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I. INTRODUCTION

An electromagnetic emitter is defined asa source which emits

electromagnetic waves. The wave as it propagates out from the source

disp lay a varia tion of bo th amp li tude and phase. The points on the

wave which have the same phase in a given reg ion may be thought of

jo ined by imaginary lines , known as isophasor lines. These are

analogous to contours on a map, which def ine a constant elevation. For

a point source emitting electromagnetic waves , th e  isophasor lines would

then form concentri- circles . The objective of this repor t is to design

electromagnetic emitters whose isophasor lines would not form concentric

circles with the cen ter of the circles being loca ted at the geome tr ic

center of the electromagnetic emitters. This implies that such an array

of elec tromagne tic emitters would produce over a cer tain angle in the tar

field an elec tromagnetic wave whose phase center may not coincide with

the geometric center of the electromagnetic emitters. The projected

phase center may even he outside the spatial distribution of the elec-

tromagnetic emitters.

The report is organized in various sections. In section II the

design of skewed isophasor lines is presented when the electromagnetic

emitters are excited by a band—limited signal. The a n alys i s  has been

carried out in the frequency domain. Section UT presents the anal—

ysis of skewed isophasor l ine s whe n the emi tt er s are exc i ted by

arb itrary time . The development for this case has been oresented

in the time domain. In both sections II and Ill the relationship

be tween the slope of the isop has or 1 in e~; to the measure of closeness

between the projected phase center and the geometric center of the

spatially distributed electromagnetic emitters has been developed.

— -



In section IV some representative computations are made using an

optimization method due to Rosenbrock. Appendix A describes the salient

features of the optimization procedure . Appendix B provides the computer

program listing along with sample input and output . This program has

been utilized in obtaining the results of section Iv.

There are various applications of this principle of design of

skewed isophasor lines. One such application is to the phenomenon

of angle noise or angle glint. Angle noise causes a change with

time in the apparent location of the target with respect to a refer-

ence point on the target. The apparent angular location may even

fall outside the target. This principle may thus be applied in

providing misinformation to the receiver monitoring the target.

This is because target locating systems can be divided into two major

categories : phase comparison systems and amplitude comparison sys-

tems. The phase comparison technique involves two or more receiving

elements separated in space so that the phase of the received signal

at the two or more points can be compared . The phase comparison

systems then measures the tilt of the phase front since it indicates

the target to be in a direction normal to the line of receiving

elements alignment required to receive the signal in phase at the

receiving structure. Thus a phase comparison system measures the

phase front of the received signal and points to the direction

normal to the isophasor lines of the received signal.

Amplitude comparison systems generally use some type of secondary

receiving elements which focuses the received signal to a spot in the

focal plane. All amplitude comparison systems by some means or other,

locate the target as the pointing angle of the receiving elements which

4
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center the spot from the received signal in the focal plane. For

example, a conventional amplitude comparison monopulse radar split the

spot in four parts by a multipart feed such that the spot can be centered

by adjusting the receiving elements for equal amplitudes in each port.

The significant characteristic of the amplitude comparison techniques

is that the spot location is determined by the isophasor lines of the

received signal. Centering the spot is accomplished by rotating the

receiving structure such that the receiving elements align with the

received isophasor lines. Consequently , in general any target locating

device is essentially a phase front measuring device. From this

measurement the device tries to project the phase center of the received

isophasor lines.

Another application of the principle of designing skewed isophasor

lines may be found in missile guidance. A missile may be guided by

the skewed isophasor lines and thereby reduce the complexity of the

tracking mechanism.

A third application of this principle is a very interesting one.

Goldman has shown in his book “Frequency Analysis, Modulation and

Noise”, that by the application of the principle of stationary phase

the location of a signal in time could be obtained. Under certain

conditions the transmitted signal may be made to appear originating

from a point in time other than its true location. This apparent

origin of the signal may even be outside the spatial distribution

of the electromagnetic emitters, as the time information may be con-

verted to a range information.

A fourth possible application of this principle may be in Displaced

phase Center Antenna (DPCA). It may be possible this way to compensate

for the deleterious effects of the airborne radar platform motion.

7



II. ANALYSIS OF SKEWED ISOPHASOR LINES IN FREQUENCY DOMAIN

2.1 For CW Waveforms

When the transmitted signal from a set of emitters is CW,

the isophasor lines of such a signal is easy to visualize.

