
N
‘-AObO 291. 11W YORK INST Off TECH 01.0 WESTBuRY F/S 9/2

FUNCTIONAL SOFTWARE OEVELOPMENT.(U)
NOV 77 N N OROSSMAII *Fo5R—77—3205

UNCLASSIFIED AFO5ReT~~.7IeO11O Pt

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~.

_ _ _

tip, 
_ _  r~. uuw*iu__

_ _  

1UUU H
ENJD

DAYt



1 . 1

SECURITY C L)MjQCATION OF T HIS  eA c ~t: (WP.øn l Ista ?~n ta r rd )

REA l) INSTRUCTIONS

~i~R&ORT DOCUMEN TATION PAGE q.. BEFORE COMPLETING FORM
VT AcCESSION NO. 3 . RECIPIENT’S  C A T A L O G  N U M B E R

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ ________________________________ ~~~ & i r u ir . . , u ~~~ O C0v ERCOI. T IT L.I f_ - i II.I.J

FUNCTIONAL SOFTWARE DEVELOP MENT 1
_J
,
/ ‘~/lF’.~nal retz+~_7’

6. PERFORMING O~ O. REPORT NUMSER

t s f l • NUMBER(s).~~ AUTHOR(s)

~Me1vyn M./Drossm3l ~~~~~
_ _ _ _ _ _ _

~~. PERFORMING ORGANIZATION NAM E AND ADDRESS tO. PROGR~~~~J LEMENT..P~~OJECT , T A SK
ARE A1f WO1~K UNfTfl~I~~pERS

New York Institute of Technology

J Wheatley Rd
Old Westhury, NY 11568 ____________________________

I ..•
~

—1
~

II. CONTROLLING OFFICE NAME AND ADDRESS

~~~ Air Force Office of Scientific Research/NM (21~,~ ~~~~ 
— 771~~~

’
3~ ~Boiling aFB, DC 20332 “~~ _____

_____________________________________________________ 66
II. MONII’ORINO AGENCY NAME & ADONESS(II dJ H.r.nf from Controlling Otfic.) IS. SECURITY CLASS. (of this r.pofl)

UNCLASSIFIED
ISa. OECLAS SIFICAY IO N/DOW NGRAD ING

SCHEDULE

IS. O$STRIBUTION STATEM E NT (of this R.p o,1)

Approved for public release; distribution unlimited.

D D C
fl.fL~ ~~~~ t r~ 11~t fl12J,j~

IT. DISTRIBUTION STATEMENT (of VI. abst ract .n(.,ød in Block 20, II dl(Mreni Iron, R.pott) k~ FEB 2~ i015 II !
• 

~~~~~~~

t

~

3u y -t~ J
~ F’ _

IS. SUPPLEMENTARY NOTES

r~irBF.ST AVA11A~~IS. KEY WORDS (Conttnu. on r.v~,.. aid. II n.c.a..,y aid Sd.ntily b~. block numb.r)

~~~~
~~~~~ 20. AB STRACt (Caiffilu. on ,•vu, . .14. II ,,.c...a v and idontily by block monk ?)

Functional software development is a system for the development of high-
quality digital computer software. It has two components; functional
design for design, and functional programming for program implementation .
Functional, design has been documented and the feasibility of funct ional
programming is demonstrated •

~; I
Funct ional design is a top-down graphical method based on the concepts

DO , ~~~ 1413 EDITION OF 1 NOV 61 IS 0SS0l.tTI UNCLASSIFIED 1
10

~~~~~

_______ - SICUGIYY CLAS1IP ~~ *TI ON OF tuil PAGE (Olin Data tM.n~



$ICUmtY CLAUIPICATIQN OF tst$ PAGE(ITh..i 5.4. 5.,I .r.d)

20. Abstract

“ of nested-virtual machines and matching program structure to data
structure. Programs developed using these techniques consist of a set of
funct ionally cohesive modules w bse linkages are automatically handled
by the language processor compo~ ent of the functional programing
system. As a~result , they should be easily maintained and reliable .

1~

Ii
—

~

‘~~~s~~~
,on 

~~

i S  
-

-

P
g I~ tS

• S*CUN$?Y C~*~~,IC*~SSS S, ‘u’s e*siq ~~.. o.~. ~~~~~~~~~



A.FOSR-TR’ T - 0 1 1 0

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

FINAL SCIENTIFIC REPORT

FROM : Melvyn M. Drossman
New York Institute of Technology
Wheat ley Road
Old Westbury , NY 11568

• TO: AFOSR/PM
Bldg. 410
Boiling AFB DC 20332

Report Date : 14 November 1977

Grant No: AFOSR-77 3205

Signed : ~~ ~~~~~~~ 1y~’~~
Title : Chairman , Computer Science and

Electrical Eng ineering Technology

I

_ _ _ _ _ _ _ _ _  

___________• _______________



IL

I
a

•1~

• AIR TOI~~ OflI~I 01 3CI~~ TIPIC P2~~~RCH
OP TRAJSMITTAI TO

Th1$ tiehetcal r.port he) b.ee r vi...d and 1~
____ approved for pub 1.~u r.1.ss . IA* AIR 190-12 (7b).“. D1strtbut ton ii un1t Lt~d,

A. D. BLOSI 
•Tss~~1oa1 Infozust1o~ Off to.r -•~ -.•.•‘~ , J

_ _ _ _ _  -
~~
-

~~~~~~~
•
~~~~~~~~~~~~ 

__



• ~~~.- • .  _ _ _ _ _  - .-•. •

W I
FUNCE’tO~4At. SOF’1’W~~~ DEVELOE’M~NT

Melvyn ~~~. Dross’nan

1. T n t r oduct ir ,n

Ac1v~inc”~s in digit~ ] co mput~~r ha rdware  have made it
possible for compute rs to process p rog -a rns  whosr’ complexity
r~xceeds that which ii~ost designers are oresentlv capable of
effectivel y’ handl ing . Thli disparit y between the
state—of—the-art in the area of computer hardware and that in
computer software production has resulted in the generation of
a large quantity of inferior computer software.

Recognition of this problem is evidenced by research
studies in the area of software quality factors. The purpose
of these e f f o r ts is to de f i n e an d qu an ti f y  measure s for  the
evalua tion and comparison of the quality of software products.
The enti re f ield of sof tware eng ineering is a response to this
prob lem and an at tempt to advance the sta te of the ar t of
sof tware  development. A numbe r of method s for the creation of
better quality software have been reported . A variety of
app roaches are taken in these methods but mos t deal with the
programming (implementation) phase or the design phase.
Consi de ra ble effor t is also being expended in the areas  of
testing , veri fiction, and validation.

• F unc t iona l  S o f t w a r e  Deveio2rnent (FSD) is a system for the
design and implementation of computer software which insures
that the so ftware product will have cer tain proper ties which
are associa ted with high quality. Furthermore , it provides a
well—def ined approach to the software design process starting
at a much earlier phase than most other method s do. This
char ac teris tic is impor tant because of the cri t ica l nature of
the ear l iest design decisions ; if these ar e not we l l thought
Out the ultimte software product cannot be of high quality no
ma tter how exc ellent the subsequen t design and imp lementa t ion
techniques are.

It is necessary to have some familiarity with the work
tha t has been done in the area of sof tware quality fac tors and
in software design and implementation method s in order to
understand the reasons for , and advantages resul t ing from , the
use of the various procedures incorporated in FSD.

• E f f o r t s  in  the establishment of software quality factors
have been direc ted towar d the def ini tion and quan ti fica t ion of
those characteristics of software products which users
consider in arriving at a measure of a product ’s “quality. ”.

________________ • 

LI 

- _______________



FW~CTTO?~~L SOFTWARE DEV~1.JOPMENT
PAGE 2

A r~ thor cxton ri - •’e early report by a group at TRW (4)
oresi~nts a h i ’~rarchi :a1 ~et of qu~ ]ity factors in which each
factor on ~ given 12ve1 is det erm in ’~d by a subse t of the
factors on the precedin •~ level.

A group of investi gators at General Electric present a set
of  eleven software quality factors (12,13) as part of the
preliminary results of a project they are currently engaged
in. The values of the software quality factors are determined
by the values of a s~ t of software quality criteria. These
are found by static rneasureirien ’~,i.e., ex amin at ion of prog ram
listing s and other documentation as opposed to ~y~namicmeasurement which involves running the program .

Drossman (7) presents ten software quality factors based
on those presented in the TRW and General Electric studies and
interviews with a numbe r of software users. The results of
these interviews indicate that the relative importance
associated with each factor tends to be related to the
applica tion envir onmen t in whic h the sof tware is to be used .
A descr i pt ion of these ten f ac tors  fo l lows:

1. Correc tness

Correc tness re fers  to the deg ree to which a program
sa t is f ies the spec i f i c a t ions an d comput es resu l ts
according to these specifications. This implies
satisfactory accuracy and precision. Errors in
program performance resu lt ing from error s in
spec if icat ion ar e no t consi dered in determining the
correctness of the software.

2. Efficiencl

E f f i c iency re fers to the eff iciency of uti liza t ion of
computer hardware , inclu ding the central processing
unit , memory , peripheral devices , an d sys tem
software. This factor is measured by the quantity of
these resources which are used and the amount of t ime
during which they are used . It in clu des both
compil ati on and o ther program proces sing, and the
program execution. Efficiency does not refer to the
eff iciency of designing , wr it ing , tes t ing , or
debugging the program; these items are incorporated
In other factors.

3. F1ex ib i1i t~y

F le x i b i l i l y  refers to the degree to which a software
• product can he applied to a variety of applications.

_ _ _ _ _ _ _ _ _ _ _  — _ _ _ _



FU N CTTO t ~At,
PAGE 3

~1ea~~ireiie nt of this f~~ tor includes consideration of
thr si~ p 1 ic i t y  of •no ’l if y in q t~~e s o f t w a re  f or
the a p p l i c a t i o r n  :-‘s well ~s the breadth of
wplications. c o f t w a r e  pack~ qes consisting of
standard r~o’iu 1- ~s which can be combined in various
arrangements for different aoplications are more
flexib le than softwarr . designed as a single unit.

Flexibility re~.a]ts in greater efficiency for the
desi gner and programm er because it is more frequently

• possible to use existinq modules; this aspect is
sometimes referred to as code reusabUity. The use
of exis ting modules also enhances reliability because
these modules have generally been used to a larger
degree and are therefore more likel y to be free of
errors.

4. Inte9ritl

• Integrity is the degree to which the software ,
inc lu d in g the pr og ram and its da ta bases , are
protected from unauthorized access and modification .

S. ~~~~r a b i l i~ y

Interoperability refers to the degree to which a
software product may be interfaced to other software
for the pu rposes of build ing a more comprehensive
system , to support the operation of the software
product itself , or to support the operation of the
sof tw a r e  ~ -D which it is being interfaced .

6. M a i n t a i n a b i l i t y

Maintainability refers to the eas~ wi th which  a
software product may be m o d i f ie d  either to correct
errors or to satisfy changed soecifications. This
include s location of the error or segments to be
chan ged , as well as Implementation of the change.
This fac tor is ex trem e ly impor tan t becaus e of the
large amounts of money being expended on software; it
is est im ated th a t s ix ty percen t of al l computer
related expenditures by the Departmen t of
Defense are for software. ( 3 )

7. Port abIlit y



• FUNCI T ONAL SOFT ’JARE DEVEL OPME NT
PAGE 4

Portability refers to the de~ r’- ’~ to which a software
product desiqned for ~ given hardware/softw are
configuration , i.e. , m~’chir~e an d  ooer-~ting system ,
cm he moved to nnot-her systern. Included in th is
factor is a mc~asure of the ease with which any• required modific ations can be made.

8. R e l i a b i 1 i~~
Reliability refers to the degree to which a program
continues to operate correctl y after a period of
usage and m a i n t e n a n c e  and despi te  changes in its
envi ronmen t, e.g., chan ges of peri phera ls, operating

• system m o d i f i c a t i o n s .  This last aspect , the ability
to opera te  s a t i s f a c t o r i l y  despi te  changes  and
degradation in the environment, is somet im es ca lled
robustness.

9. T e s t a b i l i ty

• Testability refers to the degree of confidence in a
software product that one can gain by a given amount
of effort spent in testing . If it is possible , wi th
a g iven e f f o r t , to exercise all flowchar t pa ths and
test for all cri t ical data values , the program has a
hi gher degre e of testab i l i t y  tha n one for wh ich onl y
fifty percent of the paths can be exercised with the
same e f f o r t devo ted to tes t ing .

10. Usability

Usabi l ity re f e r s  to the ease wi th whic h a software
produc t can be use d . Consi dera t ions inc luded in the
measuremen t of usability are installation effort ,
e f f o r t needed to learn  how to use i t , ef f o r t re qu i r e d
for preparation and entry of input , and effort

• r equ i r ed for  in terpre ta t ion of o u t p u t .

There is general agreemen t in the literature that certain
approaches to software design and implementation result in
improved quality. Many of the methods for software design and
produc tion incorporate these approaches. A few of the

• impor tant general concepts of software desiqn are discussed
before considering more specific methods.

One of the pro b lems in des igning  com p lex sof tware is the
sheer s1ze of the program and the task which it is intended to
perform. The num ber of functions and their interaction makes

~ ep.. _



FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 5p

it dif fic u lt for desiqners and proq r -~~mer s to mainta in a
qrasp on the entire progr .m. Sm;~ration of the program into
modules r”1 ieves this probl •rn to a con~ idc~rab 1e c~xtent byoermit ting desi:in .~rs and T ro qrawrn- -r s to consider a number of
more limited probl~ ms , i.e., to separete the problem into a
number of smaller proh l ms. Modul ariz ation is nart of the
solution to the probl ei of designing complex software but , in
itself , is not the complete solution. Two problems are
inherent in modularization : determining what functions should
be incorporated in each modul e , and designing the interfaces
between modules. Many design method s are directed toward the
solution of one or both of these problems.

Software design/programming method s may be characterized
as being top—down or bottom—up . In practice , v ir tu a l l y  al l
me thods use a combina t ion of bo th approa ches but f r e quen tly
one will predominate over the other.

In the top—down approach the designe r starts by
considering the overall problem and separating it into a
number of sub—problems each of which will be handled by a
subprogram. Then each sub—problem is divided into still
smaller sub— problems which are solved by lower level
subprograms. The programming effort is handled in a parallel
fashion : the main  pro g ram is wr i tten f i r st an d is pr i m a r i l y a
sequence of s u b r o u t i n e  ca l l s ;  each of the top—level
su brout ines is wr i tt en nex t an d these invoke lower—level
subrou tines which  a re  w r i tten nex t, and so on.

In the bottom—up approach the designer identifies the most
basic functions which have to be performed ; these are
programmed first. Then these modules are integrated to form
larger modules and so on until the main program which solves
the entire problem has been generated .

It is widely held that method s which are predominantly
top—down are better than those which are mainly bottom—up . (2)
The major advantages of top—down design over bottom—up design
relate to interfacing and testing . Interfaces are attended to
in the initial design and fo rm an i n t e g r a l  p a r t  of the design
rather than being elements which are added on after the
modules are comple te. Testing is simplified because driver
routines need not- be written to test Individual modules. The
top—down approach is generally associated with Harlan M i l l s
who used it in conjunction with the chief—programmer team
management technique and structured proqrammlnq to achieve
very high productivity on a projec t to develop an information
retrieval system for the New York Time3. (1)

_ _ _ _ _ _  _  
•

-• • •• • • • •—- —-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



FUNCTIONM, SOFTWARE ~)EVELOPMEN’P
PAGE 6

Nest td— v i rt u:~ M a c h i ~~~~

Thifl is a concept proposed by Dijkstra (2) wh ich results
i n a top—dow a  w~du l :rizat ion of a program. The designer
st~~ r ts  by a s s u m i n g  the  e x i s t e n c e  of a m a c h i n e  t h a t  c o n t a i n s  in
its lanquaie an instruction which performs the entire function
of the proram to be writ ten. The program then consists of
this sing le instruction. The next task is to simulate this
virtual machine which really does not exist. The designer
divides the function of this virtual machine instruction into
a numbe r of m a j o r  s u b — f u n c t i o n s  and assumes the a v a i l a b i l i t y
of a m a c h i n e  whose i n s t r u c t i o n  set con t a in s  i n s t r u c t i o n s  t h a t
implement  each of these m a j o r  s u b — f u n c t i o n s .  Us ing  these
instructions a program is written which simulates the original
vir tual machine. This process is repeated , each time as sumin g
the exis tence of a v i r tu al mach ine  whose ins tru ct ions ar e of a
lower level than those of the preced ing virtual machine which
is being simulated , un t il a poin t is r eached at wh ich the
instructions are those of an existing machine or language.

The benefits of this approach , beyond the top—down
modularizetion are that the interfaces between modules are
wel l  de f i n e d  and changes in a g iven module can be m ade ra ther
easily because the modules are independen t of each other.
This approach is classified as a concept rather than a method
because the complexity of the data structures preclude direct
implementation of the procedures as outlined above. A number
of design and implementation method s based on these and other
approaches have been developed. ~ discussion of some of
these , especially those relavent to FSD follows :

-.

In the m i n ds o f many p r o g r a m m e r s  s t r u c t u r e d  p r o g r a m m i n g  is
synonymous with programming without the use of the GOTO
statement. This is a consequence of a letter by Dijkstra (6)
in which he indica tes tha t p ro g r ams can be wr i tten wi thou t the
GOTO statement and they will be better structured programs.
Structured programming encompasses much more than t h i s
however.  The im por tan t conce pt of struc ture d pro g r a m m i n g  is

• to l i m i t  the programmer ’s bui ld in g blocks so as to achieve
sim pler program structures. This is intended to insure that
desi gners and orogrammers can grasp the func tion an d opera tion
of the programs they are working on. Structured programming
limi ts program structur ’-~s to three constructs (19): sequences
of operations , the I F —TH E N—ELSE dec i sion  and the  DO—WHILE
iterative loop. Flow charts for these constructs are shown in
Piq. 1 . Tn a d d i t i o n  to limi t in g the variety of constructs ,
the structure constraint s also insure that each program
c~qment has a s~ nqle entry—point and a sing le exi t point.

I ______________________  
-• - -

