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ABSTRACT

‘ 
The optimal control model of human response is applied to study

target tracking performance of an AAA system. The effects on tracking

error of different target motions, i.e. acceleration profiles, are studied

via a covariance propagation modeling approach and via experiment. Dif f—

erent assumptions relative to the adaptive tracking behavior of the human

I are explored along with different schemes for inter—axis attention allo-

cation. The effects of visual information inherent in a moving target

I image (e.g. size, aspect angle, etc.) are explored via comparison of

results with a moving image vs. image of fixed size and shape. Experi-

mental tracking results are compared with those predicted by the model.
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I I. OVERVIEW

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1.1 Proj ect Background

I The suggested use of control theoretic principles to model human operator

I 
response in AAA tracking tasks dates back to the 1946 work of Tustin El]. How-

ever , it has only been of late that the tools of modern control and estimation

I theory have made the modeling process a reality [2—4]. In recent studies,

model predictions —— generated via an optimal control approach —— were in ex—

cellent agreement with experimental ensemble statistics of target tracking

I 
error in both the Vulcan (VADS) [2] and S60 [3—4] weapons systems . Figures

1—4 show typical model—data comparisons for a straight—and—level ta rget flyby

I against the S60 system (4]. Moreover, the quality of these results was uni-

formly consistent over a variety of (maneuvering) target profiles. Despite

I the success of these efforts, it was recognized that numerous assumptions

I 
made in the modeling process required further justification and analysis.

Moreover , there were facets of human response in target tracking tasks not

I 
adressed by the earlier efforts. Accordingly, AFOSR-supported research at

the University of Connecticut, and concomitant efforts at the Aerospace Medical

I Research Laboratory, WPAFB , has sought to enlarge our understanding of human

Information processing and control behavior in target tracking. Among the

Issues that have been studied via a combined experimental/analytic program

during our first year’s effort are the following:

1. Effect of target image and size. The experimental program reported in

Ref s. [3—4] used a target image of fixed size, shape and aspect ratio.
L The present work explores the added visual cues the human may derive from

a realistic (moving) target image.

1 2. Sample—path simulation of human operator response . We have developed
and documented the equa t ion, and neccescary software with which to gen—

I crate simulated tie. histories of pertinent variables in a target tracking

~ t1 
-
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loop [8]. Sample paths have been compared with real AAA tracking data.

The ensemble statistics of these model—generated paths are compared with

- 
averaged data and analytic covariance propagation results [9].

3. Effect of Attention Allocation. The tracking system of Refs. [3—4] had

two operators for dual tasks of azimuth and elevation tracking. As such,

- 

inter—axis attention allocation was not of concern . VADS [2] was a

single—operator system, and an ad—hoc attentional scheme was proposed. The

issues of dynamic attention allocation are studied further in our work.

T 4. Use of High—order Derivatives. All of the past modeling efforts required
- use of either target acceleration, 0T’ 

or jerk, 8T 
by the state estimator/

filter. This information was used to compute a pseudo-driving noise, to

adaptively adjust filter bandwidth. We have now developed a technique for

estimating the unknown (to the human) higher derivatives using the filter

I innovations process.

5. “Internal Model” Assumptions. The choice of target model in the Kalman

I filter had received little attention in previous efforts. The use of

polynomial models (e.g. velocity vs. acceleration models), and first—order

j Markov models have now been explored in more detail within an analytic context.

1.2 Experimental Tracking Task

The intent is to focus our modeling efforts on the human’s information

processing and control behavior without the attendent complexities of high—

a order system dynamics. Accordingly, we shall consider a simplified k/s track—

[ ing loop with command input, O
T~

target angle, as shown in Fig. 5. Elevation

and azimuth loops are assumed identical in structure. This is not a restrictive

1 situation as most tracking systems employ essentially rate command dynamics,

- e.g. k/s modified by adding high frequency filtering.

F eT 
~ 

J~H.O1 ~ 

~,,j 
8~ - sight angle

Fig. 5: BASIC TRACKING LOOP

— 
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1
The basic loop equations are, with x1 

— eT, x2 — e — tracking error,
1 

~ 
-[: :]~ 

+[o] u+ [’]
z(t) (1.1)

where z(t) 
~ 

O~ . Other forms for the target representation (here given by

— z(t)) will be considered in the sequel.

The experimental program that we conducted used two different trajectories

- °T~~~
• A straight—and—level , constant velocity , aircraf t f l yby was used for

f baseline work and for comparisons with similar on—going efforts at A}IRL. A

target flyby with low—bandwidth random pitching was used to enhance the effects

of any visual cues derived from the target image. For each target, two sets

of experiments were conducted to study image effects. In one set, the target

• was represented on the CRT display as a triangle of fixed size and shape.

f In the second set, the target was assumed to be a 8—shaped aircraft. The image

presented on the CRT was the actual contour o~ the aircraf t as would be seen

I by a human observer. Thus, the image appeared to rotate, change aspect angle

- 
and grow in size inversely with range .

I. - 

Another set of exper imen ts, using only the basic flyby trajectory, were

I F done to isolate the effects of inter—axis attentional allocation. Azimuth and

elevation axes were controlled separately , but with elevation and azimuth

errors , respectively, held at zero. In this manner full attention is available

for single-axis control. This set of single—axis tasks was repeated with and

without explicit visual cues from the target image.

In 311 eicpert ents the subjects tracked to minimize error, and were scored

using an RMS criterion. The data collected were the time—histories of track—

[I ing error , e (t), and human input, u(t ) .  For the same experimental condition ,

- 
these time—histories were ensemble averaged to obtain mean tracking error, 3
(t), and standard deviation, a.(t). vs. time . The averaging proc... first

: 
-— 

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ . .
~~~~~-
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was done for each subject, and then across subjects to obtain the “grand”

I averages . A complete description of the experimental setup and procedures

is given in Chapter 2. The experimental results are plotted in Appendix B.

1 1.3 Modeling Approach

The application of the Optimal Control Model [5] of human response to

obtain performance predictions is relatively straightforward [2]. The system

I dynamics are given in the requisite form

k (t) — A x ( t )  + B u( t )  + F z ( t )  (1.2)-o -o -n -

via Eq. (1.1) . The displayed information consists of tracking error e(t) ,

and hence also error rate ~~(t ) , in those cases where there are no target

image cuus. Thus,

1 lo 11 r0i
1(t ) — C x ( t)  + D u(t) — I I x +1 I u (1.3)

1 0 ~~ — 1

The visual assumption in the Optimal Control Model (0CM) is that the human

perceives a delayed noisy replica of 1(t),

• z(t-T) + !,,(t-T) (1.4)

I where each white—gaussian noise v
~i
(t) has covariance

r V (t)  — __
~~~~~ . E(y~(t)} (1.5)yi f NI- . ii

