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AN OPTICAL PARTICLE-SIZING COUNTER FOR

IN-SITU MEASUREMENTS

By

Don Holve and Sidney A. Self

High Temperature Gasdynamics Laboratory
Mechanical Engineering Department

Stanford University
Stanford , California

A~ST~~CT

A particle sizing counter is described , sut t abt e  for ~~~~$~ tu measurements
In two phase flows of laboratory scale. It employs near—fo~wak~Tscatter from
the focus of a He—Ne laser beam, together with pulse height—analysis of the
signals from individual particles. A novel and essential feature of the
technique is a numerical inversion scheme to unfold the dependence of the
scattered signals on particle trajectory through the measurement volume. The
inversion procedure is performed by an on—line computer , and utilizes a prior
calibration with n~onodisperse aerosols of known size. s presently configured ,
the instrument has a demonstrated capability of deter 1n8 size distributions
in the diameter range 2—25 pm, at concentrations up t ~QD cnr 3. The
measured dependence of response on particle diameter agree& well with cal-
culations from Mie scattering theory. It is anticipated that the technique
can be extended to cover particle diameters un to at least 50 pm, and down to
0.5 pm and concentrations up to 106 etC3. It should also be adaptable to hot
f lows and absorbing, Irregular particles.
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1.0 INTRODUCT ION

The measurement of particle size distributions in two phase flows is

of considerable current interest , especially in connection with energy conver-

sion devices such as liquid spray and pulverized fue l combustors, and parti—

culate cleanup devices such as electrostatic precipitators. While the parti-

culate characteristics, such as mean diameter , size distribution, mass loading

etc., may vary quite widely in such systems, the sizes of interest generally

fall in the range 0.5 — 50 pm , with concentrations up to 106 cm 3 (for the

smaller sizes).

The available measurement techniques [1,2] also vary widely in type and

capability. Several , including microscopy, cascade impactors , Coulter counters ,

mobility analyzers and commercial optical counters require a sample to be

extracted from the flow. This poses problems related to obtaining a represen-

tative sample, especially for the larger sizes and in hot, high velocity

flows. Also, many sampling methods are cumbersome and slow in operation.

For these reasons optical techniques are of especial interest since, in princi-

ple, they are capable of making in situ measurements with continuous and rapid

readout. Moreover, by using lasers, they are adaptable to high temperature

systems having high thermal radiation background.

Optical techniques all depend on Mie scattering [3,4],  and can be broadly

divided into imaging and non—imaging types. The former, including flash photo-

graphy [5] and holography [6], are limited In practice to sizes ~ 30 pm, and

pose a difficult data reduction problem. Non—imaging methods can be subdivided

into two classes: those which measure on a large number of particles simul-

taneously, and those which count and size individual particles, one at a time.

The former type includes the well—established transmissometer [7,8],
which measures the extinction of a light beam and yields a value for the

integrated projected area of the particles in the beam. It does not allow

point measurements, and requires another measure, such as the mass loading,

to yield a mean diameter. Other techniques have been described [9—11] which

measure the angular distribution of light scattered from a large number of

particles simultaneously present in a small measurement volume. They yield

either some moments of the distribution [9,10] or require the angular distri—

bution to be unfolded to give the size distribution Ill]

.1
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Sampling—type optical counter—sizers for gas flows have been commercially
available for some years. The sample is diluted as necessary , and constrained

to flow through a small jet C—. 1 mm dia.) which is uniformly illuminated with

a collimated white light beam. The scattered light pulses are collected ,

usually in forward scatter, detected and pulse—height analyzed to give a number—
size distribution. Apart from a limitation to particles ~ 10 pm and the need

for sampling and sample dilution, the main problem with such counters [12,13]

is the achievement of a response which is insensitive to particle refractive

index.

A novel interferometric approach to in—situ particle counting—sizing has H
been suggested by Farmer [14 ,15] and by Durst [16], making use of the shape

of the signals scattered by single particles passing through the fringes in

the cross—over volume of a dual beam laser anemometer. A simple analysis [14]
suggests that the signal visibility is a monotonic function of the ratio

particle diameter/fringe spacing, in a certain range, and is independent of

scattering angle and refractive index. However, more detailed analyses [17]

from Mie theory and experiments [181 indicate a complicated dependence on these

parameters, which raises questions concerning the method’s utility except ,

perhaps, in a suitably engineered forward scatter geometry.

Apart from this interferometric method, there appear to be two basic

types of approach to devising an in s4tu particle sizing counter. In the first,

the absolute scattered signal amplitude in a single collection—detection

channel is employed , as in commercial, sampling type optical counters. In

the second, use is made of the relative amplitudes of the scattered signals

in two or more detector channels set at different angles [19].

In this paper we describe the development of an in—situ, forward scatter

laser particle sizing counter following the former approach. It has a demon-

strated capability on cold , small scale , low velocity flows of sizing particles
in the range 2 — 25 pm at concentrations up to at least 10~ cm

3
. In its

present form the instrument will accommodate flows up to 40 cm in width. By

adju8ting the instrumental parameters to suit the particle characteristics, it

should be possible to extend the range downwards to - 0.5 pm and upwards to

~ 50 pm, and handle concentrations to i0
6 cm 3. Moreover, estimates indicate

that the instrument should be applicable to hot, radiant flows, at least on

laboratory scale systems.

2
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There are two maj or factors involved in the practical realization of

an instrument of this type . The first concerns the control of the size and

shape of the effective measurement volume , and the uniformity of response

for different particle trajectories through it; this is discussed in Section 2.

The second relates to the attainment of a response which is, as near as possible,

monotonic with particle size, and which has minimal sensitivity to particle

refractive index; this is treated in Section 3. As discussed later , these

two factors are coupled in such a way that the optimum trade—off is a function

of the size range and concentration to be measured.

From the discussion of Section 2 it transpires that the response for

aifferent trajectories is quite non—uniform. Hence, as experimental tests

show, a flow of monodi8perse particles yields a signal amplitude—count distri-

bution with a sharp cut—off at some maximum signal value, and a spread to

lower values. It has been found possible, however, to use a numerical inversion

scheme, based on experimental calibrations with monodisperse particles, to
unfold this distribution of signal amplitudes to obtain the true size. This

technique, which is a vital feature of the present scheme is developed in V

Section 4.

Section 5 details the results of calibration tests on monodispersions

and polydispersions. The latter demonstrate the instrument ’s ability to

correctly resolve the structure in the distribution.

The paper is concluded with a discussion of the extension of the technique

to a wider size range and its application to hot flow systems. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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• 2 . 0  MEASUREMENT VOLUME CONSIDERATIONS

The characteristics of the measurement volume are a crucial factor in

the design of an in—situ optical sizing counter because the particle trajec-

tories are not controlled as they are in a sampling—type optical counter.

The effective measurement volume is determined in part by the intensity

distribution in the illuminating beam , and In part by the geometry of the

collection optics , including stops and apertures. Ideally, the measurement

volume should be of roughly spherical or cubical shape with a uniform illumin—

ation intensity , and a uniform light collection efficiency for points within the

volume. Otherwise, the peak scattered intensity will depend on trajectory ,

• so that signals from large particles traversing the edge of the volume may be

comparable with those from small particles traversing the center. 
V

The linear dimensions of the measurement volume should be several (2 or

3) times larger than that of the largest particles to be measured , so that

the fraction of such particles which follow edge trajectories yielding sub—

standard signals is small. For a measurement volume satisfying this criterion,

there will clearly be a limit of useful operation set by the occurrence of a

significant fraction of coincidences when two particles are simultaneously

present in the volume, giving rise to erroneous signals. This condition,

which sets a limit to the maximum mea~urable concentration of the more numer—

ous small particles, is analyzed in Appendix I. It should be emphasized that
5 6 —3

the capability of handling concentrations up to the range of 10 — 10 cm

is necessary for many flow systems of interest. Roughly, it can be said

that for an effective measurement volume of Vmcm
3
, the maximum concentration

that can be measured without significant interference due to coincidence is V

—l —3N - V  c m .max 
Concerning the distribution of intensity in the illuminating beam,

assuming a TENon laser , the profile is Gaussian, and by suitable optics can be

focused to a waist at the measurement station. Using cylindrical coordinates

centered at the waist , the intensity distribution is

2P 2 1I ( r , z) = —
~

- exP
1j 

2(r/w)J (2.1)
i r w  V

4
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where P is the beam power and the beam radius (to 1/e 2 intensity) is

w(z )  = w [1 + (;kz/rr w )  ] (2.2)

Here w is the beam radius at the waist (z 0) and is given in terms of V

the far field half angle of convergence , 0b’ by

w = 
X (2 .3)

Thus a Gaussian intensity profile (which is a r~-’asonab1y good approximation
V to the ideal rectangular profile) with a waist diameter in the range of

interest (— 100 pm) can be readily created by suitable beam expansion and

focusing, and Involves conveniently small beam convergence/divergence angles.