~~~~~ 
—

~~~~~~~~~~~~~~~~
—

~
——------— - -- - - - -- - -— - • •



FUr4CrrONAL SOP’NARE DEVELOPMENT
P’~GE 7

~t r:ctu r~ d 1)~~~~~~qn ~~~m !~asite D~~ i~;n)

St r u ct u r~ d ;~~s i qn  (also reUe r red to as Com posite Design)
i s a er o c e d u r e  h~ sed on the m oduie ri zation 0F orogratns . There
ar~ threp major concepts i nvni~i~~l in this m e t h o d : (1) module
cohesion , (2) mocluir’ coupling , and (3) program decomposition .

Module cohesion is concerned with the functions
encompassed by a single module. Several levels of cohesion
are defined . On the lowest level , the various functions
grouped into a module are unrelated to each other and are not
in any way associaleed with each other. On the highest level ,
called functional binding , the functions included in a module
are functionally related to each other. The objective of
Structured Design is to try to achieve as high a level of
cohesion , or binding , in each module as possible.

Module coupling is concerned with the interfaces between
modules. Several levels of module coupling are defined ; the
g r e a t e r  the i n t e r — c o n n e c t i o n s  and i n t e r a c t i o n s  be tween
modules , the h ighe r t h e i r  coupl ing . The ob jec t ive  in
Structured Design is to achieve as low a level of coupling
between modules as possible.

The overall aim in Structured Design is to have each
prog ram f u n c t i o n  local ized in a single module with as little
interaction between functions as possible. This permits the
designer to concentrate on a single module at a time and the
programmer to write each module as a relatively
independent functional entity. This functional isolation of
modules facilitates both testing and maintenance.

Program decomposition is the process of partitioning a
• problem into subproblems for which program modules are

written. Graphical representations , called structure c h a r t s ,
a re  used to show the h i e r a r c h i c a l  modules  s t r u c t u r e  and the
inpu t s  to each module . Two p rot o type  p r o g r a m  s t r u c t u r e s  a r e
presented : one is an input—process—output paradigm and the
other is an as sembly l i n e  type of s t r u c t u r e .

~~~~~~~~~~~~~~~~
The central concept of the Jackson Method (10) is that

program structure should match data structure. Tt is claimed
that such an approach results in effective program structures
which do not depend on the cleverness of the program designer.
it is reasonable that proqr am structure and data structure
should he similar. The designe r is not dependent on inspired
insight into the program modular ization since the data
stru ctur r ’, assuming it is known , provit1~ s the basis for the
program structure.

~~~~~~~~~~~

. I 
_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _________



V
PIi~ Ci’tON\L ~c)F’1’~ P.RE DEVELOP~h~N’p3

f l thc’ r •~t t ~~l~

V: tt ou s addition a l soltware d~ veloorn - - n t  mr’theds which art
r e l a t .~d to FSO , hut  to a lesse r d eg r e ’ t h a n  the precedinq
ones , are desc~~i b d  briefl y in th’~ ren :~in-ier of this section.

Higher Order Software (9) is concerned with the problem of
insuring that. intermo dule linkages are correct. This problem
is one of the key problems in writing modularized programs.

Modu larizat ion based on 1evels~ of data abstraction (11) is
another approach to the problem of program design. Its
influence is seen in the inout—proces s—output decomposition
used in Structured Design. The major concept is to use
module s which perform inpu t and output and are separate from
the processing module. The inpu t and output modules per form
preptoce ssing and postprocessing , respectively, so that the
module which performs the principal processing routine is not
affected by details of data formats.

WE PO (16) is a method for graphic documentation of the
top—down des ign  of a s o f t w a r e  system . I t  uses a set of
charts , augmented by notes , which show the var ious levels of
p r o g r a m  decompos i t i on  based on an i n p u t — p r o c e s s — o u t p u t  model .
A graphical index is used to relate the charts to each other.

The use of og desi~ n lancjua qes and requirement
1anqua ~ es (5 , 8) is a n o t h e r  app roach  to the p rob lem of s o f t w a r e
design. Functional specifications are written for each
module. Subsequent phases of the design , development and
p r o g r a m m i n g  process are guided by these specifications and
the results of each phase are checked against these
specifications for completeness and consistency. This
approach is in tended  to f a c i l i ta t e  c o m p u t e r — a i d e d  v e r i f i c a t i o n
and val iia ti on .

3. Functional Software Development Cornzonents

F u n c t i o n a l  S o f t w a r e  Development  is a system for  the  des ign
and implementation of high-quality software. The major
components of the system are shown in Fig . 2.

3.1 F u n c t i o n a l  De s ign

F u n c t i o n a l  Desiln (FD )  is a method for designing a program
or system of programs using a top-down approach . The method

• • is based on two key concepts: the ne ste d—virtu al machine
r on c e p t  and t h e  m a t c h i n g  of orogram structure to data
struc tu rr ’ . Graoh irnl r~ orese ntation s of the v ’rious progr am

1~~ i r  ~ls , t-~’llc ’d Tm~~~ ona 1 D~~ i opm ’i t ( n r t c  (F U C ’ s)  , are used

I

-
_ _ _ _ _ _ _ _ _ _ _  _ _  



U~’JCTIO~~ L SOFTWARE DEVELOPMENT- PAGE 9

in the problem (lec om nposm t~1on. ~ of Function~m l Desi an
P r o c e d i m e  guide this d~ -~omoosition. Each FDC consists of
three elements: the Deveiopr~tent Graph , No~ies , and the
~~~~~~~~~ Gra ~ h .

F u n c t i o n a l Desi gn r an he used by itself to desiqn
high-qualit y programs hut the total software development
process is greatly enhanced by the use of Functional
Programming .

~~~~~~~~~ 
t i o n al  P~~~ r a rnm in~

Fun ct iona l Prog r am r n i n ~ (FP) is a method for implementing a
p r o g r am  des igned u s i n g  FD. It greatly simp lifies the
p r o g r a m m i n g  process and improves the correctness of the
resulting program. The two method s, FD and FP , comprise a
synergistic combination .

Functional Programming consists of a language , called
Functional Pro~ ramrnin~ Lang~~ qe (FPL) , and a proce ssor for it,
called the Func tcona i  Languaqe Processor (FL P ) . The language
consists of three major elements: a basis language which is
an existing language or variant of one , the Data Oescri2tion
(DAD) wh ich is a unified and comprehensive descr ipt ion of the
p ro g ram d a t a , and f u n c t i o n a l  f u n c t i o n s  and n o t a t i o n  which
provides for program modularizatio rt .

Functional Design is a w el l, developed method wh ich  has
been applied to the design of a number of systems. Functional
Programming is not n e a r l y  as well developed ; the basic
requ i r e m en ts have been de f ine d and some p r e l i m i n a r r y
consideration has been given to the Functional Language
Processor in terms of its feasibility.

Functional Design is a method for the design of
high—quality software. A body of procedures are used to
create a set of Functional Development charts that are related
to the ultimat e program in much the same way t h a t  a schematic
diagram is related to a circuit.

~~~~~
The two key conce pts wh ich provide the basis for

Functional Design are the nested—virtual machine concept and
the approach wherein program structure is related to data
structure . Functional Design provides a design implementation
of the nested virtual machines as a family of functional
sub—programs. The m o d u l - m r i z a t i o n is d e t e r m i n e d by the d a t a
s t r u c t u re s so t h a t th~ prn or rmm structure 13 not only related
to , but is act :mi.’fly determined by, the data structure.

~L. ~~~~~~~~~~~~~~~~~
•~~~ •~~~~~~~~ • _ _

FUNC’rIO~ ~I.. SOF’rWAR~ DEVELOPMENT
PAGE 10

Furthermore , the function of the modules are dict ated by the
in forma tion flow h ’tween input and output. The term
“data—dir ected proqr~ m development ” best summarizes the direct
i n f l uence of t h e d a t a s t r u c t ~ir c: on the p r o q r a m s t r u c t u r e .
Data—directed progr am development , in addition t o p r o v i d i n g a
f i r m bas is fo r p r o g r a m m o r 3 u l a r i 7 . a t i o n, a l so guarantees
functional cohesion of the modules as defined in Structured
Design (17). This is the highest level of module cohesion and
helps to assure a high level of software quality .

Functional Design and Functional Development Charts in
Darticular , provide the designer with a tool which may be
compared with a zoom camera lens. The designer starts the
top—down design procedure by looking at the overall program
requirements and identifying the major data elements and the
information flow between them. The “lens ” is then zoomed in
to take a more detailed look at some aspect of the problem by
u n f o l d in g , or de f i n i n g , the data structure and resulting flow
of informa tion in more detail. As a graphical representation
of the top—down decomposition of a system , Software
Development Charts are similar to the charts used in the
Structured Ana~y~ is and Des19,~ Technique by SofTech Inc . (15)al though the charts are quite different in other respects.
There ar e also simil arit ies between Func t iona l Development
Charts and the charts used in the HIPO method. (l6) Som e of the
elements of the HIPO method did motivate the use of
corresponding elements in FSD but the FDC ’s are quite
different from HIPO charts.

The concept of level of data abstraction (11.) has had
impact on Structured Design and various other methods. This
concept is not incorporated in FD but the two are compatible;
FD does not guarantee , nor does it preclude , levels of data
abstraction in programs designed using it.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
PD is intended for use in the very ea rliest s tag es o f

software developmant. The use of requir ements languages (8)
• to specify what a program is to do sometimes appears tO

encroach upon the designer ’s options by specifying how
• something is to be done. This is a poor practice because the

earlies t design decisions provide the foundation for the
en tire design and hence are very critical; if they are mad e
wi thout adequate considera t ion they may well preven t the
desig n of a sof tware pro duc t having a quali ty level which
could have been realized .