F The quantity ~~ .01 is the noise/signal ratio, is the attention allo-

cation to output pair (y
1
,~~) , and N

1 
is the linearized describing function

gain of the visual/indifference threshold of width ± a1. The gain Ni is

Ii ‘Since there is only one indicator per axis, f~ — 
~A 

or f~ is the attention

to either th. azimuth or elevation axis tracking task, as the case may be.
We r.quLre f

~~

+ f 1 .l.
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I a function of the mean and standard deviation of y
1
(t) (61. Figure 6 shows

I the structure of the Optimal Control Model. The human’s f eedback control

strategy is represented by

I t i~i + u — —L * (t )  + -r v (t) (1.6)

I or

I 
• _ T

~~
’L~ 

~~~~~~ [:] + V (t)

where the “neuro—motor” time—constant r .1 and v (t) is a white gaussian
n U

noise. In a slight departure from past modeling efforts, the covariance

v(t) is assumed to scale with commanded control rate as opposed to commanded

control. This has been found to give results consistent with past steady—

state modeling work , and is more appropriate to non—stationary tasks (as here)

whe re large mean control inputs are usual. Thus,

E V (t)  • w E{~~) (1.7)

I where p ~ .01 — .003.
I. U

The control gains [L
1

,L
21 — (i~~~~ L , 

_l
j are selected to minimize the

F quadratic cost functional

1 J(u) - Urn ~~ [y
1
2
(t) + g ~

2
(t)]dt} (1.8)

0

I i.e., to minimize mean—squared tracking error. The control rate weighting,

I g is adjusted to give a value t .1 sec. For this system, g — .0004.

The state estimate (t) • [i ,ü] is generated by the cascade combination

i
i 

~~

‘ of an (augmented) Kalaan fil ter and a linear predictor. Thc filter equation is

F c (t t) • A z(t t) + I u ( t T) + C(t T) (~~ (t) — C i(t t)] (1.9) :~
where

‘ Ii

. -~~~~~1. ~- 
- -t

- -— .I*~~ 
-
~ ~~~~~~~ ~~~ 

. . ,, -
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I
,•.

.

~ 
I ~(t—-r) — E~~x(t— -r) (i (a) , a < t~~ 

(1.10)

A — i  — l l ; B — l  ; C — [ C , D ]
— i O  t i — i l  — —o —n

n

and u (t) — — -r L t ( t ) .
C fl O

The filter gain G(t) is

G( t) — E ( t )  C V~~~ (t) (1.11)

where Z(t) is generated from the Riccati equation

‘ -1 ~d
E — A E + t A — E C V (t) C £( t) + 2 I (1.12)

o v /i
u n

I The “pseudo—noise” ~~ is chosen such that the f ilter adap ts to the changing

characteristics of the input signal z(t). In previous modeling efforts [2,4]

- it was found that choosing ~~ according to

~~(t) — F z2 (t) ! (1.13)

I gave model predictions that accurately matched human response data, viz

Figs. 1—4. Although the agreements were excellent, it must be recognized that

the signal z(t) is not “observed” by the human, and so model modif ications are

warranted .

A method for estimating z(t), or equivalently F z(t), was developed in

J the current effort . The signal z(t) is what gives rise to the ensemble mean

statistics via the mean filtering error equation,

- • — C C )  
~ 

+ P !( t — -r) (1.14)

where !.~(t) • E(A (t—-r) — ~ (t— r)} .  The mean error gives rise to a mean juno—

vat ion, in th. Kalman Filter ,

~~~~ 11
- -~ 

-
_ _

.-. -~~~~~~~~ -
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v( t) — C ~~(t) . (1.15)

1 Rewriting Eq. (1.14) in the form

— A~~ — G v + F  z(t—r) (1.16)

a fad ing memory , recursive least—squares algorithm has been derived to estimate

I z(t—t) from the non—zero mean residuals. The technique has been remarkably

successful in generating an estimate 2 (t— -r) that accurately “tracks” z (t— -r)

I for all target profiles considered to date. The details of the estimation

i scheme are presented in Section 3.1.

1.3.1 Model Application Process

Once the model parameters

0 — {r , p~,1, 
~~~~~~ ~n

’ a1
)

are specified , the 0CM can be used to generate predictions of ensemble sta—

I ttstics for all pertinent variable, in the tracking loop. The mean and co—

variance propagation equations that aust be integrated to obtain these results

I are given in full detail in Ref. [7]. Also presented are the discretized

I equations for computer implementation.

The selection of model parameters can be a difficult subprocess in general.

f However, past research in human response theory has shown that typical parameter

value. are

I t — .15 — .2 sec p
yi

— .08 — .1 sec p • —20 to —25 dEn ui
I and that these values are not dependent on the type of dynamics being con—

[ trolled . Thus, wh.n the OCX is applied to “match” target tracking data we
- 

have found it relatively easy to first make nominal predictions using a priori

[ values , and then fine—tune using one or more parameters. Moreover, if one con—

siders ~~j~y tracking error statistics, changes in r , p,~ 
and have been found

-
. 

- 
.
- 

- - ‘

~ ~ 
— 

~~~~~~~~~~~~~~~~~~~ 
— 

-
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to produce very similar effects on model predictions: both ~~(t) and 0 (t)

I increase with larger parameter values. Thus one can fix any two of these

parameters and adjust the third. In this effort we picked i- — .2 sec, Pu 
—

1 —20 dB (to reflect a medium quality hand-position controller), and adjusted

p about it. nominal value.I y
I The identification of visual/indifference thresholds a

1 
is a bit more

subtle. Here one looks for periods of easy (and hence good) tracking, where

I z( t)~ is small , and then adjusts a
i 
to match the tracking error standard

[ deviation. This is possible since sensitivity studies show that the value of

a1 
has little or no effect on the ensemble mean error statistics. It is also

possible to obtain estimates of a1 
from questionnaire, or more often by a simple

F analysi. of display gain, format and/or scale markings. In our work we found

it necessary to use a small visual display gain (K
d 

1/8) , which resulted in

I a threshold value of about 1.5° on tracking error. tn accordance with past

work , error rate thresholds are selected as 1/2 of this value.t

L 1.4 Overview of Model—Data Comparisons

I Typical OCX predictions of (ensemble) mean tracking errors and standard

deviations for a k/s—type system are shown in Figs. 2 and 4. These results

‘ I are for a straight—and—level flyby. The mean errors arc quite symmetric (or

- anti—symmetric) about crossover, with a structure that is very nearly propor—

I tional to z(t) — 

~

‘
T~ 

Changes in the basic model parameters {-r , t
1~~ Py~ ~~~

I’ produce a scaling effect on th. magnitude of the mean error, but have little

or no effect on the inherent symmetric structure . With these results as back—

C ground, we give an overview of the modeling efforts conducted during the first

year ’s research .