The phase front in this case is the isophasor line of the

set of emitters. The problem then is to select a set of

emitters which would produce skewed isophasor lines in the

far field. The tilt would be such that phase front

measuring device looking at the waveform would project a

phase center which may or may not coincide with the geometric

location of tLe set of emitters. In this section a re-

lationship is also derived relating the tilt of the skewed

isophasor lines to the distance between the geometric

center and the projected phase center of the spatially

distributed emitters.

Consider a set of emitters situated on the x — axis

as shown in Fig. 1. Each emitter is excited with a complex

signal amplitude S (having both magnitude and phase) and

they are separated from each other by a distance d. The

electric far field pattern due to 2N + 1 einitteçs could

be obtained as

E S exp ( j271 nd sin 0) (2.1)

n--N

where A is the wavelength of transmis8ion. Let the complex

excitation amplitudes S of the emitters have real parts a
n n

and imaginary parts as b
n Then

8
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fra 
+ j b~~ ~cos (

2r
X~~ Sin 0) + j sin ~~~~~ 

sin

n—-N

(2.2)

By taking the summation now for only positive values of n

in eq. (2.2) leads to

- E [ ( a  + jb ) {cos (
~f~ sin 8) + j  sin ~~~~ Sin 0)}

n—i

+ (a + j b }  (con (.?iL!! ~. sin 8) —j Sin sin e)}}

+ a0 +

(2.3)

Let the complex far field has a magnitude lEt and an angle

j ’. Then

JE J ~~~ {(
~~ + a_n ) cos (2w

A~~ ~~~ ~~ + (b _a - b )

sin sin B)} #a
0] 

+ ~ +Z{(a —a_a) ~~~

+ (b
n + b )  cos (

2Tr nd 
sin 0 )}J

... (2.4)

H~ ice from eq. (2 .4)

10
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N
b + E (a a ) 21r nd (b +b ) (

21T fld 
sin e)}sin( ain 8)+ n —it

tau q~~ 
0 nhuul [ 

n _
~

N
a ) E (a +a ) 2w nd (b —b ) ~ (2W nd

n 1  [ —n 
con ~ sin 0) + _

~~ 

sin

(2.5)

The phase front in a particular direction 0 has a tilt

dO. By carrying out the derivative operation with respect

to 0 in eq. (2.5) and after some algebric manipulations,

the tilt is obtained as follows:

dU 2nd Numerator
— — — con 0dO A Denominator (2.6)

where,

E NNumerator — Z n{(a —a ) con 
2w nd

~~ 
—

~~ 

sin 0) — (b +b )
n -nn-i

e)}J [ 
N2it ud 

__________ 
211 ndsin ~ A sin a + Z {(a +a ) con sin 0)

0 n~l 
it —n

8)}J I N2W nd—(b —b s it ( +1 E n{ (a + a )it -it )
Lu-i

‘ I N
2n ud 

_____sin ( >~ ~in 0) + (b —b cos (
2T

A
1tt1 sin o)}j [ Z {(a —a )

it -it)
n—i

(2lI nd 2w nd in 0)) + b
o]

sin 0) + (b +b ) cos ~ Ait -n

... (2.7)
and ,

N
Denominator — F a~ + E { (a +a ) con (2~ nd

it —it A aut O)[
2w nd 0)) ] 2~ [b + E {(a —a )- (b —b ) a it 

~ —
~~it -it it-i
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sin (2w
A~~ sin 0) + (b~ + b )  cds (2W fld sin

(2.8)

For the particular cane,

N 1 , a0 — 0 , b0 — 0 , a+l — 1 , a 1 
a, b+l 

0, b 1 0

eq. (2.6) reduces to

— con o — a2 . . .(2.9)
dO A l + a 2 + 2a ( ~~~~~sin O)

incidentally (2.9) is the same result as obtained by Meade [i~

and Dean Howard [2].

Next , given the tilt of the iBophasor lines, what

is the separation distance between the geometric center of

the spatially distributed emitters and the projected phase

center from the phase measuring device. A typical set up

is shown in Fig. 2 where the part of a skewed isophasor

line PQ is shown to have come from a spatially distributed

emitters of length A. The isophasor line is being observed

at a distance R which is in the far field of the emitters.

Two receiving elements P and Q are properly aligned along

the isophasor line so that their measured phase difference

is zero . So the projected phase center would be along TS

which is perpendicular to PQ and is tilted at an angle B

to OT. The object is to find the length L. Now the path

difference between OP and OQ is RQ(”~~- dij~). Here d~4’ is the

phase difference in the electric field between the points f
P and Q along the isophasor line. Also PR — R dO.

