latex

10
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(n = 1.6 + 1.0) and glass spheres is reproduced in Figure 2. The curve shows
a generally increasing dependence on d, approximately proportional to d2,
over the range d = 0.3 ym to 50 um, with the exception of a dip or resonance
in the neighborhood of 1 ym. Specifically, the response is double valued for
the interval d = 0.65 um to 1.2 um, and such behavior is characteristic of
instruments of this type. In practice, signals from particles in this size
range are lumped into a single size bin in the pulse height analyzer. For
many purposes this 1s perfectly adequate, such a 2:1 size resolution increment
being comparable with that achieved by cascade impactors over the whole size
range.

A systematic calculation of the response curve for a coaxial forward
scatter system, as a function of the collection aperture between scattering
angles 61 and 62 (6 61) was made by Oeseburg [22] for spherical particles
of n=1.49 + 1.0, and for size parameter up to o« = 30 (corresponding to
d~6um for A =0.63 um). It was found that a resonant dip around a ~ 5
(d ~ 1 ym) was a persistent feature over wide ranges of the aperture angles
61 and 92, and that, for many apertures, additional resonances occurred at
several larger o values. A measure of the magnitude of a resonant dip can
be defined by R = 2 (aL - as)/(aL + as), where ag and ay Tepresent the
smaller and larger size parameters, respectively, which give double-valued
responses. Thus R represents the size resolution increment for which signal
amplitudes must be lumped into one size bin, and has a value ~ 0.6 for the
case discussed above.

Oeseburg found that only by going to values of 61 > 20° combined with
very large values of 92 ~ 120°, could the R value for all dips be signifi-
cantly reduced. The optimum aperture for the chosen refractive index occurred
for 61 = 40°, 62 = 120°, and yielded a response with no dips having R
values greater than 0.15.

It should be emphasized that while such very large apertures are feasible
in sampling-type optical counters through the use of ellipsoidal mirror
collectors surrounding the measurement volume, they are quite infeasible for
in-situ instruments. For a useful instrumental throw between the measurement
point and the collecting optics, large apertures entail expensive, large dia-

meter lenses. For example, the collecting lenses used in the present vork,




[
©
&
-
oo
a
-
=
@
ac
W
P~
%
O
O
Q
O
>
O
1

x ~MONODISPERSE LATEX

O-NEAR-MONODISPERSE
GLASS BEADS

| |

.0 10
DIAMETER (,u.m)

Figure 2. Response Function for a Royco Counter Using
White Light T1lumination

12

RELATIVE SCATTERING




of focal length 25 cm and diameter 9 cm (F/2.8) allow a maximum difference

o, - 61) ~ 20° when used for off-axis collection.

: With these practical restrictions in mind, and guided by the general
trends of the results of references 21, 22 and other similar published work,
response calculations have been carried out for the collection geometry illus-
trated in Figure 3. The collection lens of aperture half angle GL = l:an-1
(1/2F) is centered on the collection axis at an angle of Gc. Allowance is
made for the presence of a planar mask which blocks light scattered out to
an angle Gm 2 (Gc - 61), and the response is calculated by integrating the
intensity over the remaining portion of the lens, shown unshaded in Figure 3.
The calculation of the response function proceeds as follows. For

spherical particles, van de Hulst [3] gives the basic relation

e
]

F' (a,6,n) * I (3.3)
i "

where Io (power/unit area) is the intensity of the incident plane wave, 1
is the intensity of the scattered spherical wave at radius r from the
particle, k = 2m/\X 1is the wavenumber, and F' 1is the dimensionless scatter-
ing matrix.

The intensities are four-vectors in terms of the Stoke's parameters

By
I
£ (3.4)
u
v
and
] —
BE A Ol R e U0
0 M O
(3.5)
MWy
0

For an unpolarized incident beam, Eqn. (3.3) reduces to

M, + M
1 1 2
I = 53 ( ) Io (3.6)
k'r

2




Figure 3. Scattered Light Collection Geometry
for Present Optical System
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The scattered power collected in an aperture of area A = rZQ, where  1is

the solid angle for collection is given by

2
I M. + M
P o= = (1 Z\dﬂ (3.7)
) 2
Q
122
= °2 F (a,n,R) (3.8)
4m

where the dimensionless response function is defined by

Ml + M2
F(oa,n,R) = e dQ (3.9)
Q

and is the effective scattering cross-section for the particular collection

geometry, normalized by AZ.

The matrix elements Ml(a,e,ﬁ), Mz(a,e,ﬁ) are computed by a code develop-=
ed by Davé [23]. The response function F is then calculated by integrating
(Ml + Mz)/Z over the collection solid angle.

We have performed calculations on 65 sets of parameters, and although not
exhaustive, the results from these calculations indicate general trends. The
following figures (Figures 4-7) are representative and are chosen to illustrate
the typical dependence of the response on the important parameters. To reduce

the number of parameters all the curves shown are for the case em = ec i.e.

with the inner half of the lens masked, although this may not make optimal use

: of the lens aperture. Also, an unpolarized beam was assumed, though the choice
E of a single polarization might well lead to an improved response.

B Figures 4(a)-(c) show the response for n = 1.6 + 0.0i and fixed minimum

scattering angle em = 6c = 4°, for increasing values of the maximum scatter-

ing angle (6c + GL) i.e. increasing aperture. Figures 5(a)-(d) show the

response for the same refractive index and fixed aperture (OL = 20°), for

increasing values of scattering angle Gc.

All of these curves exhibit a more or less pronounced resonance (dip) at

o ~ 5, together with a series of resonances of decreasing magnitude at larger
o. This form is insensitive to the real part of the refractive index, n,
especially at the small scattering angles, but the exact positions and shapes

: of the resonances do depend on n In general the o values of the resonances

1
scale as (n1 - 1) 1. The effect of increasing the aperture to include larger

scattering angles (Figure 4) is to reduce the magnitude of the higher resonances

but its effect on the first resonance at o ~ 5 1is slight.
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In view of the persistence of the resonances, particularly the first,
over a wide range of scattering angles and collection apertures appropriate
to an in-situ, forward scatter instrument, one should examine their signifi-
cance in placing limits on the performance of such an instrument. This can be |

discussed in terms of the R values of the resonances, which are listed for

the typical case of Figure 4(b) in Table 3.1 below.