• FD provides the designer with the tools to specify a data
structure and assoc iated prog ram to imp lem en t gi ven functiona l



FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE ii

P
requirment s . The in fLi cn c ’e of data struc tu r ” on nroqr i~
structure mak ’s it d~ sir ,~h1’~ to 12T’ve the specificat ion of the
data structur ” to th~ d r ’ s iq ner insofnr ~s t h i s  is f e a s i bl e .
Even , when physical data formats are given , the designer can
freguently overlay various conceptual structures on them
r e s u l t i n g  in p r o q r am s  wh i ch a r e  q iti t~ different. Experience
has shown that progr am efficiency is very sensitive to the
conceptual data structurin g . The definition of the conceptual
data structure seems to be the most c r i t i c a l  phase  of the
design process and the one which is most dependen t  on the
designer ’s judqement. This is the activity which should be
given the major oart of the designer ’s creative effort; the
rest is almost automatic using FD. Perhaps the most important
characteristic of Pt) is that it centralizes the important
matters of judgemen t in the design process into the single
problem of deciding upon a conceptual data structure.

s o f  
~~~~~~~~~ 

s

The design process , using FD, proceeds through a numbe r of
levels , each level corresponding to one of the nested—virtual
machines . The top level identifies the major data components
and their interaction as a single function corresponding to
the single instruction executed by this virtual machine. Each
subsequent level defines the functions of the preced ing level
using a numbe r of sub—functions. Each function of the
precedi ng level , except those with a trrminal definition , is
specified by a Functional Development Chart.

The Functional Development Chart consists of three main
parts. The Development GraEh , which is the first part and is
always present , shows the information flow between the data
elemen ts involved in the function. Nodes represent data
elements and d irec ted arcs repr esent informa ti on flow or
processing . The Notes , which is the second part , an d is

V

optional , is a set of notes which are used to define
abbreviations, to provide information related to what is
shown in the chart , or to provide “terminal definitions ” of
some sub— functions , i.e., to define sub—functions via
mathematical equations or verbal descriptions. The !~~uence
Graph , which is the third and f inal oa r t and is also
opt ion al, shows the sequence in which the processing must
occur.

A Functional Development Chart may be seqmented for
pu rposes of clarity. Two types of segmentation may be used .

Lateral Seqmentation is used when a chart is too large to

~ it or~ a si~~ ie page. ‘[‘he chart is then essentially cut

~~ into pieces as a multipaqe map is cut into pages which

: : .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~.. 

_



1’tI~ ’T I~)L’\1, e’)f’ ‘iJ ( \~~E ~~~~~~~~~~~~ :
P” ;’~ 12

match at the pa~~’ bound ’ tic ~s. This is illustr ated in Fiq .
3a.

Ov er1 -~~ SeJ,rn mtat i o n  i ~~ w h e n  cha r t has many
cros~-ing irc~; whcch rn~ ke it difficult to read or draw.
The various segrn~ nts are mad e r~s if they warn
transpar encies for an overhe~ - 1 projector such that if they
were all overlaid upon one another the projected image
would be the complete chart. Since the segments are not
actually overlaid in this way, it is not essential that
the same element appear in the same location on each slide
but it is helpful to keep them in approximately the same
places unless this interferes with the clarity of the
presentation. This type of segmentation is shown in
Fig . 3b.

~~ 4 _ ! t ~~~!i~ ~~. ~~~~~~E~~~~~~~~~~~~~~~~~!~~~E

The major component of the FDC is the Development Graph .
The three characteristics of a program depicted in the
Development Graph are the data elements , the data structure or
relationships among the data elements, and information flow.

Da ta Elem en ts

A data el emen t may be a s im ple scal ar quan t i ty,  an ar r ay ,
a table , or a COr3OL or PL/l type of structure . The data
element may be in main memory where it is accessible to the
ari thmetic processing uni t or it may be stored on some
peripher al device fr om which it mus t be read into main memory
before it can be processed . Different graphic symbols are
used to denote characteristics of the data wh ich are relevant
to its processing .

The storaqe location of a data elemen t is indicated by use
• of a circle or a square. Data which is in ma in memory is

shown by a circle while d ata which is sto red on a peripheral
device is shown by a square. If a data elemen t consists of
components, some of which are in ma in memory and some on
peripheral devices , the circle is used . If the designer has
not yet decided whether the data at a given point will be in
main memory or on peripheral device the circle is used. The
circle is the more gener al symbol and can be use d to represent
data anyplace; the square is used to indicate that data is not
d irectly accessible to the arithmetic processing unit.

The structural characteristics of a data element is
indicated by the use of a single circle (sauare) or a double

• 
. 

~~—- - .~ circle (‘~quar e ) . Scalar element ..~ or data structures which are
not a set of items having iden tical format- s are represented

- :1



P I J ~~’IfONAL ~~PTWARE DEVELOPMENT
PAGE 13

by s i n q 1 c i r c l ’~ (~~iu~~r e s )  . A r r a y s , t -~bl es , or f i l e s  of
!ecor-] -: t

~avinq t~~-~ ~~~~ f~~r r r ~~t :~ ar e  r e o r e s e n te d  by double
circles (~~lu rcs) . St r u ~~~ur e s  as usz’d in COBOL or PL/l are
r e p r e sen t r ’d by ~ i s q l e  c i rc lc ’ s ( s q u ar e s ) . The single circle
(snI1~ rP) is the mor~ general symbo l and may be used to
repr’~-~nnt those elements for which the double circle (square)
may ~~ used . The various symbols used to represent data
elements are shown in Fig . 4.

Each data element is labelled . The label of a data
element become” the identifier of the data element in the
proqram. For scalars or structures , the identifier is a
simple name (general ly chosen so as to have mnemonic va lue)
subject to the restrictions of the programming language to be
used . For arrays , tables , and files the name is followed by a
pair of parenthesis inside of which is the numbe r of elements ,
i.e., dimension information for an array , numbe r of entries in
a table or numb e r of records in a file. If any of these
quantiti es are unspecified , the number sign (#) is used to
indicate that fact.

Somet imes data elements appear more than once serving
different , hut related , functions. For example , a data
elemen t may serve as bo th inpu t and ou tpu t , as is typ ical of a
value which is to be updated . In such cases the nodes are
labelled with the same nama but with a suffix consisting of a
period followed by the integer one , two , three , and so on to
disti flguish the different versions (update values). The
initial mod e is shown without a suffix.

i 2 ~~~:j:2~ !12~! 2~
The flow of informat ion or data processing is shown by

solid directed arcs. Each arc starts at a node and terminates
on a node. Each node , except an inpu t node , is the value
computed by a function subprog ram corre sponding to an
instruction of one of the nested-virtual machines. Ml the

I - ar cs te rmina t ing on a s ingle node are labelled with the same
name , which is the name of the func t ion, suff ixed wi th a
period and an inteqer starting with one, then two , and so on.
These integers indicate the positions of the arguments in the
f u n c t i o n  call  as shown i n  Fig . 5.

In general , informa tion flow is shown from left to riqht
and numh~ rlnq is ascend ing from top to bottom . These
convent ions may b- broken for the sake of clarity. When a
chart is segmented , ei ther all or none of the arc s term ina t ing
on a nod e should be shown on any segment. This prevents the
e r r o r  of s h o w in q  the  ~; ‘na f u n c t i o n  with differ ent inputs on
different sP’jtnents.



FJt ~JCTTO~ AL cOPT.~At~ D EVEJ ,O°~f E~’j~PAGE 14

rh ere a r e  ~~~~ ;ionc ~ ~ th’~ ~~ :fl~ t n - i c c a t  i o n  of the same
fu n et ion is ~~~~~ on m~)r’? ~~~ ~~~~~~ F inc’ t i onal development
chart. in ~‘irh ‘:as es t~i ’  cm r søo~~d i a ’j  ar c s  should be
labe l 1 ~1 only ~ia the one whi ~h is t~~ t~~ eval u~ ted ‘1ur inq the
ni:~~;r a m , j ~~~r • ,  the ti rst oc ’urr eere . T~ r r e m a i n i n g  c h a r t s
repres~ n~ the sarnc ’  call of che Iu’tct- ion and do not represent
additi~ rtal processing ; they serve only to represent a complete
p i c t u r e .  The d e s i ’j n e r  d o c u m en t s  this by not laaelling these
a rc s .

Data Structure

The data structure , or the relationships among data
elemen ts, ar e shown by broken directed arcs.

The components of a data elemen t are indicated by broken
directed arcs radiating from the “parent” data elemen t to the
components as shown in Fig . 6. The broken directed arcs are
labelled with the integers one, two , three , etc., to indicate
the sequence of components. ‘En general , this numbering is
ascending from top to bottom but this convention may be
ignored for purposes of clarity. When a chart is segmented ,
either all o r none o f the components of a da ta elemen t should
be shown on any segmen t so as to avoid confusion.

I t is cumb ersom e, and frequently virtually impossible , to
show all the components of an array, table, or file. It is for
this reason that the doubl e circle (square) notation is used .
This notation is augmented by a selection notation which is
indicated by the use of a box. The most common situation is
iterative processing of the elements of an array. Figure 7a
shows the select ion of e l emen t s  A ( 2 ) ,  A(4), A (6) ,

A ( l O O )  of an a r r a y  A . A n o t h e r  common case is the select ioon
of a single el?ment from a table based on the result of a
computation . Figure 7b shows the selection of an element T(X)
from a table T based on the computed value X. A shorthand
alternative is shown in Fig . 7C; this notation may be used
whenever a single element is to be selected . The notation in
Fig . 7b contains a variant on that which has been presented ;
the semic ir cula r node is associa ted wi th an indexing or
se lec t ion  o p e rat i o n . In  this case it is labelled T(X) so the
r e l a t i o n s h i p  is c l e a r .  The s h o r t h a n d  n o t a t i On  of Fig . 7C is
e q u a lly  c l e a r ;  the dotted line represents a selection of an
e l emen t  f r o m  the  a r r a y  P and there is a flow of informa t ion
a long  the solid ar c f rom X to T (X) mak ing the  rela t ionshio
clear. Furthermore , the  solid arc i s label led with the
spec ia l  name SEL (for sel ect) which eliminates any possible

• ~ u c S t i o n . The broken  a r c s  in a se l ec t ion  pr oc ’~ss a r e  not
1 abcll”d hr’r~~is•’ there is always lust a single ~uch arc. The
arrow head ’~ on the broken arcs where they cross the selection
boxes i~ Pigs. 7~. •’nc1 lb re~ resent the selection operation.

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _  

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -— - _ _ _ _ _ _ _ _  _ _ _ _ _ __ -



FTj~-~ :’rJ )’; ?\L sOP’r~JARE DE VE L D P M F .’~T
PAGE 15

\ f i n a l  an~, l i c a t i e n  ef the h r o k - ’n d i r e c ~~~d a rc is thi~
c~e ’ i  s i o n  ~>ro ce ,~s , t y~ i : • i l  l y  3~~rr.’m by ~ i :‘eond—shar,~~1 outi m e
in a f1o- -~cha rt ;sI irnp!em ’n’d by an IF sta temen t in h i lh—l evr l
lanqu a~jr’s. !‘hi~ dc -~i~~ion  proc e~~ i s  ch~~ract e rizedd by a node
with a sinqie sn ild d ir ert -~-1 arc an ] mu lt iple broken direc~~ darcs t~ r ffli n a t inq on it. The broken arcs are labelled with the
possible values that the nod e at the beginning of the solid
arc may have; most often these will be the integers one , two ,
three , etc. The node at the termination of these arcs is ma cic
equal to the value of the node at the start of the
correspondinq broken arc. This process is illustrated in
Fiq.8. The label on the solid arc is the special name D~C for
dec is ion .

The approach to the decision process using FSD is somewhat
different from that taken when conventional method s are used .
The situation dep icted in Fig . 8 illustrates the difference .
The flowchart in Fig . Ba indicates that one of two values of X
will be computed if I = 1 or I = 2 and a value of Y will be
computed if I 3. This implies that the value of X is
changed and Y is l e f t  unchanged  if I = 1 or I = 2 and the
value  of Y is changed and X is l e f t  unchanged if I = 3 .

In Fig . 8b the inputs are shown as A ,B ,X.l , and Y.l. The
inputs  X . l  and Y. l  are the va lues of X and Y , respectively,
p r i o r  to the decis ion box in the f l o w c h a r t .  The va lues  of Xl ,
X2 , and X3 are the three possible values of X after the
decision and related processing while Yl and Y2 are the two
possible va lues  of Y. The new values after the decision and
related processing are X.2 and Y.2. Two occurr ences of each ,
separated by an ID ( i d e n t i f y )  f u n c t i o n  a r e  shown so there  w i l l
not be a m b i g u i t y  as to whether a dotted line is part of the
decision operation or that it indicates a componont of Z. The
node z represents the entire o u t p u t  c o n s i s t i n g  of the two
components X and Y; this s i n g l e  ou tpu t  is required because a
function subprogram can have only one output. Restricting all
subprograms to function subprograms retains the relationship
be tween the subprograms  and virtual machine instructions which
compute a s i n g le  r e su l t .

A second opt ional  component  of the  FDC is the notes
section. It contains a series of sequentially numbered notes
which  d e f i n e  a b b r e v i a t i o n s , b r i e f l y  d e s c r i b e  the intended
purpose of functions used in the chart, define by mathematical
eq u a t i o n s  or textual descr iption functions used in the chart ,
or p rov ide  o t h e r  i n f o r m a t i o n  such as date f o r m a t s , type of
d a t a  f i l e s , etc.  The t h i r d  m a j o r  component  of the FDC is the
Sequence G r a p h . This optional component is use~ to specif y
the segience In which data elements m u s t  be processed . When
the sequence of p roce ssin q  op e r a t i o n s  do ’c not m a t t e r , the



FU~ CTTOr’1~ [, SOPTW~RP DF~VELOPME~T
PAGE 16

Seqtic-nce Graph 1:iy b~ omitted . som e or all of the nodes that
appear in t h e  Oevelopli? nt (~raQh are used in the Sequence Graph
toqeth~ r 4ith solid directed arcs which show the sequence of
proce ssin~ as il lus tr au - ’c l in Fi g. 9. Thi s  g r a p h  i n d i c a t e s
that data elnrnent D csnnot be computed until A and B have been
process’-d . Furtherulore , both D and C must be completely
ptocessed be fore processing of E can start.

In addition to these three major components , a system of
chart numbering is important in keeping track of the charts.
Each chart is identified by a numbe r of the form i . j  — k.1
where  i ,j,k , and 1 each represent unsigned decimal integers.

i represents the level of the parent chart , i.e., the
c h a r t  in which  the f u n c t i o n  being d e f i n e d  f i r s t
appea r s .

j i d e n t i f i e s  the s p e c i f i c  p a r e n t  c h a r t .  This  va lue  is
omitted if there is only one chart on level i.

k is the level of the chart being prepared . Usually,
but not always , k = i+l . 

—

1 provides  u n i que i d e n ti f i c a t i o n  of the  c h a r t  so as to
d i f f e r e n t i a t e  it from the other chart.s on level k.
This value is omi tted if ther e is only one char t on
level k .

A gr aph i c a l  index showin g the f a m i l y o f char ts as a tree
s t r u c t u r e  is used to r e l a t e  the charts. In addition , an
a lphabet ical  index , by f u n c t i o n  name , is used to avoid
m u l t i p l e  d e f i n i t i o n s .  Th i s  index  i nd i ca t e s  a l l  f u n c t i o n s
invok ed by each f u n ct ion and also c o n t a i n s  r e f e r ences  to a l l
func t ions wh ich invoke the gi ven func t ion. An i llustra t ion of
the two indices is given in Fig . 10.

In or der to i nsu r e  th at a l l  requ i r e d func t ions h ave been
de f ined  a d o l l a r  s ign ($) is p r e f i x e d  to each f u n c t i o n
invocat ion  upon comple t ion  of it s  d e f i n i t i o n .  I t s  d e f i n i t i o n
is complete when a FDC for  i t is comp leted or when i t  Is
d e f i n e d  in a note . C e r t a i n  f r e q uen t l y  used f u n c t i o n s , such as
GET ( i n p u t ) , PUT ( o u t p u t ) ,  ID ( i d e n t i t y  or move) , SETJ
( se l e c t) ,  and DEC (decision) are predefined and the doll ar
sign is Included with the function invocation immediately.
When a l l  f u n c t i o n  invocations in a FDC are defined , the
f u n ct ion n a m e ,  wh i ch follows the chart identification number ,
is p r e f i x e d  by a d o l l a r  s ign ;  t h i s  i n d i c a t es  t h a t  the f u n c t i o n
is complete . When all the FDC names are prefixed by d o l l a r
s igns  the d e s ign  process is complete . ~~:

_ _  

_ _ _ _- ~~. - - “.__ 

_ _



FUNrTrO94L ~ WTWl\~~ D!~VELOPME~T
PAGE 17

The fin al elemen t in < ‘ FDC is a brief description , usually
a ri~~pl~ sin:jle sentoncc , of the function defined on the
c h a r t .  The ability to des~’r ihe the f u n c t i o n  or  a module by a
simple sentence is one of the tests used to det’~rmine whether
a module has Funct ional cohesion (17); incorporating such a
description in the chart verifi es that the function defined by
the chart satisfies this criteria. The design process itself
results in function al cohesion since the defined function
computes one data elernnn t which , even if it is not a simple
element , is a collection of functionally related elements.
Never the l e s s , the f u n c t i o n  d e s c r i p t i o n  serves as a u se fu l
check and provides useful documentation. A typical SDC is
shown in Fig.ll.

Functions defined by FD are called functional functions ,
or F—functions , because they are functionally cohesive. Each
F—fu nction ’s name begins with a dollar sign (inserted when it
is comple te ly  defined) ; this distinguishes it from ordinary
functions defined during program implementation.

The FU process is one o f the stepwise re f inemen t star t in g
at level 1 for the overrall  so ftwar e system and provid ing more
and more detailed specificationos of the design on successive
levels.

Each FOC defines a F — f u n c t i o n  w h i c h  corresponds to an
i n s t r u c t i o n  for the v i r tua l m a c h i n e  assoc ia ted wi th the g iven
level . The m a j o r  component  of the FOC , the Developmen t Graph ,
is created us ing a three step process :

1. The data elements are ~~~ci f ied by r e f i n i n g the
d e f i n i t i o n  of the inpu t and output elements shown on
the present chart. This refinement process is one of
the specify in g the componen ts of the in pu t an d ou tpu t
e1~ men ts , generally to one level.

This s tep may involve only the  t r a n s f e r  of
informa t ion g iven in the sys tem requi remen t

* s p e c i f i c a t i o n  tà the Development  Graph  or i t  may
r e q u i r e  the designe r to develop the data structures.
The development of the data structure by the designer
is p r o b a b l y  the most critical aspect of the design
process and the step to be most c a r e f ul l y  considered .

2. The information ow is ~~~~~~~~ by d r a w i n g  solid
directed arcs indicatinq the sources of information
required to determin e all output quantities.



FU~’1.T IMN ~L SOFT ;~ARE DEV~LOPMENTPAGE 10

This step i3 quite s~ ra iqhtf orwa rd providing the
desi~ ner un:ler ~nds ~~ht~ fijn~ tjonal requirements of
thc system . Pifficu lt y in thi~ ~rea in d ic~ tes one of
two problem ;~ either the designer does not
understand t~ ie r e q u i r e m e n t s  or the designer has
started w it -h a poo r data ~ttucture . In the former
case, the desi gner mus t go back to the requirements
specification which may be found to be incomplete.
Whether it is or not the designer must get the
i n f o r m a t i o n  necessary  to p e r m i t  comple t ion  of the
design.

In the l a t t e r  case , the desi gner mus t analyze the
situation to determine the source of the c 3 i f f i c u 1t ~~.Very o f t e n  the d i f f i c u l t y  is due to a c o n f u s i o n
between the functional requirements and the
procedural approach to the program. The designer
must avoid any consider at ion of how proc essing wil l
be accomplished (procedure); attention should be
given only  to the sources of i n f o rm a t i o n ,
identification of the results to be computed , an d
informa tion flow (functional requirements) .

If  the above consi der at ion does not elimina te the
d i f f i c u l t y  it is g e n e r a l l y  due to an i n c o n g r u i t y
between the data structure and the approach to the
program des ign  which  the des igne r  has  in m i n d .  This
si tuat ion re qu i re s iden ti f ica t ion of the source of
c o n f l i c t  fol l owed by a change in the data structure
or the des ign  a p p r o a c h .

An iter at ive proce dur e of da ta struc ture
spec i f i cat ion , spe c i f i c a t ion of i n f o r m at ion f low ,
modifica t ion of da ta struc ture , etc., is often
required to generate a satisfactory design. This
proce dur e may r e q u i r e  cons ide rab le  t i m e  and thought
but the effort is well spent because t h i s  is the
c r i t i c a l  des ign  a c t i v i t y .  If  the d a t a  s t r u c t u r e  and
I n f o r m a t i o n  f low complemen t each o the r , the bas ic
program structure is good and a quality software
product can be generated ; if the data is poorly
s t r u c t u r e d  or does not ma tch  the p r o g r am  des ign , no
amount of effort in subsequent stages can generate
any thing be tter than a clumsy and inefficient
program. Once this phase is completed the remaining
design steps a r e  ve ry  simple an d the prog r a m m i n g
procedures  a r e  much s imple r  and faster than they are
when c o n v e n t i o n a l  method s a r e  used .



-~~~~~~~~~

FU~JCT IOt ’I A [, S~ FTW 7\ RE DEV l~1,r)PME~~I’PA GE 19

3. The f u n c t i o n s  ~r -~ i d e n t i f i e d  by l a be l l i n g  the  so l i d