A
OS L ~~ 2~~d* 

~Hence ta n B — — — — —  — — —
OT R PR R d O  2wR dO

... (2.10)
12
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Figure 2. Spatial error due to skewed isophasor lines
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Hence L — . . (2.11)

So from (2.6)

A ~~ NumeratorL a—  d cos O2w dO Denominator

L cog 0 Numerator .. .(2.12)
or A M Denominator

Where A — Total spatial width of the emitter distribution

and M — (Total number of emitters —1)

Therefore it is possible to make the ratio change

with the complex voltage excitations of the spatially

distributed emitters and their interelement spacing d

For some problems it is desirable to make arbitrarily large

by proper choice of d , a and b .  In section IV some

examples would be presented to illustrate these points.

2.2 For Wideband Waveforms:

For wideband waveforms, it is very difficult if not

impossible to define isophasor lines. But it is still

possible to define a projected phase center for a spatial

distribution of emitters transmitting videband waveforms.

In order to obtain such a definition for a projected phase

center it is necessary to define the model for the receiving

elements of a wideband waveform. For this problem, the

phase sensing device is assumed of the form shown in Fig. 3.

Here two signals x1 
(t1,01) and x2 (t1,02) are arriving at

the two phase sensing devices A and B at a certain instance

t. On one channel the Hu bert Transform of the signal is

14 
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F-

x (t ,O ) I HILBERT ~ (t,0 
)

>-
~
j- )~

— TRANSFORM 1 1

I
MULTIPLIER INTEGRATOR

x2(t ,02
)

> B

Figure 3. Receiver mechanism for a wideband waveform 
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performed and this is represented by x
1 
of the original

P signal x1 
and then the two signals are multiplied and

integrated to yield the output I. I is then related to

the measure of closeness of the projected phase center to

the geometrical center of the set of emitters . For I 0,

the projected phase center would coincide with the geometrical

center of the spatially distributed emitters and for any other

values of I ~~ the two centers would be far apart. The

distance between the two centers could be obtained by taking

known waveforms and calibrating I to the error distance.

For the special case of a signal originating from a

single source x
1 
(t, O~

) and x
2 
(t, 02

) would be the same.

For a real signal, the signal and its Hilbert Transform

are always orthogonal and hence I would be zero.

Mathematically ,

I _ fx (t) x (t) dt = 0 . . . (2.13)

always holds if x (t) is real. So for a single source

transmitting any arbitrary wideband waveforms, this device

would make no error at all in prediction of the phase center

of the spatially distributed emitters. However, for a general

case of multiple sources, the situation would be different.

This is dealt with in the next section but in the time

domain.

16
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III. SKEWED ISOPHASOR DESIGN FOR ARBITRARY TIME SIGNALS

For this case a set of emitters are chosen similar to

the diagram of Fig. 1. Instead of exciting each emitter by

a single frequency as in the previous case of 2.1, each

emitter is now excited by currents of the form

i (x,t) — A
m (x) f (t) . . . (3.1)

where Am (x) is the spatial distribution of the current on

emitter m and f (t) is the time dependence of the current.

For an array of point sources one can write

N
i (x,t) = f (t) Z A (x) 6(x—rnd) .. . (3.2)

rn——N 
m

where A (mci) represents the strength of the discrete

emitter at x md. Nov the far field at a distance K can

be expressed as

+ ~ r
E ( 0 , t ) — ~~--1 E Am •5~ [f (t— ~~~ + - ~-- sin O)

rn--N

u N
E A F(t -~~~+ ~~ sin O)

4irR m c c . ..(3.3)
rn--N

where c is the velocity of light and- is the permittivity

of free space. This is essentially equation (20) of Tseng

and Cheng [3]

The model of the receiver is assumed to be same as

before. This is illustrated in Fig. 2. So for this case

17
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- I { ~~~ rn--N 
A lt{F (t-. + sin O

i)}] ~

[4~~ k--N 
Ak 

{F( t - + sin 02)]] dt . . . (3.4)
where j( ~-~

} denotes the Hu bert transform. The limits

of integration correspond to the t imes when the integra tor

starts integrating (T1) and when the integrator stops

integrating (T2).