It may be noted that by using cylindrical rather than spherical lenses,

ribbon beams with Gaussian profiles having distinct waist widths in orthogonal

directions (x,y) can also be created, and offer certain advantages.

The intensity distribution along the beam (z) axis is Lorentzian and

falls off much more slowly than with radius. The Rayleigh distance Z
R~

where the intensity on axis falls to half the central waist intensity, is

Z
R 

= ¶ w2/X (2.4)

For waist diameters of interest (2 w --. 100 pin) and visible lasers, Z
R 

— 1 cm,

so that the Illumination volume is typically very long compared with its width .

Clearly, then, it is necessary to limit the effective length of the measurement V

volume in the z direction by suitable design of the collection optics.

The most direct method of achieving this is to use a lens on a collection V

axis at some angle 0c to the forward direction of the laser beam, and image

the laser waist onto a pinhole aperture, as shown in Figure 1. Clearly , f r om
the point of view of limiting the length of the measurement volume, a choice

of 0~ — 900 is most effective. On the other hand, as discussed in Section 3

below, to satisfy the requirements of a monotonic signal/size response, with

least sensitivity to refractive index, a coaxial forward scatter geometry

= 0) is most desirable; moreover the satisfaction of these requirements

becomes more difficult as the scattering angle 0~ is increased.

5
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V In an attempt to retain a coaxial forward scatter geometry , and to
delimit the length of the measurement volume, the use of a central stop on

V the collection lens was investigated. However, a practical solution did not

appear possible with this configuration. Consequently it was found necessary

to effect a compromise between the conflicting requirements of limiting the

length of the control volume and achieving a satisfactory response, by using

an off—axis , near—forward scatter geometry with in the range 10 — 200 ,

as shown in Figure 1.

In the particular system investigated the illumination is provided by

a 2 mW He—Ne TEMon mode laser, which is focused by cylindrical lenses to a

ribbon beam with waist widths (to l/e2 intensity) of approximately 2 wx
100 pm x 2 W

y 
— 300 pm, with a waist length greater than 1 cm. The collec-

tion axis is in the x—z plane at an angle 0~ to the z—axis. The collection

lens, consisting of a back—to—back pair of good quality f/ 2 8, 25 cm focal
length lenses, designed for infinite conjugate ratio, images the center of

V the beam waist to the center of a pinhole aperture of diameter 2 w
A 

— 100 pm

diameter, with unity magnification. Thus the viewed volume is approximately

a cylinder o~ diameter 100 pm Intersecting the ribbon beam at an angle Ge,

while the measurement volume is given approximately by the intersection of the

viewed volume and the illuminating beam. From geometrical considerations the

measurement volume can be characterized roughly as a cylinder with slant ends,
V of diameter 2 W

A 
- 100 pm, length 2 w /sin 0 - 1000 pm for angles of

interest, and volume 
~~~ 

l0~~ cm
3
. The particle flow is directed in the

y—direction .

The foregoing arguments defining the measurement volume are, of course,

only approximate. A rigorous treatment should consider the angular distribu-

tion of intensity scattered from a particle of given size at a given position

in the illuminating beam, and thence a calculation made of the intensity dig—
V 

tribution in the plane of the pinhole produced by the light intercepted by the

collection lens, to obtain the detected signal as a function of particle size

and position. Fortunately, such an involved calculation is circumvented by

the calibration procedures described in Section 5..

En any event, it is clear that the use of forward scatter at small angles

results in a distribution of intensity in the measurement volume which is

quite non—uniform, although the use of a ribbon laser beam reduces the non—

7
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uniformity in the y direction. Consequently the scattered signal is trajectory

dependent , and a flow of monodisperse par ticles yields a signal peak amplitude
V count distribution having a sharp cut off at some maximum signal value, corres-

ponding to particles traversing the center of the measurement volume, with a

spread to smaller amplitudes .
V To overcome this problem of nonuniformity of response within the measure— V

nient volume, a numerical inversion scheme, combined with a calibration proce—

dure has been devised, as discussed in Section 4, to unfold the distribution

of signal amplitudes and yield an indicated size distribution which eliminates

the dependence on trajectory.

8
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3.0 OPTIMAL COLLECTION GEOMETRY; SCATTERING THEORY

Highly desirable, if not essential, requirements for an effective optical
sizing counter is a monotonically increasing dependence of signal amplitude on
particle size, and insensitivity to the compl ex refractive index ~i — n~ + in2

• of the particle (where the imaginary pari represents absorption).

To find an optimal geometry for satisfying these requirements entails
extensive parametric calculations of the response for different geometries as
a function of particle size and refractive index from Mie scattering theory.

The latter gives the differential  scattering amplitude for a spherical particle
In an incident monochromatic plane—polarized wave, as a function of scattering
angle 0 , polarization , complex refractive index ~i , of the particle (rela-

tive to the medium) and the normalized size parameter a E lTd/A , where d is
the diameter and A the wavelength. This scattering amplitude must then be

integrated over the aperture of the collection optics to give the response.

Unfortunately the Mie scattering function is an extremely complicated and

sensitive function of the parameters 0, a, ii, which is difficult to chara-

cterize in simple terms, although fast computer codes are now available for

its evaluation. However, as discussed by Hodkinson [20] ,  in the limit of

large par ticles, a ~ 3/(n1 
— 1), i.e. d ~ 2A - 1 pm , a very good insight can

be obtained by considering the separate effects of diffraction, refraction and

reflection. Fifty per cent of the total scattered power is attributable to

diffraction and is distributed in the well known and easily characterized

Fraunhoffer diffract ion pattern of a circular disk or aperture, which is the

same as that of a spherical particle and is independent of polarization and of V

the refractive index.

For such diffraction, the differential scattering efficiency , defined as

the flux scattered per unit solid angle divided by the flux incident on the

particle projected area , is

2 12J (a sin o)12
a 1  1 (3 1)

diff 
— 

~~ L a sin 0 J

where J1 is the Bessel function of the f i rs t  kind and order one . This func-

t ion represents the familiar central lobe surrounded by br ight rings
of decreasing intensity. The first zero or dark ring occurs at

9 
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a sin 0 = 3.83. For cc ~ 6, and A = 0.633 pm, the first zero occurs for

Gi 44°/d(pm).

The integrated scattering efficiency is given by

1
int 

= 2
~
f 

1djff sin 0 do 
= 1 - (a sin 0) - (a sin 0). (3.2)

Approximately 85% of the diffracted flux falls in the central lobe.

This result leads to the following attractive concept for particle sizing;

if the flux is collected coaxially by a lens, the signal will be monotonic

with size ~nd independent of refractive index. Moreover, for a lens aperture

of 0max’ the signal will be closely proportional to d2 for d(pm) ~
44°/0° . For instance, f or 0 - 10° corresponding to F/2.8 collectionmax max
aperture, this will hold for ci � 4 pm. Of course there is also an upper

limit to the size which yields a signal ~ d
2
, in view of the need to stop

off the center of the lens to block the unscattered beam.

As mentioned in Section 2, the use of such a coaxial forward scatter

geometry was investigated , but it was abandoned in view of the difficulty of

limiting the axial length of the measurement volume for reasonable collection

apertures. Consequently, to obtain a measurement volume small enough to handle

concentrations of practical interest , one is forced to accept an off—axis

scattering geometry .

This requires computations from the full Mie theory, but the foregoing

analytic results from diffract ion theory with coaxial collection lead one to

expect that, provided one keeps the central scattering angle 0c small ,

then th” response will not depart far from monotonicity and the dependence on

refractive index will be weak. One also anticipates that, in general, the

use of a wide collection aperture and the use of white light will also favor

the attainment of the desired requirements, since both will tend to average

over the detailed resonant structure characteristic of Mie scattering.

Lieberman and Allen [21] have reported experimental and theoretical

results for the response of a coaxial , near forward scatter configuration.

corresponding to a commercial sampling—type optical counter employing white

light.  Scattered light is collected coaxially between angles of 15.5° and

28°. The relative response as a function of particle diameter for latex

10 
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(ii = 1.6 + i.0) and glass spheres is reproduced in Figure 2. The curve shows
2a generally increasing dependence on d , approximately proportional to d

over the range d = 0.3 pm to 50 pm , with the exception of a dip or resonance
• in the neighborhood of 1 pm. Specifically, the response is double valued for

• the interval d = 0.65 pm to 1.2 pm , and such behavior is characteristic of

instruments of this type. In practice, signals from particles in this size

range are lumped into a single size bin in the pulse height analyzer. For

many purposes this is perfectly adequate, such a 2: 1 size resolution increment

being comparable with that achieved by cascade impactors over the whole size

range.

A systematic calculation of the response curve for a coaxial forward

scatter system, as a function of the collection aperture between scattering

angles 01 and 02 ~
> 0~

) was made by Oeseburg [22]  for spherical particles

of ii = 1.49 + i.0 , and for size parameter up to a 30 (corresponding to

d - 6 pm for A = 0.63 iim). It was found that a resonant dip around a - 5
(d -‘- 1 pm) was a persistent feature over wide ranges of the aperture angles

81 
and 

~2’ and that, for many apertures, additional resonances occurred at

several larger a values . A measure of the magnitude of a resonant dip can

be defined by R = 2 (a.~ — aS
)/ (a

L + as), where and a L represent the

smaller and larger size parameters, respectively,  which give double—valued

responses. Thus R represents the size resolution increment for which signal

amplitudes must be lumped into one size bin, and has a value - 0.6 for the

case discussed above. V

Oeseburg found that only by going to values of 0
1 

> 20° combined with

very large values of 82 - 120° , could the R value for all dips be signif i—

cantly reduced. The optimum aperture for the chosen refractive index occurred

for 81 = 40°, 02 
= 120° , and yielded a response with no dips having R

values greater than 0.15.

It should be emphasized that while such very large apertures are feasible

in sampling—type optical counters through the use of ellipsoidal mirror

collectors surrounding the measurement volume, they are quite infeasible for

In—situ instruments. For a useful Instrumental throw between the measurement

point and the collecting optics , large apertures entail expensive, large dia-

meter lenses. For example, the collecting lenses used in the present ~ork ,

11
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of focal length 25 cm and diameter 9 cm (Ff2.8) allow a maximum difference

(82 — 01
) — 200 when used for off—axis collection.

With these practical restrictions in mind , and guided by the general

trends of the results of references 21, 22 and other similar published work ,

response calculations have been carried out for the collection geometry illus-

trated in Figure 3. The collection lens of aperture half angle °L 
= tan ’

(1/2F) is centered on the collection axis at an angle of 0c• Allowance is

made for the presence of a planar mask which blocks light scattered out to

an angle 0 � 
~~~ 