direct ’~d arcs with function names . The name are
generally chosen to refl ect the functional purpose of
t he  f u n c t i o n .  A no te  is f r e q u e n t l y  i n c lu d e d  i n  the
Notes Section wh i ch describes this purpose .

This step is the bridg e to the procedural aspect of
software development. It provides the information
necessary to refine the design on subsequent levels.
Once a function is defined in this manner it can be
isolated from the overall problem so that the
designe r can concentrate on this one part of the
problem which is functionally cohesive module whose
interfacing is clearly defined by the data elements
which are its inputs and output.

The overall design process is best presented by an
e x amp l e .  The f o l l o w i n g  example  does not illustrate the full
power of the method because of i t s  s i m p l i c i t y  ( f o r  the sake of
brevity) but it does illustrate most of the key features of
the method .

I
A software system for monitoring natients in a hospital

i n t e n s i v e  ca re  u n i t  is to be desi gned .* A moni toring uni t is
loca ted a t ea ch bed in th e intensive care unit. Transducers
which  m o n i t o r  various phys iological factors , such as blood
press u re , heart rate , respiration , temperature , etc., are
connected to the monitor. The monitor also contains a number
of dials which are use d to input the patient’s identif ication
number , safe ranges for each factor being monitored (a high
and low value are set for each factor), and the r a t e  at which
the p a t i e n t  is to be mon i tored .

The monitors connect to a centralized computer which is to
check them at i n t e r v a l s  accord ing  to the m o n i t o r i n g  r a t e
specified for each unit. The measured data for each patient
is to be recorded in the p a t i e n t ’ s record and an a l a r m  is to
be illuminated at the nurse ’s s t a t i on  whenever  a f a c t o r  f aL l s
ou t s ide  the sa fe  range  for  the p a t i e n t .  There is a separate
a l a r m  l i g h t  for  each f ac to r  for  each p a t i e n t .

* The specifications for t h i s  example  a re  based
on thosr~ used by Myers in his text on composite
design (14).

H



~‘ i J’~C’I’ION~ L corr~’mRE r)EvEr,r)PMEN’r
PAGE 20

~‘ cn : t h ;  e~ aupl e it i~ i-~ssum-~d that four factors for each
of no t o  2 5  p t i ’ n t . s c~~n be ‘non ~~t or e d . The m o n i t o r i n g  can  be
s- -’t from one n~ concl t~ on~ hour in one second steps for each
patient and the sa F~ r- inq e v~ 1 u~~s a r e se t  as f o u r
de cimal— d ig it values which ace internally stored as
floating—poi nt numbers. The pati ent identification number is
a nine digit integer. In addition , each monitor has an off—on
switch which is net on when a patient is being monitored and
i s o t her w i s e  o f f .

5.2 Design

The F u n c t i o n a l  Development  C h a r t s  a r e  developed in t h i s
section . Before doing this the general approach to the
problem is considered . The first problem is finding a method
for  m o n i t o r i n g  each p a t i e n t  a t  the a pp r o p r i a t e  r a t e .  One
approach is to have a timer in each monitor which interrupts
the computer when it is to be monitored . A more  economical
and simpler approach is to have the program cyclically check
all the patients and measure each patient ’s factors or skip
the measuremen t- depending on whether the monitoring interval
has elapsed or not; this approach is the one used in the
system presented . In order to m i n i m i z e  the time required to
check whether a patient should be monitored or not , the
m o n i t o r i n g  i n t e r v a l  and time of last monitoring for each bed
in the intensive care unit are held in an array in m a in
memory. The monitoring interval is the input from the monitor
unit. This is input by a separate program which interrupts
the m o n i t o r i n g  p~ u g r a m  whenever  t h i s  v a l u e  is changed at any
of the mon i tor units . A one—bi b value which indicates whether
the monitor is on or off is also stored for each bed in the
same area of main m em-~rv and this is set by the same program
which sets the monitoring interval. This program is rather
simple and its design is not considered .

The monitor i ng progr-ii~ is developed using a sequence of
FDC ’s. The first level in the sequence, shown in Fig . 12 , is
straightforward and obvious; it shows the basic data
structure. The circular nodes used for both input and ou tpu t
indicate that neither of these data elements is purely from or
to a peripheral device; this is due to the array of data used
to cont ro l  the m o n i t o r i n g  w h i c h  is stored internally.

The inpu t to this program is derived from three separate
sources: the internal array used for controlling the
monitoring , a rea l—ti ine clock whose output is denotated CLOCK ,
and the mon i tor units. The internal array is called INFILE ,
the value of th’~ real time clock is assigned to T, and the
monit or inputs ~re celled MJNIN . The v a ij e  of T is assumed to
vary from 0 to 24 X 60 X 60 — 1 86399 1 numbe r of seconds



FrJNCPT ONP. L S O E ~’TWT\ tl F~ DE V EEM PM~~ T
PAGE 21

in (lay minu s one) . ~t the end of ~nch d~iy it resets to zero
~e1 m c ;  etien ts b y onc~ ~~ ch ~e~’ond . Note th a t ~-~)N I~’4 is shown

a ~i ’r e f l 1 e  to m d  i.~ r t C  th~ t iii is l’ c:ated on per i pher al
-levice~;. The ~i~~ elOpeT~ nt: of th~ input is shown in the second
level FDC in F i q u r c  13. \t t h i s  point, no development of the
cutout is shown bec-ius--~ th a t is a seperat- e problem.

The development of the dati structure shown in Fig. 13 is
the first step of the three—step chart development process.
The nu m bering of the components is arbitrary, but it is often
helpful to have the numbers agree with the sequence in which
the data components are used .

The second step in the process is to draw solid dir ect~ darcs reoresenting information flow. There is such an arc from
each inpu t component to the ou tpu t  because information from
each of the components is requ i.red to determine the output.

The third and final step in the chart development process
is the labelling of the arcs introduced in the second step.
All the  arcs t e r m i n a t i n g  on a s ing le  node correspond to one
f u n c t i o n a l  operation and are therefore labelled with the same
f u n c t i o n  name fol lowed by a per iod and different integer
suffixes starting with one. The name chosen in this case is
MONITOR since the function is performing a monitoring
operation . The assignment of the suffix value s 1 , 2, and 3 is
arbitrary but it is generally a good practice to have these
numbers correspond with the sequence in which the inputs are
used in the function .

When the FOC for PROGRAM is complete , as it is now , a
dollar sign ($) should be prefixed to its invocation in the
first level ?DC of Fig. 12. When that is done , a l l  f u n c t i o n s
invoked by MAI~i will have been defined and a dollar sign
should be prefix ed to the function title MAT!4 in Fig . 11. This
indicates that- all of the fuctions it invokes are defined .

¶ The result is the revised top level chart shown in Fig . 14.

The next step in the design process displays the cyclical
checking of each patient to determine whether or not the
patients factors should be measured . At this ooint the
designer considers the data in greater detail. The internal
data , INFILe , is an array with an entry for each bed in the
intensive—care unit. The monitor inputs are a set of i n uu t
devices , one for each bed in the unit. For purposes of
design , these devices are treated as entries of an array. In
the final implementation it may be necessary to provide -~~

rout ine that selects the aopropri~~te monitor device, but this
need not be of concern ~it thin point. The final consideraticn
in the det~ development sten is the output which must also be

_ _ _ _ _  

- —~~ —~~~~~~- - --~~~~~~ - -



FUN ~’I ’  TdN 1 5’) 1-’ P ~J ’  RE

• PAGE 22

consb~ered ;
~s an ar r~ v o~ ~‘leien t s , one for each bed . The

sel~~ct ion o( e ac h  b.-~J i n  se q u en c e  is accomp]. ished by en
itera ~~i~~e b o o  .shoon by a box in ~he FDC . The partial FOC at
the end of this f I rs~. (da te develoosent ) step is shown in Fig .
l~~. The new dat -a elei ~ e nt s  are defined in the NOTES section of
the chart.

The second step in the chart development process is that
of adding the arcs which represent information flow. This
step may also include the addition of internal nodes required
for the computation of the chart output. In this example , the
internal data and real—time clock output are compared and a
decision is made as to whether the patient’ s factors should be
measured or not. This  is developed by calculating a
monitoring decision value , MD , whose value is 0 if the monitor
is off or it is not yet time to measure the patient’s factors ,
or 1 if the patient’ s factors are to measured . This value is
used to select the output value NOP (no operation) or the
moni to r ed  o u t p u t .

The i n p u t s  to MD a re  f r o m  IN R E C , the i n t e r n a l  da t a  for  the
• pa t i e n t , and T , the r e a l — t i m e  clock o u t p u t .  MD is used to

decide whether the outpui- for the patient , OUT , is set to NOP
or a new value computed from T and the patient’ s moni to r
input , MIN .

The third step provides the function labels: C~1 is the
function that checks whether the patient’ s factors should be
measured , MTR actuall y performs the monitoring operation if it
is r e q u i r e d , and $DEC is a predefined decision function. Note
that the output of MTR is not labelled . This is because
OUT(N) is assigned this value if MD = 1. The other possible
v a l u e  for  O U T ( N )  i s  l ab e l l e d  NOP w h i c h  is not actually a value
but an indication that no operation is performed . The
completed chart is shown in Fig . 16. The arrowheads at the
boundary of the iteration box associated with INREC , MIN , and
OUT represent the selection process by means of which the Nth
elements of the arrays of NB elements are selected . The
iteration box is labelled to indicate that N takes on all
values from 1 to NB.

The sequence graph at the bottom of thr. chart . indicates
that MD must be computed b e f o r e  OUTPUT can be computed . I t
also indicates that I~ FILE and T must be available for the
computation of MD and MONIN must be available for the
computation of OUTPUT. Not all data elements are shown in the
sequence g r a p h ; only those  w h i c h  ar e  n e c e s sar y  to s p e c i f y  the
order o 4 those computation s which must he done in a specific

V sequence are included .

1~~ — --— . .- --- -V — - --V__________



FUNCT [O~ ‘\L SOETWAR I: DEVELOPMENT
PAGE 23

~\t this poi nt - the developmen t of chart 2—3 MUNTTOR is
conplet: .~. The desi -’iner should ra t -urn to chart 1—2 , Fig . 13 ,
end pref ix all the invoc:;! ions of ‘~ONI’IflR with dollar siqns
and , since those are all the function invocations in chart
1— ? , a dollar siqn should be prefixed to the chart title ,
P t )GR~~1. This indica t-as that the chart is findlized and all
funct:ions it invokes have been defined .

The fourth level of the program development is shown by
two charts , one for the  function CH and the other for the
function MTR . The development process has isolated these two
functional entities from each other so the designer can
consider each one separately with no worry about their
interaction , all of which is accounted for by the data
elements which they share.

The development of the function CH which checks whethet
monitoring is necessary is attended to first. From chart 2—3 ,
Fig. 16 , it is found that CH has two inputs , TNREC(N) and T,
and one o u t p u t , MD. The first step in the chart development
process is the data development process. Three quantities are
stored in the internal record for each patient: (1) an
activity ind icator , ACT , wh ich ind icates whether the monitor
is off (ACT = 0) or on (ACT = 1); (2) an interval value , TNT ,
which is the desired monitoring interval in second s from I to
3600 , and (3) the time of the last measur ement of the
patient ’s factors. T is the time in seconds and MD is a one
bit value which is 0 if the patient is not to be monitored and
1 if the p-ftient is to be mon i tored .

The algorithm for computing MD is chosen so as to take as
little tim~ as possible since it is performed each time the
bed is checked . The FDC is shown in Fig . 17. The activity
indicator ACT is checked first; if the monitor is off the
check is comple te , o t h e r w i s e  the  t i m e  i n t e r v a l  f rom the las t
monitoring time to the present , Pt , is c a l c u lat e d  and compared
w i t h  the mon i t o r i n g  i n t e r v a l , TNT , to e v a l u a t e  MD .

The f u n c t i o n  TO is used to c a l c u l a t e  the  t i m e  i n t e r v a l  TI .
It is defined in the NOTES section using PL/l like program
statements rather than in a separate FOC ; for this reason it
is called a terminal function and its invocations are shown
with dollar sign prefixes In the developmen t graph . The
function TCFI is used to calculate the value of MD if ACT = 1.
It is defined in the NOTES section and is therefore a terminal
func tion whose invocations are prefixed by dollar signs. The V

output of TCH is not labelled since it is assigned to MD when
it is compu t ed . The other possible value of MD is the
constant 0 as shown in Piq . 17.

-



;.~rJ~T ..1.ro!~4r S ’ ) F I ) \ : ( R  D~~/ 5 ; , D P M E N T
PAG’~ 24

rhe sequ~~~ce r j t  -~ - h  •~~~1~~~ -::; t~~ t 1~~~EC m u s t  be a , a i ) a b l e  i n
or i er  to  s t a r k . ‘[~ t i r s t  no e~~own a f t e r  t -h~’t - is  ACT w h i c h
i s e c o i n p o n e n t  o t  T ’ W E C , r a t - h~, r  t h a n  a computed value , and
t h e r e t a r e  a v a i  l a b l e  r ’ i n  ‘i c  s ta r t .  Th ’~ r e a s o n  f r  t h i s  is to
i n d ic a t e  t h J ~ ~c ’~ i s  cb ~~~~ b e fue invoking TO and T~~f 1; if
ACT = 0 the other functions are not invoked at all. The
computation of TT an-i final evalua t- ion of MD shown in the
sequence graph occur o n ly  if ACT = 1.

The .~hart title CR is prefixed by a dollar sign because
all the functions it invokes are shown with dollar sign
prefixes. At this point the designer turns back to chart 2~ 3 ,
Fig . 16 , and prefixes the two occurrences of CU by dollar
signs. In order to completely finalize chart 2—3 it is
necessary to define the function MTR .

The iefinition of MTR is shown in Chart 3-4.2 in Fig . 18.
This  f u n c t i o n  m e a s u r e s  and processes the  p a t i e n t ’ s f a c t o r s .
Its inputs are T and MT~~(N) and it-s output is OUT(N) as can
be seen in Chart 2—3 , Fig. 16.

The f i rst step in developing the chart is the data
development step. T is a simple scalar quantity. MIN is the
input from the monitor device. The first requirement is to
transfer MIN into main memory; this is done using the
predefined function $GET. This data consists of three major
composents: the patien t identification number , PN , se t on
monitor dials; the factors , ERS , measu red  by the t r ansduce r s
connected between the patient and monitoring unit; and the
safe ranges on these factors , RNGS , set on monitor dials. The
fac tor s mus t be con v e r t e d f r o m  ana l og to d ig ita l form ; th i s
may be done by individual analog—to—digital converters in the
monitor units or by a single unit at the computer input. This
detail is not of consequence at this point in the design. The

V output data for the pati ent consists of three main components:
( 1 )  an updated v a lu e  O F the  m o n i t o r i n g  t i m e , TM , con ta ined  in
INREC; (2) recorded values of the  measured  f a c t o r s  and the
t ime of their measur ement in the pat ients file , PFIL; and (3)
the alarm output at the nurses ’ desk, AIIM . The updated
moni torinq time is label led TM.1 to differentitate it from TM
which is par t of TNREC while a t the same t ime ind ica ting tha t
both identifiers reference the same value . This is handled by
a COMMON block in FORTRAN or a DEFINED attribute in PL/l . In
a s im i la r manner , the patients file is labelled PFIL.l. The
ori g inal P F T L Is not  shown in any of the FDC ’s but is
impl i cit - . The reason for this is that O I J P (N )  , an d a l l  of i ts
componen ts , can be any of 25S d i f fe ren t d ata elemen ts where as
the p ot-loo t s file is a single file with subfiles for all of
the oat i on t s .  The changing of patients in the intensive care
un i t prevents a fixed reIationsh i~ between bed number and

_  

V



~U\ lCV F t O t ’ IV2\L SOFT~~A R F ~ D F~VELOP M E N P
PAGE 25

p lent numb er. As a resol t , the patient n u m b e r  m u s t  be
di~~~ad into th~’ monitor m it an 1 t h i s  m i s t -  be us-’d to select
the appropr -~~c pat iect subf 11~~. In or ier to h av e  all of the
p a ti e nt - Ii le referenc -“; a ’cess t~ie same pa t- ient file , they ~reeach l~ h ‘1 ‘d PFIL .l and al l of these are cause’~ to re f er enc e
the SCu~ ialuc as PPIL.

The fu n c t i o n  $MOV is p r e d e f i n e d  and s i m p l e .  I t  causes the
val ue of its inpu t to be assigne -1 to It s  o u t p u t .  The f u n c t i o n
SRC selects t he  proper patient suhfile using PM and records
the time and measured factors. The function ALARM checks each
factor to determine whether it falls inside or outside of the
safe range and outputs an alarm signal if it is outside the
range. Each alarm signal activates a different lamp on a
panel at the nurses ’ desk. The predefined function $PUT
transfers data to a peripheral device.

The development of the SRC function is shown in Chart
4.2—5.1 , Fig 19. The value of PM is used to select the proper
file PFIL which is an array of subfiles whose dimension is not
specified and is therefore indicated by the number sign ( # ) .
The p r ede f ined  f u n c t i o n  $10 implies that its inpu t and output
r e f e r e n c e  the same v a l u e s ;  in t h is  case the same i d e n t i f i e r  is
used and the function SW is used to show that the input
element is used for indexing . In other cases $10 may be used
to cause a COMMON (FORTRAN) or DEFINED- (PL/1 ) type of
relationship to be set up between identifiers. The function
RCD is developed in Fig. 20. In this chart $10 is used to
cause TR to reference T and FR to reference FRS . The
identifiers T and FRS cannot be used directly because they are
components of data elements other than PREC (PM) and the same
identifier used in different structures do not reference the
same values.

The one function remaining to be defined is ALARM which is
invoked in ChaLt 3—4.2 , Fig . lB . The development of this
function is shown in Chart 4.2—5 .2, Fig . 21. In Fig . 18 the
inputs are seen to be FRS and RNGS and the output is AIIM. In
or der to compare the fac tors and ranges it is necess ary to
select each factor in succession and check it against the
ranqc values for it. This is shown by the iteration box in V

Fig . 21. The NOTES section defines the new identifiers. The
function FA performs the comparison of a g iven factor with the
range values. Its development is shown in Chart 5.2—6.2 , Pig .
22. In t h is  chart Lhe range data elemen t , RIN , is developed
as a high value , RU , and a low value , RL. The function C\
wh ich com putes the a l a r m  is a te r m i n al f u n ct ion , i.e., it is
defined in a note in the ‘~Oi’E’~ section of the chart. 

-

V 

-- •• ~~~~~~~~ V~~~~~~ - .



FUNCTIONAL SOFTWARE DEVELOPMENT
PAGI~ 26

The Functional Design of the patient monitoring syst-em is
complete . All the invoked and defined function names would be
prefixed by dollar signs at this point if the desiqner
attended to this function upon comç]etion of each PDC . A
rev iew of the charts shows the  st-pwise refine— mont of the
design and the segmentation of the program into disti nct
functional modules.

The presentation of a completed work cannot show the
thinking that went into it. The data structures used here
seem the most obvious ones to use but this is only because the
design is complete and everything fits. The data structure is
not as obvious wher one sits down to tackle a new probl em .
Some appreciation of this may be had by considering the output
of the program. The most obvious data structure to use is the
physical data structure. For this program that would imply
the struc tur~ shown in Fig . 23. The structure shown in Fig.
23 would appear over a number of levels of FDC ’s if it were
used as the basis for the program design; it is different from
but no more complex than the one used . The problem with using
it is that the program design V W111 not work out neatly. The
desi gner ’s creativity becomes important in developing a
suitable data structure which can be overlaid on the existing
~hysicai data structure and which permits the development of a
well structured program. The Functional Design method is a
great aid in this process because (1) it provides a means of
breaking a large problem into a series of smaller steps , (2)
it isola tes fu nctional  modules  so th at the designer ’s
attention can be concentrated on one part of the problem at a
t ime , and (3) it provides a visual picture of the design which
permits the designer to easily sense whether the design is
good or not. A mess of crossing lines is an immediate signal
that there is a problem . If , on the other hand , the designer
end s up wi th a seri es of relatively simple, easy to fol low
FDC ’s then the design is undoubtedly a good one. All that
remains then is implementation of the design as a program .

6. F u n c t i o n a l  Pro~~r arnrn in g

It is possible to write a program from a set of FDC ’s
using existing languages but many of the benefits of the
method are lost. Specifically, it is not poss ible to wri te a
subprogram for each FDC and combine these Into a program. The
reason for this is the lack of a facility in existing

~
j 

lang uages for dealing with the data structures represented by
the broken directed arcs in the FDC ’s.

The Functional Prog~ arnrn in~ Lanaua~~ ~ffL) is designed to
prov ide this capability. mr9 T~iquage has not yet been
implemen ted nor has a processor been developed for It. At

&~

-
- 

