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INTRODUCTION

A missile can kill a target in several ways, for example, by an
internal or external blast from the warhead and by fragments from the
warhead.! A mathematical model for determining the single-shot kill
probability requires that the path of the fragments, the shape of the
blast envelope, the shape of the target, etc. be expressed mathemati-
cally. J. von Neumann suggested that a set of ellipsoids could be used
to define the blast envelope and the shape of the target.? For swept-
back configurations of the target, a set of cardiaci can be used to
approximate the target mathematically.3 The initiation of certain
fuzes on the missile require knowledge of the distance between the
target and the missile's fuze. Mathematically, this is the distance
between the fuze and the nearest ellipsoid describing the target.

METHOD OF THE CALCULUS OF VARIATIONS
We wish to find the shortest distance, d, between a fixed point,
P(Xo »Y0,20), and the surface, G(x,y,z) = 0. Q(X;,Y1,2;) is defined to

be a point on this surface such that the distance from P to Q is a
minimum. See Figure 1.

P(xg,Y0,20)
G(x,y,z)

Figure 1. Problem Configuration

1. A. Stieglen, "A Mathematical Fornmulation §or ORDVAC Computation
0§ the Single-Shot KilL Probabilities 0§ a General Missile Versus
a Generak Airncragt," Ballistic Reseasich Laboratonies Memorandum
Repont No. 1306, November 1960. (AD #249957)

2. M. Juncosa and D. Young, "A Mathematical Formulation gon ORDVAC ]
Computation of the Probability of a KilL of an Airplane by a
Missike," Ballistic Research Laboratories Repont No. 867, 1953.
(AD #17267)
3. V. Kucher, "Mathematical Approximation of Sweptback Configurations
by Cardiaci," Ballistic Research Laboratories Memorandum Repont
No. 1793, October 1966. (AD #806663)
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We shall consider the surface to be an ellipsoid such that

2 2 2
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Any ellipsoid that is not expressed in standard form can, by
translation and rotation transformations, be written in the form of
Equation 1. Naturally, these transformations would also be applied
to the fixed point in space.

The length of any curve extending from point P to point Q is
given as

X 1
4 J L E AR A (2)
X0

A procedure for minimizing an integral of the form“

X1
= f F(X,y,z,y',2"')dx (3)
Xo

is to apply the Euler-Lagrange equations:

oF d 9.

3y " aday) =0 (4
and

3F d 93F . _

2z - ax3z”) = O (5)

4. R. Courant and D. Hilbert, Methods oé Mathematical Physics,
VoL. 1, New York, Interscience Pu ens, 1953,
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From Equation (2) we see that for our case

F=(1+(y")2+ (z')zl;s. (6)

The Euler-Lagrange equations take the form

BL« (898 ¥ -~ yrate" % 0 (7)
and
(1 + ()")2] 2" - z'y'y" = Q. (8)
The solution to the simultaneous equations [ (7) and (8)] is
y = Ci1x + Gy, 9)
zZ = C3X + Cy, (10)
where C;, C;, C3, and Cy are constants of integration. As expected,
we have found that the shortest curve between points P and Q is a
straight line.
Applying the conditions at point P that x = Xxp, ¥ = yg, and
z = 29, we have
Yo = Cixg + C2, (11)
zg = C3xg + Cyu. (12)

The next step in our procedure to minimize the distance between
points P and Q is to apply the transversality conditions:




oF oF 3G

O'gge * 25 * Vg - B =0, (48)
; Q
oF 3G
(‘W' -V —a;' Q = 0, (14)
oF 3G
(o = v 5= " =0, (15)

4 where v is a Lagrange multiplier.

Equations (13), (14), and (15) yield, respectively,

vxi[1 + (y})? + (z;)zl% - a2 =0, (16)
2vyi[1+ P2+ (227 - by =0, (17)
vz)(1+ (72 + (2)217 - 22y = 0, 18)

Equations (16), (17), and (18) give

| a’y;
! Yi =b_2-; > X1 # 0, (19)
1
a2z,
2} = X, #0 0
el T Tk ’ (20)
! c?x,
|
8
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The slope of the line given by Equations (9) and (10) is provided
by Equations (19) and (20). Thus

a%y, a?z,
and C3 = . (21) - (22)

b2x, c2x,

Cl =

Note that the slope of the surface of the ellipsoid at point Q can be
determined to ke the negative reciprocal of the slope given by Equations
(19) and (20); consequently, the line is perpendicular to the surface of
the ellipsoid. Thus transversality coincides with orthogonality.