Table 3.1. Resonance Widths for Figure &4b.

| s = 4
ag aL o= (aS + aL)/Z d(um) (for A = 0.633 um) R
3 7 5 1.0 .80
8 13.5 10.8 2.2 ~ N
15 19 17 3.5 .24

They should be compared with the R value of 0.60 for a commercial sampling
counter as discussed by Lieberman [21], and with the value of 0.67 (for all
particle sizes) typical of cascade impactors having a 2:1 incremental size
resolution.

It is clear that an instrument with an acceptable performance with respect
to resolution can be realized despite the presence of the resonances. The
greatest limitation is set by the first resonance, which is only relevant if
- 1~5
(d1 ~ 1.2 ym for A = 0.633 um) down to smaller sizes. The presence of the

one attempts to design an instrument to work through the value a

higher resonances with smaller R values should present no significant limit-
ation to measuring the larger sizes (d 2 2 m for A = 0.633 ym). For many
purposes, where high resolution in the range 1 pym is not required, a useful
performance may well be obtained even through the region of the first resonance.
Alternatively, the size range in question might be reduced by a factor ~ 2 by
the use of a shorter wavelength e.g. from a He-Cd laser, which would also have
the advantage of minimizing interference from thermal background in hot flows.
As noted above, for the range of scattering angles and collection apertures
of interest, the dependence of the response on the real part of the refractive

index over the limited range of practical interest (n1 ~ 1.3 - 1.7 say) 1is

18




weak. However, for some important applications e.g. in coal combustion,
there can be an appreciable imaginary component n, (i.e. absorption). For
instance a value of n, ~ 0.1 corresponds to a highly absorbing material such
as black coal, while values of n, = 0.002 - 0.006 corresponds to measured
values [24] for the silicaceous slag in a coal-fired MHD channel.

Figures 6(a)-(d) show the response for a fixed collection geometry
The

)
= 10'2,

L 1 -3
10 is negligible, but for n

difference between n, = 0 and n, 2

the slope of the smooth, large a (0. 2 20) part of the response is significantly

Gm = ec = 4°, O =20° and n, = 1.6, for increasing values of n

reduced, leaving the lower o part, including the resonances,virtually
unchanged. Further increase of n, to 10—1 produces a smoothing of the
resonances to yield a monotonic response. Figures 7(a)-(d) parallel those of
Figures 6 except that a smaller minimum scattering angle Bm = ec =0 g
used. The main difference is that the sensitivity to n, of the slope at large
o 1s reduced. Thus for large particles, a small scattering angle should be
used to minimize sensitivity to absorption.

In concluding this section, certain general statements can be made as
follows. For practical ranges of scattering angle and aperture appropriate
to an in situ instrument, an adequately monotonic response function can be
achieved to allow useful resolution over the size range o > 5, and possibly
to smaller sizes, and with a relatively weak sensitivity to complex refractive
index n. However, for accurate results it would be desirable to calibrate
the instrument using monodispersions of particles with the refractive index
of interest. In general, for the larger sizes, small scattering angles should
be used to minimize sensitivity to n, while for the smaller sizes, larger
scattering angles should be used to minimize the measurement volume and hence

raise the maximum concentration that can be handled.
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4.0 TRAJECTORY DEPENDENCE - INVERSION TECHNIQUE

As discussed in Section 2.0, in devising an in-situ particle~sizing
counter, one has to face the problem that the peak value of the detected
signal, which is used to size the particles, is a function not only of particle
size but also of its trajectory through the measurement volume. The principal
| factor controlling this trajectory dependence is the distribution of intensity
of illumination in the measurement volume. To take account of this we define
Io(x,z) as the peak intensity experienced by a particle following a y-dirécted
motion, as a function of the transverse coordinates (x,z) of its trajectory.
However, the detected signal peak amplitude is also determined in part by the
collection optics, through the imaging of the scattered light distribution
incident on the collection lens onto the pinhole aperture. This is allowed
for by defining a dimensionless transfer function H(x,z,0) which, in general,
is a function of the particle diameter d (or size parameter). In practice,

as measurements confirm, the function H can be sensibly independent of d,

but for generality it is included by allowing for the combined effects of non-

uniform intensity and collection/imaging by defining the measurement volume

function

J(x,z,0) = Io(x,y) H(x,z,0) (4.1)

The detected signal peak amplitude, delivered to the pulse height analyzer
: can then be written
AZ
A = G- — I(x,z,a) F(a) (4.2)
41r
where G 1is a constant representing the detector sensitivity and electronic
gain, and F(a) 1s the response function defined in Section 3.0 for particles
of size parameter o illuminated by a uniform plane wave. It may be noted
E that, especially for particles large compared with the linear dimensions of
the measurement volume, the particles are not in fact illuminated by a uniform
plane wave. However, the effect of this is taken care of by the inclusion
of the size dependence in J.
Figure 8 represents schematically a quadrant of the measurement volume

function J(x,z,d). Tt is shown as a monotonically decreasing function of x and

22




Figure 8.

PARTICLE FLOW

Schematic of a Quadrant of the Measurement
Volume Function J(x,z,d)
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z measured from the "center'" of the measurement volume where it has its maximum
value Jm. However, the following analysis is valid for more general forms
of T,

It is assumed that particles have an equal probability of passing through
any element of the cross-section, and that all particles have the same mean

velocity U, irrespective of size and trajectory.

If the measurement volume function J were uniform, with value Jm,
all particles of the same size parameter (ak say) would yield the same
signal amplitude A, = G(l2/4ﬂ2) JmF(Gk) i.e. the quantity A would be a unique
function of «, independent of x and z. In practice, if a monodisperse aerosol
O flows through the measurement volume, and a statistically large number of
signals is accumulated in the pulse height analyzer, a count distribution is
obtained having a sharp cut off at the maximum signal amplitude Ak’ and
spreading down to lower amplitudes.

Further, if a polydisperse aerosol is used, the resulting signal ampli-
tude distribution consists of a superposition of such monodisperse distribu-

tions. The problem, then, is to devise a technique to unfold the measured

signal amplitude count distribution in the presence of a nonuniform measurement
volume function J, to yield that which would be obtained with a uniform J
function, and hence to obtain the true distribution of F and from this the
aerosol size distribution.