-

~~~~~~~~~ V - VV ~ ~~~~~~~~~~~~~~~~ - V V - —


FUNCT TONAL SOFTWARE DEVELOPMEN r
PAGE 27

this point the general requirements h a v e been formulted and an
algorithm for piocc~ sing it has been worked out in suffi cient
detail to demonstrate the feasibility of using such a
language. With the use of such a langu~qe it is possible to
write a ~ad r,ro qr)rn , called a function al —fu nction , for each FDC
using very sinpie procedur es which sh uld result in programs
with hiqh co~ rcctness quality score;. The programming
procedure s ire sufficiently straightfo~ward that it should be
ro~~-ib le to gel-orate much of the code .y computer. A very
impa rtan t ad’ a n t ~i j e of Function al Programmin g is that
int ’~rmodule lirk a q~~ are autom aticall y taken care of thus
~limi n a t i n i a major source of errors i n programming .

G i F u n c t i o n ~~] P r~v1 r a m~- m y L ~nr~uaqe Elen~ nts

The Functional Programming Language (FPL) consists of
three main element s: (1) a basis language; (2) a data
description facility; and (3) functional—functions and
assoc i at~ d argument notation.

The basic lanqu~ -v~ is an existing high—level compiler
lang uage. PC/i appears to he the best choice in trrrn s of
prov iding the facilities required for Functional Programming V

but other languages could be used instead .

The Data Description (DAD) is a statemen t in FPL which
prov ides a comprehensive desctiption of all the data involved
in a program whether internal or external to main memory. It
con ta ins the a tt r i bu tes of the d a ta as wel l as the
relationships among the data elements as defined by the FDC ’s.
The DAD statemen t is similar to a combination of a PL/l
DECLARE statement and a COBOL DATA DIVISION .

F unc t iona~~- fu n c tl on s an d Ar~~men t No ta t i on

Functional functions (F—functions) are functions which are
derived from the FDC ’s. They differ from ordinary functions
by the way in which argumen ts are handled . An argument
notation , similar to that used in the Xerox Sigma series
Metalang uage macro system (18) , is used in wr i ting the
d e f i n i t i o n s of F — f u n c t i o n s .

The problem in handlin g the arguments of F—function is
that it is necessary to r e f e r e n c e components of the arguments.
This is solved by referencing each argumen t by its ordinal V.:

position and us ing a notation similar to the qualification

_ _

V

FUNCTIONII. SOFTWARE DEVELOPMENT
PAGE 28

notation used with PC/i structures to reference the
components.

The FPL syntax and semantics is rot presented in d’~tail
because the language is not yet fully defined . Instead , a
program for th~ patient monitoring system designed in section
5 is written with commentary on t~e program arid its
preparation . The language used is an augmented PC/i and
should be understandable to most readers with knowledge of a
high—level language . Foc those un fami liar with PC/i the
following notes will be of help Ia following the programs:

1. It is a free format language; statements can start and end
anywhere.

2. Statements are terminated by semicolons (;).

3. I d e n t i f i e r s begin w i t h a letter of the extended alphabet
(A — Z $ i ~@) and consi st of any num ber of these le tters ,the
digits 0—9 , and the underline (_) character.

4. Statements may be identified by a label which is any
identifier followed by a colon (:) to separate it from the
rem ainder .f the statement.

5. Comments are bracketed by the symbols /* and */. They may
be inserted anyplace that a blank is permitted .

The main p rog ram beg ins wi th a proce dure statement whi ch
specifies the name of the program (MAIN) and ‘the fact that it
is a main pro g ram; this statemen t ISV . a standard PC/i
statement. This is followed by a commen t wh~Ich describe the
program. The Data Description statement follows . This
sta tement is quite leng thy and normally accoun ts for the ma jor
par t of the program. The next statement is the statement
which per forms all the work of the program; it is directly
derived from the top—level FDC The last statement Is an END
statement which identifies the end of the program.