— 01), and the response is calculated by integrating the

intensity over the remaining portion of the lens, shown unshaded in Figure 3.

The calculation of the response function proceeds as follows. For

spherical particles, van de Hulst [3] gives the basic relation

= 

k
2
r
2 F ’ (a,0,n) 1 (3.3)

where I (power/unit area) is the intensity of the incident plane wave, I

Is the intensity of the scattered spherical wave at radius r from the

particle , k 2ff/A is the wavenumber, and F’ is the dimensionless scatter-

ing matrix.

The intensities are four—vectors in terms of the Stoke’s parameters

(3.4)

v

and

F’ E M2 0 0 0

o 
~~ 

~:1 
D
:l 

(3.5)

0 0 D21 ~2l

For an unpolarized incident beam , Eqn. (3.3) reduces to

/M +M \
I — !~

_ ( 1 2 
~ I (3.6)2 2 ~~ 2 , ok r
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The scattered power collected in an aperture of area A — r2c2, where ~2 is

the solid angle for collection is given by

I A 2 r I M  + M \  F
= 

0
2 j ~ 1 2 /  d~ (3.7)

4-ri

I A 2
= 

0

2 
F (a ,~i,~) (3.8)

4rr

where the dimensionless response function is defined by

f / M + M \
F(a ,n,S~) = 

2 
2~ d~2 (3.9)

Jc~
and is the effective scattering cross—section for the particular collection

geometry , normalized by A
2
.

The matrix elements M1
(a,8,~i), M2(a ,0,ii) are computed by a code develop~

ed by Dav~ [23]. The response function F is then calculated by integrating

(M
1 

+ M2)/2 over the collection solid angle.

We have performed calculations on 65 sets of parameters , and although not

exhaustive, the results from these calculations indicate general trends. The

following figures (Figures 4—7) are representative and are chosen to illustrate

the typical dependence of the response on the important parameters. To reduce

the number of parameters all the curves shown are for the - case 8 = 0 i.e.m c
with the inner half of the lens masked, although this may not make optimal use
of the lens aperture. Also, an unpolarized beam was assumed, though the choice

of a single polarization might well lead to an improved response.

Figures 4(a)—(c) show the response for ii = 1.6 + 0.Oi and fixed minimum

scattering angle 0m = 0
c 

= 40
, for increasing values of the maximum scatter-

ing angle 
~
0c + 01) i.e. increasing aperture. Figures 5(a)—(d) show the 

V

response for the same refractive index and fixed aperture 
~~ 

20°), for

increasing values of scattering angle 0c•

All of these curves exhibit a more or less pronounced resonance (dip) at

a - 5, together with a series of resonances of decreasing magnitude at larger
a. This form is insensitive to the real part of the refractive index, n1,
especially at the small scattering angles, but the exact positions and shapes

of the resonances do depend on n
1
. In general the a values of the resonances

scale as (n
1 

— l)~~ . The effect of increasing the aperture to include larger

scattering angles (Figure 4) is to reduce the magnitude of the higher resonances

but its effect on the first resonance at a - 5 is slight.

15
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In view of the persistence of the resonances, particularly the first,

over a wide range of scattering angles and collection apertures appropriate

to an in—situ , forward scatter instrument , one should examine their signif i—

car~ce in placing limits on the performance of such an instrument. This can be

discussed in terms of the R values of the resonances, which are listed for

the typical case of Figure 4(b) in Table 3.]. below.

Table 3.1. Resonance Widths for Figure 4b.

= (cc
c 
+ O

L
)/2 ~(pm) (for A = 0.633 pm) R

3 7 5 1.0 .80

8 13.5 10.8 2.2 .51

15 19 17 3.5 .24

They should be compared with the R value of 0.60 for a commercial sampling

counter as discussed by Lieberman [21], and with the value of 0.67 (for all

particle sizes) typical of cascade impactors having a 2:1 incremental size

resolution.

It is clear that an instrument with an acceptable performance with respect

to resolution can be realized despite the presence of the resonances. The

greatest limitation is set by the first resonance, which is only relevant if

one attempts to design an instrument to work through the value &
l — 5

- 1.2 ~m f or X = 0.633 pm) down to smaller sizes. The presence of the

higher resonances with smaller R values should present no significant limit-

ation to measuring the larger sizes (d � 2 m for A = 0.633 pm) . For many

purposes, where high resolution in the range 1 pm is not required , a useful

performance may well be obtained even through the region of the first resonance.

Alternatively, the size range in question might be reduced by a factor - 2 by

the use of a shorter wavelength e.g. from a He—Cd laser, which would also have

the advantage of minimizing interference from thermal background in hot flows.

As noted above, for the range of scattering angles and collection apertures

of interest , the dependence of the response on the real part of the refractive

index over the limited range of practical interest (n
1 

— 1.3 — 1.7 say) is

18 
V 

-~~~~.- -- .- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—V -V —‘V -‘—-“
V -_ . 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----—-- - —‘--_- V.. -_ _ V V V V- - - , . - - - - -. ,

weak. However, for some important applications e.g. in coal combustion,

there can be an appreciable imaginary component n2 
(i.e. absorption). For

instance a value of n2 - 0.1 corresponds to a highl
y absorbing material such

as black coal , while values of n2 
= 0.002 — 0.006 corresponds to measured

values [24] for the silicaceous slag in a coal—fired MHD channel.

Figures 6(a)—(d) show the response for a fixed collection geometry

o = 8 = 40 , 0 = 20° and n 1.6, for increasing values of n . The
m c L 1 2 —2
difference between n

2 
= 0 and n2 10 is negligible, but for n

2 
= 10 ,

the slope of the smooth, large a (a � 20) part of the response is significantly

reduced, leaving the lower a part , including the resonances,virtually

unchanged . Further increase of n~ to l0~~ produces a smoothing of the

resonances to yield a monotonic response. Figures 7 ( a ) — ( d )  parallel those of

Figures 6 except that a smaller minimum scattering angle 0m 
= 0

c 
= l° is

used. The main difference is that the sensitivity to n2 of the slope at large

a is reduced . Thus for large particles , a small scattering angle should be

used to minimize sensitivity to absorption.