Such unfolding or inversion techniques have been applied in a number of
technical areas, notably in tomographic X-ray scanners [25], and have become
technically practical since the advent of on-line mini-computers. Although

a straightforward mathematical inversion is not feasible, given the experi-

mental nature of the problem, efficient solution procedures have been developed
for determining a solution which has an error magnitude of the same order as
that of the measured input variables. Further, it is intuitively plausible
that the more nearly the J function approaches the ideal rectangular form,
the more accurate should be the inversion process. Thus there is an

advantage in achieving a form for J that approaches the ideal rectangular

one as closely as possible.

4,1 Formulation of Method

The problem is formulated as follows. First, it is convenient to normal-

ize the functions J, F and A on their maximum values. Thus we define
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J = jl- (0sJs1) |, (4.3)
m

?.l (0<f<1) (4.4
Fm - - ’ .)

where Fln is the maximum response function value corresponding to the
largest particle in the aerosol of interest, or the largest size that it is

of interest to measure.-

The maximum signal value, corresponding to this maximum F value

is then
AZ §
ke G Z;E I F (4.5) f.
and we define f
'a
T @<isn , (4.6)
m

Then (4.2) can be written in normalized form

Eieate o d dl et i g bic ha

(<]
ol

A = 4.7)

Now, as is appropriate to the problem, we coarse-grain the functions K, F,

treating them as discrete, rather than continuous variables, and let

C(Ki) = Ci = Signal count rate for normalized signal peak amplitudes é;
in the range Ki to (Ki + Axi)

N(ij) e Nj = concentration of particles in the size parameter range
yielding normalized response function values in the range
?j to (?j + Aij)

AS(A ,ij) = ASij = cross-sectional area of the measurement volume,

normal to the flow direction, which yields
normalized signal peak amplitudes in the range

Ki to (Ki + Azi) for particles having normal-
ized response functions in the range ij to

F, + AF,).

( 3 j)
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Then the count rate distribution is given by the equation set

m
£. = UAs,. N
1 1;1 14 7%
c, = j§ U A sij Nj (4.8)

m i
“n jg:l et b

which can be written more compactly in matrix form

, C =UAS*N (4.9)

é The subscripts 1, j are written in order of increasing A and F,
starting with the smallest (utilized) amplitude channel (i=1) of the pulse
height analyzer, and the smallest response function class (j=1) capable of
recording a signal in that channel, and ending with the largest signal

amplitude-class (i=m) and largest response function class (j=m) having non-

zero values. The discrete classes are assumed contiguous, so that

! Ai+1 = (A1 + AAi) and Fj+1 = (FJ + AFJ) (4.10)
‘ Hence m is the number of (utilized) channels in the pulse height analyzer
ﬁ and is also the number of response function classes into which the particle

distribution is resolved. Here, and in what follows, it is assumed that

F(a) 1is monotonic, at least when coarse-grained over the intervals Ai&.
e -

The signal amplitude classes Ai and the response function classes

Fj are associated on a one to one basis through the choice

Ak e Jm Fk 2

or, since jm =1 (4.11)




Since a particle yielding a response function in a given class ?j
cannot give rise to a signal amplitude greater than Kj’ the cross-section

matrix elements ASi are all zero for i > j. Thus Eqn. (4.9) can be written

]
explicitly
Gy GGy 0 By gy e By, ilig N
C2 0 AS22 A823 —-— A521 —-— AS2m NZ
C3 = 0 0 AS33 —-— AS3i —-_— As3m N3 (4.12)
1 | ] | I | 1
i i ] i i { i
] i | i | i i
Ci 0 0 0o - ASii -— AS1m Ni
i | | | | | {
[ i 1 i i i |
Cn 0 0 0 =-—— 0 == ASmm Nm
The inversion of Eqn. (4.12) is written symbolically
e o s

Given the count rate distribution of signal amplitudes Ci(Zi) in the pulse
height analyzer channels, then if the AS matrix is known, Eqn. (4.13) can be
solved to yield the distribution Nj(fj) of normalized response functions.

If the response function F(a) i1is known, either from computations (when

the refractive index is known), or from a calibration experiment (see Section
j) and hence the dis-
tribution of diameters Nj(dj) for the polydispersion can be obtained. The

5.0), the distribution of particle size parameters Nj(a

central problem is the determination of the cross-section matrix, to which
we shall return shortly.
Up to this point the functional dependence of Kk(k) (and hence of fk(k))

has been arbitrary. Usually, pulse-height analyzers offer a choice of either
a linear amplitude mode, for which Kk+1 - Zk = AKk = constant for all k,
or a logrithmic mode for which




A

k

5
A

B = constant

(4.14)
Kk+1 = (1+B) Kk (for all k)

The constant B is chosen by setting the gain of the logarithmic amplifier
to suit the relative size range of interest and the resolution i.e. the number
of channels utilized.

The choice of the logarithmic mode is preferred for two reasons. First
it is the most appropriate mode when dealing with particle distributions with
a large relative spread. Second, as discussed below, in the case that J is
independent of d, a condition that can effectively be realized in practice,
a further simplification of the ég matrix results which reduces the number
of independent elements from m2/2 to m.

With a logarithmic mode, we also have in view of Eqn. (4.11)

AF
A
% (4.15)
i.e.
Py " (1 + B) F (for all k)

4,2 Determination of the éi Matrix

Returning to the question of determining the AS matrix, in principle
this can be deduced from measurements of the signal amplitude by traversing
a single particle of known size dj (e.g. attached to a microscope slide)

through the measurement volume for a range of x, z and d.

Fortunately, a simpler, less tedious, and more direct procedure is
available through the use of an aerosol generator capable of producing mono-

dispersions of controlled size and concentration. The method proceeds as

follows.

