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ABSTRACT

A technique is described for determining D-region electron density profiles
from VLF reflection coefficients. Some of the problems concerning convergence
of the iterative scheme are discussed as well as the constraints introduced
to account for features of the profile for which information is not provided

by reflection coefficient data. Also, an example is given where the technique

is applied using simulated data.




I. INTRODUCTION

Radio sounding at very low frequencies (VLF - 3 to 30 kHz) is a valuable
method for exploring the lowest jonosphere. With special sounding techniques,
such as described in reference 1, it is possible to obtain continuous sound-
ing data simultaneously at many frequencies over the VLF band. However, con-
siderable difficulty is encountered in attempts to obtain quantitative
information concerning ionospheric properties from the sounding observations.
The theory of radio wave reflection from an inhomogeneous, anisotropic plasma
such as the ionosphere is rather well developed, so that if the properties of
the ionosphere are known, it is possible to calculate the expected effects on
the radio waves. The real problem to be solved, however, is the inverse
problem of determining the unknown ionospheric properties from the observed
effects on the radio waves. The use of data in this manner to obtain electron-
density distributions of the ionosphere has become known as profile inversion.

Early work in ionospheric inversion (e.g. references 2 and 3) used trial
and error techniques to deduce profiles. That is, values for the ionospheric
properties were assumed and the jonospheric reflection coefficients calculated;
these were then compared with experimental values, and if the agreement was
not satisfactory, the calculations were performed again with different values
for the ionospheric properties. The goodness of fit between the calculations
and the experimental data were determined only by a subjective estimate of the
investigator.

There has long been a question as to whether VLF radio propagation data
might be readily inverted to obtain D-region electron density distributions,
without the use of trial-and-error. There has also been a question as to
whether profiles, if found to fit the data, could be claimed to be unique.

In this report a method of search is proposed for investigating the problem.




In the case of steep-incidence sounding the measured data are
elements of the ionosphere reflection matrix at several experimental
frequencies. If an electron density profile is known, or assumed, the
elements of the reflection matrix may be computed in a straightforward
manner by use of a full-wave solution, such as that given by Budden,
reference 4. The inversion problem is to begin with reflection coeffi-
cient data and deduce the electron density profile.

Many of the fundamental ideas of the inversion technique described
in this report were previously presented in reference 5. For this
reason, several references will be made to that report rather than to
reproduce the material.

The approach taken in searching for a best-fit electron density
profile from data is that the profile is to be linear (on a log scale)
unless the data gives information to justify a given degree of detail.
To carry out this approach, two functions are defined. The first is a
measure of deviation of computed reflection coefficients from data,

defined as:
5= Bk )/« (1)
L

where

is the number of propagation frequencies

are the computed values of the reflection coefficients

-
—
i

are the reflection coefficient data

-l
e
]

are the uncertainties in the data values.
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The second function is a measure of detail, or curvature, in the profile and

is defined as:

- [ g
dz

where Ne is the electron density,‘z is the height variable and the integral
is taken over the range of the profile.

The required profile is sought by an jterative technique in which the
total curvature in the profile is allowed to increase in steps to improve
the fit to data. Each step requires a perturbation-type solution in which
the full-wave solution of Budden is analytically differentiated with respect
to perturbations in the profile.

The end result sought in using the inversion procedure is the deter-
mination of a profile which contains all the detail justified by the data,
but which does not contain spurious detail which would represent fitting to
error in the data. There should be an optimum trade-off between deviation
from data, represented by the value of s, and curvature in the profile,
represented by the value of c. The trade-off may be represented by the
condition:

¢ + As -- min (3)

where the value of A must be chosen for the optimum condition.

PRE—

A solution to (3) may easily be found for A=0. A solution which is

first order in ry may then be used to obtajn a solution for a small value
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of A. The first-order solution may then be used to find profiles for
successively larger values of A. As the search proceeds, the profile
will, in general, develop more detail and the fit to data will improve
until a singularity is encountered in the solution.

This report is divided into three major sections other than the
Introduction. Section II is a discussion of the general background
needed for understanding the ideas of smoothing and inversion. Section
III describes the procedure for obtaining the electron density profile
from reflection coefficient data. Section IV summarizes the inversion
scheme and gives an example using simulated data.

The notation used throughout this report is as described below. In
general the subscript convention used is that j and j' refer to the "n"
layers of the electron density profile while i and i’ refer to the "m"
data parameters. Note that most equations are written so that subscripted
variables may be thought of as matrices or vectors.

The notation is:

Square matrix: 7%* >

ki
9" ea




Column vector:

Il
[
W
o
R
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Row vector:
o>
_—>_/”_\_/_—\
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6




II. GENERAL BACKGROUND

A. Inversion Without Smoothing

A simple inversion technique is illustrated by the Newton-Raphson

iteration procedure. The problem is to find "x" such that:

£ex) = F(i.e. a constant) *)

Consider figure 1 as an example where the curye for f(x) is given
by the arc PQ. The solution for "x" js obtained by starting with an

initial value for "x" (e.g. x = x,). This gives, from figure 1:

I:T"‘ 13()(¢;) — _Eiji é;
(X, — X,) dXlx=x, )

or let

AR = (F —¢cx) ) (7)

and

ag= 00 (G0 o4t )

This leads to an approximate value of "x" for f(x) = F, given by:

X, = X,+ AX, (°f)

8 e e o
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The iterative procedure is then repeated with:
ax, = (d0)7 i (19

L

')(::'X&._

and

d-f(X) - Af,
T ( s (D

L L 1

until convergence occurs when Af becomes less than some pre-assigned
tolerance value. Figure 1 illustrates the iterative process.

The technique will yield the wanted solution for "x" provided
that the slope of the curve does not become zero along the arc QP of
figure 1.

Figure 2 shows an example of a curve, f(x), where the inversion
technique will not converge because of the zero slope of the curve
at the point X3+

Next, a modified version of the Newton-Raphson iteratjon scheme is
considered. In this case it is desired to follow the curve f(x), from
an initial chosen value of "x", as f(x) approaches the fixed value, F.
This situation is important in that it seryes as an analogy for more

complex cases.
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The problem is to find "x" such that f(x) = F (a constant). The

solution for the i-th step is:
ax; = (X, ‘XL--5=(.J4.F(O> (@%3 {ENEY

where
4 ~;
W= Fo(F =8¢ @3)

and where "Ai“ takes on values monotonically increasing from 0 to <.

It is seen from figure 3 that the steps converge to the value
f(x) = F only if f(x) is a monotonic function of "x". If this is not
the case, the steps will not converge. Even in this case, however,
there may exist another function g(x) = function (f(x)) which is a mono-
tonic function of "x". The above curve-following procedure may then be
used with g(x) to converge to a value G = function (F). This point is
important in making analogies with more complex inversion problems.

B. Smoothing With No Inversion

1. General Case.

When data of the form y(x) vs. x is considered, it is common
practice to "smooth out” experimental error by drawing a smooth curye
close to, but not necessarily through, the data points. The object is
to draw a curve which contains all the detail justified by the data, but
which does not contain spurious detail which would represent fitting to

error in the data.




Figure 4 illustrates a set of data points to be examined. The
method of smoothing, presented here, is a technique for drawing a smooth
curve y(x) close to a set of data points Y1 = Y(X1). In this technique
the condition specifying the smooth curve y(x) is given by:

C + NS —=>7)17 (14)

where "c" is the curvature and "s" is a measure of deyiation of the
curve, y(x) from the data points. The parameter "A" specifies the trade-
off between fit to data and smoothness of the curve y(x).

The measure of deviation of the curve, y(x) from the data points is
given by:

}f& g;(X) Y(X)g (?fgi)

i=1 o
The Y, = Y(Xi) are data values and the y(xi) are values of the curve
y(x) at the coordinates, x = xi. The o, are the uncertainties in the
data values.
In matrix notation, equation (15) is written as:
P e
¥(X.,) =¥(X;) UEY ER ) T(X )

35 cobge L. et @O

By PO e L
v/

where both right hand factors are vectors. Also, i = 1,...,m; where

"m" is the number of data points.