Substituting Equations (21) and (Z2) into Equations (11) and (12),
we find that

a%y,

Cz = yo - X0, (23)
ble
atz,

Cy = 29 - X0 . (24)
c2x

1

Substituting the four constants of integration into Equations (9)
and (10), we obtain the equation of the shortest curve between points

P and Q:

a2y1

Y= (x - xq) + Yoo (25)
bzx1
azz1

z = (x - XO) + Zp. ; (26)
¢?x,




Evaluating Equations (25) and (26) at Q, we find that

é . b2Y§xl
: Yy, = » (27)
E | ble - az(xl-xo) :
! {‘
022011
3 2 = (28)

szl - az(xl-xo)

If we evaluate Equatioh (1) at Q and substitute Equations (27) and
(28) into the resulting equation, we eliminate y; and z; and obtain a
sixth-degree polynomial in x;:

‘.r-rv/

as

2
Kox; + K1x; + Kox; + Kaxi + Kyxa + Kex; + Kg = 0 (29)

with coefficients given by

Kg = r2s?,
Kl = 21‘Skt,

K, = k%u + a2(gs?2 + hr? - r2s?),

TR

K3 = 2k[ k%t + a%(gs + hr - rst)],

Ky = k?[k2 + aZ(g + h - u)],

TR

Kg = -2a2k3t,

Ks = -82k“,
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where

g = y2b?,
h = 22¢2,
k = xga?,
t=1r+s
u =12 + 4rs + s2,

The reader may use his favorite method or computer routine to find
the roots of Equation (29). Since Kg is negative and Ky is positive,
we are assured that at least one positive real root and one negative
real root exist. The fact that |x;| < a is useful in the determination
of the roots which have meaning in this problem.

If point P(xq,yg,2p) does not lie in any of the coordinate planes,
values of y, andz;, corresponding to each of the real roots (|x;| < a)
of Equation (29), are obtained from Equations (27) and (28). Point
Q(x3,y1,2;) is found by determining the minimum value of d for each
tripiet (X1,Y1,21) obtained, where

d=1(x; - x0)2 + (y1 - yo)2 + (2, - 20021 " (30)

As an example of the above procedure, let (a,b,c) = (4,3,2) and
(xg>Y0s520) = (1,1,1). The roots of Equation (29) for this example
were determined by an available computer routine based on the procedure
developed by Bareiss and Hamelick.® However, other techniques, such as
the Newton-Raphson method, should be adequate for this purpose. A
summary of the calculations is listed:

5. E. Bareiss and R. Hamelink, "RSSR Routine, A Root-Squaring and
Subresultant Procedure for Finding Zenos of Real PoLynomials,"
Argonne National Laboratory Repornt No. ANL-6987, October 1965.
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Root X Y1 z] d
1 1.118,521,8 1.232,101,4 1.735,663,8 0.780,461,2 (minimum)
2 -3.821,653,6 -0.804,529,0 -0.247,116,9 5.297,166,1
The procedure, which was developed for determining Q and d, may
require some modification if point P lies in any of the coordinate
Planes. For example, let P be a point such that y; = 0 and xp,zq # O.
Equation (27) would force y, to be zero. With z; determined by
Equation (28), it is possible that the point (x;,0,z)) will not lie on
the surface of the ellipsoid.
Rather than modify the above procedure for cases where P lies in
any of the coordinate planes, the problem will be analyzed by the
method of Lagrange multipliers.

METHOD OF LAGRANGE MULTIPLIERS

Let the square of the distance between P and any point (x,y,z) on
G, Equation (1), be given as

D=(x-x0)2+ (y - yp)? + (z - 29)2. (31)
Define the function, f, as :
f =D - )G, (32)

where A is a Lagrange multiplier.

The solutions of the equations

s 0y i (33)

are, respectively, -
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x(1 - =) = xop,

Y& & =)® ¥q. (34)

z(1 - —) = zq.

The set of Equations (34) and Equations (1) and (30) are used
for determining Q and d when P is in any of the coordinate planes, as
illustrated in the example that follows.