-




A monodisperse particle distribution N(dk) with a known diameter d

k
and concentration N is passed through the measurement volume at a known
mean velocity U. For a specified time the signals are accumulated in the
pulse-height analyzer to yield the count rate distribution C(Ki) =\C Since

e
N(dj) =0 for all j except j = k, the system of equations (23) reduces

to a set of k equations of the form

C, = 4.
i U ASik Nk ’ (4.16)

which can be solved directly for the Asik' This yields the k elements i
in the kth column of the matrix. By repeating the procedure for different |
size classes k, successive columns of the éi matrix can be determined |
until, by m such measurements the whole AS matrix is known. Incidentally,
in the process, the cut-offs of the count dzgfributions at Kk yield an

experimental calibration of the pulse height analyzer channel numbers in terms

of the particle diameter (i.e. F(d)) for the particular refractive index employed.
This method has, in fact, been used and is satisfactory though time-
consuming if m is large. In the process, however, it was realized that a
much simpler technique is applicable under certain conditions, as follows.
When the amplitude response of the pulse-height analyzer is logarithmic,
then if the transfer function for collection H, and hence the measurement
function 3; is independent of d, it can be shown (Appendix II) that the
AS matrix simplifies so that all the elements on any diagonal are equal. It
can then be written
ASm As AS L - As AS

m-1 m-2 2 1
0 Bs_ NS, —mmmmme- As, Bs,
AS AS As
&= “‘ "' E (4.17)
0 I | :
|
: As L W
|
[}
: 0 As_ as__, _
! .
0 0 0 AS "
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In Eqn. (4.17), ASE is now the area in the x-z plane where the J function,

which has been coarse-grained into logarithmic intervals with Aj&/ji = B, has the

value 32 (Figure 9). Thus ASm is the central area where J has its maximum value

3m = 1. Also AS1 is the peripheral area where the J function has its
minimum coarse-grained value 31 =1/(1 + B)m-l, such that a particle of the

Al

largest response function class Fm generates a signal falling in the smallest
signal amplitude class Kl.
The significance of this simplification is that now all the matrix

elements can be determined from a single calibration using monodisperse

particles of the largest size class of interest, from the equation set \

C;, = UAs, N , £=1m (4.18)
The calibration procedure is then particularly simple and quick.

Experimental evidence for the fact that the J-function is sensibly
independent of d, at least for the conditions of the experiment, is
adduced in Section 5.0, and hence justifies the use of this simple calibration
procedure.

One further point concerning the calibration technique should be dis-
cussed. To determine the absolute values of the AS1 from Eqn. (4.18) it is
necessary to know both the velocity U and the absolute concentration N .

In practice, when using the monodisperse particle generator, it is not an easy ‘

matter to determine the absolute concentration at the measurement station.

Even if the particle generation rate is known, it is difficult to allow for

loss of particles by deposition in the feed tube.

If only the relative size-concentration distribution of an unknown

A T N T -

aerosol is required, then relative values of the Asl suffice, and these

T Y

can be determined without knowing either U or Nm absolutely. When an
absolute calibration is required the concentration Nm can be determined by
an extension of the basic calibration technique as described below.

In performing the calibration procedure based on the use of Eqn. (4.18)

the total count rate in channels i = £ to m is

r Z c,6 = U E bs, N (4.19)

%,
|
i
E

30




@ ,
E
| £
?
E ;
i
i
E
k ' y .
I00um
AS
S00umT
I000um |
71
% 1
Figure 9. Schematic of AS; Corresponding to
| J, of Figure 8
%
K
|
31

i
|




which we write
C = Us N (4.20)

Cl 2 is determined from the total number of counts in channels £ to m i
’ %

in a known time, and if the velocity is measured, we can determine Nm from

(4.20) provided we can determine the area i

m 4
s 2% A8 (4.21)
R i=2 = h
The latter is the cross-sectional area of the measurement volume which has
J values bounded by 3m =1 and
¢
s . 1 X (4.22) §
2 m=-2 r 4
{1+ 8) (1 + B)

where r = (m - &) is the difference in the channel numbers over which the
count rate is summed.

The area S can readily be determined experimentally by traversing

a small pinhole %é?g. 5 ym diameter), much smaller than the detection aperture
pinhole, through the measurement volume. The extent in x and 2z of the
cross-section for which the signal falls from the mth channel (at the center)
to the (m—r)th channel is mapped out, and hence the area is found.

In this way the absolute concentration N, is found from Eqn. (4.20) and
then the absolute values of the AS, are found from Eqn. (4.18). The use of
this method with monodispersions of different size, to check experimentally

that 3' is indeed not a function of d, 1s discussed in Section 5.0.

4.3 Implementation of Inversion Technique

Once the ASQ matrix elements are determined from such a calibration,
they are entered in the matrix inversion algorithm of a mini-computer. Then,
for an aerosol under investigation, the count rate distribution Ci from
various channels of the pulse height analyzer are automatically entered into
the computer. It is useful, however, to observe the data on the instrument's

visual display as a check on correct functioning.
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Because of the experimental uncertainty in determining C and AS,
the problem N = (U Ag)_l C cannot be accurately solved by straightf;;gard
matrix inversion tec;;iques. Instead, the solution N 1is derived by
searching for a non-negative vector N which minimizes the reaidual vector
R=C-1U Qé_ﬁ. A satisfactory solution to this problem was found through
use of a ﬁ;;;negative least squares (NNLS) solution procedure developed
by Lawson and Hanson [26]. This procedure minimizes error propagation and
also outputs values of residuals Rj which allows one to judge the accuracy

of the resulting Nj distribution.
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5.0 EXPERIMENTAL RESULTS

The objectives of this section are two-fold:
1. Compare experimental results for the scattering response function
F(d) with the calculations of Section 2. é
2. Validate the accuracy of the inversion ccheme described in :
Section 4.

The most direct method of validating the approach described up to this
point consists of measuring well-characterized monodispersions of known
size and concentration by using a Berglund-Liu monodisperse particle
generator [27]. Such a device is claimed to generate particles within 1%
of the stated diameter. Microscopic examination of samples collected on
glass slides confirm monodispersity to within the *5% resolution of a
microscope graticule. Spherical droplets are generated from oleic acid
which has a refractive index of # = 1.46 + 0.0i, i.e. negligible absorption.

For a given nozzle diameter (20 ym, 10 um, or 5 um), a 10:1 range of
particle sizes can be generated by varying the percentage of oleic acid in
isopropyl alcohol. The alcohol evaporates in a long residence time drying
chamber leaving oleic acid droplets with diameters proportional to C1/3,
where C 1is the oleic acid concentration. The present experiments used
the 20 um nozzle to generate particles in the range 2.5 um to 25 um.
The other nozzles (10 ym and 5 pym) can be used to generate particles down
to 0.5 um.