Ii 1.4.1 Internal Model Studies

Our experimentally obtained mean tracking error for a flyby (no visual

further ana lysis of the efficacy of this “rule—of—thumb” is being undertaken.

— ~~_l~~~iuIu1111~~~~ 
- 

— -- —- —5--- , - -
~~

- .~ 
,. - 

~
. 

S 

— -~~
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I
image cues, full attention to a single axis) is shown in Fig. 7 . Notice that

the mean errors have the same general form as the corresponding model predic-

tions, but show an asymmetry. There is relatively more lag prior to crossover

with less lead (overshoot) after crossover. Numerous attempts to reproduce

this tracking characteristic by changing model parameters, cost functional

weights , etc., have reached one coaclus ion~ Since mean tracking error is

similar in form to z(t) in Eq. (1.2), it is necessary to change the internal

target model so as to change z(t). Accordingly, we model the target motion via

a first—order Markov process

k1(t) — —a x1(t) + z(t) (1.17)

where now

z( t) — eT(t) + a 8
T 

(1.18)

The parameter a > 0 represents, to some extent, the “bandwidth” of the signal

x
1
(t). The form (1.17) is a natural extension of the earlier Weiner—process

model , with a — 0, and is examined in Section 3.2.

Model results have shown that this modification does indeed give the

asymmetry required in ~(t). However, a is not a constant. In order to match

data, and provide consistent modeling hypotheses, a must be a function of

• (estimated) target acceleration and velocity , plus the human ’s uncertainty in

the latter. This means that the correlation time l/ci is directly dependent
I!

on target motion, but depends indirectly on target visual cues and/or attention

allocation requirements. This also implies that changes in display quality

can alter (indirectly) tracking error structure.

1.4.2 Velocity vs. Acceleration Models

The target representation 
~l 

• z(t) is called a “velocity” model . It is

the siaptest form of a general polynomial approximation to the target motion .

The next model in the hierarchy would be an “acceleration ” model. If we let

_____ -
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I a) Azimuth Axis
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I l l I t

b) Elevation Axis
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• 9T ’ x2 
— 8

T 
then,

X
1 

— x2 
(l.19a)

— z (t) • 0 (1.19b)

and with x
3 

— e( t)  — tracking error we have the f inal state equation

I X
3 

— x1 
— u

This state—space representation is in the form of Eq. (1.2), where F — [0 1 0]

I and z(t) — 0(t). If the optimal control model is applied to this case, using

— F z2(t) 
~~~~

, then the mean tracking error is similar to 0(t). This does

not match the data. Moreover there is no reason to stop the polynomial modeling

I process at 0! A way out of this dilemma is provided by the scheme we have de-

veloped for estimation of 2(t). If Eq. (l.19a—b) is rewritten as

I 
“1 

— x
2 + z

1
(t) (l.20a)

1 “2 — 5
2
(t) (l.20b)

we can then estimate, via the innovations technique, the vector process z(t)

~~~~~~ 
z~]. This give, the model the ability to ascribe uncertainty to both

II target velocity and acceleration. In actuality z1
(t) — 0. But when estimated

we find

1
(t) O

T
(t) and £

2
(t )  — 0 (1.21)

Therefore, writing the target motion as a higher—order model has no effect

on the OCX predictions , as should be the case. In retrospect this result is

due to the fact that no information concerning ~~(t) is contained in the obser—

vationa 
~l 

— ~~~ ‘2 — ~ Hence , it is unreasonable to expect any estimation of

0 in the Kalman filter. Of course this would not be the case if the human

)i were presented or could derive , target acceleration cues .

I’ IT: ‘
-
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I 1.4.3 Target Image Effects

Experimental results with and without the target Image showed that

1) mean tracking errors were always reduced , but 2) error standard deviations

had mixed changes when the human tracked a realistic image. It also appears

that the structural form of e(t) tends to become slightly more symmetric when

$ the visual cues are added .

Several different assumptions for modeling the added information are

- considered in Section 3.4. It is assumed that the visual cues can modify

indifference thresholds and can provide information relative to target angular

velocity 0(t), and possibly angular acceleration, ~~(t ) . These can be brough t

into the 0CM structure by defining additional “observations”.

y
3

(t) — O
T

(t) ; y~ (t) — eT (t) (1.22)

Note that in order to write the observations ~ in the form of Eq. (1.3), when

I y4
(t) is included, we must use an acceleration model for the target , Eq. (l.20a—b) .

• 
Thus , y 3

(t) — x1(t) and y4(t) — x2
(-t).

1 We have addressed the problem of intra—axis attention allocation (using

a steady-state model), and have found that 0 information has a small effect on

performance , whereas (é ,~) informa tion gives a large improvement in performance .

I With intra—axis attention allocation considered , a 50—50 split in attention

I between (e,~) and (ê ,0) was found to be best. Running the 0CM for the tracking

- task with the expanded information base , and the acceleration modelt, gave

I predictions of mean tracking error that did not adequately match the data.

The structural form of (t) differed substantially from the data, and the

error magnitudes were much too small. This leads us to conclude that little

or no useful acceleration information Is contained in the target image. Our

that estimates of and are now generated , i.e. *2(t) ~ 0.
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I
present assumption is that the image does provide additional velocity infor—

I matlon, This does not alter the structural form of e(t), yet provides

the potential for enhanced error rate information.

I 1.4.4 Inter—axis Attentional Allocation

As expected , the experimental results showed that single—axis tracking

1 errors are less than their counterpart two—axis errors. The OCX includes

I attention allocation via a modification of the observation noise covariance.

It fur ther  presupposes :hat the human chooses the attentions f
1 

to minimize

I the cost functional J(u ,~ ) .  The problem of optimizing the measurement sub-

system with respect to f~ has been solved, but only for stead y—state  (stationary)

I manual control tasks [10]. If one is to model the results of the target tracking

experiments, it is necessary to solve the dynamic attentional allocation problem.

This is a very difficult requirement.