For simplicity it is assumed that f(t) — sin wt,

so that

~
{ (F (t)} — w cos (wt + 90°) — —

~~~ sin wt .. .(3.5)

Hence,

I
~ ~

‘0 2  N N 
2

- 

‘ ~~~ m — N  k*-N 
(-w ) A Ak

T
1

sin (ut — + sin 0 ) con (wt — + sin 0 ) dtc c 1 c c 2

:r

. - 

~~~~~~~ m f N k--N Ak A 

4



[ f sink 2(wt - ~
) + (m sin 8

~ 
+ k sin 02

) dt

T

÷ Isinf ~(m sin 01 - k sin 82
)}
~

’ dt .. . (3.6)

Since the purPose of the integrator in Fig. 2 
is a

smoothing operation , the average value of the first

jntegrai would be zero as the time average of a 
“ sin”

function is zero .

Let 82 
0

and 81 
— 8 4. AB . . .(3.7)

where t~0 represent 
the azimuth angle subtended by the

receiver at the origin . Then

in sin Oi 
— k sin 

~2

- + (m sin ~e~~~~i4e + tan
1 ( ~~~~~~~~~~~ ~

-
~
-_i,

’
~

(3.8)

So the error I can be expressed as

N N

Ak ~
‘m

ii=—N k—-N

sin t~8 - k) 2 + (m ain t~e) 2 
~ K

sin (0 + tan 
_l
~~~_:~: ~~ _k)~

d1t ... (3.9)

19
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wU 0 2  N N
I — - 1/2 (