Given P(x(,0,0) and xy # 0. Let a, b, and ¢ be distinct.
Equations (34) take the form

Sl - Y amy,  Nif ol
az
A
y(1. - —) =0, (35)
b2
2l ==y =0,
C2

If A # b2, c2, Equations (35) yield

y =z =0,

a2xg (36)

aZ -

Equations (1) and (36) yield
A = a% t ax,
and thus x = *a. Consequently, a possible choice for Q is (*a,0,0).
1f A = b2 # c2, Equations (35) yield
z =0,
a?x
X =

az_bz

13




Substitution of the above information into Equation (1) yields

a2x2 g ax,
y=tb|1- 3 2 ] ] & 1.
(32 5 b2)2 a2 - p2

Thus, a possible choice for Q is

a2xg azx% g axg
»b |1 e ——|,0]), | ——| <1.
83 - b2 (a2 - b2)2 a2 -2

If A = c2 # b2, Equations (35) give
y=0,

asz

& ol

which, when substituted into Equation (1), give

aZyd h
z = ¢ - —————JL——-] 5
[ (a2 ¥ c2)2

Thus, Q could be the point

a2x, a2x2 s axg
2’ 0, tc 1- » <1.

2 . (a2 - ¢2)2 al o o2
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In summary, if P is (xy,0,0), xo # 0, and a, b, and c are distinct,
the candidates for Q are the following:

1. (%a,0,0).

a2x, a2x? & ax
25 - |1 - ———o— , 0} ,|l—m < 1.
(32 - b2 (aZ o b2)2 ) aZ - p2
( asz azxg li axg
3. - 0, #¥c}]1 - ——— —| «€1.
a? - ¢2 [ (aZ A c2)2 a2 - ¢2

Point Q is selected by the substitution of the above coordinates
into Equation (30) and by examining the resulting values of d for a
minimum.

Working with the basic Equations (34), we may determine possible
candidates for Q when P is in any of the coordinate planes. A summary
of possible coordinates for Q for various positions of P in the coordi-
nate planes are given in Table I in Appendix I.

If several sets of coordinates for Q are listed for a particular
case in Table I, Equation (30) is used to determine which set yields
the minimum value for d; however, several cases exist where there
couid be an infinite number of possible positions for Q. Case 2,
for example, shows that Q could lie on a circle located in the x,y-
plane. By selecting any point on this circle, we can calculate d.

Several cases, such as Case 21, require that roots of quartics
be determined. Again, the reader has the option to use his favorite
scheme to obtain these roots. '

OTHER METHODS

The dynamic programming technique and the method of Lagrange
multipliers were used to find approximate solutions to the problem of
the distance between a point and an ellipsoid®. The dynamic programming
approach considered the axes of the ellipsoid to be parallel to the
coordinate axes; the Lagrange multiplier approach considered the case
where these axes did not necessarily have to be parallel.

It is not clear from the dynamic programming solution as to how
situations such as, for example, Cases 2 to 5 in Appendix I, where an

6. A. Celmins and W. Sacco, "Numerical Computations of the Distance
gnom a Point to an ELLipsoid, " Ballistic Research Laboratonies
Repornt No. 1328, 1966. (AD #641011)
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infinite number of points, Q, solve the problem, are resolved. The
computer algorithm, developed from the Lagrange multiplier method,

considered P to be outside the ellipsoid; otherwise, the algorithm

became too complicated.

This report presents exact solutions when possible; otherwise,
the solutions are obtained by finding the roots of 6-th or 4-th degree
polynomials in a known domain for the roots. For a given accuracy, a
computer solution of the approach presented in this report should be
faster than those in Reference 6. Furthermore, since P can be located
inside or outside of the ellipsoid, all requirements for the application
of this study to systems analysis have been satisfied.

SUMMARY

We wish to determine the shortest distance between a fixed point
P(xg,yp,29) and an ellipsoid. Q(x;,y;,2)) is defined to be on this
surface such that the distance between P and Q is the minimum.
Translation and rotation transformations should be used on the system
consisting of a fixed point and an ellipsoid to describe the ellipsoid in
standard forh, Equation (1), The real roots of Equation (29), such that
|x;] < a, with their corresponding components, given by Equations (27)
and (28), provide possible values for Q if P does not lie in any of the
coordinate planes. If P does lie in one or more coordinate planes,
Appendix I providas possible coordinates for Q. In either case, the
final choice of cocrdinates for Q are determined by finding the minimum
value for d by Equation (30).
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