I For a two—axis tracking task it can be shown that

Ii J(u*,f) -

~~ J (L E
A
(t) L + L z~~t) L I  dt + ... (1.23)

where T is the time interval , L are “equ ivalent” gains and Z
A 

(E
E
) is the

azimuth (elevation) axis filter Riccati solution. Z(t) is a function of V (t),

t I and thus of f(t), via Eq. (1.5). An ad—hoc attention allocation scheme was

proposed in Ref. [2], under the assumption that “optimal” attention was pro—

I- ‘
portional to L Z L . The result was

I f A (t) - (1 + R)~~ 
(1.24)

L E LU f~ ( t) — 1 — f A (t) ; R — 
L
: ~: L~ 

(1.25)

I g ! In Section 3.3 it is shown that this simple model gives reasonable results in

reproducing the attenti on vs. no attention trends in the data. This brings

up the question of whether development of a more complex dynamic attention

r — - II
-5 - 

— — 
— 5—- 

5--
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I -

I model is warranted. The question may be answered in part by comparing model

j  predictions of tracking errors obtained with somewhat different , but plausible ,

ad—hoc attention allocation schemes. Accordingly, the ratio R in Eq. (1.24)

I was replaced with R~ where we consider p—i (as before), p—2 and p~~. The

latter case corresponds to 0—1 , or time—shared behavior between the two axes.

I Each of these 3 schemes resulted in somewhat d i f fe ren t  time histories for

i f
A

(t) and f
E
(t). However, the various tracking error statistics showed little

differences among the 3 schemes. Our conclusion is that almost any plausible

I inter—axis attention allocation scheme will give rise to very similar ensemble

error statistics. Our preference is p—2 since E has a natural dependence on

I 1? via the Riccati equation (1.12).

1.4.5 Monte—Carlo Modeling Results

A major ef for t during the f irst year of the gran t was the imp lementation

I of the 0CM equations for Monte—Carlo, or sample path , simulation to generate

time histories of tracking error, control input, etc., in response to any

I given target trajectory. Thus, the model mimics the input—output response

• of the human, complete with random noise generators to produce the operator ’s

internal observation and motor noises. The three basic equations that are

simulated are:

1) Kalman Filter

(t—r) — A *(t—-r) + B u
c
(t_t) + G(t) — C ~(t_r)] (1.26)

• 2) Predictor
IT

*(t) 
At 

*( t-t )  + f  5
A (t—o) B u (a) do (1.27)

;•~
•-,- 11

-5
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I
1 3) Controller

u t Cz(t) + u(t) — u (t) + v
u
(t) (1.28)

u(t) — —L k(t)

I In addition, the covar iance equation for E must be integrated forward in time .

I 
Using a Monte—Carlo model one can study performance measures not readily

available from the averaged ensemble statistics, such as

1 1. Oscillation frequency content in the responses

2. Autocorrelation and cross—correlation functions

1 3. Spectral characteristics over time windows

4. Effects of transient phenomena

5. General time—domain oriented items.

Theoretically, the statistics of the ensemble of such model—generated waveforms

will agree with the covariance propagation results obtained directly. Moreover,

it is possible to study (numerically) the smoothing process in forming ensemble

I. averages , 
N

I eN (t) 
~ 

e~(t) (1.29)
L i—i

I to determine character istics of e
N
(t) vs N as N-’ .

The model has been applied to a k/s azimuth axis tracking task with a

I straight—and—level aircraft flyby. The model results are compared with Air—

I 
Force (AMRL ) experimental data gathered on the S60 System. Fig.8 shows

• typical time histories of tracking error e(ç) g~nerated by both a human and

I the model. They are quite similar in form, demonstrating oscillatory behavior

that is not evident from the predicted ensemble statistics of Fig. 2 alone.

As we build an ensemble, the oscillations tend to be smeared—out as the wave—

forms are averaged via Eq. (1.29). This process is seen in Fig. 9 where

data and modal ensemble means are presented for N.15 sampl. runs.

A. N-’ we •xp.ct ~~(t) + (t) and the sample variance a,~
(t) -, 0 (t)

where

-
- 

- -
. 

- 

— _ _ _ _
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I N ½

i c ( t) — ~~~ E [e1(t) — e~ (t fl
j  (1.30)

I This is essentially true. Fig.lO shows the ensemble statistics of e
N
(t)

and a (t) for N—lOO. Compare these with e(t) and a
e
(t) in Fig. 2. We seeeN

I that 
1
(t) ~ ~~(t) , and that the standard deviations agree very well except

I 
for a small region near crossover. This “mismatch” is due in large part to

temporal averaging of the observation noise covariance in the model implenien—

I tation [8].

1.5 Summary

I The first year’s work has been directed towards analyzing the effects of

human limitations on target tracking performance in a basic rate command system,

by means of a combined analytic—experimental program. Our efforts to—date have

I focused primarily on the development of a human—centered model for target motion,

and transient analysis/sample path simulation. An experimental facility for

I studying human operator tracking has been established in the Electrical Engi-

neering and Computer Science department at UConn. With this facility, and

I concomitant 0CM analytic efforts we have studied effects of visual cues and

f inter—axis attentiona l allocation. Data—model comparisons have been used

to isolate plausible model assumptions and hypotheses. Further details on

our results are given in chapters 2 and 3, and Ln the Appendices.

Research is presently continuing at the University of Connecticut to

Ii examine further the various issues that have impact on human tracking perfor—

mance. Target tracking experiments with interrupted (i.e. blanked) visual

Ii tpor Gaussian distributions we expect I~~~
(t )  — (t) I c -i-— a (t) with 952

probability.

Ii
—

5,. I I  -

~

— • !:: ~_ - - - • 

~
• .--• • • • - • 5- - - - -
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- I. informa tion have been comple ted, but the results have yet to be analyzed.

We will continue sensitivity analyses of model results, and refine our para—

- meter tuning methods. Further experimental/analytic work will focus on op—

timizing the man—machine interface via selected system/display modifications.

I
I,-

• 1
I

i 1~
ii

- 
[

j i

4 
1
II

- II

- - -  - 
.

- 
-
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II. EXPERIMENTAL PROGRAM

In the first year of the program, efforts were directed towards esta—

I 
bu shing an experimental facility that would enable us to study human operator

per fo rmance in simulated man—machine systems. Our goal was to generate the

I data needed to both refine and tune the optimal—control model, and to test

that model’s predictive accuracy. The effort concentrated on the simultaneous

I development of computer—controlled dynamic simulation and data—acquisition

capabilities and involved five phases:

1. Hardware acquisition, configuration and interfacing,

1 2. Software development,

3. Experimental design and shakedown runs,

4. Final experiments, and
5. Data reduction and analysis.

These are detailed below.