10




Differentiation of equation (16) with respect to y(Xi) gives:
b £ =
28 i X e XK
b ) | S @7)

The curvature term "c" is defined by:

i i (9

Equation (14) defines the entire curve, y(x). However, in practice,

k . y(x) can only be determined at a finite number of points, Xy For
simplicity it will be assumed that the xj's are equally spaced at inter-

vals, Ax, and that each X; is coincident with an Xje From appendix A

the second derivative at X; is approximated by:

d%y (V1Y YjiYj-
: k( SCREo ] /Ax Qc,)
dx Ax Ax

The curvature function "c" is then:

n-1
. *z}: (yifl‘zyi+y/"l)2} (axy3 (&O)

=2

AR T
:

TIE PG
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where n is the number of points, X;e This can be written in matrix

notation as:

£== 1"\ iy,
oo (AX)—3 >g, 4 ;,/ .| }'
P et v

where the Cj.j are elements of the matrix

7 W O

2 54 1
14 6 4 1

The derivation of this C matrix is given in appendix A.
The derivative of the curvature term, "c", with respect to each

¥; is derived in appendix B to be:

/1:> /“Z'—\_; "/ 7' T
2L —agpe Y G
~ T L - PR \/ ry

The condition for the minimizatijon of equation (14) is:

2C 4ok Ok R

3Y(X}) Y(X;‘) s

12
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where (a/ay(xj)) implies differentiation with respect to y at every
point xj.

From equation (17) the second term of equation (24) is:

25 ) Lf X} = X;
X0 S ’ €Yy
0 Lf X; i k%
or
S = | ; |
S¥ap Tt e (2¢)
7 : :
where
L of X4 oo XL
¢! Ly fie e o, )\; # XL
Substituting equations (23) and (26) into equation (24) gives:
f";'\ :
- o 0 =Y) ¢
] P . oy AN 4 (_i_____if gy .
s C”)J/’) +ands = o (a7)

where i=1,...m refers to the data values.

while j=1,...n refers to the points Yj (or y(xj)) which describe the
the smooth curve y(x).

13




Next, various other values are assigned to the "\" parameter and
equatfon (27) is solved for other sets of y(xj)'s. For any given set
of y(xj)'s a measure of the deviation from the data points Y(Xi) can be
computed from the equation:

L e
AT ST ey Vi
£ Nt v I“/(Xé’;y(x_i_) (26)
SRl

Therefore, the set of points y(xj), as determined for a given value of

the "\" parameter, will be characterized by a value of the deviation
term, "s", as computed by equation (28).

The following example illustrates the smoothing technique. Consider
measurements of the electron density of the ionosphere vs. height as
data values obtained from a vertically incident rocket. The problem is
to "smooth out" the error in the data and interpolate between data points
by drawing a smooth curve close to but not necessarily through the data
points. The error in each measurement will be assumed to be gaussian with
standard error, 04

There are 20 heights at which data points are taken and these height
values are 2 km apart. The height values for the computed smooth curve
will be 1 km apart. To apply the procedure as presented by equations(14)
through (28), let the height parameter be taken as the independent
variable, x, and the log of the electron densities (i.e. log10 N) be
taken as tne dependent variable, y. The optimum value of the deviation

parameter "s" is obtained when the fit between the data and the curve

14
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y(x) = log10 N(x) is, on the ayerage, within one "o" value at each data
point. That is, for 20 data points "s(optimum)" will be equal to 20.

Figures 5 through 9 illustrate the smoothing procedure as applied to
the rocket experiment. Figure 5 shows what will be called the true
electron density profile along with the "data" values which are obtained
by adding random gaussian values to the true density values at each of
the 20 heights.

Figure 6 presents the results obtained after applying the smoothing
technique to the data (with gaussian error included). Shown are the
resulting curve for "optimum smoothing" (i.e. s~20) and the curve for
“over smoothing" (i.e. s = 31.1). Over-smoothing implies that minimiza-
tion of the curvature term, "c" of equation (14) is being accomplished
at the expense of not fitting well to the data points. That is, the choice
of A is too small and needs to be increased.

Figure 7 compares the true profile with the optimumally smoothed profile.

Figure 8 gives curves for "optimum smoothing" and for the case of
“under-smoothing" (i.e. s = 9.1). In the instance of "under-smoothing"
the minimization of the term for deviation to the data points (i.e. "s")
is dominant over minimizing the curvature term. The smooth curve y(x) is
being attracted more strongly to the data points. This result implies
that the choice of "\" is too large and should be decreased.

If the value of "\" is increased still further than that of figure 8,
it is shown in figure 9 that the resulting smooth curve, y(x), is a fit
to the “error” rather than to the true profile. This result is an

important aspect of the smoothing procedure when there is error in the

data values.

15
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2. Limiting Case of Interpolation Between Data Points.

Given a set of data points Y(X1), where i=1,...m. Next consider
the set of evenly spaced points xj, J=1,...n, which include the set Xi.
The problem 1s to find the values of terms y(xj), corresponding to the -
various xJ's. by interpolation between the Y(Xi) values.

Consider equatfon (27), that is:

i~> :
s ; /-7
(Ax 7 C;/'.’ i Y,_" + )\\i _-ZF—L c):; - O (.17)
¢t
In the limit as "A" — o equation (27) becomes:
5 = 1-b :

)
T e B b G PR 8 8 :
WG ) 4% )= 4V )
i, med. \l/ \V

where:

Yy * y(xj). J=1,...n are interpolated values at evenly spaced
increments in x (i.e. &x) and which include the

set of Y(X;)'s.
} Y; = Y(X;), 1 = 1,...m are data values at each X;.
Note that each Y1 must be ‘'dentical to a yj. Also the modified C matrix
is identified by the superscript II-b to differentiate it from other

forms used in later sections of this report.

! 11-b o
The j'-th row of the modified matrix, EJ.J » 1s the j'~th row of
i the matrix QJ'J (see equation (22)) if Xy does not corre%go:d to an X,. .

If xj. does correspond to an L then the j'~th row of gd.j is all

16

e

e i e 1t K )




zeros except for a 1 for the main diagonal element, Cj.j.. Also, all
elements of the vector VJ. of equation (29) are zero except that if
xj. corresponds to an Xi, then Vj. = Y1.

As an example, consider the set of points Yl. Y2 and Y3 at Xl, X2
and X5. Now assume there are a set of xJ's (separated by even incre-
ments) positioned between the xi's. Let there be 4 xj increments
located between successive Xi values with two xJ increments preceding
x1 and two increments of X5 following x3. That is, Xg = Xl’ Xz = XZ’
and X1 = x3. When these assumptions are substituted into equation (29),

the following matrix expression results.

1-21 0 ¥, %

a5-440 O Ya &

004000 Y, Y.

o1-¥6410 Vs 0o

®6aote6 N

o 000 . =

0146440 z; o % (3‘9

od+¥é6+41o0 Yo 0

0146440 Yo 0

C) oooilo0o0 Ya %

01452 Yu Fe)

04121 Ve o
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The interpolated yalues, yj. are then found from the matrix

equation:
: _ 4= 14 }
Hy\ _ + =k
W= b i"f (31)

It is shown in appendix C that the yj's, obtained by using this

smoothing technique, are linear combinations of the Yi's. That is:
L —>
P G Avs 3&)
=4l | I :

where
«—>> # =9, -2 >
Al b 't =t 1t 4] v [35)
‘L ; mod. ¢
and

18
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It is also shown in appendix C that derivatives at the interpolation

points, xj, are given by:
m
dy —E N VY.
g @}—l) YL
} L

542 3,00en

(9

where
B;L - %Al\' (’bj+i)1_ 2 B;~1)L> (36)

C. Combination Problem of Smoothing and Inversion

Define a function r(w) as:

b

r(w) = /[K(w‘,o((‘z))z).o((,)] i (=21)

a

So that the curve, r(w) is a function of the curve, a(z).

Now, suppose that at a finite number of values of w (i.e. w,

i=1,...m) there are data values, R(aﬁ) = Rtrue value(”i) + e;. See figure 10.