~~~) E E Ak Am T2 —
m-N k--N

sin { ~ tJ~rn coa ~8 
- k) 2 

+ (in sin ~0) 2 sin ~~ + ~~~ 
—l (: :~ ~ k)J

.. (3.10)
It is interesting to note that since I is an odd function

of 0,

J I (8) dO - A 
J 

~~~ sin (0 + *) } dO

11

- A J sin fz sin (0 + iP)
} 
dO + f sin{z sin (0 + *) J dO

— A f [sin z sin (0 + ~)} dO — f sin 
[Z 

sin (8 + *)} dO

—0 ...(3.11)

This implies that the total error integrated around the

set of emitters is always zero.

Now the error between the projected phase center *

and the geometrical center of the spatial distribution

of apertures would be given by (2.11).

A dW

So the objective now is to f ind the relationship between

I and *. Let

20
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x 1 (t 1, 81
) — sin wt

and x
2 
(t1,02) — sin (wt + ~

)

then from a derivation similar to that presented in this

section it can be shown that

T
2
1 T -T

I — J cos wt sin (wt + ij,) dt — 2 1 sin 
~

T1 .. .(3. 12)

Hence

A f  I dl
2~r dO if ~(T

2 —T1 
2 — 412 ,) dO

(3. 13)

So it is possible to make L larger than the half of the

spatial distribution of the emitters by proper choice

of the amplitude coefficient of the emitters.

Some examples are presented in the next section to

illustrate it.

1~
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IV. EXAMPLES

The mathematical formulations presented in the previous sections is

utilized to obtain some representative numerical values for various

electromagnetic emitter configuration.

Figure 4 represents the skewed isophasor lines of a 3 element array.

The spacing between the elements is l.5A so that the total width of the

aperture is 3.~~ . The objective then is to obtain the largest slope for

the isophasor lines within an angle window of 10 degrees (between 175

and 185 degrees). The variables in this problem are the complex excita-

tions of the elements. The phase reference for this diagram is referred

to the geometric center of the array. The optimized phase of the far

field is shown by the solid line in Figure 4. The dashed line represent

the gain for the 3 element array. The gain is defined as the logarithiuiic

ratio of the far field between the present 3 element array and an

omnidirectional element fed with the same power as the 3 element array.

It is interesting to note that within the angle window the electric

field intensity remains relatively constant.

Figure 5 represents the optimized 2 element array having the same

aperture length of 3.OX as in Figure 4. This represents the optimized

case of Meade [1] and Howard 12]. It is clear from this diagram that

the slope of the phase of the E—field is no longer linear over the angle

window as it was for the 3 element case. The gain for the 3 element

case was higher outside the angle window. An important feature is that

the linear portion of the slope of the phase is situated near a minimum

field intensity. Figure 6 presents the slopes (2L) for the 2 and 3 element
A

cases.

22
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pha se of E — — gain
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Figures 7 and 8 represent the same cases as presetited in Figures

4—6 except now the aperture length is restricted to 0.6A instead of

3 A . Figure 7 represents both the phase of the far field and the

gain of the 3 element array. This correspond to point A on Figure 10.

Figure 8 represent the corresponding quantities for the 2 element

array. For Figures 7 and 8 there is very little difference both in

the phase of the far field and the gain. Hence the criterion (max-

imize the slope of the far field by proper choice of excitations) is

not a valid one for closely spaced elements. This is true because

for closely spaced elementa the array becomes very sensitive to

excitations. Henr.e a more meaningful criterion would be the maximiza-

tion of the slope of the far field with respect to the excitations

for a fixed source norm. This implies that the optimization would be

carried out for a fixed power input. This is a very interesting area

which would be investigated in future work.

Figures 9, 10 and 11 present results obtained for various windows

and minimum interelement spacing. The plots are the ratio of the

projected phase center by half the length of the aperture against the

number of elements in the array. The maximum slope for the curves over

a given window has been obtained by varying the excitations and inter—

element spacings . Care has been taken in the optimization procedure to

make sure that the interelement spacings do not go below a certain

value. For Figure 9, the minimum interolement spacing is 0.5A . It

is interesting to note that a large ratio could be achieved for the

same number of elements over a smaller window .
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Figures 10 and 11 display the same characteristics as observed in

Figure 9 but this time the tnterelement spacings are greater than or

equal to 0.3A and 0.2A respectively.

For the optimized parameters , it is seen from Figures 9—11 that

is always greater than l.5X. This implies that for the given

windows and up to seven number of elements it is always possible to

choose excitations which would produce skewed isophasor lines in the

far field. These isophasor lines would project a phase center which

is at least 0.5 times the aperture length outside the physical aperture.

The slopes of the isophasor lines in the far field becomes much

larger as the elements come closer together. This is seen by comparing

the curves of Figure 11 which correspond to a d� 0.1A to those of

Figure 9 and Figure 10 which correspond to a d 2 0.3A and d 2 0.5A

respectively. Hence there is a strong indication that it may be possible

to achieve larger slopes of the isophasor lines from a continuous spatial

distribution of electromagnetic emitters rather than a discrete one.

But as outlined before this criterion shall be used along with an addit-

ional constraint on the source norm for the arrays. This could be an

worthwhile area to look into in future work.
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V. CONCLUSION

The possibility of obtaining skewed isophasor lines from two emit-

ters has been illustrated by Meade (1] and Howard [2]. From their

results it is seen that large slopes of the isophasor lines could only

be achieved over a narrow window. The theory developed in this report

could be applied to obtain skewed isophasor lines over large angle

windows. Also of importance is the fact that sometimes the power density

is considerably greater than that indicated by Meade [1] and Howard (2].

The theory presented in this report can also be applied to time

waveforms where the -apparent time of arrival of the waveform can be

changed with appropriate phasing of the electromagnetic emitters.

Another important application is in the guidance of a missile by the

skewed isophasor lines. It may also be applied in the case of Dis-

placed Phase Center Antenna (DPCA) to counteract the linear motion of

the airborne radar. However the technique presented here can f ind

applications to many other electronic systems.
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APPENDI.)’. A - ROSENBROCIC’S OPTIMIZATION METHOD

The function — minimization algorithm due to Itosenbrock [4] is well

known but is included here for completeness.

The Roeenbrock search technique uses M mutually orthogonal directions

during each search cycle to find a relative minimum. This strategy differs

from a steepest descent technique which uses successive orthogonal directions,

but these successive directions do not necessarily form a mutually orthogonal set.

The M mutually orthogonal directions are the basis for the success of this

technique. Moreover, unlike the other optimum search procedures this

method does not require any derivatives of the functions to be minimized.

The basic elements of the Rosenbrock algorithm are as follows:

a) Step Size: The step size in a given direction is chosen by speci-

fying an arbitrary magnitude h and then, if a step h decreases the value of

the function (for a minimization problem), h is multiplied by a constant

(u>l). If the value of the function increases, h is multiplied by a con-

stant — 8(0< 8<1) . h should be on the order of one percent of the average

magnitude of the variables. To determine the values of ct and 8~ 
a series

of trials using various values of a and B should be made for a given class

of functions for which the function to be minimized belongs.

b) Direction: The Rosenbrock algorithm uses M mutually orthogonal directions

d1, d2, . . .,  d1~ at each stage rather than choosing a single direction in

which to progress. Therefore, a search is made in each orthogonal direction

before the next step is chosen (at least, one trial has been successful —

a value less than or equal to the old value — and one has failed in each

direction) .

There are three cases to consider:
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i) The first trial is a success.

ii) The first trial is a failure and the second trial is a success.

iii) The first trial is a failure and the second trial is a failure.

For a start, let [D
0
] — [u3 (identity matrix) where 4, 4, ...,

are individual directions in which steps are to be taken. The search technique

progresses as follows (for one variable x1
):

1) A step is taken in the direction d° from an initial point x°

1 0 0x — h  ( x.d 1).

2) If f (x 1
) <f (x°) ,  the step is successful and the step siae is

multiplied by a again and again until a failure is recorded. After this

f ailure, the result of the last succcessful trial and the number of success-

ful trials is stored.

3) If f (x1) > f (x0) on the first trial, a failure results and the

sign of the step size h is changed and the search continues as in (2).

4) If f (x~) > f (x0) and f (x2)> £ (x0) ,  the second and further trials

are determined by multiplying h by minus Buntil a success is recorded.

After a search has been made for each variable in all directions 4, a new

[D
1
) is determined. Let g

~ 
be the algebric sum of all the successful steps

hi in the direction 4 . Then the first element 4 of tD1~ is chosen as the
vector sum of all the vectors Z ~~~~ The other elements of ED’) are

determined using the Gram—Schmidt orthogonalization procedure. Let

A1 
— g14+ g24+ ....+gMci

~

A2 
— g2d~+ . . . .+gMd

~

0AM

where A1 is the vector joining the initial and final points obtained by the

sum of vectors 4, and A2 is the sum of the successes achieved in the directions

36