2.1 Hardware

( • 

The heart of our experimental facility is a DEC PD? 11/20 computer with

dual floppy disks; to this were added later a high-speed DEC—pack disk drive

I and a magnetic tape unit. An oscilloscope with an eight—inch CRT was connected

to the computer ’s processor , via two digital—to—analog converters , to provide
I. our dispLay medium. The 10 bit 0/A converters enable horizontal and vertical

1 deflec tions of the oscilloscope ’s beam to any desired point on the screen with

a 1024 x 1024 grid resolution.

Sampling the subjects ’ responses to the displayed stimul us requ ired a

spring—centered, two—axi, joystick to be wired into the computer’s processor

via analog—to—digital converters. The AID’s map the joystick deflection. in

( 1 th. two axes to digital quantities vith a resolution of 10 bits (on. part in

1024) .

Ii

____ 5-—’-’ - - - - •—u~~ -$~4 ~. ~~~ - 
- ~~

_ 
-
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I
I 2.2 Software

The operating system of the PDP 11/20 was expanded to run FORTRAN programs,

and handle the peripheral devices. Extensive software has been written to:

I 1. simulate arbitrary controlled—element dynamics of the tracking system,

2. generate simulated target trajectories with arbitrary attitude,

altitude and cross—over range,

1 3. collect data in real time, storing i~ in memory buffers , and
4. shipping the data to files on mass—storage peripherals for off—line

processing. 
•

Our repertoire of target trajectories currently ranges from straight—and—

level flybys to some quite complex profiles. For the more complex trajec—

I tories, the aircraft bank and/or pitch angles are computed as the sum of up

to f ive sine waves of independen t amplitudes , periods and phase angles.t

The output data files consist of the sampled time—histories of the

tracking errors in azimuth and elevation, and of the joys tick control inpu ts

in these axes. The sampling time T .025 sec. Additional subroutines were

I written to:
- 

1. retrieve the output date files,

F 2. perform preliminary sequential analyses on the raw data, such as
1 ensemble mean, var iance, temporal RMS error scores ,

3. compute ensemble t—tests to detect statistically significant

differences among the experimental conditions (at any one of five

- 
levels of signif icance) , and

4. to display the results in graphic form on the CRT screen and/or
- 

to produce hard copy on an X—Y plotter.

It was necessary to write special purpose software to display the .ini—

r ulated target on the screen and to sample the subject’s control input signal.

The standard DEC—supplied asynchronous interrupt-handling routines (LPSLIR) :

~Thia is not a restriction —— any time history of •(t) and/or ~~t) may be used.

~~~~~~~ 

1 ’ • 

:1

4 1 ~~ ~~ 
~~~~~~— .,

~__-
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I
I proved much too slow for real—time simulation of high—bandwidth dynamics.

Even under the most favorable circumstances it could not effect sampling rates

in excess of 10/second. Writing our own software enabled us, at the outset,

I to sample consistently at 20/second; further refinements and optimization

increased the rate to 40/second for both sampling the input signal and re—

I freshing the display. This rate of 40/second was used throughout the formal

experimental runs.

2.3 Pre—Experimental Detail

A major goal of our first—year experimental program was to provide a data

base for refining the Optimal Control Model of human response, with emphasis

t on the human information processing submodel. In order to avoid the attendant

complexities of high—order system dynamics, a rate—command system was simulated

with transfer function C (Figure 11) equal to K~,/s.

- 
p sample sample

1 & store & store
1~ 8

T ________ 
e 

~~ 

DIsplay 
1 ~ 

H.O. ~~ G(s~
target 

___________ _______  _______  

sight

I position angle

F _____________________________________________________________________________________
1* FIg. Ii. STRUCTURE OF SIMULATION LOOP

I. The rate—command gain IC was set at 1.70 as this value was judged “most

comfortable” by subjects during the shakedown runs. The display gain K
d 

was

set to 0.106. At this setting a straight—and—level pass (to be described

shortly) fits exactly within one screen—width (8 inches).

2.3.1 Forcing Functions

The forcing function ST
(t) was the position of a delta—shaped target

- image during a fly—by trajsctory. We have the capability to specify the cross—

1!
• 

~~~~~~~~~~~~~~~~~~~ - -5 ~~~~~
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fr I- over range XOR, initial target altitude IA and its attitude (Figures 12 & 13). . 
-

The target’s velocity is computed from these to produce, in a straight—and—

level flyby , a symmetric trajectory subtending a 2 x 84.26° angle (F igure 14) ,

I independent of the cross—over range. Therefore, all straight—and—level flybys

1 effect identical profiles of angular velocity and angular acceleration and

I 
0T’ 

respectively) regardless of cross—over range. The only range cue is the
5- 

size of the target image.

We used th ree trajectories (labeled “A” , “B” and “C”) which were defined

1. as follows (see Figure 12):

Trajectory “A”: IA • 50 ft., XOR — .‘) ft. , $ — a (S & L fly by)

Trajectory “B”: IA • 2000 ft., XOR — 2000 ft., B — a (S & L fly by)

I Trajectory “C” : IA • 50 ft., XOR — 100 ft., B ~ a ; the target follows a
- path in the vertical plane with its flight path angle

F y defined by

y(t) • sin t + 4 —0.5 sin t — o.s) + 0.5 sin 
(~~~~~

- t + o.s) +

- 

0.3 sin t + 0.375) radians

where T is the total time for a run.

Trajectories “A” and “B” looked identical —— that is, their forcing functions

eT(t) were identical —— except that the target image was much smaller for
trajectory “B” (due to its further range) and looked like a dot on our CRT

screen.

I 1  2.3.2 Subj ects and Training

• Some thirty candidates were screened as potential subjects for our cx—

periments. Of these , about half were then selected to participate in the

experimental program , based on their ability , attitude and enthusiasm. These

subjects were then trai ned on a variety of simulated trajectories, including 
[

the three flybys described above, until their performance met a preset criter—

- — -~~ ~~~~~~~~~~~~~ 
•
~ ..jT1_. ~
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~ I
I
I FIg. 12. GEOMETRY OF TARGET FLYBY

IA~~~~~~~~~~~~~~~~~~~~~~~~
T
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Fig . 13. ATTITUDE OF AIRCRA FT Dt~GE
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ion (RMS tracking error consistently below 5° in both azimuth and elevation).

We chose our subjects from among the University ’s undergraduate students,

graduate students and staff for the first two experiments (to be described in

I the next section) and from among Air Force ROTC candidates for subsequent

experiments. All our subjects were male. Their ages ranged from 20 to 53

I years for the seven subjects in the first group , with a mean of 31; the ages

of the ROTC group ranged from 20 to 23 years with mean age of 21. There was

one pilot , one subject with sharpshooting experience and one person with AAA

experience in the first group . In the ROTC group there were three pilots ,

- 
two sharpshooters and two subjects with some experience as radar operators .

The training and familiarization runs were intended to ensure data homogeneity

r in spite of these diverse backgrounds by bringing all subjects to a common

level of proficiency before the formal experimental runs. In addition , the

data which were obtained from the individual subjects in the course of the formal

- 
experiments were tested for outlyers , which were then eliminated from further

I.. analysis. This procedure will be discussed in more detail in the section on

r 
Data Reduction and Analysis.

2.4 Experimental Design

2.4.1 Visual vs. No Visual Cues

Our first experiment was designed to detect possible effects on tracking

I 
errors of direct observations of target visual cues such as target size and

aspect ratio. A 3 x 2 factorial design was utilized , so that each of the seven

subj ects tracked three different trajectories (“A” , “B” and “C”). Each tra—

jectory was tracked both under ct.nd~tions of “visual cues present” (i.e., a

realistic target ilage) and of “no visual cues” (the target image retained

I 
a f ixed size and shape). These six cond itions were repea ted by each subject

from three to twelve times , depending on the subject ’s availability, in random—

ized blocks of 18 runs each.