The error, €; is unknown; however, the expected error is T From these
data values, R(aﬁ). it is desired to deduce the form of the curve, a(z),
insofar as possible. The curve a(z) can not be determined exactly
because (a) there are only a finite number of data values, R(uﬁ) and

(b) there is unknown error in the data. This problem is one of both

smoothing and inversion.

19
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Because of the error in the data, R(uﬁ), it may not be desirable
to represent a(z) as a curve for which the r(ug) fit the data values
exactly. The optimum curve, a(z), should be one which contains all the
detail justified by the data, but which does not contain spurious
detail which would represent fitting to error in the data.

The trade-off between fit to data and smoothness of the curve may

be represented by equation (14) as:

C + IS —> /717 /k’]mﬂ (1 "f‘)

where "c" is the measure of curvature in a(z) and "s" is a measure of the

deviation of values r(uﬁ), on the curve r(w), from the data values,

R(o.ai
The function "s" is defined as:
L —>
e ) 1
| gt L AR
: where the

°i.s are the uncertainties in the data.
The function "c" is defined as:
s
b

[ {588 & o

& -

dAdz*
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The parameter "A" of equation (14) is chosen so as to optimize the
trade-off between the fit to the data R(w;) and the smoothness of the
curve «(z).

For the sake of numerical tractability, the curve a(z) is repre-
sented by a series of short segments, see figure 11. The values of a(z)
where the segments join (i.e. at 24 j=1,...n) are taken to be the
unknown parameters of a(z) and are denoted by a(zj) = oy, g=] ... R,

Because a(z) can only be determined at a finite number of points,
Z5 and since for simplicity it will be assumed that the zj's are equally
spaced at intervals Az, the derivative in equation (39) at 2 is

represented by:

ezl N[(d*}f;d") 8% e (40

As given previously in equation (20), the curvature function, "c" can

then be approximated by:
h-
cn [fe o L 60

where n is the number of segment points, zj.

Equation (41) can be written in matrix notation as:
>
e o
-3 A ol ¢ i
b .’ C'/l' . . L'L&
C v @3 °‘; ‘l‘ 34 ila(} ( )

21
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where the matrix Qj'j is given in equation (22).
The minimization of equation (14) is with respect to the positions
of the points a(zj) on the curve a(z). Therefore, the minimization

condition is met if:

ISR TR S 1 o (433

9"((—24) (QD((Z’)

where j=1,...n

The derivative (ac/aa(zj)) is given by:

& T R SR : is
13‘"1' = @2} C/z'/ "/99 (#4)

which is similar to equation (23).
The derivative (as/aa(zj)) is given by:

L

¥ 95 ¥ o ,? El;. ,é( rr—K. )
Vs = V%] W e &2

where r, = r(uﬁ), (i=1...m) is computed from equation (37) using the
values ay = “(ZJ)- For purposes of integration, linear interpolation is

made between the points a(zj).

22
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Qo((;.{j) % .)o(j

The derivative, (ari/aa ), is given by:

Qn, Qr(w[) LY {3 K(w ¢=(&)E) . o{(Z)
ETERNPTTEY d (%))
o oNA(BD (jéLéz)
+ K(4; (3,2 'Jo((z,,)

where (aa(z)/aa(zj)) is a triangular weighting function made necessary

by the use of linear interpolation in the integration and is given by:
E :
o it Wor U
—_ . : % » L
dol(®) I = (Z ‘—1) W FHg<ZL 2‘” r(q,'])
%~ &y
8 other wise

~
See figure 12, where the ratio (Bu/aaj) is:

.43(. . g Zi'i
Ady Zi — Z;_4

Substituting equations (44) and (45) into equation (43) gives:
> &

o[ )+ M Tiea8)=e) o

where ry = r(oﬁ) and is given by equation (37). Also, the rectangular

matrix (arf/bajé is given by equations (46) and (47).

23
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Note that the unknowns in equation (48) are the aJ's but that the
ry's are functions of these "unknown" aJ's. Hence, at this point
equation (48) cannot be used to solve for the a(z) curve.

With certain additional constraints in the curve, a(z), the equation
may, however, be solved for "\" = 0, for which values of r(mi) are not
required. Without additional constraints the solution for "\" = 0 is
indeterminate since any straight line form of a(z) is a solution. That
is, for any straight line, the curvature function "c" = 0. The required
additional constraints could be, for example, that the values «(a) = ay
and a(b) = a, be pre-selected fixed values. These constraints may be
added by modifying certain elements of the C matrix of equation (22).
That is by setting:

A v dal o (%)

12 3 WA =2 )

and by setting the first element of the right-hand vector of equatfon (48)
to a(a) and the last element to «(b). If these constraints are retained

for other values of "\" as well, equation (48) becomes:

$=>arc , . i~ ( )
[ o | o) 4+ N3]25% | 4 ‘j\’.‘) — '<V 50
\l/ m«i(. ¢ 4 l/Jd;’ ‘1'( i \1/ ;
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where the modified C matrix, C contains the changes just described and

contains the factor (l/Ax3). Also, for this case the vector "V" is

74 (f A

9= 1 @)
v YV \ (b

Note that other constraints are, of course, possible.

The solution to equation (50) for "\" = 0 is a set of aJ‘s repre-
senting a straight line between the fixed points «(a) and «(b). Although
exact solutions to equation (50) may not be obtained for other values
of "A\", a first-order solution may be found for a small positive value

of "\" if r. is approximated by a first order Taylor expression:

0= @

where ajo refers to the solution for A = 0 and r1° and (ari/aaj) are

()
values obtained from equations (37) and (46) respectively. Equation (50)
is then aporoximated by:

e ) o
4 4 29 i % e <
A k) AT =) (53
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If Aaj is defined as (01‘j - ajo), equation (53) may be written

*RXn-¢ iy e o >

A

.
= ’

In this matrix equation only the Aaj's are not known and hence the equatijon

may be used to solve for A .. Then:

J-.

o<(z,~) = o<°<'2;-) 4 Ao(;’ FaEL il (S'C)

is an approximate solution for the small value of "\" used in the equation.
If the aJO values in equation (54) are now taken to be the values

just found for small "A", this equation may be used with a somewhat larger

value of "\" to obtain a new curve, a(z), represented by values, aj. Thus,

as long as the increments in "A\" are sufficiently small and so long as tle

coefficient matrix does not become singular, equation (54) may be used in

“bootstrap" fashion to obtain values of aj for any value of "\". That

is, for a given value of "\", equation (54) is solved for (Aaj). Then

ay (new) is computed from equation (55) as @, (new) = o (o1d) + Aozj.

At this point new values of ry and (ar,/aaj) are computed. The next step

is to substitute these "new" values into equation (54), along with a new
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value of "A" and then to solye the equation for yet another set of
(Aﬂj)-
Equation (54) may also be written in a simplified form as:
—_—

Kl - @< = [T) )

where [K] is te coefficient matrix,
—>
(Aaj) is the unknown vector
-
and (T) s a known vector.

The solution for (Aaj)is found from:
-y —
= Bl &7

It may be noted that equation (57) is similar in form to equation (12).

(A

In section A it was shown that the modified Newton-Raphson procedure
diverged if the derivative of f(x) became zero anywhere along the f(x)

curve being followed. That is where:

M=l | aE oo

(3

and

(=0 oD
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An analogy exists between equation (57) and equation (58) in that
the procedure for solying equation (57) will also diverge if the coeffi-
‘ cient matrix, K, becomes singular.

Also, in analogy with section A, if divergence occurs, there may be
another function, g(w) = function (r(w)), which may be followed to the
desired inverse solution without a singularity being encountered. The
choice of function, g(w), however, is likely to be an art more than a
science, unless sufficient information is available on the behavior of
these functions.