In concluding this section, certain general statements can be made as

follows. For practical ranges of scattering angle and aperture appropriate

to an in situ Instrument , an adequately monotonic response function can be

achieved to allow useful resolution over the size range a ~ 5, and possibly

to smaller sizes, and with a relatively weak sensitivity to complex refractive

index xi. However, for accurate results it would be desirable to calibrate

the instrument using monodispersions of particles with the refractive index

of interest. In general, for the larger sizes, small scattering angles should

be used to minimize sensitivity to ii, while f or the smaller sizes, larger

scattering angles should be used to minimize the measurement volume and hence

raise the maximum concentration that can be handled.
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4.0 TRAJECTORY DEPENDENCE - INVERSION TECHNIQUE

As discussed in Section 2.0, in devising an in—situ particle-’sizing

counter, one has to face the problem that the peak value of the detected

signal, which is used to size the particles, is a function not only of particle

size but also of its trajectory through the measurement volume. The principal

factor controlling this trajectory dependence is the distribution of intensity

of illumination in the measurement volume . To take account of this we define

I ( x ,z) as the peak intensity experienced by a particle following a y—directed

motion , as a function of the transverse coordinates (x,z) of its trajectory.

However , the detected signal peak amplitude is also determined in part by the

collection optics, through the imaging of the scattered light distribution

incident on the collection lens onto the pinhole aperture. This is allowed

f or by defining a dimensionless transfer function H(x,z,a) which, in general,

is a function of the particle diameter d (or size parameter). In practice,

as measurements confirm , the function H can be sensibly independent of d,

but for generality it is included by allowing for the combined effects of non-

uniform intensity and collection/imaging by defining the measurement volume

function

J(x ,z ,a) = I ( x ,y) H(x ,z ,a) (4.1)

The detected signal peak amplitude, delivered to the pulse height analyzer

can then be written

A 2A = C —v .(x,z,a) F(cs) (4.2)
4-rr~

where C is a constant representing the detector sensitivity and electronic

gain, and F(a) is the response function defined in Section 3.0 for particles

of size parameter a illuminated by a uniform plane wave. It may be noted

that, especially for particles large compared with the linear dimensions of

the measurement volume, the particles are not in fact illuminated by a uniform

plane wave. However, the effect of this is taken care of by the inclusion

of tne size dependence in J.

Figure 8 represents schematically ~ quadrant of the measurement volume

function J(x,z,d). It is shown as a monotonically decreasing function of x and
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z measured from the “center” of the measurement volume where it has its maximum

value J .  However, the following analysis is valid for more general forms

of J.

It is assumed that particles have an equal probability of passing through

any element of the cross—section , and that all particles have the same mean
velocity U , irrespective of size and trajectory.

If the measurement volume function 3 were uniform, with value J
all particles of the same size parameter (ct

k 
say) would yield the same

signal amplitude A,~ = G(A
2
/41r

2) JmF(aI() i.e. the quantity A would be a unique

function of u , independent of x and z. In practice , if a monodisperse aerosol

— a.~ flows through the measurement volume, and a statistically large number of

signals is accumulated in the pulse height analyzer , a count distribution is
obtained having a sharp cut off at the maximum signal amplitude A.K~ 

and

spreading down to lower amplitudes.

Further, if a pp~lydisperse aerosol is used, the resulting signal ampli-

tude distribution consists of a superposition of such monodisperse distribu-

tions. The problem , then , is to devise a technique to unfold the measured

signal amplitude count distribution in the presence of a nonuniform measurement

volume function 3, to yield that which would be obtained with a uniform J

function, and hence to obtain the true distribution of F and from this the

aerosol sjze distribution .

Such unfolding or inversion techniques have been applied in a number of

V technical areas, notably in tomographic X— ray scanners [25] ,  and have become

technically practical since the advent of on—line mini—computers. Although

a straightforward mathematical inversion is not feasible, given the experi-

mental nature of the problem, efficient solution procedures have been developed

• for determining a solution which has an error magnitude of the same order as

that of the measured input variables. Further, it is intuitively plausible

• that the more nearly the J function approaches the ideal rectangular form,

the more accurate should be the inversion process. Thus there is an

advantage in achieving a form for .1 that approaches the ideal rectangular

one as closely as possible.

4.1 Formulation of Method

The problem is formulated as follows. First, it is convenient to normal-

ize the functions J , F and A on their maximum values. Thus we define
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- (0 ~ ~ ~ 1) , (4.4)

where Fm is the maximum response func tion value corresponding to the
largest particle in the aerosol of interest, or the largest size that it is
of interest to measure. -

The maximum signal value, corresponding to this maximum F value

is then

A = G 
~~~ 

3
m 
F , (4.5)

and we def ine

A = 
~~~~

- (0 � A � 1) , (4.6)

Then (4.2)  can be written in normalized form

A = - (4.7)

Now, as is appropriate to the prob lem, we coarse—grain the functions A, F,

treating them as discrete, rather than continuous variables, and let

C(A1
) C~ — Signal count rate for normalized signal peak amplitudes

in the range Ai to (Ai + L~A1)

N(F~) E N~ = concentration of par ticles in the size parameter range
yielding normalized response function values in the range

to (
~ +

— cross—sectional area of the measurement volume,

normal to the flow direction , which yields

normalized signal peak amplitudes in the range
to (Ai + ~A1) for particles having normal—

ized response fun ctions in the range to
(
~ + API

).
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Then the count rate distribution is given by the equation set

c1 E U~~~S1~~N
j—l

C1 U t~ S1~ 
N~ (4.8)