-

~~~~~~~~~~~~~~ 

-

~~~ 
- -  - - —
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I

I

Fig. 15a : TARGET IMAGE WITH VISUAL CUES SIMULATED

a

II
t
-r

I-
I- -

1 FIg. 15b : TARGET IMAGE WIT H NO ViSUAL CUES

¶ 1 I
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The display presented a symbolic cross—hairs centered on the CRT screen

I (Fig. l5a) and a triangular target. Under the “visual cues present” condition

the triangular image simulated a delta planform. It varied in size and shape

I as the simulated target’s range, bearing and altitude varied (see Appendix A

for details). Under the “no visual cues” condition, the triangular target

followed identical trajectories but the triangle retained a fixed size and

I aspect ratio throughout the run (Fig. 15b) .

Each experimental run lasted 25.575 seconds. At a sampling rate of 40/

second we thus collected 1024 datum points per run for each variable of interest.

The ensemble means and standard deviations of the tracking errors in azimuth

I and in elevation are grouped in Appendix B.

I We have also been collaborating with Ma. Sandra Hart of the Biotechnology
- 

Division of NASA—Ames Research Center, who is studying possible correlation

between subjective time estimation and mental workload associated with manual

tracking. In the framework of this first experiment we recorded at the end

of each run the subjects’ estimate of the duration of that run. Even though

I 
all runs were of identical durations the subjects’ estimates varied over a

wide range. Subsequent analysis of the data, however , failed to reveal any

( correlation between the time estimates and the difficulty of the particular

trajectory or the tracking performance. (Surprisingly, the means and variances

of the t ime estimates under the differen t conditions come remarkably close

to each other.)t We are continuing to collaborate with Ms. Hart and will in-

clude further results in next year’s program plan.

1 2.4.2 Inter—axis Attentional Allocation

We ittempted to control the unknown effects of inter—axis attention—

may be that in tersub~ect variability masks any differences due to workload.Ii
- 5 - l i

-
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i
0~ sharing in our second set of runs. This experiment was of a 2 x 2 factorial

a design, with each subject tracking two trajectories (“A” and “B”) in azimuth

alone (with the error in elevation clamped at zero) and in elevation alone

I (with zero azimuth error). Each of the three subjects repeated the experiment

6 times in a randomized order , for a total of 18 runs for each experimental

I condition.

a 
As mentioned earl ier , trajectories “A” and “B” were equivalent with re—

U spect to the forcing function 0T 
and differed only by the range to the target

I and hence, by the size of the displayed target. Within the bounds imposed

by the resolution of our equipment, the target image in trajectory “B” re—

I sembled a dot and hence trajectories “A” and “B” represented equivalent flybys,

‘ 
with visual cues and without visual cues, respectively. During the data—reduc-

tion phase that followed the first experiment, we had determined that, from the

1 standpoint of visual cues, a target represented by a dimensionless dot and

a tarrt represented by a triangle of fixed size and shape were not different

stati&1icai,1y.

I ~The. results of this set of runs are also grouped in Appendix B.

2.4.3 Interrupted Observations

A third experiment was begun during the last months of the first year.

In this set of runs we attempted to investigate some transient and target—

I acquisition modes via interrupted observations. We are now in the data

analysis phase of this study.

1 2.5 Data Reduction and Analysis Methods

Four variables were sampled and stored during each formal run: the in—

- stantansous tracking errors in azimuth and elevation, and the control stick

I positions in these two axes . At a sampling rats of 40/second , each 25.575—

second run produced 1024 datum points for each of these four variables . In

~i
I ! ____ - -- 
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addition, some header information, such as forcing function, subject iden—

I tification symbol, da te and time of run, etc., was recorded.

The first step in analyzing this vast amount of data was to aggregate,

I i.e., to compute and store the point—by—point ensemble means and mean—squares.

We utilized a sequential approach to the computation, by which the mean

of the j—th  point (O<j<l 024) of k+1 runs was computed from m~ by

I m
~+l (m~ k + z ~+i)/ (k + 1) (2.1)

I where z
~÷l is the value of the j—th point in the (k+l)—th run, and m1 0,

I i — 1, 2 ... 1024.

The mean—square was computed similarly from q~ by

I q~~1 
- (q~ 

. k + (z
~+1
)2) / (k+1) (2.2)

I and the unbiased estimate of the variance, v~, was then found from

I v~ — (q~ 
— ~~~~ ). k / (k—l) (2.3)

I Utilizing the ensemble means and variances, two—sided t—tests could be

performed (with the appropriate number of degrees ~f freedom) to test the null

I hypothesi. of equality of the means. We first tested the assumption that our

I 
subjects came from a homogeneous population. If they did , then the mean track—

• 

ing error of each subject should not be statistically different from the mean

J tracking error of all the subjects combined. For each subject we compared

the mean tracking errors in azimuth and elevation to the correspond ing mean

1 tracking error of all the subjects combined for the same experimental conditions

~ r (t rajectory, visual cues/ no visual cues) . We found that the mean tracking errors

of one of the seven subjects were significantly diffcrent in the crossover

region (P~ ‘ 0.01). Thi, subject’s data was removed fro . the combined mean ,



u
I I

and the averaging process was then repeated with the data of the remaining six

I subjects. The data obtained from the one outlying subject was not used in any

I 
of the subsequent analyses.

Plots of the suimnarized data are grouped in Appendix B. As expected,

I the availability of visual cues (target image’s size and shape) effected

smaller tracking errors (P < 0.05) and error variances. Unexpected , however ,

I were some characteristics of the data, such as

1. the asymmetry in the tracking error profile before and after crossover,

with a tendency to lag prior to crossover,

2. the slight lagging tendency during the first 5 seconds of the run,

I 3. the smaller variance as8octated with the tracking error in elevation

without visual cues (trajectory C) than with visual cues (Figures

I 86 vs. 812).

4. the large (l’) standard deviations in the tracking errors during

I 
per iods of good mean tracking.

The last point has been attributed to the choice of small display gain,  K
d

-1/9, which in turn, resulted in large visual/indifference thresholds for the

subjects. Thresholds vary inversely with display gain. In previous studies,

I I visual thresholds used in the 0CM were in the order of .15— .2°. Thus, we

I 
might expect values for ai 1.5—2.0°. An analysis of the display image/

resolution gives comparable numbers: For example, the angle between the center

I of the “crosshairs” and the first dot is B 4.5°. When we lack an explicit
1 - 1  2

zero reference point, the 0CM adds an observation noise V — .Olir8 . It can

be shown that this effect is almost equivalent to a threshold of value 8/3

(This corresponds to a “middle—third” indifference region). Finally, the m m —

I taal quanta of display resolution is 168/1024 — .16 . With a spot of light

Jr smearing over 10—15 quanta, a 1.5—2.0’ threshold value is to be expected.

Indeed , 0CM—data matching gave position threshold va]~aes a~ 1.5’.

- See also Section 1.3.1.