The matrix equation to be used with g(w) = function (r(w)) is
simply equation (54) with the ri's replaced by gi's and the appropriate

choice made for the matrix of uncertainties, o- These "uncertainties"
b are probably best determined by requiring that as "A" is increased to
make the values of 9; approach the values G1 = function (Ri)' the sequence
of curves, a(z), become the same as if the function r(w) were used. The
formulation needed for making such a choice of "uncertainties" in G(a#)
is given in appendix D, where it is seen that the uncertainty matrix for

the Gi's is no longer diagonal. For the 91'5 equation (54) becomes:
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II1. DETERMINATION OF ELECTRON DENSITY PROFILES FROM VLF REFLECTION
COEFFICIENTS
A. Reflection Coefficient Data

Very low frequency (VLF) reflection coefficient data may be obtained
from steep-incidence sounders, such as the NOSC facility located at Sentinel,
Arizona, reference 6. This system uses a horizontal dipole as a transmitting
antenna and crossed loops for receiving. The system has the ability to trans-
mit several frequencies nearly simultaneously.

Reflection of a VLF wave at near-vertical incidence is described by the

reflection matrix:

@

where the first subscript refers to the polarization of the upgoing wave with

B:

respect to the plane of incidence, and the second subscript refers to the
polarization of the downcoming wave.

The measured parameters of the sounding system consist of the received
electric fields, both parallel and perpendicular to the plane of incidence,
of the VLF radio wave. These fields are identified as E, and E  respectively.

The transmitted wave, ET’ is used to form the ratios:
R, = £+
> (63)

s
~
’_
I
mjm m
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These ratios are combined to give:

B EE
TR By Q)

thus eliminating the need for knowing the transmitted wave, ET.

The ratio term, (lR“/lRl), has the property that, for some forms of the
ionosphere, the magnitude of the denominator may become much smaller than
the magnitude of the numerator. This gives a very large value for the ratio.
The same result is also characteristic of the reciprocal of this ratio. The
large value constitutes a major numerical disadvantage of using this type of
ratio in the electron density profile determination scheme described in a
later section of this report.

Following Budden, reference 7, a better choice of parameter is:

P et Jy . -
Mg (LRII/_LR..L )

where j = /-1

This ratio is derived for the case of vertical incidence propagation through

an exponential electron density profile with a constant collision frequency

and assuming the earth's magnetic field to be vertical. This ratio has the

characteristic that its magnitude is always less than or equal to one for the

case for which it was derived. For the general case, however, it will also

give results that are not so large as to give numerical problems when used

in the profile determination scheme, for latitudes not too near the equator.
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Equation (65) may also be re-written in the form:

—R(e) +4 R(e)] (60

R = -
L =Rt =4 Rie |

L
where i = 1,...m

In this case the terms are identified as:

W

¢ The transmitted frequency.

m The total number of transmitted frequencies.

R(uﬁ)= The value of the ratio, at the i~th transmitted frequency, as

determined from data.

0 = The incident angle of the radio wave on to the ionosphere.

j =1

It is to be noted that the above reflectjon coefficients are functions of
the earth's magnetic field. In particular, as the location of the sounder site
approaches the geomagnetic equator, the cross term (i.e. lR“) tends to zero
and the ratio term, R(uﬁ) becomes equal to one. When this situation occurs
the profile determination technique then yields no information. The most
useful data for determining profiles is obtained, therefore, at locations with
large magnetic dip angles (i.e. near the geomagnetic poles).

In equation (66) al) of the reflection coefficient terms imply complex
numbers. Also, the ratio term, R(aq) is a complex number. A useful repre-
sentation of the reflection coefficient data is to plot it in the complex R-
plane as a function of the data frequencies, W, An example of this
relationship is illustrated in figure 13 for the real and imaginary components
of R(u%). Note that the frequency, w, serves as the parametric variable.

Included in figure 13 is a smooth curve which would represent the data

if it were obtained at all frequencies without experimental error.
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B. The Ionospheric Model

It is proposed to investigate the possibility that the form of the elec-
tron density profile of the ionosphere can be deduced from steep incidence
sounder measurements of reflection coefficients (equation (62)), since the
measured values depend on the height variation of electron density. These
values also depend on the charge, and mass of the particles in the ionosphere,
as well as their collision frequencies with neutral particles and of the
earth's magnetic field.

Several assumptions about the electron density vs. height relationship
in the ionosphere must be made before a mathematical technique can be set up
to determine a profile from reflection coefficient data. In particular, all
of the above parameters will be taken as known except the electron density
profile which will be considered as unknown and is to be found from tha
data.

The magnetic-field parameters will be taken to be known and, in the case
of the model presented here, the magnetic azimuth will be restricted to be
either 90° or 270°. As is the usual case of these VLF frequencies, ions are
considered to have negligible effect on propagation and hence are omitted from
the model. The collision frequency profile is taken to be known and is
constrained to be of exponential form (e.g. v = v, Exp (=az)).

Additional assumptions (i.e. constraints) on the form of the desired
electron density profile are listed below and are illustrated in figure 14
where the electron density (N,) is shown as a function of jonospheric height

in terms of log10 Ne:

1. "Stop" constraints are introduced at both the top and bottom of the
electron density profile. These correspond to limiting values of
electron density which the profile may assume at these heights. At

the top of the profile the "stop" defines the minimum value of
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electron density which the profile may assume. At the bottom, the
"stop" defines the maximum value for that height.

2. It is assumed that there are no electrons below the chosen lowest
height of the profile. Above the chosen top height of the profile
the electron density is assumed to be of constant value equal to the
electron density at the chosen top height. This latter property is
usually referred to as a semi-infinite medium.

3. The profile is constrained to be reasonably smooth but otherwise
consistent with the reflection coefficient data. Note that this
jmplies that the profile approaches a slope of (dN/dz) = 0 near the
top height which is just below the semi-infinite medium.

C. Computation of Ionospheric Reflection Coefficients

Ionospheric reflection coefficients, R, may be obtained for a given
electron density profile by the "full-wave" method given in reference 4.

These reflection coefficients are the result of the integration:

g = [*(F) e @

~ a Z

where the integrand is given in reference 4 as:
dRdz = k|2 {S21’+-‘§‘::’£'B.-‘E””'B.‘E”:’E} (ég_)

k is the wave number.
The matrices, "S", are functions of the electron density profile and of the
wave frequency, w, as well as other parameters described in section B.

Equation (68) is given in scalar form in reference 5, pages 11 and 12.
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As was discussed in section A, a useful function of the reflection

coefficients is:

L e o ST Q)
g G S

where i = 1,...,m
with m being the total number of data frequencies.

In this instance the reflection coefficients, R, and R , are obtained
from the integration in equation (67) and thus, "r(u%)“ is the computed value
of the ratio at the i-th data frequency.

The function "r(aﬁ)" is complex and as such can be plotted in the complex
r-plane as a function of its real and imaginary parts. Examples of r(w)
curves are illustrated in figure 15 as a continuous function of the parametric
variable, w. Calculations performed using different electron density profiles
will produce various forms of the r(w) curve. Some of r(w) curves will possess
certain distinct characteristics, such as the loop shown in figure 15 for the
curve [ r(w)] 13 others may be relatively smooth, 1ike the [r(a»]z curve. Note
that because of the constraints listed in part B, not all forms of the r(w)
curve can be generated simply by varying the electron density profile.

D. Comparison of Data with Computed Reflection Coefficients

Reflection coefficient data may also be plotted in the complex R-plane.
An example was presented in figure 13 where the data points were plotted para-
metric with frequency. If ionospheric reflection coefficients are computed
from an assumed electron density profile, a plot illustrating the comparison
between data and theoretical calculations may be constructed. Figure 16

shows an example of such a comparison. In this instance it is observed from
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the plot that the computed reflection coefficients differ drastically from
the data values. The problem to be solved, then, is to find that electron
density profile which, when used in the full-wave computation of reflection
coefficients, will produce a match to the data, R(uﬁ). Such a match is
illustrated in figure 17. Because of error in the data and because of the
constraints put on the ionospheric model, the data can not be matched exactly.
This characteristic is shown in figure 17.

The procedure for finding that particular profile of electron density
which will produce a match to the data is discussed in the following sections
of this report.