- ~~~~—- - - --~~~~_r - __ - - - 



other than the first and so on. Then from the Gram—Schmidt orthogonalization

I
procedure

B1 
— A1

B
’d1 

-
~~~~~~

B2 A2 
- 

~~2 
T~ 4) 4 

where T is the transpose

~ 
82

d2

M-l
(A~~.d

1) d 1

m 1

l~~~~M

So for the second iteration the searches are made in M orthogonal directions

of . The process is continued until a convergence criterion is satisfied.

The computer program listing for this procedure is listed below.

1070 SUBROUTINE ROTATE (X,N,VF,tJ,H,VV,NFZRST)
1080 diiuerssiori d (39) ,x(30) ,u(30,30) ~a(3O~ 3O) ,b(30) ‘un (30,30) ,ns(40)
1090 bb O...,
1100 aa 3.0
1110 if (rifirst—1 ) 15,15,17
1120 15 do 24 1::1,r,
1130 d (i)=O.0
1140 do 25 J=1,ru
1150 25 u(i,J)=0.0
1160 24 u (i,i)=1.0
1170 vv v f ( > )
1180 17 do 1 J 1,n
1190 r~s(J) O 

. .
.

-. . .- - - . - .
. 

.

. 
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1200 1=1
1210 e h
1220 vvt=vv
1230 2 do 3 i=1~ ri
1240 3 b ( i ) = x ( i ) + e *u ( J , i )
1250 dv vf (b )—vv
1260 vv vv+dv
1270 ~o to (4~5~ 26~ 27)~~1
1280 4 1=3
1290 if (dv)  28,28,29
1300 29 1=2
1310 vv vv—dv
1320 e=—h
1330 ~o to 2
1340 5 1=3
1350 if(dv ) 28,28,35
1360 35 1 4
1370 41 if(ris(J)+20) 44,44,47
1380 47 e=—bb*e
1390 r,s(J)=ris (J)—1
1400 ~o to 2
1410 28 e=aa*e
1420 r,s(J) ris(J)+1
1430 ~o to 2
1440 26 if (dv ) 28,28,42
1450 42 e=e/aa
1460 vv vv—dv
1470 ~o to 44
1480 27 dv vvt—vv
1490 if(dv)41,41,44
1500 44 do 45 i=1,r,
1510 45 x (i)=x (i)+e*u (J,i)
1520 1 d (J) e
1530 do 9 rn 1,ri
1540 c 0.0
1550 do 6 i 1 ~ r.
1560 zz O.0
1570 do 7 j rn,r,
1580 7 zz zz+d(J)*u(J ,i)
1590 if (rn—I) 32,32,8
1600 8 rnrn rn-1
1610 do 11 J 1,mm
1620 z0.
1630 do 12 k 1,ri
1640 v0.
1650 do 13 1 rn,ri
1660 13 v v+d (1)*u (I,k)
1670 12 z z+v*un (J,k)
1680 a (rn ,J) z
1690 11 continue

BEST AVAIlABLE .COPT



1700 do 14 .j=1,mm
1710 14 zz zz— a(m,j)*un(j,i)
1720 32 b(i)=zz
1730 6 c=c+zz*zz
1740 c=1./sQrt(c)
1750 do 10 1 1,n
1760 10 urs (m,i) c*b (i)
1770 9 cont inue
1780 do 18 i=1,r.
1790 b (i) 0.O
1800 do 19 j=1,n
1810 19 u (i,J) ur,(i,J)
1820 18 continue
1830 return
1840 end

BEST AVA1L4&~ COPY

_ _ _ _ _ _ _ _ _ _ _  ~~ ±-
~~~~ 