Experimental values of F(d) are derived from the set of curves shown
in Figure 10. Each curve corresponds to the PHA data generated for a known
particle size. The relative scattering response for each size is given by
the threshold channel where the number count increases sharply. In
practice, there exist a few doublets and triplets of the primary particle
size produced by the particle generator. Thus the threshold channel is
taken as that channel where the number count is 10% of the peak number count.
Comparison of these experimental results and the calculations of F(d) in
Section 4 are shown in Figure 11. These results indicate that scattering
theory is quite adequate for the range of conditions investigated, although
further work is necessary to confirm the extent of the resonances or multi-

valued regions of the response function.
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Ignoring the resonances and taking a mean curve fit in the range of
2 - 30 ym gives an approximate scattering function dependence on particle
1.65
size as F(d) o d

PC 215 and PC 245 particle counters where the exponent ranges from 1.5 to

which is similar to the power dependence of the Royco

1.8 [12]. This result is to be expected since light collection geometries
for these devices are similar and the effect of a polychromatic illumination
is only one of smoothing the resonances. Further work is continuing to
generate particles in the .5 - 2 ym range and thus provide a check on the
response curve for small particles.

Proof of numerical inversion accuracy requires knowledge of calibration
source particle number density along with particle size. The number of
particles produced by the particle generator was 90,000/sec and the the flow
conditions used in our experiments gave a maximum number density of 108
particles/cm3. However, a flexible hose was used to convey the particles
from the generator to the measurement volume and in the process a
significant fraction of particles was lost to the hose wall. In addition
it is possible that the local number density traversing the measurement volume
may not correspond to the bulk mean number density at the hose exit, even
were it known. Consequently we use the method described in the latter part
of Appendix II to determine the local number density. It is clear that
every particle above the minimum size threshold traversing the measurement
cross-section Sr will be counted, as long as coincidence errors do not
occur. For the experimental conditions mentioned, coincidence errors are
negligible. The local number density can be directly evaluated for a

monodispersion by the formula (Eqn. II.S8).

c
Nk = k-r,k
UeSper k

where Ck—r k is the total number of particle counts from channel (k-r) to
’

k where r corresponds to Z%_r/Kk = 0.1 or from Eqn. II.1,
r=2.3/B for B < 0.2.

In general S is a function of particle size and Table 5,1

k-r,k
summarizes values of S

o zﬁ-rfzk'

i for several pinhole diameters and two values
’
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Table 5.1. Variation of Measurement Volume Cross-Section, Sk-r,k»
With Pinhole Diameter, d, , and Amplitude Reference

Level Ay_.,/Ax *
2
Pinhole Diameter, dk Sk-r,k [Ecm )]
= e =1 V= o
L S Aeclly = -1
5 um .00525 .00115
12.5 um - .0011
25 ym .0045 .00102
The values of sk-r , are the same for the 5 ym and 12.5 um pinholes
’
while S decreases by 117 for the 25 um pinhole. Thus for particles

k-r,r

< 25 ym diameter S x S_ and is sensibly independent of particle size.

k-r,r T
Given that Sr is reasonably constant, from Appendix II, Equation II.13,

we have Asm-(k-i)/ = Ci/ck-r =, and thus the normalized cross sections

S

can be derived directl;’;rom the PHA number amplitude spectrum Ci’ i=1, m
Figure 12 shows a plot of normalized cross section calibrations for five
particle diameters ranging from 6 um to 25 um.

A mean curve can be drawn through all the calibration points which is
within * 10% of all values for the five particle ;izee, indicating that the
normalized values of the cross section matrix are sensibly independent of
particle diameter up to 25 pm. Coupling this result with Ask—r,r = constant
up to 25 um we conclude that the cross section elements are reasonably
independent of particle size up to 25 um for our instrument geometry.

We know that the beam intensity is similar for other overall beam
dimensions (Eqn. 2.2) and thus we can generalize the above results to say
that the particle size should be smaller than ~ 35% of the 1/e beam width
for the diagonal elements of AS to be iqentical.

The final and essential test of the inversion scheme and its accuracy
is to obtain data on an aerosol of known particle size distribution. A
mixed aerosol of known particle sizes was obtained by sequentially adding
and storing the data from four monodisperse aerosols generated by the

Berglund-Liu particle generator. This accumulated data is shown in Figure 13,

which represents the raw PHA data generated by a mixture of 6, 12, 17 and
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25 um particles. Although the PHA has a total of 100 amplitude channels
siving B = .06, the data was 'compressed' by a factor of three to minimize
computation time. The 'compressed' channel width (8) is equal to 0.21 which 1

corresponds to a particle diameter resolution of Adk/dk = 0.13. Application

of the inversion scheme, (Eqn. 4.13), gives the results shown in Figure 14.
The four major particle size peaks occur within *+10% of the known particle
diameters although a small spurious peak occurs at channel 11. The peak at
channel 11 represents a 10% error in number count and is consistent with the
accuracy of the cross section calibration curve (Figure 12).

An approximate analysis of error propagation in the inversion scheme
due to uncertainties in measurements of Ci and ég is presented in
Appendix III. The results of the error analysis show that the upper bound

uncertainty in N, varies from *13% in channel 9 to #26% in channel 20.

i
Higher counting rates for practical aerosol flows should reduce these

uncertainties.

It should be remembered that the generated number density is 108 cm-3

(an upper bound) which is to be compared to the computed values shown in
Figure 12. The actual number densities at the nozzle exit of the particle

generator decrease with increasing particle size, consistent with observed
increases in particle deposition with increasing particle size [28].

; The computed values in Figure 14 are also consistent with individual particle
g size calibration tests, Table 5.2, where the number density was calculated
according to Eqn. 4.20.

Table 5.2. Comparison of Number Density Results for
Figure 12 and Calibrations.

1
A =
- Particle Size (um) Number Density, Nm (cm 3)
] Fig. 12
Calibration Results

: 6 73 93

12 77 66

17 63 57

25 27 31
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The 'calibration' number densities also generally decrease with increasing
particle size although exact correspondence of the number density with the
calibration tests was not found because the deposition rates and thus
actual number density at the nozzle exit are very sensitive to particle

feed line curvature which was not carefully controlled in different tests.
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6.0 DISCUSSION AND CONCLUSIONS

The in situ particle sizing counter described herein satisfies the
principal practical requirements of such an instrument for many important
applications. The optical access requirements are modest and can be
readily satisfied for laboratory scale flow systems. Particles can be sized
over at least a 10:1 diameter range with a resolution Ad/d < 0.15, which is
adequate for most aerosols of interest. The instrument has been con-
clusively demonstrated as capable of resolving the structure of a poly-
dispersion consisting of several superimposed monodispersions in the
range 2.5-25 uym. By adjusting the instrumental geometry, it should be
straightforward to deal with sizes ranging up to -~100 um. The extension
to sizes < 2 um appears possible but requires further work to resolve
the limitations set by the first resonance in the scattering function which
typically occurs in the range of 1 um. Another important feature is that
the measurement volume can be made small enough to allow measurements with
high particle concentrations, in the range of interest for most applications.