E. Application of the Combined Smoothing and Inversion Techniques
to the Tonosphere Problem

The question as to whether the the profile of the electron density of
the ionosphere can be determined from reflection coefficient data is examined
with reference to the procedure presented in section II, part C of this report.
The correspondence between certain variables may be identified. In

particular, the following relations apply:

Section III Section II,C
a Height, z ~ The integration variable, z
b Wave frequency, w ~ Parametric variable, w
¢ log Ne vs. height, 2z ~ avs. z

d Tlog N, at height, z ~ o= a(zj)
e Re[r(w)] & Im[r(w)

2
3
£

f Re [r(w)l & Im[r(w)l ~ r;=r(w)

g Re [R(wi)] & Im [R(wi)] o R1 = R(w,')

Note that the ionosphere r(w) is not obtained from an integration of
exactly the form given in equation (37). However, the integration (67)
together with equation (69) is comparable with the integration in equation (37)
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in that the r(w) values are obtained as a result of an integration between
fixed 1imits in the integration variable, z, and furthermore the integrand is
a function of z,a(z), and w.

The derivative (br/aaj) required in equation (54) of section II-C will

correspondingly be somewhat different in form. It is first noted that:

B8 - =E£) 1 @)

af: &,J_Iﬁ

gal T FY :
o # K— 1Ri ~'ILR|J ;{T:WT}
the derivatives (aLRL/aaj) and (QLR”/aaj) are elements of the matrix

3 R B ||R|| (> _LQH

~— =[2% i (71)
J A, :
4 duRy 3 1R
d Ky 9 4

which is found as the result of the integration

w
A
79!

I
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e b-é%(—;(9>al; (7;1)
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The integrand is found by differentiating equatjon (68) with respect to ay:

A 2) 422 1) 12) T ot
_3_'(\15:_1;_}[‘1"5 +d‘i; B- S Edf( ~} 3a; (73}

22) R R (11; 38 12 12) °R '
YIRS T T

where the weighting factor (6a/303) is described by equation (47). The
derivatives (3"$"/da) are described in reference 5, pages 31-35.
The constraints on the a(z) curve when it is used to represent the ¢ 1

electron density profile are somewhat different than the ones placed on the

a(z) curve in section II-C. Instead of choosing the ends of the a(z) curve d
(the profile) to be fixed values, inequalities are used. At the top of the

profile the electron density is constrained to be at least as great as a

chosen fixed value. At the bottom height of the profile, the electron

density is constrained to be no greater than a chosen fixed value. Thus:

o((aw = (&) > oA 1psr0p ,
(74)

O( (£> o X (zh) < ‘7< Bol. SToP

In addition, in order to ensure a continuous slope, (dNe/dz), leading

upward to the semi-infinite medium, the slope at the top of the profile
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(z=a-=

zl) is constrained to approach that of the semi-infinite medium.
In terms of a segmented «(z) curve, that is, a segmented electron density

profile, this is implemented by adding the term:

SRR T (75)

to the summation representing the curvature function. That is, "c" is now

defined as:
n-1

C = {(o() - oq)’L -+ Z (0(1_1— AAy + o(}-ﬂ)a}ﬂi)g(ﬂ)
;::1

Compare this result to equation (20).
With these modifications to the set of constraints, the equation to be

solved is a modified form of equation (54).. In particular the matrix:

P >
e -1 P o
¢ o e o (77)
‘L Q O R o i o

is added to the unmodified C matrix of equation (22). That js, the original

C matrix terms are modified to be:

r Cug - 1 +(1+R)= 22+ S

C"uz -2 4(=-1) - e 787
Jc'n: ~a. %=1 e ’ ( )
Cay = s +(1) g ©
Bas ol B LR
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Here:
(a) [= 0 if, in the solution for Aaj's the top end of the profile
is inclined to move to the right of the stop.
= a very large positive value if the top end of the profile

is inclined to move to the left of the stop.

.

(b) (=0 if, in the solution for Aa.'s, the bottom end of the

J
profile is inclined to move to the left of the stop.
8 = a very large value if the bottom end of the profile is
inclined to move to the right of the stop.
Also, the vector, V, of equation (51), used in equation (54), is

modified to be

-

i e

V| =
\red

Substitution of equations (78) and (79) into equation (54) gives:

Top STop (-77>

. BoTl. STop

a?to-...oﬂ\é

BT o

¥ ”13:’:; T |
:-( C;; o ’)+>‘J;r .\\.a i<co_R,> (8@
< AP \b \L =

where the r1's are the computed 1onospher1c reflection coefficient ratios as
given by equation (69), the Ri's are the data parameters given by .




equation (66) and the aj's are the logs of the electron densities at the
profile segment points, zj.
The derivatives, (ari/aaj), are given by equations (70-73).

F. Characteristics of the Solution of Equations in Terms of the

“r(uﬁ" Pzrameter

The solution to equations of the form of equation (80) was discussed
previously in section I1I,C with regard to equation (54). The solution for
successive iterative steps of A+ AN is given in terms of ( Aaj). Each

jterative step leads to a new set of aj's given by:
04(313,“,:—“ H(Z)) st (Ao(;-) (3.1.)

The procedure is to compute new sets of the fonospheric parameters, r(w), from
each set of a(zj)new

In section D the comparison of computed values, r(ag), and data values,
R(uﬁ), were shown plotted in the complex r-plane. The uﬁ's are the propagation
frequencies and serve as the parametric variable in the plots.

It was suggested that the proper choice of electron density profile (i.e.
set of aj's) should result in a set of r(oﬁ)'s which would match the set of
data R(u%)'s. Figure 18 illustrates the iterative procedure corresponding
to successive solutions, [a(z)j]new. to equation (80).

The set of r(uq)'s, computed from each electron density profile (i.e. each
successive set of [a(z)j] , are presented in figure 18 as the curves

new
[r(«»]l, [r(aﬂ]z, etc. The data values are shown in the figure as

R(«y), R(w,), etc.
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In carrying through the iterative procedure to obtajn a match between
the computations and the data, it is noted the minimization requirement of
equation (14) implies that the deviation between the r(ug)'s and the R(aﬁ)'s

be minimized. Following equation (15), this may be written as:

s= ) (O E) i ()

o,

which demands that each frequency point on the r(w) curve pursue approximately
the shortest course possible, in the complex plane, to get from the [r(w)]1
curve to the R(uﬁ)'s.

Observation of the curves, in figure 18, shows that the points of
lr(aﬂll are numbered in the opposite sense to those of the data R(nﬁ)'s. The
trend of the r(w) curves will need to include a complete reversal if a match
to data is to be accomplished. The arrows which emanate from each r(oﬁ) point
indicate the direction in which each r(uq) point is constrained to move as the
iterative steps progress toward the final match using the above definition
of "s",

It is noted that in the sequence, shown in figure 18, that a loop is
formed and then unwound. In forming a loop, however, the curve is forced to
contain a "cusp" at one stage, as is shown on the curve [r(u»]3. Experience
with numerical computations has shown that in cases of this type the coeffi-
cient matrix of equation (80) becomes singular as the form of the curve
containing the "cusp" is approached, and hence the solution for the Aaj's, and

thus for the electron density profile, diverges.
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. G. Transformation Function, "g(r,w)"
r The sequence of r(w) curves in the above example need not include a
curve containing a "cusp" if one end of the r(w) curve is rotated about the
other. This does, however, require a different definition of the "s" of
equation (82).

The definition of "s" required for this sequence must emphasize the
angle assumed by the curve in the complex plane at each frequency point,
r(uﬁ), except at the end about which the curve is to be rotated. At this
end point the absolute position of the point is to be stressed, as before.

A complete definition of the curve must also include a requirement that the
spacing of frequency points, r(uﬁ), must match for the computed and data
curves. It is then noted that since the low frequency end of the r(w) curve,
r(uﬁ), is more stable with respect to small changes in the electron density
profile, it is Tikely to be the better choice for the end about which rotation
is to be carried out.

A function, g(r), containing the aboye properties is:

R
P ;

and { ) <:é§§)

L s PR In gwr\" rl S, J

or

(91 - f; (reat) + ,}ri(/mqg,)

and ’ (3 4)

J /n | gg){_l (@), |

where 1 =2,...m , j=y~1
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and

0, = (T 2an.7)

where 4715 the principle part of the phase term and lies in the interval
- <db<m,
Figure 19 illustrates the transformation function, g, in the r-plane.