iT



APPENDIX B - COMPUTER PROGRAM DESCRIPTION

The user—oriented computer program consists of a main program which

supplies all the necessary data required for the execution of the computer

program and subprograms. The first subprogram FUN in this case, def ines

the function to be minimized and the second subprogram ROTATE is the

optimization method due to Rosenbrock. The latter is described in

Appendix A.

The main program supplies all the input data. The input data con-

sist of the following statements. Statement number 40 provides the value

for N (as shown in Fig. 1) through MNE.

Statement numbers 90—120 provide the initial guess for the excita-

tions of the electromagnetic emitters in the first N8 elements of the

array Y. The elements of Y(I) are defined in the following manner:

a1 
— 0.5 CY(1) +

b1 
— 0.5 Eu3 + Y(4) ]

a_1 — 0.5 CY(2) + Y(l))

b 1 — 0.5 (Y(3) — Y(4)]

and so on. The statement number 130 provides the initial guess for the

inter—emitter spacing for the array through Y(N9).

Statement number 150 defines the value of through the constant

SLOPE.

Statement numbers 170—180 define the angle window over which the

• desired slope is to be achieved. MP provides the start of the angle

window in degrees and MQ ii the last angle of the window, taken at steps

40
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of MR degrees. It is not necessary to have the window synmietrically

placed around the z—axis of Fig. 1.

Statement number 250 specif ies the maximum number of iterations to

be made by the optimization method to yield the final result.

Statements 390, 400 and 480 provide the excitations for the array

elements and 490 prints the value for the interelement spacing and the

value of the function through VVVAL at the end of each iteration.

580 prints the slope, the magnitude and phase for the far field

within the specified window. This is done at the end of the final ite-

ration.

Statement 650 defines the constraint imposed on the inter—element

spacing. For this problem interelement spacing cannot be less than or

equal to 0.4)1.

The program as presented represents a 3 element array for MNE—l.

So for a 2—element array the necessary modifications of the program are

as follows. The statements 450—490, 870—880 should be deleted. State-

ment 80 should read N9 — Ni. Statement 641 should be introduced to read

N9 — N7. In statement 650, the contraint should be changed to half the

interelement spacing desired. For example, if the problem be such that

the interelement spacing for a 2 element array be restricted to be greater

than or equal to 0.5 A then Y(N9) �. 0.25

The computer program listing is presented below.

10 EXTERNAL FUN
20 COMMON /AJ/MP,MQ,NR,MS,SLOPE,MNE,N7,N8,N9,CC
30 DIMENSION Y(30),AXES(30,30)
40 MNE=3
50 N6 4*MNE
60 N7 P46+1
70 N8—N7+1
60 N9 N8+1
90 Y ( 1) 1.O~100 Y (2 ) 0.01

V
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110 DO 11 I=3~N8
120 11 Y (I)=O.
130 Y(N9)=0.7
140 11=0.01
150 SLOPE=16
160 PF’=180./3.14159263
170 MP=177
180 MQ=183
190 IIR=1
200 MS=O
210 J=1
220 N0=N9
230 PRINT 189,MNE,MP~ MQ~ SLOPE~ Y (N9)
240 189 FORMAT (’0 ,319,2F10.5)
250 DO 2 11=1,10
260 CALL ROTATE (Y,NQ ,FUN,AXES,H,VFVALvJ)
270 NN= 1
280 CC=O
290 00 23 NL=1,MNE
300 AI=O.5*(Y (NN)+Y (NN+1))
310 B1=0.5*(Y (NN+2)+Y(NN+3))
320 A2=0.5*(Y (NN+1)—Y (NN))
330 B2=O.5*(Y (NN+2)—Y (NN+3))
340 C1=SQRT (A1*A1+R1*B1)
350 C2=SORT C A2*A2+82*B2)
360 D1=PP*ATAN2CB1,A1)
370 02=PP*ATAN2CB2,A2 )
380 CC=CC+C1*C1+C2*C2
390 PRINT 108,NL,A1,B1,C1,D1
400 PRINT 108,—NL ,A2,B2,C2pD2
410 108 FORMAT ( ‘,I5,4F15.5)
420 NN=NN+4
430 23 CONTINUE
440 NL=O
450 C 1 = S O R T ( Y ( N 7) * Y C N 7) + Y C N 8) * Y ( N 8) )
460 t’ 1=PP*ATA N2(Y(N8) ,Y (N7) )
470 CC=SQRT(CC+C1*C1)
480 PRINT 108,NLrY~N7)~~Y(N8