The key feature of the method is the use of a computer-based
inversion scheme which allows one to unfold the effect of the random
trajectory dependence of the scattered signals together with a straight-
forward calibration technique which gives the necessary information on the
scattering function F(d) and the matrix elemental areas ASij required for
the inversion.

Although the experimental work was based on the use of non-absorbing
spherical droplets supplied from a monodisperse particle generator, the
method should also be applicable to absorbing and irregular particles.

For absorbing spherical particles of known refractive index, Mie
scattering computations can be used as a guide, but if the refractive
index is unknown, or the particles are irregular, the calibration
technique can always be used provided it is possible to obtain
monodespersions of the aerosol of interest.

Such an approach has been described recently by Marple and Rubow([29,30],
with application to irregular absorbing particles such as pulverized coal,

road dust and other aerosols. They used a two-stage impactor to produce a
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sharp upper cutoff 1in particle size for the aerosol of interest. This was

FPERS O

then fed to a sampling type optical counter (Royco 218) to give a single
calibration point. By using different nozzles in the impactor a series
of calibration points for different aerodynamic diameters was obtained.
Figure 15 shows their results for a variety of aerosols. It may be noted ;'
that a mean calibration curve could be used for all of these aerosols
without introducing a size error of more than *30%. This is an encouraging
result for application of optical sizing to various irregular and absorbing
aerosols of practical interest. This calibration technique using an
impactor is directly applicable to the present in situ instrument for

measurement on irregular and absorbing particles.

In the future it is planned to explore this method with the present
in situ instrument to determine the size distributions of fly ash particles |3
in a cold flow electrostatic precipitator dust tunnel.

Another potential area of application of the present instrument is
to sizing particles in hot systems, such as liquid spray combustors and
pulverized coal combustion systems. Two potential problems may be
anticipated in hot systems, namely interference from background thermal
radiation and beam and image wander due to fluctuating refractive index
inhomogeneities. Estimates of the effect of the thermal background show that
this should be negligible for sizes down to 0.5 um if a laser line filter
of 208 width is employed. The effect of beam wander is more difficult to
estimate and depends on the amplitude of thermal gradient fluctuations
expected in a particular flow system. It is planned to study such effects

by making measurements in a small burner system.
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APPENDIX I SIGNAL COINCIDENCE EFFECTS ;‘

For a given aerosol size distributior dand instrumental size range, there is

a limit to the concentration that can be measured set by the occurrence of

interference. The latter can be defined as occurring when the signal due to
one particle is significantly enhanced by signals due to other particles
present in the measurement volume ''simultaneously", i.e., within the resolving

time T of the electronics. Clearly, interference is most likely to be a

problem for the measurement of the smallest particles in the distribution.

Consider a polydispersion of given relative size distribution (Nj(dj)/z:Nj)’
and suppose the instrument is set up so that the maximum size class (dmax) of
particle will register signals in the maximum amplitude channel Am of the
pulse height analyzer, while the lowest amplitude channel A1 just registers
signals from the smallest size class (dmin) it is required to measure. We
wish to derive criteria for how large the total concentration E:Nj can be
without the occurence of significant interference.

For simplicity, we take this to be the condition that the probability of
a signal from the smallest size class (1) (strictly the smallest scattering
amplitude class) being overlaid by one or more additional signals of equal or
larger amplitude is less than some critical value (say < 20%). Since a
simultaneous signal in any amplitude class i =1 to m will cause such inter-
ference, and because the events are statistically independent, the required
conditional probability is just the probability that one or more signals is
present in any of the chanunels during the resol§§ng time T.

C., and the probability of n
j=1 1

signals being present simultaneously is given by the Poisson distribution

Now the average total rate of signals is

n
P(n,x) = x_(exp-x) (1.1)
n!
m
where X = E:C T
e
i=1

Hence the probability cf one or more signals being simultaneously present

is 1 - P(0,x) = 1 - exp(- x),and the required probability of interference is
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m
Pint =1 - exp —(iz% C1 T).

is small, we can approximate (I.2) by

Since we require that Pin

t

m
B ¢ ot (1.3)
i=1

Now, from Eqn. 4.8, we have

m
i}':‘lci = 0N A8 b (A8 #AS. ) hi~ -
BN (A8 T - o B )
m m 1 (1.4)
m m m
DRI DEAEL) DENE PRSI
j=1  fL=m-j+1  j=1 :
Here
m
Boe ~ IO NS Y (1.5)

j=1

This shows that the larger particles in the distribution have a higher
weight for causing interference because there are more channels in which they
are capable of recording interfering signals. Equivalently, the larger particles

experience a larger measurement volume ( <S ), and hence have a larger

probability of detection. It is also clear(?hitliﬁ: probability of interference
depends on the shape of the distribution as well as the total concentration.

In Section 5 it was shown that for a Gaussian beam profile and a logarithmic
amplitude mode of the pulse height analyzer, the incremental areas AS2 are

approximately constant, independent of &, so that

m

S(m-§+1),m * D b5y =S (1.6)
L=m-j+1

S
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and

m
Pint x Ut AS j=21 h | Nj (1.7)

This can be expressed in terms of the effective measurement volume as follows.
Assuming that the resolution time T 1s equal to the transit time U/L, where
the length L of the measurement-volume in the flow direction is set by the

pinhole diameter in the collection of optics, Eqn. (I.7) can be written

m
@ 1)
1>mt~vm£(m N, (1.8)
j=1
where
V =LS =~ LmAS (1.9)
m m

is the effective (maximum) measurement volume. Eqn.(I.8) can be written

:’ i
P:lm: Vm NT (m) LE
: where n
] 0 E N, (1.10)
j=1 !
is the total concentration over the size range being measured, and
m
j N
PRSI
prre o L (1.11)
i3 m
2w,
=1

is the average channel number determined by the weight of the distribution
Nj.

Equation (I.11) shows that the maximum total concentration that can be
measured without significant interference is determined by the product of two
factors, Vm and (E/m) which we discuss in turn.