The DAD statement includes the attributes of all the
identifiers used in the program , except those which are local
to F—func tions , and the formats of external values. The DAD
also represen ts the structure of the data elements. The DAD
statement required to represent the data structure of Fig . 24a
is shown In Fig. 24b. The DAD statemen t in Fig. 24 is
incompl e te in that the attributes are not included ; it shows

— ____________________—

~~~~~~~~~~~~~~~~ 

- _ _ _ _ _ _ _  _ _ _ _



FU N C T I ON / I L  $~OF T W A R E  D~ ’-!t1 P~ Et~T

p PA GE 29

only the structure. Normally, the strueture shown in Fiq . 24a
would require three levels of FUC charts ;.

The progr~ m listing for the main program is shown below.
It is necessar’- to trace through all the FDC ’s to follow the
DAD statement. Some of the attributes of the identifiers may
not he clear to those not familiar with PC/i but they are not
ver y important for purposes of this paper. Not all the
information required to determine all the attributes and
formats was q i v e n previously but they should be understandable
to one versed in PL/l.

SMArN : PROC OPTTONS (MAIN);
/* P A T I E N T  MONITORING SYSTEM */
DAD
1.1 INPUT ,

2.1 INFILE INT ,
3.1 INREC(NB)

4.1 ACT FIXED BIN (1) INI’r (0)
4.2 INT FIXED BIN (12),
4.3 TM FIXED BIN (17) INIT (86399)

2.2 T INT DEF (CLOCK)
2.3 MONIN EXT ,

3.1 MIN (NB) FILE (MONITOR) ,
4.1 PN FIXED DEC (9)
4.2

5.1 FIN (NF) FLOAT BIN (24),
4.3

5.1 RIN (NF)
6.1 RH FLOAT BIN (24),

1.2 OUTPUT ,
2.1 OUT(NB) ,

3.1 TM.i DEF TM ,
3.2 PFIL.1 DEF PFIL ,
3.3 ACM FILE (ALARM)

FORMAT ((4)13(1)),
1.3 PPIL

2.1 PREC (* )  FILE PATFILE
V FORMAT (F(5),(4)F(6)),

3.1 TR DEF
3.2 FR DEP FRS,

1.4 NB FIXED BIN (8) INIT (255),
1.5 N FIXED BIN (8),
1.6 TI FIXED BIN (18),
1.7 NF FIXED BIN (3) INIT (4)
1.8 M FIXED BIN (3);
OUTPUT • SPROCRAM (INPUT);
END $MATN ;

- 

---- - ______



FUNC T J ON \L SOFTWARE DEVELOPM ENT
PAGE 30

The statement

OUTPUT $PROGRAM ~IM~UT);

is a direct tr~ ns1ation of the Deveiopm~nt Graph of chart 0— 1.
The DAD stat€m ent contain s all of the following information:
(1) data structure; (2) attributes of internal values; (3)
formats of e>ternal values; and (4) files from and to which
input and outpt.t are transferred .

Difference f between standard PL/l and FPL as used in this
exam ple are:

(1) There is no DAD in PC/i . Clements of the DECLARE
statement and FORMAT lists are combined in the DAD
together with various other items , e.g., the FILE
term.

(2) Identifiers followed by a period and then a decimal
integer are used in FPL but not in Pb/i .

(3) The num ber sign for  an uns pec i f i ed a r r ay d im ens ion is
not part of Pb/I.

(4) The EXT and INT attributes ar e used d i f ferently in
Pb/i.

(5) Variable array dimensions are not used in a Pb/i main
program.

Functional—functions

The remainder of the prog ram is implemented by a se t of
F—func tions , one for each FDC and one for each termina l
function . Each F—function starts with a procedure statement
similar in format and function to the procedure statement for
the main prog ram . The d i f ferences are the change in func t ion
name and the OPT I ON S(FFUN ) which  causes it not to be a
standard Pb/i statement. The next statement is a comment
statemen t containing the func tion ’s description from the FDC.
The nex t statements are the statements which implement the
program and the last statemen t is an END statement.

The statements which implement the prog ram use the
argument no ta t ion .  This notation uses integer values preceded
by a do l l a r  sign to represent  each of the f u n c t i o n  a rgumen t s
and zero preceded by a dol la r  sign to represent the func t ion V~ -

output .  The f i rst input argument is represented by the
integer one , the second by two, and so on. The order of the
arguments is Set by the inte ger s u f f i x e s  appended to the

_  

- _



— _  
-

.

FUNCTIONPL SOFTWARE DEVELOPMENT
PAGE 31

function name w.ion it is invoked . An example is shown in Fiq.
25. P a r t  of ~ ?DC is shown in Fig . 25a while the argument
notation iu listed in Fig. 25b.

The components of an argument are referenced by an
extension of this not~i tion. An argument component is
specified by a dollar sign , the argument integer , as described
above , followe3 by a period and a integer specifying the
component as shown on the dotted line c c n n e c t i n g  the component
to the argum ent. An example of this is shown in Fig . 26a
which  is the  n e x t  level for the chart segment shown in Fig.
253 . The ope t~~tor n o t a t i o n  is l i s t ed  in Fig. 26h.

The program listings for the F—function definitions are
given below using the argument notation described above. The
handling of DO loops is the usual PL/l technique; the loop
starts with a DO statement and is terminated with an END
statement. Decision operations are handled using standard
PL/i IF-THEN—ELSE statements.

$PROGRAM : PROC OPTIONS (FFUN);
/* MONITORS INTENSIVE-CARE PATIENTS *1
$0=$MONITOR ($1.1 , $1.2 , $1.3);
END $PROGRAM;

$MONITOR: PROC OPTIONS (FFUN);
/* CONTROLS PATIENT MONITORING *1
DAD MD FIXED BIN ( 1 ) ;
D O N = 1 T O NB ;
MD = $CH ($l.l(N),$2); -

IF MD = 1 THEN DO;
$0.l(N) = $MTR($2 ,$3.i(N));
END ;

END;
END $MONITOR;

$CH: PROC OPTIONS (FFUN);
/* CHECKS MONITOR PERIOD */
IF $1.1 = 0 THEN $0 0;

ELSE DO;
TI = $TD ($2,$i.3);
$0 • $TC H (TI, $1.2);
END;

END $CH ;

~~~~~ $TD: PROC OPTIONS (FFUN);
1* COMPUTES TIME DU RATI ON ~/
$0 • $1 — $2;
IF $0 < 0 THEN $0 • $0 + 864 00 ;

V END $TD;

r

_ _ _ _ _

—-~~~~--V - .- .- —-- -- - -~~~~~~~~~-

FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 32

$TCH : PROC OPTIONS (FFUN);
1* CUECl~S TIME *1
IF $1 >~ $2 THEN $0 1;

ELSE $0 = 0;
END $TCH ;

$MTR: PROC OPTIONS (FEUN);
/* W)NTTORS PATIENT k/

$GET ($2);
$0. 1 = SMOV ($1);
$0.2 = $SRC ($ 2 . 1 , $1 , $~~.2) ;
$0 . 3 $ A L A R M ($ 2 . 2 , $2 . 3 ;
SPOT ($ 0 . 3) ;
END $MTR ;

$SRC: PROC OPTIONS (FFON);
/* SELECTS PATIENT SUBFILE AND RECORDS

FACTORS *1
DAD
1 POUT,

2.1 TR DEF T,
2.2 FR DEE ERS;

POUT = $RCD ($2 ,$ 3) ;
CALL OU TPUT ($ 1 ,PO O T) ;
END $ SR C ;

$RCD: PROC OPTIONS (FFtJN);
/* RECORDS FACTORS AND TIME */
END $RCD;

$ALARM : PROC OPTIONS (FFUN);
/* COMPUTES PATIENT ALARM OUTPUT *1
DO N = I TO NP;
$0.i(M) = $FA($1.l(M) , $2.l (M))
END;
END $ALA RM; —

$FA: PROC OPTIONS (FFUN);
/* COMPUTES FACTOR ALARM *1
$0 $CA ($l ,$2.l ,$2.2);
END $FA ;

$CA : PROC OPTIONS (FFUN);
c 1* COMPUTES ALARM */

IF $2.3 < $1 AND $l < $2
THEN $0 0 ; ELSE $0 1 ;

END $CA;

- FUN CT I ON ~\L SOFTWP .RE DEVELOPMENT
PAGE 33

These F—functions complete the program implementation.
The definition of $RC D is incomplet e beeause it depends on the
nature of the periph eral device and the file structur e’ which
have not been speci fied . The separate functions make proqr am
maintenance very simple becnuse most changes require
modification of a l i m it e d number of functions witho~itaffecting the l ennining functions.

The br evit~ — of the functions and their direct relationshi p
to the FCD ’s ~~k~ s the programming process a very simple one.
Its simplicity makes it less prone to errors than
convcntionr~1 pi ogramm ing is.

~~~~~~~~~~~~~ n-n~~uaqe Processor
A F u c t i o na l  L a n q u a ~~c P r o c e G s o r  ( F L P )  i.s necessary to

process programs writ ten in FPL . The FLP may be implemented
as a compiler which translates FPL source language into
machine language. This tends to be the most efficient
techni.~ ue but it is also the most expensive approach . A
somewhat less efficient but simpler and less costly method is
to use a preprocessor which trans lates FPL into the basis
language which is then translated into machine language by an
existing compiler. The latter approach is the one used here.

The major func tion of the pr eprocessor is to comb ine the
main program and F—functions into a single program with the
argument notation replaced by the appropriate variables. The
processor is able to make these substitutions by referencing
the DAD statement. The processor must also substitute
standard Pb/i inpu t and output statements for the FPL $GET and
SPOT statements and it must generate DECLARE statements from
the DAD statement.

The processor replaces the argument notation by referring
back to the DAD sta temen t to find the componen t of the
arguments. The arguments of each function processed are
ac tual arguments determ ined by processing the func t ion at the
preceding level . Using the format and file information in the
DAD statement the procesor is able to generate the required - ‘

input and output statements. The program generated for this
exampl e uses some non—standard file notation which is a result
of the prog ram requ i r emen ts, not the use of FSD. The
DECLARE statemen t is also generated from data in the DAD
statement.

I den t i f i e r s  con ta in ing  a period and integer suff ix are not
valid P1./i identifier s . The processor replaces the period by
a dollar sign thus creating valid Pb/i identifiers. To avoid
problems , it is necessary that no FPL identifiers end with a
dol lar  sign followed by in tegers .

Id



- FIIN CT TON AL SOFTWARE DEVELOPM E NT
PAGE 34

The proce ;sed proqram showing F-function invocati on~~,
marked with )lus (+) sign and haviag no affect on progr am
operation , is :hown below .

$MAI’i : PROC OP’~’JONS (M1~TN);
DCL N F[~ ED n T N  ( 8 ) ,  NB FIXED BIN (8) rNIT (255), MD

FIX~ D BIN (1) TI FIXED BIN (18) , ‘P FIXED BIN (17)
DF:F CLOCK , M FIXED BIN (3), NE FIXED BIN (3)
1NF’ (4)
1 I I I R E C  ( 2 5 5 )  ,
2 i~CT FIXED BIN (1) INIT (0~ ,
2 NT F[XED BIN (12)
2 ?M FIXED BIN (17),

1 M’N (255) , 
• V~~~~

2 PN FIXED DEC ( 9 ) ,  • V~~~
• • ,

FRS ,
3 FIN (4) FLOAT BIN (24)

2 RNGS ,
3 RIN (4),
4 RH FLOAT BIN (24)
4 Rb FLOAT BIN ( 2 4 )

1 OUT ( 2 5 5 ) ,
2 TM$ 1 FIXED BIN ( 1 7 )  DEF TM ,
2 ALM ,

3 A(4) FIXED BIN (1) ,
1 POUT,

2 TR DEF T,
2 FR DEF FRS;

+OUTPUT $PROGRAM (INPUT);
+OUTPUT = $MONITOR (INFILE , T, MONIN) ;

DO N = 1 TO NB ;
+MD = $CH (INREC (N),

4 IF INREC(N) .ACT = 0 THEN MD = 0 ;
ELSE DO;

+T1 $TD (T,INREC (N).TM);
TI T-INREC (N) .TM ;
IF TI < 0 TH EN TI = TI + 864 00 ;
+MD=$TCH (TI,INREC (N).INT);
IF TI > INREC(N).INT THEN MD = 1;
ELSE MD = 0;
END;

IF MD = 1 THEN DO;
- +OUT(N) $MTR (T,MIN (N));

GET FILE (MONITOR(N)) EDIT (MIN(N)) (F(9),
(12)F(6)); OUT(N).TM$l =

+OUT(N).PFTL$l = $SRC (MIN (N).PN , T,
MIN (N).FRS);
+POUT = $RCD (T, MIN (N).FRS);

• V CALL OUTPUT (MIN (N).PN ,POUT);
+OUT(N).ALM = $ALARM (MIN(N).FRS ,

- 
— - --~~~—-. - ___________—____ - --- ----- - - -__



F U N C T I O N A L  SOFTWA R E DEVELOPMENT
• PAGE ~~

MTN ( N )  .RNGS) ; .

D O M 1 T O N F ;
+OUT (N).ALM.A (~I) = $F1\

( M I N (N )  . F R S . F I N ( M )
M I N H )  .R N G S . R - I N ( M ) )

+ O U T ( N ) . A L M . 1~( M )  = $CA
( M I N H )  . F R S . F I N ( M )

M I N  ( N )  • R N G S . R T N  ( ? 1 )  .RTI ,
MIN (~~) ,RN G S . R I ~~ ( - ~) .R L)

IF MIN(N).RNGS.RIN (M).RL 
-

<= MIN (N).F~ S.FIN(M)AND MIN (N)  . ~R S . F I N  ( M )
<= MIN (N) .RNGS.RIN (M) .RFI

THEN OIJT (N).ALM.A (M) = 0;
ELSE OUT(N) .ALM .7\ (M) = 1;

END;
PUT FILE (ALARF4) Er)rr (ouT~ N) .Ar~M ) ( ( 4 )B ( l ) )
END;

END;
END $ M A I N ;

The Pb/ i p r o g r a m , w i t h  the F — f u n c t i o n s  i n v o c a t i o n s
eliminated , follows:

$MAIN: PROC OPTIONS (MAIN);
DCL N FIXED BIN (8), NB FIXED BIN (8 INIT (255), MD

FIXED B I N ( l ) ,  TI F IXED B IN (18), T FIXED BIN (17)

~EF CLOCK , M FIXED BIN (3), NF FIXED ‘ uN  (3)
INI-T ( 4 )
I INR ~ C ( 2 5 5 ) ,

2 AC~~ FIXED BIN (1) INIT (0),
2 INT F N(ED BIN (12),
2 TM FI XE~ ”--BIN (17),

1 MIN (255), ~~
—...

2 PN FIXED DEC T-9),
2 FRS ,

3 FIN ( 4 )  FLOAT B IN~ - -( 2 4 )
4 RiB FLOAT BIN ( 2 4 ) ”~~4 Rb FLOAT BIN (24),

1 OUT (255), -

2 TM$l FIXED BIN (17) DEF TM,
2

3 A (4) FIXED BIN (1),
1 POUT,
2TR DEF T,
2 FR DEE FRS; •

DO N = 1. TO NB;  V

IF INREC(N).ACT 0 THEN MD = 0;
ELSE DO ;

TI T — INREC(N).TM ; 

-- _ _



- FUNCTT ONI.L soF’rWARE DEVEIMPr1ENT
PAGE 36

IF TI <= 0 T H E N  T~ = TI + 8 6 4 0 0 ;
IF TI > I N R E C ( N ) . 1N T  THEN MD = 1;
ELSE MD = 0;
END;

I F  MD = 1 THEN DO;
GET F I L E  ( M O N I T O R ( N ) )  EDIT
( M T N  ( N ) )  ( F ( 9 )  , ( l 2 )  F ( 6 )

O U T ( N ) . T M $ l  =

CALL OUTPUT ( M I N ( N ) . F R S ,
M IN ( N )  .RN G~~) ;

DO M = 1 TO N F ;
IF M J N ( N ) . R N G S . R T N ( M ) . R L  <=

MIN ( N )  .FPS. F I N ( M )  AND
M I N ( N )  .F R S . F I N ( M )  <=
M I N ( N )  . R N G S . R I N ( M )  .RH
TU E N O U T ( N ) . A L ~1 . A ( M )  = 0;
ELSE O U T ( N ) . A L M . A ( M )  = 1;

END ;
PUT FILE ( A L A R M )  EDIT
( O U T ( N )  . A L M )  ( ( 4 ) B ( l ) )

END;

END;
END $ M A I N ;

The final program is a single Pb/i program using one
subroutine for outputting the patient data. This subroutine
must find the prope r storage area on the peripheral device ,
mos t li kely a d isk , and place the data after the previously
stored data. The details of this subroutine are not presented
in this paper. 

-

The elimination of the F— functions by the processor
resul ts in a short and simple program with no ov�rhead for
function invocation. Statements can be tagged to indicate the
F—fu ctions from which they come; this could be quite useful
for debugging purposes.

Main tenance is done on the initial source program wh i ch
mu st then be reprocessed before execution. ~-iuch of the
improved main ta i nabil ity associa ted wi th FSD is not present in
the processed program.

The relative simplicity of the final prog ram is resul t o f
the significant design effort expended on the program using
FSD.

8. Conclusions



V 

FUNCTTON~ [, SOFTWAEE DEVELOPMENT
PAGE 37

The use o~ FSD reduces the software design process eo one
of finding or designing a suitable conc-’ptua i data structure.
Once this is done the rest of the d e s i g n  process i- ~ q]ite
si!np le. The qraphi cal approach facilit-ates design by h u m an s
becaus~ t h e r e  i s  an  appeal to the human ability to graso the
gestalt , or o ver aU  pattern , of the  problem .

Among t h e  advantages of F-SD a re  the  f o l l o w i n g :

( 1)  FED provides the d e s i g ner  w i t h  a design procedure which
concentrates the designe r ’s efforts on the development of
a conceptual data structure. The balance of the design
procedure is quite straightforward and simple.

(2) The source program designed us ing FSD consists of a set of
modules eacl-i of which has , according to Constantine ’s
definitions , functional cohesiveness which is the highest
and most desirable level of binding of the elements within
a module .

(3) Th~ co u p l i n g of the mod ule s is ver y loose , another highly
desirable attribute according to Constantine. Moreover ,
the linkages between modules are all contained in the data
structure and are automatically taken care of by the
Functional Language Processor. This eliminatess a major 4
source of errors in the programmin g and design processes.

(4) The Functional Development Charts provide quantitative
measures , i.e., number of nodes , numbe r of branches ,
num ber of cha r ts, etc., of program complexity which can be
used to estimate programming effort and cost. -;

(5) The de f i n i t ion of func tions as i n s t r u ct ions fo r  nested
vir tual machine s increases code reusa bili ty wh ich resul ts
in enhanc ed programming efficiency and reliability.

(6) The simplicity of the graphics coupled with the control
mechanisms for checking comp le teness faci litate s the use
of computerized support in the tasks of verification and
val idat ion, li brarianship, and automatic programming.

(7)-The method has the general advantages associatded with
top—down method s such as simplified testing and
suitability for chief programmer team management.

Perhaps the most significant feature of FSD is the vast
improvemen t In software maintainability obtained with its use.
Tt~e struc ture of a prog ram as a se t of nes ted ,
functionally—cohes ive , loosely—coupled modules make it
poss ible to alter the single module which implemen ts a

T V ~~