~~~~~~~~~~~~~~~~ ~~~ — -
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p I
III. ANALYTIC MODELING

This chapter describes the various modifications and extensions that

I were made to the 0CM during the analytic phase of the project. These include

adaptive tracking of target acceleration, methods for modeling visual cues

I and attentional allocation, and use of generalized first—order aircraft motion

I 
models. Model predictions of tracking error statistics are given for compar-

ison with the experimental results of Appendix B.

I 3.1 Adaptive Tracking Problem

A weighted—least—square technique is proposed for estimating higher den y—

I ative target information from the 0CM Kalman filter residuals process. The

results have application in areas beyond human operator modeling in systems

with non—random inputs. Some of these areas are:

I 
. Compensation of modeling errors caused by linearization of non-

linear systems

Design of adaptive filters to determine the path of a maneuveringI target

Estimation of unknown, time-varying mean and variance of a random input

I disturbance

Detection of sudden changes in the state of a system with application to

I fa ilure detection

3.1.1 Problem Background

- The relevant discretized equations that describe the 0CM in non—stationary

system. are given in Ref. f 7  ]. For notational simplicity in the subsequent

development it is assumed that N — t / 6 — 0. This is not a theoretical re-

t stniction as the Kalman filter/estimator does not involve state prediction.

The (augmented) state equation of the system is given by

F _______________________

follow the notation and definitions of Ref. (7 j.

~ F

- -  *•_- .*_ • -- ‘— - 
- 

_
•- •5-w.,- • -  ~~ - 

-
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I

k+l k x
k

+ B
k

u
c,k

+ E
k
w
k + F

k
z
k 

(3.1)

I where zk is a deterministic input that represents the target motion. It is

assumed that z is unknown to the human.

The Kalman filter generates 
~k
’ the (a pr’iori) estimate of from

I the observations

~
‘pk 

— Ck X
k 

+ V
k 

(3.2)

I The estination error ek 
— — 

~k 
is given by

I ek+l — 
k 
e
k 

— 
k 
G
k “k 

+ E
k 
Wk 

+ F
k 

Z
k

or , equivalently by

I ek+1 - k 
ek + E

k
w
k 

+ F
k
z
k 

- 
k ~k”k 

- (3.

I where Gk is the filter gain and • •(I—GC) is the closed—loop filter matrix.

The innovations process is

I V
k ~

‘pk 
- C

kPk 
C
k
e
k 

+ V
k 

(3.4)

I When the Kalman f ilter is optimal , is a zero—mean white noise sequence.

However an input 5
k 
renders V

k 
non—white. This fact will be exploited to

I generate an estimate of Z
k~

In the 0CM a ps.’udo—noise matrix 
~k 

Wd k  Tk is added to the filter

1 Riccati equation to account for the human’s uncertainty in the signal 5
k~

I 
has been shown that choosing

— dia8 [_ ~ ~~~j] ~ ~ 1 (3.5)

F approximately minimizes the mean—square filtering e~ror, and results in model

predictions that match data quite well (see Figs. 1—4). Eq. (3.5) has physical

I appeal , as the uncertainty in target estimation, (and hence the Kalman filter

-‘ bandwidth) , increase as target motion increases . However , there is an 
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• 1
I inconsistency in this model: was assumed to be unknown to the humani

I A way out of this dilemea is the obvious modification of Eq. ~3.5) to replace

with an on—line computed estimate

I 3.1.2 Adaptive Estimation Algorithm

Eqs. (3.3—3.4) are the basic set of equations for generating 1
k~ 

Taking

expectations, noting that 0, 0 and Z
k 

— Z
k~ 

yields

I ek+l 
— 

k 
e
k 

+ F
k 

Z
k

I k 
— C

k ~k 
(3.7)

From “measurements” of V (the signal is readily available in tI~e Kal*an

I f ilter) ,  we will obtain an estimate of Z
k

• Note that this problem is tanta—

I 
mount to designing the inverse system to Eq. (3.6—3.7).

In actual implementation an estimate of would be obtained by on—line

I filtering (i.e., averaging) of V
k

. We would thus obtain an estimate of

C
k 

•
k~ 

where ; now denotes the temporal mean, f r om

I \
k
.C

k
e
k
+v

k 
(3.8)-

I where is filtered white observation noise.