The effective measurement volume Vm depends on two factors: first, the
optical geometry determined by the waist diameter of the laser beam and by the
F number, collection angle OC and the pinhole diameter of the collection
optics; second, by the size range (d /d ) to be measured, as it determines

max min
the range of scattering amplitudes Fm/F1 and hence signal amplitudes
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Am/A1 to be accommodated. If Sr is the experimentally determined reference
area, inside the contour where J = 1/e, and if the response function is
approximated by F « aP (where p »~ 1.65 for our experimental conditions),

then we may write for the effective maximum measurement cross-section

Sm Gl sR In (dmax/dmin) (1.12)

In practice, the optical geometry is chosen to suit the maximum particle
diameter to be measured. For instance, for dmax ~ 25 ym, the geometry used
to obtain the results reported in Section 5 resulted in a reference area

4 2 2

SR ~ 4x10 " cm”, i.e. approximately 60 dmax . With p = 1.65 and

(d /d ) = 10, together with L = 100 ym, we find an effective measurement
max min -5 3
volume of Vm ~ 1.5x10 cm .

The second factor (j/m) is determined by the particle distribution
function. Its minimum value iszfglm) = (1/m) when the distribution is
strongly peaked in the smallest-channel. Thus the lower bound of Pint is
Vm NT/m. For measurement of sizes greater than the mode (maximum) of the

concentration distribution, we consider distributions of the form

N@) =k d ? (1.13)
where q 1s positive. This yields

d.+Ad.
9

k Ad,
N, - fN(d) S e A%
d,
dj j
For F « dp, we have
Adj ~ (B/p) dj s (1.15)
hence Nj . 5_£§é§). . (1.16)
3 q
h|
In the special case q = 1, we have
Nj = k (B/p) = constant,
(1.17)
m
T A o (mtl)
j m 2 j 2 bl
j=1
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and for m > 1, P, =V N_/2.

int m T

In practice, most distributions decrease more rapidly than d For

instance for
This weights

interference.

d greater than the mode of the distribution by mass, q > 3.

j to values lower than m/2, and reduces the probability of

In general for N « d —q, we have

Ny = @D e Trm Yy e
S q- j=-1) (q- m-
dmin (dmax/ min)
This yields
= Edmax/ min)(q—l) % (m+12] ( )
j = + I.19
(q-l)/(m -1) (g-1)
Edmax/ min) 1] Edmax/ min) -1] .
For [(dmax/ min) (1-1)/ (m-1) 1] << 1, and
da /4 )(q—l) - m, this reduces to
max min
= (m-1)
e (g-1) £n (dmax/ min) s

which shows that, under these conditions, the factor (Eym) is less than
(0.5) and decreases as the distribution falls more rapidly, as 1/(q-1).
Combining (I.19) with (I.12) then leads to

R'T
SR NT % (I.20)

Tl
¢ * @D " (a-1)

Specifically, for (d /d ) =10, m = 20 and for q=1,2,3,4 we have

(G/m) = 0.53,

max min
0.33, and 0.22 and 0.16 respectively. Thus the factor

(j/m) decreases rather slowly as q increases.

In particular, for the instrumental conditions reported in Section 5,

for which V= 1.5 x 107 o, and taking Py, = 0.2, we find for the
maximum concentration NT ~ 4 x 10 cm-3 for q = 2 and NT ~ 6 x 104 t:_tu.3
for q = 3.

For d T 25 um, and a particle specific gravity of 2, these dispersions

correspond respectively to mass concentrations of 30 and 20 grams/m S

which are rather higher than the fly ash loadings at the exhaust of

pulverized coal combustors.
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APPENDIX II CONDITIONS FOR IDENTITY OF DIAGONAL ELEMENTS OF ég

With the choice of a logarithmic response on the pulse-height analyzer
we have from Eqs (4.10), (4.11) and (4.14) the relations

b = G+ R =T = G+ F

= s (11.1)
and AAk AFk

-—=————=B

G R
valid for all k. To be consistent with Eqn. 4.7, J is coarse grained

into levels 3& (1 £ ¢ = m) such that

Ty " (Jz + AJl) = (1 + B) JR

(1I1.2)

axid AJZ
; J—_=B
2

For specified B and given Ek there is an associated cross-sectional area
Asz which in general is also a function of the particle diameter d. However,

for the case where AS, 1s independent of d, a simpler form for AS results.

2
In the equation set (4.12), the contribution to Ci from Nj (3 > 1) is
U ASij Nj‘ Such contributions can be assumed to be generated in the region
of the measurement volume with value jk having area Asl, so that
By Ty (11.3)

But, in view of relations (II.1) and (II.2) we also have

A =9 Ty
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Hence, it follows that

AS (11.5)

T LT T

i.e., all the elements along any given diagonal in the AS, K matrix are equal.

ij
Furthermore, since it is clear that ¢ is constant if (j-i) is constant, and
in view of (II.3), then the relation between the indexing schemes is

g =m-(j-1i), i.e.,

AS,, = A (11.6)

ij Sm—(j-i)

Thus we have shown that when J is not a function of d and intervals of %

AK;, AFj and AE& are chosen to be logarithmic (Eqns II.1 and II.2), the
general form of the AS matrix appearing in Eq (4.12) reduces to that of
Eq (4.17).

Physically this means that for ail pairs of (i,j) values such that

{ arising from particles

yielding response functions in the class FJ are generated in exactly the same

(1-j) = (m-2), signals in the amplitude class A

part of the measurement volume ASZ corresponding to the value J = 3&.

The question arises of what physical conditions have to be satisfied in
order that J should be independent of d, and how can one check experimentally
that the condition is fulfilled. Clearly, one necessary condition is that the
largest particle to be measured (in the class dm corresponding to the response
function class Fm) should be reasonably small compared to the dimensions of
the measurement volume, in particular the radius LS of the laser beam. Other-
wise, such particles will not experience an incident wave that is approximately
a uniform one, as 1s required by the Mie theory. Most likely there are other
conditions related to the imaging of the particle onto the collection aperture
which must be satisfied in order that J should be independent of d. However,
these are difficult to specify, since they probably involve the quality of
the collection lens with respect to abberations.