-

~~~~~~~

___ _ _ _ _ _ _ _

- FUNCTI ON A L SO FTWA RE DEV -:t,OPMENT
PAGE 38

function which is to be changed . The documentation , in the
form of Functicnal Development Charts and source listin gs of
the F—functions , makes it quite simple to locate the precise
poin t which must be changed . The isolat ion of data struc ture
and format specifications in Data Description statements , the
independence of the F—functions , and the automatic processinq
of module iink ac ,es make implementation of the change very
simple and economical.

The Functional Design method is fairly well developed .
While application of the method to new problems will
undoubt:edly uncover areas for improvement , there is at this
time a comprehensive documented procedure for the design
phase. The major area for additional work is that of data
structures; an attempt to find genera] structures or methods
for deriving structures which can be applied to a wide variety
of problem types.

The development of the Functional Programming Language and
a processor for it is the next major project required to
complete the Functional Software Development methodology. The
feasibility of these components has been demonstrated but a
substantial effort is necessary for their implementation.

r

I
- FUNCTTON1~L SOFTWARE DEVELOPMENT

PAGE 39

Re fe r enc es

1. Baker , F.). “Chief Programmer Team Management of
Production Programming ” , IBM Sys~ erns Journal , V 11 n 1,
January 19 2.

2. Bates , D. ~Ed) Structured Pro~ ramrn ir~~, Infotech State of
the Art Report , Berkshire , England , 1976.

3. Beam , W. R. “Microprocessors and D efense Systems ” , AGARD
Lecture Ser i e s No.87 , Microprocessors and Their

~pp1ications , Griffiss AFB NY 13441 , 14 April 1977.

4. Boehm , B. W., Brown , J. R., Kaspar , H., L ipow , M., McLeod ,
G. S., Merritt , N. J. “Characteristics of Software
Quality ” , Doe . TRW 25201—600l—RU—00 , NBS Contract
*3—36012 , 28 December 1973.

5. Caine , S. H. and Gordon , E. K. “Pot — A Tool for Software
Design ” , Na t ional Com pu ter Confe rence , 1975.

6. Dijkstra , B. W. “Goto S ta tement Considered H a r m f u l ” ,
Communications of the ACM , V 11 , March 1968.

——

7. Drossman , M. M . “Software Quality ” , Technical Report
submitted to Rome Air Development Center , May 1977.

8. Eiden , H. J. and Moore , C. R. User ~~ q u i r e r n e n t s L an qu a ~ e
CURL) Users M a n u a l , Information Systems Technology

V

ApplicatT~ns Of f ice , Hanscom AFB , MA 01731 , 1975.

9. Hamilton , M. and Zeldin , S. “Integrated Software
Development System/Higher Order Software Conceptual
Descrip tion (Version I)” , Research and Devlo pment
Technical Repor t ECOM—76—0329—F , November 1976.

10. Jackson , M. “Data Structure as a Basis for Program
Desi gn ” , St r u c t u r e d ro9~ramm i~~~, Infotech State of the ArtRepor t , Berkshire, England , 1976.

11. Liskov , B. H. and Zi]les , S. N. “Specification Techniques
for Data Abstraction ” IEEE Transactions on Software

~j~~in ee r l n2 VSE—l n 1 , March 1975.

12. McCall , 1. A., Richards , P. K., Wal ters, G. F. “Factors in
Software Quality ” , Preliminary Interim Technical Report
No. 1 , RADC Contract No. F030602—76—C—0417 , October 1976.

- - - — .
V

—
— - ._,— - —

T~Ti

- FUNCTIONJIJ, SOFTWARE DEVELOPMENT
PAGE 40

13. McCall , 3. A., Richards , P. ~C. Wa]t:ers , C. F. “Factors in
Software Quality ” , Preliminary T n t V r i m Technical Report
No. 2 , RADC Contract No. F030602—76—C—04 17 , January 1977.

14. Myers , C. j . Reliabl e Software Thtou~ h Composite Desi ln ,
First Edition , Petrocelli Charter , ~ ew York , 1975.

15. SofTech , Inc . An Introduction to SAr T Structured ~na1 1sisand U e s i gn Techni que , 9022—78R , Sof2ech , Inc., Waltham , MA
02154 , November 1976.

16. Stay, 3. F. “HIPO and In t e g r a t e d P r o g r a m Des ign ” , IBM
~~ stcrns Journ al , V 15 n 2 , 1976.

17. Stevens , W. P., My2r s , G. 3., Constantine , L. L.,
“Structured Design ” , IBM Systems J o u r n a l , V 13 n 2 , 1974.

18. Xerox Meta-Sy~ bol , Si 9ma 5-9 Computers , LangLuaae and

~p~ra tions Reference Manual , 90-09-52E , Xerox Data
Systems , El Segundo , CA , July 1971.

19. Yourdon , E. Tech~~~~ues of Pro~~~arn Structure and D e s i q n ,
Prentice Hall , Inc., Eng lewood Cliffs , New Jersey, 1975.

9

-

I V

-

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

J’tJW:T I (-rIAL SOrTt-1A !~F~ D E V f l J ~~~ M L ’, T

-

~~~~~~~~~~~~~ V~~~~~~~~~

j

V

~ 

~~~~~~~ 

PACE ‘~1

~~1
I 8

-- - I

/ ‘\ U-
- V

I’-—
I

~~~~~~~~~~~~~~~~~~~~~

I

3~ -~ _ _~ I

_ _ _ _ _ _  

_ _ L_ -~~~~~ 
_
ii~



FUNCT1 0 IAL SO I’TWARE DEVfl I 0P1-H;fl-J’
J’ACJ~ 42

r V 
I

~~~~~~ 
(-

~ _ -

I } I) I

IVV .
~r ~~~-

-~~~‘~~~ ‘

-
~

j
- -

~~~~~~~~~~~
- 

- — - - - — --

L
n

- 1)
-,

- 
~
I 

t V ~

-~ - 

-

_ _  ~~~~v)

I - ~~
- t J ~V~

rt~~~~

-~ 
I I~

I V~

- - - Vi - I -

~~ , ,:
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — — - -—--- — V t L

— (- Ii . •—

V

•

_VV~~~~ V ——-———

-~~~

} V 1j ~~~~fl~~ () t ~L ~:~)) 1’~-J A RF ~ i’!:VJ :LOi Nr J
PAGfl

H
- V

- / L -)
-

~~~~~ VT~~~~ 
-

- 

- - -

I ~~- -

0

Li

~LI )

-
~~~~~~

a

• .-J,

liJ’J (’l I OI~~ I ~(11 I’~ d\RT ~i ’JJ T 0~~1’U1’

V

I~A’ ~r:: ! , 14

~~~

V _ _

:_V

VV

_ V : ~

U
-1---- :- ‘V~~ V’ 

I 
‘~VV • 

U)
‘V 4- -

- - - -~ I -

-- - - .• —- - - - - r-1
- I 

-

I I -
- IV ( 

- 4-’-
- - , •

~ - 
-

- L. I
o

1 - -~~~~ V~~~ 

0I I .rl
I 4-’II I

- I 4-a

I —I - - 
- U)

- 
- ‘- w

I 
• V V 

-- -

L I -- ‘I
- V

- 
- -I  VV )~~~V_ - L .... I

• I
- cl- 

0
V
~ _
~.- VV~

r - I  > ;• - ‘~~- • r - I  0I :  q) ~~~ ~~~
— s ‘~ ~

— —— I — -

L~~~ 

L - - 
L. ~~



J’UNCTT )NAL SO1~TWAR E DE VE L~ 1’HflNT
PAGE 45

K 0

-
~a)

I \ U) 
Va)

U a) - 
-

c-I -

- 
--

C.~-’
-V~ 4-a I

1.L .

Q f
11 

_ _ _ _ _— - -  -_ _  - _  

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  

1
~~~~


FUNCTIONAL SOFTWARE DEVELOPMENT
PAGE 46

p

‘-1 U)

0
LU

I—
C c p

e41
I I’

/ o~~I ~4w/ E U)
I o w\ / (i c-I

H
I~~~~~ 4 •-z

W

1-4

U)
a)

41
________-V 0

J - 4-’

UI U)

L : V

4-’Id

‘—1
7 ILl w

H

‘—
V.. a)

1 - ~~

- -
FUNCFI O~-JAL ~ OFl ’WARC Df l V f l L0J ’~~. ;UT

I’AGE ‘4 7

H

I
/
I \

/) 0 d
-~~~~‘ ‘ ‘IA \~~ /

04 - ’
C) •41~~I— ()

W L ~r4~~~WnS

4-a

.000
~~ ,~~

.~ V 4

(1) 4-a
..‘ 0

I 00,-i
I •rI -’ a)

- - 4-’ U)

I -

- ,—V-’ we)
-x I

~~w w:~ç)
- A l~1 r—l r-4
I -

c-~~bO bO
w ~~‘ 4-’~~rl .r-I

/~~\ I 1-4 U) Cl)

3 —

I
0

- -V .1—I

>~~ 4J
IL) w

0 4-’

V
~~~~~L~~~~~~~~~~

- , ~~~~~~ - I-

4:

_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _



FU!~CFIONAL SOt 1~J~ R} DI VLLOPMFNT
PACE 4 8

f~)

5’ - ..~~~ 
a)

~
‘ \~

- 
~ ‘~A~ 

‘V

- 
— 

‘

: “~ 
- 

/ 
/

- 
- - ~~~~~,

\~~~~~~~ ~~~~~~~~~

-

j :~

i

~

:

I

~

J J 
_



TUN CT i~~NAl. ~~)t’T wA~ I: D J :vI  !r)FrJ:? ~J’
I’A GE qq

p

II

Lii

ID - -/ c-i -

/
/ I 

-



i i~:cri ) M I 1i ; _ , 1 1 I .-;f\ l-~1: I) 1 : \ ’ ’ : l ) I~ -~~! J 1
5

~~ 
_!VV — 

•
\ V

I ‘
a 

I

I 

~
.