j =l

c = U~~ S Nm 
~~~~~ 

m j j

which can be written more compactly in matrix form

C = U~~~S •N  (4.9)

The subscripts i, j are written in order of increasing A and F,
starting with the smallest (utilized) amplitude channel (i.”l) of the pulse

— height analyzer , and the smallest response function class (j l) capable of

recording a signal in that channel, and ending with the largest signal
amplitude—class (i m) and largest response function class (j.’m) having non-

zero values. The discrete classes are assumed contiguous, so that

Ai+1 (A1 + ~A1) and F~~1 
= (~ + ~

) (4.10)

Hence m is the number of (utilized) channels in the pulse heigh t analyzer
and is also the number of response function classes into which the particle
distribution is resolved . Here, and in what follows, it is assumed that

~ (a) is monotonlc , at least when coarse—grained over the intervals
The signal amplitude classes A1 and the response function classes
are associated on a one to one basis through the choice

Ak Jm F
k

or , since 
~m — 1 (4.11)

Ak
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Since a particle yielding a response function in a given class

cannot give rise to a signal amplitude greater than the cross—section

matrix elements AS
1~ 

are all zero for I > j. Thus Eqn. (4.9) can be written

explicitly

C1 AS11 AS12 AS13 
--- AS11 AS1 N

1

C2 0 AS22 AS23 — —— AS21 —— — AS2 N2

~
3 

= 
~~33 ~~3i ~~3m 143 (4.12)

ii I I ~~ii ~~im Ni

Cm 0 0 0 0 AS N

The inversion of Eqn . (4.12) is writ ten symbolically

N = -~~~ ~~~~~
. 

• C (4.13)

Given the count rate distribution of signal amplitudes C
i

(A
i

) in the pulse
height analyzer channels , then if the AS matrix is known, Eqn. (4.13) can be

• solved to yield the distribution N~ (F~) of normalized response functions.
If the response func tion F (a) is known , either from computations (when
the refractive index is known) , or from a calibration experiment (see Section
5.0), the distribution of particle size parameters N~ (a~) and hence the dis-

tribution of diameters N~ (d~ ) for the polydispersion can be obtained. The

central problem is the determination of the cross—section matrix, to which

we shall return shortly.
Up to this point the functional dependence of A.K

(k) (and hence of F
k

(k))
has been arbitrary. Usually, pulse—height analyzers offer a choice of either
a linear amplitude mode , for which A.K+l 

— A.~ = AA.~ = constant for all k,
or a logrithmic mode for which
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— = = constant
Ak

i.e. (4.14)

= (1 + ~
) (for all k)

The constant ~ is chosen by setting the gain of the logarithmic amplifier

to suit the relative size range of interest and the resolution i.e. the number

of channels utilized.

The choice of the logarithmic mode is preferred for two reasons. First

it is the most appropriate mode when dealing with particle distributions with

a large relative spread. Second , as discussed below, in the case that J is

independent of d, a condition that can effectively be realized in practice,

a further simplification of the AS matrix results which reduces the number

of independent elements from m2/2 to m.

With a logarithmic mode , we also have in view of Eqn. (4.11)

A F ,
=

(4.15)
i.e.

Fk+l = (1 + ~ ~
‘
k 

(for all k)

4.2 Determination of the .~~~~ Matrix

Returning to the question of determining the AS matrix, in principle

this can be deduced from measurements of the signal amplitude by traversing

a single particle of known size dj (e.g. attached to a microscope slide)

through the measurement volume for a range of -x , z and d.

For tunately , a simpler, less tedious, and more direct procedure is
available through the use of an aerosol generator capable of producing mono—

dispersions of controlled size and concentration. The method proceeds as

follows.
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A monodisperse particle distribution N(d
k
) with a known diameter d

k
and concentration N is passed through the measurement volume at a known

o mean velocity U. For a specified t ime the signals are accumulated in the
pulse—height analyzer to yield the count rate distribution C(A1) E C

1
. Since

N (d~) = 0 for all j except j k, the system of equations (23) reduces

to a set of k equations of the form

C
1 

= U AS~~ Nk , (4.16)

which can be solved directly f or the A S
ik
. This yields the k elements

in the kth column of the matrix. By repeating the procedure for different

size classes k, successive columns of the AS matrix can be determined

until, by m such measurements the whole AS matrix is known. Incidentally,

in the process, the cut—of fs of the count distributions at A,~ yield an

experimental calibration of the pulse height analyzer channel numbers in terms

of the particle diameter (i.e. F(d)) for the particular refractive index employed.

This method has, in fact, been used and is satisfactory though time—

consuming if m is large. In the process, however, it was realized that a
much simpler technique is applicable under certain conditions, as follows.

When the amplitude response of the pulse—height analyzer is logarithmic,

then if the transfer function for collection H, and hence the measurement

function J, is independent of d , it can be shown (Appendix II) that the

AS matrix simplifies so that all the elements on any diagonal are equal. It

can then be written

AS AS AS AS AS
m m-l in-2 2 1

0 AS AS AS AS
m m-l 3 2

0 0 AS AS Asm 4 3
= 0 0 0 (4.17)

As AS ASm m-l ni-2

0 AS Asm m-l

0 0 0 ASm
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In Eqn. (4.17), AS~ is now the area in the x—z plane where the 3 function ,

which has been coarse—grained into logarithmic intervals with AJi/JI = 8, has the
value J~ (Figure 9). Thus AS is the central area where 3 has its maximum value

= 1. Also AS1 is the peripheral area where the J function has its

minimum coarse—grained value = l/(1 + 8)m~l such that a particle of the

largest response function class F
m generates a signal falling in the smallest

signal amplitude class A1.
The significance of this simplification is that now all the matrix

elements can be determined from a single calibration using monodisperse

particles of the largest size class of interest, from the equation set

C~ U A S~ N , t = l,m (4.18)

The calibration procedure is then particularly simple and quick. —

Experimental evidence for the fact that the 3—function is sensibly

independent of d, at least for the conditions of the experiment, is

adduced in Section 5.0, and hence justifies the use of this simple calibration

procedure.

One further point concerning the calibration technique should ~e die—

cussed . To determine the absolute values of the AS~ from Eqn. (4.18) it is

necessary to know both the velocity U and the absolute concentration Nm•

In practice , when using the monodisperse particle generator, it is not an easy

matter to determine the absolute concentration at the measurement station.

Even if the particle generation rate is known, it is dif f icul t  to allow for

loss of particles by deposition in the feed tube.

If only the relative size—concentration distribution of an unknown

aerosol is required , then relative values of the AS~ suff ice , and these
can be determined without knowing either U or Nm absolutely. When an

absolute calibration is required the concentration Nm 
can be determined by

an extension of the basic calibration technique as described below.

In performing the calibration procedure based on the use of Eqn. (4.18)

the total count rate in channels 1 = 2~ to m is

~~ C
1 = U E AS1 14m 

(4.19)
i= -z i—~
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Figure 9. Schematic of AS i Corresponding to
of Figure 8
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which we write

C = U 5  N (4.20)
m

CZm  is determined from the total number of counts in channels 9~ to m

in a known t ime , and if the velocity is measured , we can determine Nm f rom

(4.20) provided we can determine the area

E E A s~ 
(4.21)

The latter is the cross—sectional area of the measurement volume whiGh has

J values bounded by 
~m 

= 1 and

= 
1 

= 
1 (4.22)

(l + 8)
m_

where r = (m — 9.) is the difference in the channel numbers over which the

count rate is summed .

The area s~ m can readily be determined experimentally by traversing

a small pinhole (~.g. 5 ~im diameter) , much smaller than the detection aperture

pinhole , through the measurement volume. The extent in x and z of the

cross—section for which the signal falls from the m
th 

channel (at the center)

to the (m_r)
th 

channel is mapped out, and hence the area is found . 
-

In this way the absolute concentration N is found from Eqn. (4.20) and

then the absolute values of the Asi are found from Eqn. (4.18). The use of

this method with monodispersions of different size, to check experimentally

that J is indeed not a function of d , is discussed in Section 5.0.

4.3 I~p1einentation of Inversion Technigue

Once the AS9. 
matrix elements are determined from such a calibration,

they are entered in the matrix inversion algorithm of a mini—computer . Then,

for an aerosol under investigation , the count rate distribution C1 from
various channels of the pulse height analyzer are automatically entered into

the computer. It is useful, however , to observe the data on the instrument’s
visual display as a check on correct functioning. V
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Because of the experimental uncertainty in determining C and AS ,
—l

the problem N = (U AS) C cannot be accurately solved by straightforward

matrix inversion techniques. Instead , the solution N is derived by

searching for a non—negative vector N which minimizes the residua l vector

R = C — U AS N. A satisfactory solution to this prob l em was found through

use of a non—negative least squares (NNLS) solution procedure developed

by Lawson and Hanson [26]. This procedure minimizes error propagation and

also outputs values of residuals R~ which allows one to judge the accuracy
of the resulting N~ distribution. -

S
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5.0 EXPERIMENTAL RESULTS

The objectives of this section are two—fold :

1. Compare experimental results for the aattering response function

F(d) with the calculations of Section 2.

2. Validate the accuracy of the inversion Lcheme described In
Section 4.

The most direct method of validating the approach described up to this

point consists of measuring well—characterized monodispersions of known V

size and concentration by using a Berglund-Liu monodisperse particle

generator [27]. Such a device is claimed to generate particles within ±1%

of the stated diameter. Microscopic examination of samples collected on

glass slides confirm monodispersity to within the ±5% resolution of a

microscope graticule. Spherical droplets are generated from oleic acid

which has a refractive index of fl = 1.46 + 0.Oi, i.e. negligible absorption.
For a given nozzle diameter (20 itm , 10 pm , or 5 pm), a 10:1 range of

particle sizes can be generated by varying the percentage of oleic acid in

isopropyl alcohol. The alcohol evaporates in a long residence time drying

chamber leaving oleic acid droplets with diameters proportional to C
1
~
’3
,

where C is the oleic acid concentration. The present experiments used

the 20 pm nozzle to generate particles in the range 2.5 pm to 25 pm.

T he other nozzles (10 pm and 5 pm) can be used to generate particles down

to 0.5 pm.

Experimental values of F(d) are derived from the set of curves shown

in Figure 10. Each curve corresponds to the PHA data generated for a known

particle size. The relative scattering response for each size is given by

the threshold channel where the number count increases sharply. In

practice, there exist a few doublets and triplets of the primary particle

size produced by the particle generator. Thus the threshold channel is

taken as that channel where the number count is 10% of the peak number count.

Comparison of these experimental results and the calculations of F(d) in

Section 4 are shown in Figure 1]. These results indicate that scattering

theory is quite adequate for the range of conditions investigated , although
further work Is necessary to confirm the extent of the resonances or multi—

valued regions of the response function.

34 



~ 
--~~

S c,,0
z

11
- - 7

[o*’oP-
~3ioJ ‘~P 3ZJS 3lOIThVd ~Od

31V~ .LNflO3 1VNOISN3V~IO-NO N

35

-- -~~~~ — ---~~~~~~~~~V -— -——-~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -



- V  -

~~~~0c

— THEORY

I EXPERIMENTAL
I RESULTS

.1
1 10 100

NON-DIMENSIONAL PARTICLE SIZE, a

Figure 11. Exper imental  Resu l ts  for  Oleic Acid Partic1e~ Compared
with Theoretical Response Function F(d)