The phase angle, ¢_, may be written as:

9

: iy,
(¢3\i — ARCTAN(AJE'"/W'(E/;:Z;’\ (é;)

The value of Nys in the phase term, is chosen for each frequency so as
to ensure that the phase, ¢1, js continuous along the r(w) curve. This
requirement leaves the value of n; arbitrary for one frequency, e.g. the
Towest frequency, . The n; value for this frequency, that is, nps is
chosen so as to cause the curve to rotate in the desired sense (i.e. clock-

wise or counterclockwise).

The transformation function for the data vaiues, R(oai), js introduced as:

e N

G‘L i Rl (real) + 1. Rl( /-/77c,3,)

5 GO

G e B |@§)J s (ch)L

wnere i =2,...m and

(@), = (@G)i * 2l n)
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The phase angle, ¢G' may be written as:

, ¥ T mag (“‘/%m)g
(R ARCIAN(M ) (87)

Note that at a "cusp", as in the curve [r(w)]; of figure 18, (dr/dw) = 0

and hence:

‘C] - /n ( df/o{w) — — oo+ ,I_(/l?cle.t'ermmafe) (88)

The new definition of "s", which emphasizes a small deviation between

computed values, g;, and data values, Gi’ is given by equation (61) as:
L—> >, t>

S = g -Gy .0_1:_‘-) (-ﬁz) :(9~‘("'.-> (Gl)
v 4

This formulation will not allow a "cusp" to form in the iteration scheme.

The solution for the Aaj's, and hence the set of (aj)new’ is given by
the formulation in section II-C using the function g(w). The real and
imaginary parts of the g(w) in the present section are to be identified as the
real function g(w) of section II-C. The equation to be solved is equation (60).
The choice of uncertainty matrix (i.e. (1/0)) for the data values, G(oop, is
made as described in appendix D. The C matrix and the V-vector of equation (60)
are replaced with the new C matrix and the new V-vector of equation (79). The

derivative terms (agi/aaj) of equation (60) are discussed in another section

of this report.

45

_:..,,...,-...M
NP e n Gk
% S




Figure 20 shows the sequence of curves, [r(udlk, that are the result of
the reflection coefficient computations made using each (“j) new electron
density profile obtained from the iterative scheme as applied to solutions
of equation (60). It is observed in the figure that, although the sequence
of computed point r(aq) in the curve [r(uﬂ]l is completely reversed from that
of the data points R(aq). the iterative procedure causes the successive curves
(i.e. [r(uﬂ]z, [r(aﬂ]3 etc.) to undergo a transformation (i.e. counterclockwise
rotation) that leads to the desired match between computation and data.

Note that this choice of function g(w) to replace r(w) is an intuitive one,
and that, at best, probably only one sense of rotation (clockwise vs. counter-
clockwise) will avoid the singular coefficient matrix of equation (60). An
example has been found, however, with the use of simulated data, when a correct
choice of rotation sense led to convergence in the sequence of solutions to
equation (60).

H. The Derivatives (dr/dw)i and (dR/dw)

There is a requirement for a method to define the derivatives (dr/do:)1
and (dR/dw)1 along the curves r(w) and R(w) when values are given only at
the data frequencies W, These given values are r(uﬁ) and R(uﬁ) with
i=1,...,m. A way to satisfy this requirement is to use the interpolation
scheme described in section II-B-2. The derivative, (dr/dw)1 [ (or dR/daﬂil,
is defined in terms of a smooth curve drawn through the points r(uﬁ) [or R(uﬁ)]
by the interpolation scheme.

The smooth curve is represented in terms of closely spaced points p(°’k)’

at an interval in frequency of Aw, which include the set of rhoi)'s

{or R(wi)'sl.
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More precisely, the interpolation procedure assumes that values of
w, are chosen at k = 1,...K. These o:kvalues are separated by the incre-
ment, Aw. It is also assumed that known values of the parameters r@oi)
[or RUdi] exist at the w values, oJi,where i=1,...n. Note that K will be
greater than n. In the set of wk's there will exist values of w such that
each uaiwil] correspond to an W -

In section 11-B-2, it is shown that, using the interpolation scheme
described, the variable Py = p(wk) may be written as a linear combination of
the values of the rhui)'s [or the Rhni)'s]. This is expressed as in

equation (32) as:

L —p

k .
i(bk = by ‘\L(ﬁ;“"’?ﬂ) (5D
At these values of w where an W is equal to an Wss the value of p(°’k) will
be equal to the r(ug) [or R(aﬁ)] value.

The derivative at one interpolation point, Wy js defined in terms of

the change in value of p(w) at the interpolation points preceding and follow-

ing that point. That is:

d (@) — [(Q(%d = (O(wk_l)]
g 2 - Aw (79)

where Aw is the interpolation increment in frequency and the p(wk)‘s are the

interpolated values.
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It 1s also shown in section 1I1-B-2, that the derivatives, (dp(w)/dw)k
are linear combinations of the values of r(oJi)[or R(o:in . That is:

from equation (35):
L—=>>

(e ey | Jfuen @D

In particular, at the data frequencies, w,,

i)

and similarly:

i j/(au.). (1) (92)

E8)) = i(2)- I Re) (73)
(ai"') = (Bki> <C]q.>

for values of "k" where Wy corresponds to the data frequencies, Wy .

That is, since:

L - i .
k_ ‘?11 b ‘?tn :
$ 8.1 = |° : (75)
Lﬁarz et I%Th_
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and

= C.‘u - o a-in
\L(au") — | : (96)
Apy =~ Ann

Then, only those rows of theg matrix, which correspond to those w values
where W = wy,are substituted into equation (96) in the row positions to

give values to the a matrix.

For a given w, value, equation (92) may be written:

dr £
o s
dw)i =0 T G
LI
Note also, that derivatives of (dr/d w)1 with respect to the electron

density profile parameters, a;, are of the form:

J
n
J i ar
2G) = &SR . (0D

The above procedure of determining values for (dr'/dw)i and (dR/dw) i allows
for the phase terms of equations (84) and (86) to be followed along the
curves r(w) and R(w) so as to ensure continuity of phase in selecting the

values of the n; parameters in the functions g(wi) and G("’i)‘
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I. Following of the Phase Angle, ¢, Along the Curves, r(w) [or R(w)],

and Derivation of the Derivatives, (dg(o:i)/daj)

The curve, r(w) [or R(w)] of section III-F is defined in terms of the
interpolation points of section III-H at frequencies, O)k,spaced Aw apart.

From equation (84):

n (@)= | |+ @D

”JEk

and

R (Eki Ql1k7T> D

k

where dlis the principal part and the nk‘s are chosen so that:
— (b and (t7 = (jy ‘
‘d)k k-il ‘ k k+1

are taken as small along the g(w) [or G(w)] curve to ensure continuous changes
in phase.

At the data frequencies, Wi equation (84) is:

J. = [n ( °'7°’w)i Lk St 08 (10_1)
g, = In || +4 (8.t anm (1e3) |
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Now taking the derivative of equation (101) with respect to the electron

density profile parameters, ays gives:

32‘; — ad [,n| o )H‘ng (io3>

Note that the number of cycles, n;» are not relevant to the derijvative.
At the data frequencies, (o:i),equation (97) of section III-H may be

substituted into equation (101) above to get for each 9

m,
[n { T G o dg } (to#)

then, using the following identity:

o /n(éﬂ 1 du 0
Cic% = -I]—- d ok <EL %i>

the derivative (dgi/daj) may be written:

39, ¢ e Ll OO U R Py
é.ii e - (CJL"L' d '1) ‘;‘J o }d; v
»

where the (ai‘.) values are given in equation (94) of section 1II-H and the

dri/daj) terms are given in equations (70-73) in section III-E.
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IV. SUMMARY OF THE INVERSION TECHNIQUE WITH EXAMPLE USING SIMULATED DATA
As stated in the introduction, the approach taken in finding a best-fit
electron density profile from data is an iterative technique which optimizes
the trade-off between the deviation from data, represented by the value
“s", and curvature in the wanted electron density profile, represented by

the value of "c". The trade-off is given by the condition:

C =+ NS —p> /mnrimarm (j;5’7z>

where "\" must be chosen for the optimum condition.
The actual equation to be solved in order to obtain the desired electron

density profile is, from equation (60):
i=> L2 s iy 4—> (Lo%)
{(c W= Mol L L 2 17 o 4(Adt;
u ® WO W )y 3 ¢

K

A e

-~

i ;9 i -
o\ if e\ 4l LGl S LA
el

0
The terms (cj'j)' (agila“j)9 (1/0101)9 (V), (91 - Gi)’ (O(j) and (Aaj)are all
described in section III.

Equation (108) may be written:

B > :
K(>\ F(w)) - (A ") = T(>\)o(pr(w),R('w)) (;oq)




where

K = The coefficient matrix, and is a function of the trade-off
parameter, "\"; and also a function of the computed ionospheric
reflection coefficient r(w).