)
~ C1vD1

490 PRINT 100,Y (N9),VFVAL
500 IF(VFVAL,EO.0.) GO TO 5
510 100 FORMAT (’ v4F15.7)
520 JsJ f j

530 2 CONTINUE
• 540 5 MS=1

550 MP=MP-3

• 560 MQ=MQ+3
570 MR=1
580 ZZ FUN (Y)
590 6 CONTINUE
600 STOP
610 END 

• BEST AVARABISE copy
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! 6~ O FUNCTION FUNCY)
630 I’IME NSION Y(30)
640 COMMON ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
650 I (Y (N9).LE.O.4) GO TO 4
660 110 12 I=1,N9
670 12 IF (ABS (Y (I)).GT.iO.)GO TO 4
680 FUN~:O.
690 [‘0 1 I=MF,MO,MR
700 PI=O.0174533*FL.OAT( I)
710 PHX=6.283186*SIN (PI)*Y (N9)
72() UP=0.0
730 tIN~ 0.0
740 NN~ l
750 U1=0.
760 U3~0.
770 00 2 W:z1,MNE
780 THT=N*PHI
790 CT=COS (THT)
800 ST-~SIN (THT)
810 UF=UP+Y (NN)*ST+Y (NN+2)*CT
820 DN=DN+Y (NN+1)*CT-Y (NN+3)*ST
830 U1=U1+N* (Y (NN)*CT—Y (NN+2)*ST)
840 U3=U3+N* (Y (NN+1)*ST+Y (NN+3)*CT)
850 NN=NN+4
860 2 CONTINUE
870 UP~;UP+Y (N 8)
880 DN:~1IN+Y(N7)
890 SF’=COS (P1) * C Ui *DN+U3*UP ) / ( UP*UP+EIN*DN)
900 SP=SP/FLOAT (MNE )
910 IF (MS.EQ.1) GO TO 11
920 SP=ABS (SP)
930 IF C SP • LT • SLOFE) FUN=FUN+SLOPE -SP
940 GO TO 1
950 1 1 AAG=S IRT (UP*UP+DN*DN )
960 AAG=AAG/CC
970 AAG~ 2O.~~AL0G10 (AAG )980 SR=ATA N2(UP ,DN)
990 SI=180./3.14159263*SR
1000 PRINT 101,I,AAG,SI,SP
1010 101 FORMAT ( ‘rI5~ 3F15.3)
1020 1 CONTINUE
1030 RETUR N
1040 4 FUN=i0O .
1050 RETURN

• 1060 END



APPENDIX C - COMPLEX EXCITATIONS OF THE OPTIMIZED ARRAY

The complex excitations of the electromagnetic emitters that yield a

prescribed slope of the phase of the far—field pattern are presented in

this section.

The complex excitations required to yield the far—field pattern

presented in Figure 4 are as follows:

a1 
— 0.087 [12.20°

a 1 
— 0.034 14.96°

a0 
0.093 [—171.34°

Similarly for the field pattern for the 2 element array presented in

Figure 5, the excitations are as follows:

a
1 

0.165

a 1 — 0.062 [—171.63°

For Figure 7, the excitations are:

a
1 — .111 ~~~

a 1 0.069 R77.91°

a
0 

— O.0]4 [~64.35°

The corresponding excitations for Figure 8 are:

~~1 
— 0.132 tQ2Z9°

a
1 

— 0.095 ~ 78.92°

- • Finally the complex excitations required for a 7 element array to

yield point B in Figure 9 are as follows:
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a
1 

— 0.096 6.95°

a
1 

— 0.082 Lii ~~.34°

a2 
— 0.043 Li~4.99°

a_2 — 0.045 1—5.58 °

a
3 

— 0.017 L—84.82°

a_3 — 0.004 L—72.45°

a0 
— 0.032 1124.42°
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