36

- - - V V V~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J



--- -

~~~~~~

---V--- -

~~~~~~~~~~

- V--- -
~~~~~~~~~~~~~~~

—
~~~~~~~~~ 

--,- —
~~~~~~~~~~~~~~~~~~

Ignoring the resonances and taking a mean curve f it in the range of
2 — 30 urn gives an approximate scattering function dependence on particle

1.65size as F(d) a d which is similar to the power dependence of the Royco
PC 215 and PC 245 particle counters where the exponent ranges from 1.5 to

1.8 [12]. This result is to be expected since light collection geometries

for these devices are similar and the effect  of a polychrornatic illumination

is only one of smoothing the resonances. Further work is continuing to

generate particles in the .5 - 2 pm range and thus provide a check on the

response curve for small particles.

Proof of numerical inversion accuracy requires knowledge of calibration
source particle number density along with particle size. The number of

particles produced by the particle generator was 90,000/sec and the the flow
conditions used in our experiments gave a maximum number density of 108

— particles/cm
3
. However, a flexible hose was used to convey the particles

V from the generator to the measurement volume and in the process a
V significant fraction of particles was lost to the hose vail. In addition

it is possible that the local number density traversing the measurement volume

may not correspond to the bulk mean number density at the hose exit, even
were it known. Consequently we use the method described in the latter part

of Appendix II to determine the local number density. It is clear that

every particle above the minimum size threshold traversing the measurement

cross—section S
r 

will be counted , as long as coincidence errors do not
occur. For the experimental conditions mentioned , coincidence errors are

negligible. The local number density can be directly evaluated for a
monodispersion by the formula (Eqn. 11.8).

C
N — 

k—r,k
k U.S

k-r , k

where Ck .r k is the total number of particle counts from channel (k—r) to

k where r corresponds to Ak r IAk 
= 0.1 or from Eqn. 11.1,

r — 2.3/8 for 8 < 0.2.

V In general Sk_r k Is a function of particle size and Table 5.1

summarizes values of Sk_r ,k for several pinhole diameters and two values

~~~
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Table 5.1. VarIation of Measurement Volume Cross—Section, Sk_r ,k ,
With Pinhole Diameter, d,~, and Ajnplitude ReferenceLevel Ak_r,/Ak

Pinhole Diameter, dk 
Sk_r,k [

~~m
2
)]

= e~~ Ak r  /A,K — .1

5 pm .00525 .00115

12.5 pm —— .0011

25 ~m .0045 .00102

The values of 5k r are the same for the 5 pm and 12.5 pm pinholes

while Sk_r r 
decreases

’by 11% for the 25 jtm pinhole. Thus for particles

< 25 pm diameter 5k r S
r 

and is sensibly independent of particle size.

Given that Sr is reasonably constant, from Appendix II , Equation 11.13,
we have AS /s = C /C and thus the normalized cross sections

V m— (k—i) k—r ,r I k—r,r
can be derived directly from the P}IA number amplitude spectrum C ., I = 1, m.
Figure 12 shows a plot of normalized cross section calibrations for five

particle diameters ranging from 6 pm to 25 pm.

A mean curve can be drawn through all the calibration points which is

within ± 10% of all values for the five particle sizec, indicating that the

normalized values of the cross section matrix are sensibly independent of

particle diameter up to 25 pm. Coupling this result with ASk_r,r 
constant

up to 25 pm we conclude that the cross section elements are reasonably

Independent of particle size up to 25 pm for our instrument geometry.

We know that the beam intensity is similar for other overall beam

dimensions (Eqn. 2.2) and thus we can generalize the above results to say

that the particle size should be smaller than 35% of the l/e beam width

for the diagonal elements of AS to be identical.

The final and essential test of the inversion scheme and its accuracy

is to obtain data on an aerosol of known particle size distribution. A

mixed aerosol of known particle sizes was obtained by sequentially add ing

and storing the data from four monodisperse aerosols generated by the

V Berglund—Liu particle generator. This accumulated data is shown in Figure 13, 
V

which represents the raw PHA data generated by a mixture of 6, 12, 17 and
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25 urn particles . Although the PHA has a total of 100 amplitude channels

givIng B = .06 , the data was ‘compressed ’ by a fac tor  of three to minimize

computation time. The ‘compressed ’ channel width (13) is equal to 0.21 which

corresponds to a particle diameter resolution of Adk/dk 0.13. Application

of the inversion scheme, (Eqn. 4.13), gives the results shown in Figure 14.

The four major particle size peaks occur within ±10% of the known particle

diameters although a small spurious peak occurs at channel 11. The peak at

channel 11 represents a 10% error in number count and is consistent with the

accuracy of the cross section calibration curve (Figure 12).

An approximate analysis of error propagation in the inversion scheme

due to uncertainties in measurements of C
1 

and AS Is presented in

Appendix III. The results of the error analysis show that the upper bound

uncertainty In N
1 varies from ±13% in channel 9 to ±26% in channel 20.

Higher counting rates for practical aerosol flows should reduce these

uncertainties.

It should be remembered that the generated number density is 108 cm 3

(an upper bound) which is to be compared to the computed values shown in

Plgure 12. The actual number densities at the nozzle exit of the particle

generator decrease with increasing par ticle size , consistent with observed
increases in particle deposition with increasing particle size [28].

The computed values in Figure 14 are also consistent with individual particle

size calIbration tests, Table 5.2, where the number density was calculated

accordIng to Eqn. 4.20.

Table 5.2. Comparison of Number Density Results for
Figure 12 and Calibrations.

Particle Size (pm) Number Density, N (cm 3)

Fig. 12
Calibration Results

6 73 93

12 77 66

17 63 57

25 27 31
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The ‘calibration ’ number densities also generally decrease with increasing

particle size although exact correspondence of the number density with the

calibration tests was not found because the deposition rates and thus

actual number density at the nozzle exit are very sensitive to particle

feed line curvature which was not carefully controlled in different tests.

U
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6.0 DISCUSSION AND CONCLUSIONS

— The in situ particle sizing counter described herein satisfies the

principal practical requirements of such an instrument for many important

applications. The optical access requirements are modest and can be

readily satisfied for laboratory scale flow systems. Particles can be sized

over at least a 10:1 diameter range with a resolution Ad/d ~ 0.15, which is

adequate for most aerosols of interest. The instrument has been con-

clusively demonstrated as capable of resolving the structure of a poly—

dispersion consisting of several superimposed monodispersions in the

range 2.5—25 pm. By adjusting the instrumental geometry, it should be
straightforward to deal with sizes ranging up to -.100 pm. The extension

to sizes ~ 2 pm appears possible but requires further work to resolve

the limitations set by the first resonance in the scattering function which

typically occurs in the range of 1 pm. Another important feature is that

the measuremert volume can be made small enough to allow measurements with

high particle concentrations, in the range of interest for most applications.

The key feature of the method is the use of a computer—based

inversion scheme which allows one to unfold the effect of the random

trajectory dependence of the scattered signals together with a straight—

forward calibration technique which gives the necessary information on the
scattering function F(d) and the matrix elemental areas AS

1~ 
required for

V the inversion.

Although the experimental work was based on the use of non—absorbing

spherical droplets supplied from a monodisperse particle generator, the

method should also be applicable to absorbing and irregular particles.

For absorbing spherical particles of known refractive index, Mie

scattering computations can be used as a guide , but if the refractive
index Is unknown , or the particles are irregular, the calibration
technique can always be used provided it is possible to obtain
monodespersions of the aerosol of interest.

Such an approach has been described recently by MarPle and Rubow[ 29 ,30] ,

with application to irregular absorbing particles such as pulverized coal,

road dust and other aerosols. They used a two—stage impactor to produce a
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sharp upper cutoff in particle size for the aerosol of interest. This was

then fed to a sampling type optical counter (Royco 218) to give a single

calibration point. By using different nozzles in the impactor a series
of calibration points for differen t aerodynamic diameters was obtained.
Figure 15 shows their results for a variety of aerosols. It may be noted V

that a mean calibration curve could be used for all of these aerosols

without introducing a size error of more than ±30%. This is an encouraging

result for application of optical sizing to various irregular and absorbing
aerosols of practical interest. This calibration technique using an

impactor is directly applicable to the present in situ instrument for

measurement on irregular and absorbing particles.

In the future it is planned to explore this method with the present

in situ instrument to determIne the size distributions of f ly ash par ticles
in a cold flow electrostatic precipitator dust tunnel.