In view of such uncertainties in specifying the necessary and sufficient
conditions that J should be independent of d, we have taken a pragmatic
approach, and devised an experimental test which confirmed, at least for the
experimental conditions employed, that J was indeed sensibly independent of
This experimental test can be explained as follows. At the end of Sec. 4.2,

an extension of the basic calibration technique was described that allows the
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absolute concentration Nm and hence the absolute values of the AS£ matrix,

to be determined, using the largest size monodisperse particles of interest.
The procedure involved summing the count rates Ci from channels i = m down
toi = (mr), i.e., over the top (r+l) channels, and using the relation (see

Eqn. 4.19)

C =US N (11.7)
m-r,r m-r,m m

The value of Sm—r,m’ the cross-sectional area of the measurement volume over
which J 1lies between 36 =1 and jﬁ—r = 1/(148)" 1is found by traversing
a small pinhole through the measurement volume. The test of the independence
of J on d consists of repeating this procedure for different, small sizes
of monodisperse particles (Table 5.1).

For particles of size class dk’ and concentration Nk, the sum of the

count rates in the (r+l) channels from i = (k-r) to i =k 1is given by

Cerk = U Sporoi N (11.8)

provided that J 1is not a function of d. Under the same condition, if r

is held constant in the two measurements,

Sk-r,r ~ Smer,r (11.9)

so that the same area, determined using the pinhole traversing technique, can
be used in Eqn. 11.8 as in Eqn. 11.7. Hence the absolute value of Nk is
determined in the same fashion as Nm.

Now the measurement of Nm allowed the absolute values of the ASE

determined, for 2 =1 to m from (Eqn. 4.16)

Cz = U AS Nm ; (11.10)

2

Likewise, the measurement of Nk allows an independent set of absolute
values of the AS2 to be determined for £ = (m-k) to m from the

equation set

C,=1U AsZ N (11.11)

i k

where £ = m-(k-i), and i ranges from 1 to k. It follows from
Eqns. II.8 and II.10 that




AS C1

m- (k-1) it
Sr k Crmr,k

I O T (1I1.13)

Thus values of Asm-(k—i) normalized on a fixed reference area Sk—r,r

can be determined without knowledge of the number concentration Nk. This
equation is valid even if J has a particle size dependence, as long as the
reference area S is determined for each particle size dk' For the

e k-r,r
case where J is independent of dk’ then Sk—r,k = Sr for all Nk'
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APPENDIX III ERROR ANALYSIS OF INVERSION TECHNIQUE

There are two sources of errors in computing values of particle number

density, Nm, namely random counting errors in C, and errors in specifying

correct values for the elements of AS. Counting :rrors, which derive from
a finite sampling time, can be readiI; evaluated according to Poisson
statistics. We have assumed that all particles and particle size classes
have an equal probability or passing through any point of the measurement
cross-section. This assumption is true only as C, approaches infinity.

i
For a 95% confidence level Poisson statistics give

ac, e
) C (I11.1)
C i
i
where AC, =

i random error in Ci

Ci measured number count

According to the above relation one should acquire a minimum of 1000

counts in each size range channel to achieve a t6% error in Ci'
The effects of these counting errors on the uncertainty in Ni cannot

be quantified without making some approximations for the form of AS. For a
Gaussian illumination beam it turns out that the individual cross-section
elements are all nearly equal. The following analysis assumes that they

are identical and known. For ASi = AS for all i, j the equation set 4.17

j
becomes
C1= (N1+N2+ SRk +Nm) U AS
C2 = N2+ ol o Ll Nm) U AS
. e . (1I1I1.2)
Cm = (Nm) U AS

To simplify the problem we choose a velocity U such that U AS = 1. If

there were no uncertainties in the individual ZSSi then we would obtain

3
i=1,m1 (111.3)

e B T, 5 L

i i




The uncertainty in Ni would be given by
2 2
" Vi Cin1

or IANiI=l 2
N

(I1I1.4)

1 1
C e

1 - Gy
If C; < 1000 then IANil/Ni £ 0.09 from random counting errors.

The potential errors in the computed number distribution N due to uncer- 4
tainty in the elements of égz require numerical calculations using perturbed valu
of AS. As shown in Figure 12 an average curve with a deviation of +10%
char;:ferizes Asm—(k—i)' Although values of the true ég elements would be
expected to vary systematically with increasing particle size, we will assume
that the measurement errors are random within the range of the five sets of
experimental results. This approach will provide an upper bound for the error
estimate.

For numerical analysis of the effect of uncertainties in AE, artifically

perturbed values of AS were generated by using the following equation,

ASij = ASij (0.9 + 2eRN) (1I11.5)
where Kgij is a mean experimental value, € is the maximum fractional
deviation from AS and RN is a random number between zero and one. Three sets

ij’
of AS were generated, and using a given count distribution C, three number

distribution solutions N, shown in Table III.1l were obtained. The overall
standard deviation between the average of N for the three perturbed solutions
and the N for ASij = Zgij is *5 cm—3. Although greater deviations from the
average occur for the perturbed solutions (e.g. channel 13), it should be
noted that these large deviations are compensated by a corresponding deviation
of the opposite sign in an adjacent channel. In other words, size resolution
and number resolution are coupled. Forcing better size resolution produces
greater errors in the number density for each size range and vice versa. The
upper bound for combined uncertainty from random counting errors (c.e.) and

uncertainty in AS is given by




Table ITI.1. Comparison of N; for Perturbed and
Average Values of AS.

CHANNEL Ny (cm'3)
T T R

1 2 3 Solutions AS

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

] 8 0 0 0 0 9
9 89 88 91 90 92
10 7.5 | 14.7 0 7.4 0
11 0 0 7.8 2.6 7.8
12 8.2 0 0 2.7 0
13 3.5 19 24 6.3 9.7
14 64 50 41 52 56
15 0 0 0 0
16 2.7 13.4 5.4 0
: 17 38 38 39 38 46.8
18 8.0 11 0 6.4 10. 4
19 11 4.1 9.6 8.2 0
20 26 30 30 28.4 31




Y

2 2
ANi AN‘.[ ANi
'ﬁ— = * -ﬁ—— + 'N_' (II1.6)
i i i

CE AS

For the results of Figure 14, the greatest uncertainty occurs in channel 20

and is
AN J 5
i 2 5
TG e o +(’3T)
20

= +26%.

For larger number density flows (as occur in practice) or for longer sampling
times, counting errors can be significantly reduced. Reduced counting errors

will also reduce the uncertainty in AS.
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