T = A vector which is a function of the above "\", and r. It is also
a function of the ionospheric reflection coefficient data,

R(w), and a function of the previous electron density profile, ajo.
0;:;; = A vector which represents the modifications to be added to the
previous electron density profile for that step of the iteration
scheme.
w, = The data frequency, i=1,...m.

i
Equation (109) is solved for (Aaj) as:

('Av(i) = Ry e @15)

Recall that (ajo) refers to the previous electron density profile in the
iteration scheme (e.g. the initial profile in the case of the first iteration
step) and that (Aaj) is the solution to each iteration of equation (108)

[or (110)]. The new profile generated by each jteration is:
-

—>
(o(é) = ke

= - >
S+ ()

&
where each term js a vector of length j=1,...n, with n being the number of
segments in the electron density profile.

A full wave computation, using each set of ij)'s as the input profile,

will give the set of reflection coefficients, r(u:i)needed in the inversion

scheme.
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An example of the inversion procedure is jllustrated in figures 21,

(a and b) and 22, (a and b). In particular, figure 21,a shows a data profile
for which simulated reflection coefficient data was obtained by a full-wave
computation. Also shown in the figure, is the starting profile used in the
inversion technique. The positions of the profijle "stops" are indicated in
the figure.

Figure 21,b gives a comparison between the simulated R(oai)data values,
as obtained from the data profile, and the computed r(o:i)va1ues from com-
putations using the starting profile of figure 21,a. The data frequen-
cies used were from 8 through 17 kHz at a frequency increment of 1 kHz.

The 8 kHz computed value is jdentified by the box that encloses the number 1
while the 17 kHz value is identified by the box with the number 10. In thijs
example it was assumed that the R(u:i)data was error free. The figure
illustrates that the R(a)i)values and the r(uzi)values are very different at
this initial step of the iteration.

Figure 22,a shows the comparison between the original data profile and the
final profile obtained from the inversion scheme. Note in the figure that
the top of the final profile has moved away from the original "<top" value,
thus indicating that information exists in the data values that leads to this
characteristic. The lowest value of the final profile remains at the stop
value indicating that no information is available in the data to modify this
relationship.

Figure 22,b illustrates the comparison between the data values (R@»i)
and the computed values (r(o:i)as obtained from the final profile of figure
22,a. In this case the r(w) curve has completely reversed in sequence from
that shown in figure 21,b. This was accomplished by a counterclockwise

rotation of the computed curve r(w) as the iterative sequence progressed.
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Also, the spacing between the varjous r(uJi)values has been modified from

-

that of figure 21,b so that the fit to the error-free simulated data, R(oa1),
appears to be very good.

It must be realized that the quality of fit, shown above, between the
simulated data, R(oai), and the computed values, r(uai), as obtained from the
inversion procedure, are done for the ideal case of no error in the R@ui)
values. Also, it was assumed that the electron-neutral particle collisjon
frequency was known exactly. In cases where the input parameters are not as
described in the above example, the results cannot be expected to be as out-
standing. Examples of other cases, in which gaussian random error is added
to the simulated data, are given in reference 8 which also describes the
computer program which applies the inversion scheme described in this report.

The quality of results obtained using actual experimental measurements is still

to be determined.
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Figure 5. Comparison of true profile to data with added gaussian error.
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Figure 6. Comparison of optimally smoothed and over smoothed results
to data with added gaussian error.
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Figure 7. Comparison of optimally smoothed results to the true profile and
to data with added gaussian error.
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Figure 8. Comparison of optimally smoothed and undersmoothed results to
data with added gaussian error.
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Figure 10. The curve Ry(w), the data values (R;) and the errors (€;).
Ry(w) implies true value.
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Figure 11. The curve,a(z), in terms of short segments, a(zj).
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Figure 14. Constraints on the electron density profile.
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Figure 15. r-plane representation of r(w) (real)
and r(w) (imaginary) as a function of Figure 16. Comparison of R(wj) reflection
propagation frequency. coefficient data and r(w) computations.
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Figure 18. Possible sequence of r(w) iterations to obtain
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coefficient data and r(w) computations. is allowed to form.
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Figure 19. The r(w) curve illustrating the transformation function, g(wj) = In lad(‘%!i i
(i.e.. spacing and phase).
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Figure 20. Sequence of r(w) iterations to obtain match
between r(wj) and R(wj) values using the g-function.
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VII. APPENDICES
Appendix A. The "C" Matrix

In the procedure of smoothing out error in data of the form y(x) vs.
x, a term identified as curvature is utilized.

The curvature term is defined as:

f) (-9

Equation (A-1) refers to a continuous curve y(x). However in practice, y(x)

can only be specified at a finite number of points, x. (j=1,...n). For
J

simplicity it will be assumed that the xj's are equally spaced at intervals,

Ax.

At the position X5 the curvature term is approximated by:

This term is illustrated in figure A-1.

The curvature function, "c", is then given by the expression:

n-1
¢ *%Z ("/-1‘3-"1“-"/*«1’2: (a3 (A@
j=2

where n is the number of points, xJ.
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Figure A-1. Plot of y(x) for curvature.

Note that the expression:
PR PATEST 2

can be written as:

;(:Cl‘ij5{+-44:y;:5%+' (}§-+;:5f' ‘y(}G"l 5{;.-:)" ‘f(:\g :&1';>‘+' l;<§;‘1-v)*1:§]
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For 11lustration, let n = 8 and expand the expressjon (A~4). This gives,
from equation (A-3): ax'c =

(D D+ (-4 O - #(yyD+a (YY)
HI RO Ol =) ~ ¥ O +a k)
+(n?+4(xY+<x7-4<nn%-4(»m)+z(xx>
MEIRTIGRT A ACTDRICIALFICD
w ARG 0L el COBETETBEFIEA
HORPTHOT - ey ¥ () ta(yy,)

Rearranging terms gives (
A9

Aax-c=

Li-24%1 1)
“gXx IS HunE 4
AR ey
R R e
PR AT O 1 % LY
ALY OTIRE-T L+ XY
RS SR PAARS SAES &
TRyt Y

(D




V In matrix notation equation (A-6) may be written as:
&
: .
Ax) - C =
1-21¢00coo0 Y,
254 V0.0 0c O Ya
/—\ e ‘ -‘f Attt \/1
N MOy OI"‘("",CO ° \/;'v
W. o¢ | -%6-Yi0 Yy
CO G| -H¢-4f Ye
¢ oo |-y 52 Y
®Cc o000 }=t| iy

or
® 1 —> 1>
o= T My 2o He Vil y (A-9)
Vv
where J' =1,...n and J=1,...n
or J'=1,...8 or j=1,...8
Also
>
e 5
v, /I$ a 1 X 8 row vetor
S B
R
j; q;) s an 8 X 8 rmarrix
Vv
1" y /'S 3 4 cGlama vector 7 e
W\ p s &
- 70




*" Appendix B. The Derivatives of the Curvature Term "c"

From appendix A, the expression of the curvature term "c" s given by

equation (A-5). In the illustrative case given there, n = 8. The first

derivative terms are:

"S?c' - 2\{|—4Yg+2\{3

= =gy +o), - 8Y, 2y,

3'\'!; - 2\5,"8 \f{‘"'ayj-&\‘q‘*‘a‘fg

< ggc‘ = aY,- 8,2 -9y +2Y, : (8—1)
g\-j-’ = QY- 3 HRRL-8Y a2y,

NS AV sYeti2%-8Y, +2Y%

T§§_’ — Q\f5—8yL+lo y7“f‘f,

£ 5

In matrix notation the derivative terms can be written as:

ﬁicl_é_m:— ¢ ¥ 8 0 0 O 0 ©
o 3, 3% 39, 9% K I A, T

oD ____/ -4 o -8 &2 0 ©0 o o©

e — 2 -8 1a-§ 2 0 o o

w"‘q‘fa-\‘e_}’_‘f;' O 2 -8 2 -§ a o o

6 0 2 ¥ -§g 2 o

g 0 02X Fr ¥

@9 0O o o©° a2 -¢ lo-Y4

O 0 0o 0 0 a4 3
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gy =

Therefore the derivative terms of "c" may be written as:

J7 i t—>
3 /g.—c-:-—\> J g
@Y “EE gy e (8-3)

where j' =1,...8
and J =1,...8

It is of interest to note that the second derijvative of "c" with respect

to yj is:

¥ 3 e
A 3 2 L ¥
)= L G-




Appendix C. The Derivatiye Terms (dy/dx)J

Given a set of data values Y(Xi). (f =1,...m), at each point Xi. It
is required to find a set of interpolated values y(xj), (j = 1,...n), where
the Xy are evenly spaced increments, Ax, of x. It is required that the set
of y(xj) values include the set of Y(xi)'s. That is each Y(Xi) must also
be a y(xj).

From equation (29) of section 1I-B-2, the relationship between the

Y(Xi)'s and y(xj)'s is:

i 7‘-921'-(: \

: % . i 5 oy} ,_
#(Cly )= 2 (¢-9)
W 177¢ 4 V v\

where

\f} = \f(x)}

where the j'-~th row of (Cj.?Od) is the 3'-th row of the matrix C of
equation (22), 1if y(xj) does not correspond to an Y(xi). If y(xi) does
correspond to an Y(xi), then the j'-th row of (Cj.?°d) is all zeros except
for a 1 for the main diagonal element, Cj.j.. Also all the elements of the
vector VJ. are zero except that if y(xj) corresponds to an Y(Xi). then

VJ. = Y(Xi). Equation (30) of section II-B-2 is an example of these

relationships.
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g Now rewrite equation (C-1) as

o : —>£ &,—>L'

i(%’) T,H ) iM e @9
YL - Y( X [\

ibﬂ &(Y): f(Y;) <d—3>

S0 (!d.1) is chosen to be such that it contains no Yi's.

ARG R T
(1) = [ ol
Yo i A b
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Now consider equation (C-2) with the vector, (Yi) omitted from both sides

of the equation. This is:

which contains no Yi's, but which may be solved for bji’ that is:

Y

_Z»- i —=» [—>
X : -1 T
1. ‘) $ 5 4 Cli 8 l Vier

I I v B

@)

7

Once the (bji's) are known, the yj's may be found from equation (C-3).

o

L

- bl

@9

This equation illustrates that the interpolated values, Yy» may be

found from a linear combination of the data values, Yi‘ That is:

Y} o Z”z; (b
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Now consider a way of defining (dy/dx)J in terms of Y5 values. Let

/2’1)4 = 0h TS

\dX' 2 AX

Since from equatjon (C-9)

deca Bl e @9

L.

where j = 1,...n, a derivative at any interior point yj may be defined as:

-~
/

5
dy) _ L zd( L \Y Z(";-sil\/; :
(¢ )} ("iﬁx—— T i
or
C‘U) = fﬂ (bmt il 558 G
JK‘} Fig oy it 4= 3, --n-1

This equation may be written as:

(g}) o, Z (b;');_\, Y,; @_13

$ R

where

ﬁu o= (”mi "b;ﬂ,i) /RA)( (c’—@




Appendix D. The Uncertainty Matrix, [1/0]

Given equation (54) of the main text as:

- B gy o

<[l gl e

40
where (<Jii§ ) is a diagonal matrix with real constant elements. Also R1
\

is a data value, r; is a computed value of the curve r(w) and

Bay = a(zj) -a°(zj).

Consider the left side of equation (D-1). This may be written as:

L—=> (=

"= . ¥
o (T (T )i
W é—-um- Mr:xe
i ) i

e ek

<— mm.x——-—>
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Note in equation (D-2) that:

And: . A

&13a % ilaF "l 397
o) 05l= 1l (>-9)

L2 L I P

Also, consider the following products of equation (D-2):

- > o
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L
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At this point equation (D-2) has not been modified. The equation will be modi-
fied, however, by a change applied to the product factors of (D-5) where:

i —>
l 930_1 D=
| [2) 54

is replaced by:




P« This means that in the function (ag1“/ar1.) of (D-5), everywhere an rs
occurs replace it with R, (j.e., a data value).

Now using equations (D-5), (D-6) and (D-7) define:

L =

a ")ji"‘l]-. L(\‘—‘L- O)': ‘(-—1-) D-38
J/ (br;)rzgl ‘l’ooé—c\ ‘b O ( )

And: =z .
PRI S o
o ’ -1 ’
L(\—j:_(.’) } (Dﬂ;,) o ‘( A ) @—CD
VAU AT \ A
V
* : where equation (D-8) and (D-9) contain only constants.

Substitution of equations (D-3) through (D-9) into equation (D-2) gives:

i i e R R S

e BT e

Note that as the parameter "\" is increased in steps, the values of the ri's of

equation (D-2) approach the values of the data values, Ri‘ That is, in equation

(D-3) and (D-4):
[ >
J)f]‘ W (D N 19

5
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Approaches
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as "\" becomes larger.

Thus the following product, implicit in equation (D-10),

o ey o=
Ty o)) 2) 1] 60
LG Wk G § €2

approach the unit matrix as the ri's approach the Ri's. Then, equation (D-10)
will approach being the original left hand side of equation (p-1).
Now consider the right hand side of equation (D-1). This may be written

as:
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Note in equation (D-14) that:

.,_)r- _._(
FrooE
\J/"M'«i ‘l/

And

Also consider the following products of equation (D-14):
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At this point, equation (D-14) has not been modified, except by way of approxi-
mation (D-16). Equation (D-14) is modified by the change applied to the product

factors of (D-17) where:

G-




is replaced by:

(ENG C

Again, this means that in the function (agi/ari) of (D-17), everywhere an
ry occurs replace it with Ri (i.e., a data value).

Now using equations (D-17), (D-18) and (D-19) define:

L ) )

o -1 RS 5 —C:> L/ ¥ —>

L1 29. A9y, U 4 D-.
(2% piele a2 ) ¢-29

¢! 17 €oc’

and
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where (D-20) and (D-21) contain only constants.
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Substitution of equations (D-15) through (D-21) into equation (D-14) gives:

>

4 o}

o R ’ L"_gj :
o {4 ) B 2 i) 6
v ; v g W \]/( 5

As discussed previously for the left hand side of equation{D-1), as the param-

U fAew

eter "\" is increased in steps, the values of the ri's of the right hand side of
equation (D-1) approach the values of the data values, Ri'

That is, from equation (D-15) and (D-16)
>

ney ()

approaches:

] ’” L->
o R
Ty A VAR

as "\" becomes larger.

Thus the following products. implicit in equation (D-14):

-

o’
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[l s bedeles
Iry AL ’ r Iy
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approach the unit matrix as the ri's approach the R1's. Then equation (D-22)
will approach being the original right hand side of equation (D-1).
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Appendix E. The Derivatives, (agi'/ari).

Appendix D makes no assumptions about the functional relationships between

the vectors ¥ and g (and hence R and E) except that the derivatives (iigi '/ari)

must be definable.

From equation (97) of the main text:

g‘%)i’ = i—\ @.) I, 9

Substituting equation (E-1) into equation (83) gives:

31 s ,—1 7
5 Ir) 2ol Ve D
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3 P e .1) R )

Taking derivatives with respect to r; and using the jdentity:

dilntnl— 1 d (= 5)

aXx U dx
Gives from equation (D-2):
Bt Tl oy
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L= 2 m
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i
number of, and the spacing of, the frequencies, w; .

r The ai.i's (and the a..i..'s) are constants which depend only on the
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