Another potential area of application of the present instrument is

to sizing particles in hot systems, such as liquid spray combustors and
pulverized coal combustion systems. Two potential problems may be

anticipated in hot systems, namely interference from background thermal
radiation and beam and image wander due to fluctuating refractive index

inhomogeneities. Estimates of the effect of the thermal background show that

this should be negligible for sizes down to 0.5 pm if a laser line filter

of 20~ width is employed. The effect of beam wander is more difficult to

estimate and depends on the amplitude of thermal gradient fluctuations
expected In a particular flow system. It is planned to study such effects
by making measurements in a small burner system.
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APPENDIX I SIGNAL COINCIDENCE EFFECTS

For a given aerosol size distribution and instrumental size range, there is

a limit to the concentration that can be measured set by the occurrence of

interference. The latter can be defined as occurring when the signal due to

one particle Is significantly enhanced by signals due to other particles

present in the measurement volume “simultaneously”, i.e., within the resolving

time T of the electronics. Clearly , interference Is most likely to be a

problem for the measurement of the smallest particles in the distribution.

Consider a polydispersion of given relative size distribution (N.(d~ )/~~N~)~
and suppose the instrument Is set up so that the maximum size class (dmax) of

particle will register signals in the maximum amplitude channel Am of the

pulse height analyzer, while the lowest amplitude channel A
1 
just registers

signals from the smallest size class (dmj ) it is required to measure. We

wish to derive criter ia for how large the total concentration ~~~~ can be

without the occurence of significant interference.

For simplicity, we take this to be the condition that the probability of

a signal from the smallest size class (1) (strictly the smallest scattering

amplitude class) being overlaid by one or more additional signals of equal or

larger amplitude is less than some critical value (say < 20%). Since a

simultaneous signal in any amplitud e class I = 1 to m will ~ause such inter—

ference, and because the events are statistically independent, the required

conditional probability is just the probability that one or more signals is

present in any of the channels during the reso1~~ng time T.

Now the average total rate of signals is LC1
, and the probability of n

signals being present simultaneously is given by the Poisson distribution

P(n,x) x
n(exp_x) (1.1)

5!

where x EEC1 T

Hence the probability cf one or more signals being simultaneously present

is 1 — P ( O ,x) = 1 — exp(— x),and the required probability of interference is
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Pint
= l _ e x p_ (

~~~~
C
i
T). (1.2)

Since we require that Is small, we can approximate (1.2) by

P
~fl~ 1~

:
l 
C~ t .  ( 1 . 3 )

Now, from Eqn. 4. 8, we have

= U N~~ 
~~~~ 

+ N
2 ~~

5
m 
+ ~S 1

) + - -

+ N  (L~S + --- +~~S )
m m 1 14

= U ~~~~~ N~ EASE 
= U~~~~~~ N~ S(m_j+l),m

j=l 9=ni—j+l j l -

Here

p
int 

= UT~~~~~~ N~ S
(m_j+l),m (1.5)

This shows that the larger particles in the distribution have a higher

weight for causing interference because there are more channels in which they

are capable of record ing Interfering signals. Equivalently, the larger particles

experience a larger measurement volume (
~~

S
( j+l) )

~ 
and hence have a lar ger

probability of detection. It is also clear that the probability of interference

depends on the shape of the distribution as well as the total concentration.

In Section 5 it was shown that for a Gaussian beam profile and a logarithmic

amplitude mode of the pulse height analyzer , the incremental areas ~~~ are

approximately constant, independent of 9,, so that

m

S(m_ j+l),m ~~~ ~S9, = j t~S (1.6)

9,=m—j +1
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and

~ 3 N
3 

(1.7)
3=1

This can be expressed in terms of the effective measurement volume as follows.

Assuming that the resolution time T is equal to the transit time U/L, where

the length L of the measurement—volume in the flow direction is set by the V

pinhole diameter in the collection of optIcs, Eqn. (1.7) can be written

p
int 

V
m 
~~l 

(
~

) N
3 

(1.8)

where
V = L S ~~~~Lmt~S (1.9)