I I
•

~~

~ 
;ç ‘~~ V

- V I 
~ 

..‘ V
~~~a , ,  i-~ •~ — ~~ 

,__~V
\ >I~ ç~

VL. ‘ :3- - - ~~~
‘ I) CUr l

4 - a

7 , a
~-) ‘

_
•),VTh~

~~ -~~ I ‘ ,~~~~~~~ H r~

(d 4
(‘~ ~~

•
-

~~i I’j i ~~~~~~~ 0 0)- I r1 ,Q
I ’ L (

~ I
~ — (

•
)~VV

c~_ ._r~
- -V —

£Vl r-4

-V
03<

i~
a- ’ -

~~~ 

- 
- 

—~

I 
ra — -_  

- - , — .0
-
. ( V~ V a Ir— —__ — - •-~- c-

-J Q_ V~~~ a l  (-~ 
~(- - V•~V-~~ V~~~ I - _ (1)

II I —
~ 

- 
,- .H

I.1_  o - - 
~~~ 

•

! “ “ ~1I 4~J afl .~, ~~~

--

I

—

F - [T-~~~ L~ 1~ i
—

- —\
•- - —-_ _--—.

~ -
- -3 - - 4 - —~

-
~-r 0

~~~ 
i :; ; : i j  

¼~~_) 

~~~~~~~~~~~~~ 

‘ :1L L~ .

_ _ _ _ _ _ _ _ _

—

L~

rUNCTJOt- Al. SOrJ ~-1ARr: DJ: vr :Lo PI-iI :N -r
rt~n’: Si

-
a ,

L
(a —

4-I

-

~~~~ 
I ~~ ~V -

~~~~~~~~~~
I) ci ~ I ~ ~ t.ti 0

-
. ~~ r) ~~ I) u •

~
-
~

- ~~
• Ut ‘I - -

--
~~~ ) - 

I 
•

~
;‘ 

~~~ V• c)  
~~

-
V _

~J
• t)

‘

- -
-

~

‘V•
~~~ 

( i)

— - -  —~~~~~~~~~~~~~~~
- _ _ - - -

~~~~~~~
V V — . - — — -

~~~~~~~ ~~~~~~~~~~~~~~
- - -V—V -

____



V 
FU14CTIO~IAL SOFTWARE DEVI:LOPMF:NT

PACE 52

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~VVV

11.

o
I -) -

0

o
- ‘

V~ -V

: 1~4
- -

- -•)

- - >a.
3

- 2 0- V _V

4-a
- U)

t c-I
~~V •r-I

I aLl
I I‘V c~

_ *1~~~~~
I—

- • I I

~~~~~ I

ç

V Vs



- l UNCI’ ICNAL SOJ TWARE DEv 1:i ,op~1 J N r
PACE 53

- - a

- 
r ) ~~~~~~

() 

;:iii~ :; ~~~ • ,~
)

R V  
a 

~ 
— I

~~~ a

() 7 --~~~t~ --)
- (I - -

?
~~~~JI tL~~~~ - -

~~al V

H OH
-

~~~

f t ~~~~~~~ V) V V V

~~~~~~~~~ Ic~ -~~~~~~~~_~~~
-
-~~~

- - -V-V -J
j  

k~~~~~~~~~
) 

~J
I

V 

i~~ Z ~.-
a a- L” I .  . - 

‘V
iJ - - I III - - >

t’~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-JV

~~

.~~ ;I!~\ ~~~~
-
~~~~~~

!--
~~U / 

I 
\ ~ 1j ~~~ ~al 

1 . 
- a)

— 
/ 

- - 
( ~~I U)

&~ .\ ~~~~~~~~ r — • -~ -( /  - I 
~~~ - -I — i  

(a U • i
~ -~ ltJ -

(V ’ \ V
I f’~

(v
-

~~ V
H — -u: ~~‘

~~~~~t& Uj~~~ I i I  — H  - -

~~~~~~~~~~~~~

\ ,J fi) ~~ — * h~
•

(~ . 0 / ‘
~~~

.- > -
~~

• t - bO
-~ _~~~ . / I’ 

~~1I1 ,_~ ~~~ 
~~~ 

_ ,~~

/ U) ~~~
- -

-
~~~~~ ~~~~I J z ) ~~~LU~~~~ ~~~~I— ~~-~~

t )  L i . Oc1~~~ ~ Ifl c~ II

H 
W - ~,~~~r/ i’~~~~~~

~ — ~~~~I )

11,

_ _  _ _  _ _  ii -



i’UNC’I i C NAL SO r I W A R E  DLVI: i ,C~
PAGE 54

__ -

a 
-

A -

hi 
-

0

IA-i

I 1-4

a)
I H

~~ V
’ 

a
_ ~1,

-
~ 

VV’ I 0
‘-V . 

- 
V I 4-’

- 

I
CL 0

~ E
o c-i
~ - 0

H
I Ill

0
F

a 
—
~~

T
C 

- - _

_ _ _ _ _ _ _  _ - V  _ _ _  _ _ _



lUflCTIO’-IAL S O F I W A R E  nn vm ,op Mn~IT
PAGE b5

V

a,
4.1

U)

‘V

I Ha)
I V  (1)

a - 
-

-V~~ V
1/ a

1 4 - ’
flj-V 

•Tj

L- (
~) 4-a
‘-Va-V (1)

I c-i
I -ri

I I  -~~~~~~I
- -o

-~
- A-~ -. .0

0
U
II) 4-’

I 1~~
_’ I~1 

— - V -<~

V-- ‘— V - H1 _ i  - 
~~~~~~~~~ t i  a)

L 0 ‘--.“
tV~

•V o 4-~ a)
H

.4.. 1~~- I f —
t ?

~~~~~~ 
V

— V-V 1) ~ -
I I  / V - I-I

- V  I I -~ 0
- - - -

-V 4-i
~~ 

‘- - A A ~ __~

f~ J I , U .rI

0 2 ~~~~~~~~~~
I i L ~~~~~

IV_

I r-C~ a ) 41 Sd

H- -
’ 

~‘ I - , I 
~~~~h f f l

1 aJ- - -~ I

-

~~i~~~~~~~ -
~~~~~ :~~~~~ V 

~~~~~~~~~

- ‘

~~~~~~~~~ 

I

• - ‘ -~ 0 f T
í a )  W ‘I) ~~

~

_
-~ ‘-4 ~

I I -  z
- V ‘ (

I 1) 0

__  _-V



a - I’U1~CTI o h ,  1, SOI’TWARE DEVELOPMENT
PACE 5~i

•1~ 
i

--— 
I—

~I -

L
V.—

IJ  -

I— 
~~,

I 
-

- r~- --r
~ / (j i ’~~~~

~~ V
)

I. -~~~

( • )  -~~~( a

I / 
V

-
‘ Va 
~
- I 

f ‘- ‘,
-

- V 
‘ - 

~~1 ,_

-
~~ s~ j

- I a  a a

-~~ - ‘~~u ~

~ 

~
I -

,
I V 0

I - V - 14-4
LV) -

~~~

- o ~ -V
~I- - / a-)/ q II)

I ~ J - - - H—‘ V I ‘— h- p
,Th ‘i’! 1

~~~
- V

:~ o
~~~~ ~~

_ /
~~~_~~~~~~

V

V

~~~~~~~ 

Y~~~~
V
~~~~~~ j

III - a--’ ~) ‘f ’ Il 
- 

-~~ it t  - / / - i 4-’• —Ili l / • -. ._ • V -

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~:. - au  ~~~~ -
-

‘

~ L I J I
I

*

~~~

- 

V 

H 
I

-& 
(~V ‘a-i I ‘

~
-

~
- 

- 
~~~~~~ z U)

I.—
~ ~~~~~~~~~~~~~~ ~~

t ~~
- -

__
I -~ “— ~~~~ I

0 ~~I - - LU
~~~~~~~~~~~~~~~~~~~~ ~‘) 

--

~~~ 

-a-
’-

- -

V_a

- - r I JN cr. [)~JAI, SOFTWARE DflVfl1 nJ~ n:~n-PAGE 5~

o - I
—o

V __)

I (-J
(~b ,VT

-
‘

I

-L -
~

- I ;

- I J
I

~~-
:-

li ~ 4
~~~

1_
_

~~~~

F
i -

-
V

Iii
,~~~~~~

~~~

.

fl ~T~~~~~
- I - 

— —

~~~~~~~~~~~ -~~~

V
rV 0

0 H
I vi
I I

I~~ ~~~ 1j~
Ui ~-i

-

~— ~~

~~ F- ‘~m .: 0 - -
4f~- ° ‘ a~- u U c-i

‘
V I 1 H u iF-

~
~~~~~~~~~/ \~ (~~~~I I ~~~~~~ N I I

‘I 
F- :~ ~

- - -I- I ~ ~ I
~~~

‘ F F- ~
- -4 ~

-
U Ht ‘-a)— LU llJ f.. ~~~

-
~~~C I - .

~ tO
5 V )  . —  ‘ / 

- - V —r~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

- 
V



V FU N CTJ O~ AL SOFTWAIU l -A CI ;  58

H - ~~~~~~~~~~~~~~~~~ V V V . V --- V

I i .

- V— V

° C
~~~~ I

‘-‘1 41. , - .1

z - i . -r
- -5 ~

f
V

, S a)

(I ~~ V
) I~~~V

FVVV V J U I V

~z - J tI -

—
Cl ~— ‘) -~~

a’
. ~ 1 I IL T

-
\ ~. V u ~

- - •///~
•
~\ -

- , j I L i - - -

- J I~

/
-

I

*

~~n~
ç

I’
i

V~~~~~~~i.~
/

‘

~~
a—I ‘ - —s 4 I H -:-

~ - I
~
‘A

/ a~ I’ .~~
)

I f I~~J I V i~~~~~

I !: ~~~ H —

~~~~~~~~~~~~~ 

w
[1 “ II a- .-’

LVV 1~ i — V - V

F- C t,i I,
V)

~~~~~
I..4 ~~ Z

IL Q~
IL. c;

C’) -
(
~•) _:

~-4 (- ; -~~~
V

-_

I’UNCTI(NATJ SOFT1VIARL 1)EVF:Lopr-IFNT

-
PAGE 59

(a

II
V~~~)

-

I
a

‘- I
~~~~~

~ ‘V 1VtJ
-~

—
CL
~~~ — —

V t
-

I -V*

—
a - a -~J -V~~c lV -

V
I

[] h
— -

i ~~~ H s..~-z 4 \0 I V I
H ~ ~~ 1~u

~-/ \~~ �- ‘2 °

0 0 \

I
H

H
~~~~ IJ_ 

:-
“

— -j  

~~~~~
V iV- ~~~~~~~~~~ t•3

~~~~~~~~~~~~~~ 

I IL-

- 0 • Ui1L 7 i4  a - )  

V

t - V



V V 1’U~lC ’I’TO T ’ AL SOIT t - JA RE DL V E I JOPHE N T
PA GI .  60

F-
I - - 1)

0

/~~~ V

I-
V_V
)V 

, ~, •~~

1 -
~~~ 

—
/ ~‘1 \

a
:-~ ~‘~-L’ ~4-

~ k ~

~~~

C o
0 I j ‘a) -u

6 0
uJ

a 
I , 

~i

~
‘I 

I V _

___ V V V V V V~~~~~~~~~~~~~~~~~~~~~ .± 

____ _ _ _ _ _ _  
______

L

- 

-—____ ______ ______V 

V



V IUNCTI O~ Al4 SO FTWARE DEv ELOPMI:wr
PACE 61

ft

r c-
V- 

~ 
- 

— - .

cL L I V~~, c i
~~~

-
-~

V—I
~~~~~~~~~~~___

I V I
/ 

~V .

F— - 
(V

Va -

a - 
I

: ~-)  - -  a
a—, - I - 

(a  
- ~- • I

* a
I a  I V _ i _i la-) C-I

I ~~~~~~~~~~~~ --
~~ a)

,_%
• 

a .

IL ~~~~ I
, ~~ L_.

I 
~~~~~~~~~~~~~~~~~~~~

‘ 7.
-

~
T ~~ V / ~-

-

I —s 1!) Y •

a
- -

—

(1 F i
C’ -

V

H

u-V j. I
II

- ‘ -.‘) - ~- Z ft If

-

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— al) 1 - •

- -
____ J

_
V. —

F1 I N CTI UHAI SOE TWAUL DEV ELOPMENT
PAGE 6

-~~~

I ~~~~~~~~~~~

- - V

- - -
S

V

- U~t

-
a

Lu

- - -m
-

-

V T h

I pV ~,s j_ V - a
-

- -
~~; -V

—V-I - - V

i ~~ V V/ t t - ~ 14-4

/
- - a

I - V

/
~~~~~

a / / 
i l  

-

~ 1 ~~~~
- 

~~~~~~

-/ ki - - ‘ - —
V -\

- : -
~~~~~~~~

- — V— - V - I
-

V 

~~
-
~

• 
~~~

I
_
~ __j I) S I V

-

II~~~ a
ii ~

, I
1 IV “1 r - V i I

I u I c ~~ti’• U I
V

- V I - - - -

- I ‘‘ ~~‘

F U N C I T O N M SO~ TIJARI Dl V} I ~ Ml lIT
PAGE 63

—

-

-V —

V

I / - ‘a
— / S

- I / I a--

J H F
‘ V- V a: I

~~~ 
- - -

~

/ _ H h

I~~~~~

L. 1 /  V .  ~- V
- - Iii ~~ j j  c

V

i i

a C l -  - - -

I V 4-i
( V V  

:‘

~ ~~~~~ ~ 
~~

V V ~~~ 

~~~~ ~~~~~~~~~~ ~~

—‘

~~~~ 
- I

‘--V .4 *—4 r.~
V 

V V _V_ _



a 

~UNC ’J’1 uf lAI ,  ~; O l ’ I ~-/ A I -~l: D E V } 1JJ1 Mfl1-I T
I - AY1: 614

) l )-

—
-

‘ 
Ii) I f

I V

‘
‘ ~ ~~~ r-1 ‘ —0

- V_-V_i

‘ 1

g
0

,;

~

VJ  ~~

- 

(-4 - 
-

~~ h
(
~~)  

,

V
_

_,
_ ) V~

\ 

V-VV~

c I  1)

/
/

‘

~~~~~~~~~~~~ 

*--
-

V

,~~~~~~~ - - V.I U N . ! I 0 N t-.!4 : 01 rwAP! . DLV 1 L O P M I N l

-

PAGE 6

•

14-4

0
~r-l

~4-1

c-I

U)
‘V

4-i

L i >— H

0
- ‘ — -

~I ‘-~~i ,-~ -~~~
~I~

j ~-‘I .Q I
I ~~~~~ I

V

I i
0 --’ I -

--1 -i -’
I VV 4-i~~~

~
./

\

IL

/

(~
) C)

L11~~~~~~~~~~~~~~~~~~~~~~

- V -

~~~~~~~~~~~~~~~~~~ 

-

- I rUNcTIO !- AL SOFTWARE l)EVCL.OPIIEIIi’

- 
PAGE 66

V _ U

‘1~

( a  

~ I 

~ J
(~~~~ 

-- -
~~

~ ~: í i ~ i- -I
I ! II 1 II L I I I II I I 0
o -- ~~~ 

: • 
r~ 

—

- I —

- / V)~~~~~~~ 9V .)

O V ‘~ 1.

I 
i~:~/ ~~~~~~~~~~~~~~~ 

-_ - —-------_ -V - -—-——-— V— -V—-p-V-- — - V~ V -