is the effective (maximum) measurement volume. Eqn.(I.8) can be written

P ~~V N -~ - (1.9)
m t  m T~~m /

where m

NT = N . (1.10)
3=1 ~

is the total concentration over the size range being measured, and

~~~ j N .

= 
3—1 

- 
(1.11)

EN .
3—1 -~

is the average channel number determined by the weight of the distribution

N..
3

Equation (1.11) shows that the maximum total concentration that can be

measured without significant interference is determined by the product of two

factors, Vm and (jim) which we discuss in turn.

The effective measurement volume V
m 

depends on two factors: first, the

optical geometry determined by the waist diameter of the laser beam and by the

F number, collection angle 0 and the pinhole diameter of the collection

optics; second , by the size range (d /d i
) to be measured, as it determines V

the range of scattering amplitudes Fm/Fl and hence signal amplitudes 
- -
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A IA to be accommodated . If S Is the experimentally determined reference
m l  r
area, inside the contour where J = l/e, and if the response function is

approximated by F d~ (where p 1.65 for our experimental conditions),

then we may write for the effective maximum measurement cross—section

S p SR 
9.5 (d id

1
) (1.12) 

V

In practice, the optical geometry is chosen to suit the maximum particle

diameter to be measured . For instance, for d 25 pm, the geometry used

to obtain the results reported in Section 5 resulted in a reference area

— 4xl0 4 cm2, i.e. approximately 60 dma
2
~ 

With p = 1.65 and

(d /d ) = 10, together with L = 100 pm, we find an effective measurement
max mm

volume of V - l.SxlO ‘ cm -
m

The second factor (3/rn) is determined by the particle distribution

function. Its minimum value is- (jim) (1/rn) when the distribution is

strongly peaked in the smallest—channel. Thus the lower bound of is

V N
T
/rn. For measurement of sizes greater than the mode (maximum) of the

concentration distribution, we consider distributions of the form

N(d) = k (1.13)

where q is positive. This yields

d .+Ad .
k M .

N = 
I N(d) 5d . 

(1.14)
3 J

d
3 

j

For F ~ d~ , we have

(s/p) d
3 

(1.15)

hence N
3 

k (s/p) 
- (1.16)q

— In the special case q = 1, we have

N
3 

= k (B/p) = constant,
(1.17)

— _ l~~~~ (m+l)~
2

3=1
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and for m >> 1, P ZV N /2.
m t m T —lIn practice, most distributions decrease more rapidly than d . For

instance for d greater than the mode of the distribution by mass, q > 3.

This weights j to values lower than m/2, and reduces the probability of
Interference.

In general for N d q we have

k (s/p) . (1.18)
N
3 d~~~

1
~ (d /d ) (j—1)(q—1)/(m—l)

mm max mm

This yields

[(d /d )(q—l) — (m+~ J— 1 max mis (I 19)
[~c~ /d )(q—l)/(m—l) —ii I(d /d ) (q—l) —l
~~max mm j ~~max mis

For I(d /d )(q-1)/(~~
l) -11 << 1, and

1 max mm J

(d /d m, this reduces tomax mm

(m-.l) ,. ~(q—1) Lii (d /d ) ~I.l9,
max mm

which shows that, under these conditions, the factor (j/m) is less than

(0.5) and decreases as the distribution falls more rapidly, as l/(q—l).

Combining (1.19) with (1.12) then leads to

p V  N
P L S N R T (1 20)
m t  

— 

(q—l) R T (q—l)

Specifically, for (d id
1

) = 10, m = 20 and for q l ,2,3,4 we have
(j/m) = 0.53, 0.33, and 0.22 and 0.16 respectively. Thus the factor

(j/m) decreases rather slowly as q increases.

In particular , for the instrumental conditions reported in Section 5,

for which V 1.5 x l0~~ cm
3
, and taking P = 0.2, we f ind for the

m 
~ 

m t  4 3
maximum concentration N

T 
— 4 x 10 cm for q = 2 and N

T 
6 x 10 cm

for q = 3. 
- 

-

For d = 25 pm, and a particle specific gravity of 2, these d ispersions

correspond respectively to mass concentrations of 30 and 20 grams/rn
3,

which are rather higher than the fly ash loadings at the exhaust of

pulverized coal combustors.
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APPENDIX II CONDITIONS FOR IDENTITY OF DIAGONAL ELEMENTS OF t~.S

With the choice of a logarithmic response on the pulse—height analyzer

we have from Eqs (4.10), (4.11) and (4.14) the relations

Ak+l = (l+
~~
)i

~~
=
~~k+1 

=

(11.1)
M. t~Fand K k

A.K 
Fk

valid for all k. To be consistent with Eqs. 4.7, J Is coarse grained
into levels (1 ~ ~ m) such that

(11.2)

and
8

For specified 8 and given J
2, 
there is an associated cross—sectional area

which in general is also a function of the particle diameter d. However,

for the case where ~~~ is independen t of d, a simpler form for t~S results.

In the equation set (4.12), the contribution to C~ from N
3 
(j > i) is

U AS~3 
N
3
. Such contributions can be assumed to be generated in the region

of the measurement volume with value 3
9. 

having area AS9., so that

À~ = F
3 (11.3)

But, in view of relations (11.1) and (11.2) we also have

= J
9. 
Fj+l
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Hence, it follows that

V AS
13 

= AS
1+1 3+1 ~S9, (11.5)

i.e., all the elements along any given diagonal in the AS
i3 

matrix are equal.

Furthermore , since it is clear that 2. is constant if (3—i) is constant, and

In view of (11.3), then the relation between the indexing schemes is
2. = m — (j—i), i.e.,

AS
13 

= AS
(j 1) (11.6)

Thus we have shown that when T is not a function of d and intervals of

AA~~ AF
3 
and are chosen to be logarithmic (Eqns 11.1 and 11.2), the

general form of the i~S matrix appearing in Eq (4.12) reduces to that of

Eq (4.17).

Physically this means that for all pairs of (1,3) values such that

(i—j) = (rn—i), signals in the amplitude class A
1 

arising from particles

yielding response functions in the class F
3 

are generated in exactly the same
part of the measurement volume ~S2. corresponding to the value 3 = J

2..

The question arises of what physical conditIons have to be satisfied in

order that J should be independent of d , and how can one check experimentally
that the condition is fulfilled. Clearly, one necessary condition is that the

largest particle to be measured (in the class dm corresponding to the response
fun ction class F

m
) should be reasonab ly small compared to the dimensions of

V 

the measurement volume, In particular the radius w0 of the laser beam. Other-

wise, such particles will not experience an incident wave that is approximately
a uniform one, as is required by the Mie theory. Most likely there are other

conditions related to the imaging of the particle onto the collection aperture

whIch must be satisfied in order that 3 should be independent of d. However,

these are difficult to specify, since they probably involve the quality of

the collection lens with respect to abberations.

In view of such uncertainties in specifying the necessary and suff icient
conditions that 3 should be independent of d , we have taken a pragmatic
approach , and devised an experimental test which confirmed, at least for the
experimental conditions employed , that S was indeed sensibly independent of d. -

This experimental test can be explained as follows. At the end of Sec. 4.2,

an extension of the basic calibration technique was described that allows the
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absolute concen tration N and hence the absolute values of the AS matrix,
in 9,

to be determined , using the largest size monodisperse particles of interest.
The procedure involved summing the count rates C

1 from channels I = in down
to I (m—r) , i.e., over the top (r+l) channels, and using the relation (see

Eqs. 4.19)

C = U S  N (11.7)m—r ,r m—r ,m in

The value of S , the cross—sectional area of the measurement volume overm—r ,m
which J lies between 3

m 
= 1 and 

~m—r 
= l/( l+B) r is found by traversing

a small pinhole through the measurement volume. The test of the independence

of ~ on d consists of repeating this procedure for different, small sizes

of inonodisperse particles (Table 5.1).

For particles of size class dk, and concentration Nk , the sum of the
count rates In the (r+1) channels from I = (k— r) to i = k is given by

Ck_r ,k 
= ~ 

~k—r,k 
N
k (11.8)

provided that S is not a function of d. Under the same condition, if r

is held constant in the two measurements,

Sk_r ,r 
= Sm_r,r (11.9)

so that the same area, determined using the pinhole traversing technique, can

be used in Eqn. 11.8 as In Eqn. 11.7. Hence the absolute value of N
k is

determined in the same fashion as N
~
.

Now the measurement of N allowed the absolute values of the ASm 2.
determined , for 9. = 1 to m from (Eqn. 4.16)

C2. 
= U AS

9. 
N . (11.10)

Likewise, the measurement of Nk allows an independent set of absolute
values of the AS 9. to be determined for 2. = (rn—k ) to m from the
equation set

C
1 

= U i~S9. Nk (11.11)

where 9. = tn— (k—i), and I ranges from 1 to k . It follows from
Eqns. 11.8 and 11.10 that
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AS C
m— (k— i) 

= 
I 1 = l,k . (11.13)

- k—r ,k 
Ck_r ,k

Thus values of AS normalized on a fixed reference area S
m— (k—i) k—r,r

can be determined without knowledge of the number concentration Nk. This

- equation is valid even if S has a particle size dependence, as long as the

- reference area S is determined for each particle size d . For the
- k-r,r k

V 

case where J is independent of dk, then 5k r k  = S
r 

for all Nk.
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APPENDIX III ERROR ANALYSIS OF INVERSION TECHNIQUE

There are two sources of errors In computing values of particle number
density,  Nm~ 

namely random counting errors in C
1 

and errors In specifying
correct values for the elements of AS. Counting errors, which derive from

a finite sampling time, can be readily evaluated according to Poisson

statistics. We have assumed that all particles and particle size classes

have an equal probability or passing through any point of the measurement

cross—section. ThIs assumption is true only as C~ approaches infinity.

For a 95% confidence level Poisson statistics give

(111.1)

where AC
1 

= random error in C~

C~ = measured number count

According to the above relation one should acquire a minimum of 1000

counts in each size range channel to achieve a ~6% error in C1.

The effects of these counting errors on the uncertainty in N
1 

cannot

be quantified without making some approximations for the form of AS. For a

Gaussian illumination beam it tutns out that the individual cross—section

elements are all nearly equal. The following analysis assumes that they

are IdentIcal and known. For AS.,. = L~S f or all 1, 3 the equation set 4.17

becomes

c =(N +N -i. . . . . - f N ) UA S1 1 2  m

C2 = N2+. . . .+ N ) UA S

. (111.2)

( N ) U A S

To simplif y the problem we choose a velocity U such that U AS 1. If

there were no uncertainties in the individual A S
1 then we would obtain

Ni 
= c~ —c1÷1, I = l,m—l (111.3)
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The uncertainty in N
1 would be given by

2 2~1I~ I_~(~ ) (Aci+l
N
1 

C1 \Cm+l

(111.4)

or AN 1 1— - 2 ~~j -~- +N
1 ~C1 Cj+1

If C1 < 1000 then IAN 1I/Ni ~ 0.09 from random counting errors.

The potential errors in the computed number distribution N due to uncer-

tainty in the elements of AS require numerical calculations using perturbed valu

of AS. As shown In Figure 12 an average curve with a deviation of ±10%

charac terizes ASm (k_i)• Although values of the true AS elements would be

expected to vary systematically with Increasing par ticle size, we will assume
that the measurement errors are random within the range of the five sets of

experimental results. This approach will provide an upper bound for the error

estimate.

For numerical analysis of the effect of uncertainties in AS, artifically

perturbed values of AS were generated by using the following equation,

AS
13 

= (0.9 + 2eRN) (111.5)

where AS~3 
is a mean experimental value, c is the maximum fractional

deviation from 
~~~~~~~~~~ 

and RN is a random number between zero and one. Three sets

of AS were generated , and using a given count distribution C, three number

distribution solutions N, shown in Table 111.1 were obtained. The overall

standard deviation between the average of N for the three perturbed solutions

and the N for AS
13 

= AS~~ is ±5 cm
3
. Although greater deviations from the 

V

average occur for the perturbed solutions (e.g. channel 13), it should be

noted that these large deviations are compensated by a corresponding deviation

of the opposite sign in an adjacent channel. In other words, size resolution

and number resolution are coupled. Forcing better size resolution produces

greater errors in the number density for each size range a’nd vice versa. The

upper bound f or combined uncertainty from random counting errors (c.e.) and
uncertainty in AS is given by
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Table 111.1. Comparison of Ni for Perturbed and
Average Values of AS.

N tcm 3)CHANNEL ___________________________I ‘

NUMBER Per turbed AS Solutions Average Solution
— of Perturbed For Average

1 2 3 Solutions AS

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0
8 0 0 0 0 9

9 89 88 91 90 92
10 7.5 14.7 0 7.4 0

11 0 0 7.8 2.6 7.8

12 8.2 0 0 2.7 0

13 3.5 19 24 6.3 9.7

14 64 50 41 52 56
15 0 0 0 0 0

16 0 2.7 13.4 5.4 0

17 38 38 39 38 46.8

18 8.0 11 0 6.4 10.4

19 11 4.1 9.6 8.2 0

20 26 30 30 28.4 31
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2 2 ’

.~~~~~_ ±4(~!~) +  (±~) (111.6)

For the results of Figure 14, the greatest uncertainty occurs in channel 20
and is

i~ = ± ~~(.2)
2 
+ (

~~)2
t

= ±26%.

For larger number densIty flows (as occur in practice) or f or longer sampling

times,- counting errors can be significantly reduced. Reduced counting errors

will also reduce the uncertainty in AS.
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