Solving Eqs. (3.6a—3.7) for 
~k’ 

assuming e 0 , yields

I k-i

— C
k ~(k— 1, i) F

1 
z (3.9)

i—0

-I where -

~(k.l,i) — 
k—l k—2 1+1 ~(j,j) — I (3.10)

If si/k 
i<k denotes the estimate of z~ given all the measurements ~~~~ ~~~~~~

I then our best estimate of is

V
1I C

k 
~~~ 

~(k—1,i)F1 
1t/k (3 11)
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The estimates Li/k 
can be obtained via a weighted—least—squares method to

I minimize the criterion (at step k),

— 8~’~~ {~ 
;~ — 

~ 

2 
(3.12)

I j — 0

where R~ is an NY by N’~ diagonal matrix u8ed to give relative weighting to

the importance of each measurement i—i .... NY . The constant 0<8<1

I is a fading memory factor used to place greater emphasis on the more recent

I 
data. This is particularly helpful when z varies rapidly .

The minimization of 3
k’ 

Eq. (3.12), is a formidable problem as it requires

I the recomputation (i.e. smoothing) of past estimates 2~ . Thus storage and

CPU time increase with k. Since there is no evidence of such behavior in human

I operator tracking, we simplify the WLS problem by replacing the smoothed estim—

I 
ate 11/k in Eq. (3.11) with the filtered estimate ~~~~~~ 

The minimization

~~~ 
~ k 

with respect to the on—line computable quantity ~ follows

i least—squares theory. Define the “effective” measurement as

- - k-2

I ~
‘k 

— “k 
— C

k k—l 
V (k—2,i) F

i ~~~~. 
(3.13)

1 i 0  4

Thus, by construction,

C F L +~~~‘k k k-i k-i k

I ‘ - - (3.14)
¶ •Hk zk...l

+(
k

I where is the residual — V
k s and 

~k 
is NZ by NY.

The estimate (obtained at step k) is generated recursively according

to

- Ii tjf — coy (~~~~—~~~~ J we obtain a minimum variance estimator, assuming white

- 
residual sequence. Plausible choices are R

1
—V
1 
or Rf.I.

~~~~~ 

~~~~~~ ~~~~~~~~~~~~~
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1
k—l 

— 

~k—2 
+ rk ~ k 

- H
k 
zk_2) (3.15)

I where

i r
k 

- S R~ ~~ 
11
k 

+ ~~)
_l 

(3.16)

I 
S S

k
_ S

k
H
k 

(H.
~~
S
k
H
k

+ R .K
)’Hk

S
k 

(3.17)

U - 1 +
S
k+l 

— 
~ Sk (time propagation)

and — l0~ I is the initial condition. The update Eq. (3.17) can also be

I written in the more computationally stable Joseph’s form,

s~ — (I - r
k 
Hk) s~ (I 

- rk Mk) + rk Rk rk (3.lla)

The least squares algorithm operates most eff ic ient ly when the NY “measurements”

I ~k,l’ ~k,NY are processed through the update sequence Eqs. (3.15)— (3.17)

one at a time. Dropping the time index, for simplicity , the pertinent re—

I cursive replacements are, for 1 1,..., NY

I y — -S h1 
(h
1 

S h
1 

+ r
1
)~~

S 4- (I — yh
1

)S (or use Josep h s  f orm)

,- If ve start with~~~—~~ , S S w e end up with~~~~~L and S Iu, S
+
. It is

~
- -g k—2 k k—l k

— 
1 worth noting that if we define E — BS, the Equations (3.16—3.17) remain the

same but with E replacing S and BR.K 
replacing 

~~K
•

The above algorithm for 2 is very simple to implement and requires minimal

extra storage. In computing via Eq. (3.13) note that the summation term

~ k—l’ 
i.e. the result of passing I~ i c k—2 through the “system” Eq. (3.6a)

with initial condition — 0. Thus, is easily obtained rec ursively by

using 
- -
eki 

— 
k—2 k—2 + 

~k~2 2k—2 (3.l8a)

II .

I: H: 
_ _

1~~
- . - ..,

_

_ ,p
~~~~

_ 
____
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and

I ~
‘k 

- “k 
- 

~k k—l 
ek_l

I 3.1.3 Modifications and Extensions

The WLS algorithm, as derived, was based upon Eq. (3.3a) which involves

I the closed—loop matrix An alternate formulation is based on using Eq. (3.3b),

involving the open—loop system matrix •k~ 
Taking expectations of Eq. (3.3b)

I yields

I ek+l — 
k ek + F

k 
Z

k 
— 

k 
G
k “k 

(3.

where the “measurements” are known. If we use Eq. (3.6b) in lieu of Eq.

I (3.6a) in estimating Lk l ~ 
we find that all of the previous equations remain

I 
exactly as before, except that the estimated mean and “measurement” Eqs.

(3.l8a)—(3.l9a) become, respectively

I e
k l  k-2 

ek 2  + Fk 2  2k-2 
- 

k-2 
Gk 2  “k-2

I ;k 
- “k 

+ C
k k-l 

6k l  “k-l - Ck k-l 
ek l

I 
We have found that these equations produce somewhat better estimates of ~ than

do their closed—loop counterparts. Fig. (16) shows open—vs—closed loop results

i for the k/s tracking system with a straight—and—level flyby. The estimation

I 
of Z

k 
— 8k is excellent ; model pred ictions of ~ and 0e (not shown) are

I virtually identical for these cases.

Another modification to the basic algorithm gathers more information

I before estimating. Of course this introduces a lag into the process. We

assume that 5k is constant over the last t > 1 t ime steps, i.e. j
z z — — z

I and we est te 

~~ 2

• This modUles Eqs. (3.13—3.14) to 

i

_ -

.
~~~~~~~~

. 
_ _
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I k—i— i

I 3Tk 
— “k 

— C
k 

‘V(k—L,i) F
1 
£
1

I - - Ck 
•k l  •k 2  (3.20)

i 
where 

-
— 

k—l— 9. 
0
k— t— l 

+ Fk l L  Zk l i  (3.21)

I and Eq. (3.14) becomes

I - 
[k~l -

i ~
‘k 

Ck ‘v(k—l ,l) F
1] 

Z
k l  

+ 
~k 

(3.22)

In this latter case the matrix H will become better èonditioned as 9. is in-

creased.

I In many situations, such as in an aircraft subject to turbulence, the

human does not know a priori which states of the system are affected by

I Therefore, it is necessary to extend the estimation scheme to allow for z to

affect any state (or a subset of States such as those associated with the target

I motion). This is possible by setting F - I, and Hk — C
k 

in the algorithm.

We now will estimate a full NX—dimensional vector a, and construct the Kalman

pseudo—noise matrix via

I Wd k  
- dial[1i ~~~

I The modifications to this scheme when 2k is assumed to affec t a subset of states

is trivial. Application of this method has been made to study the utility

of higher—order target models in k/s tracking. Use of an “acceleration”

II H
U

~~~~~~~~~ -
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I
I submodel for the target motion gives a system model

I 0 1 0 1. [z11
i 0 0 O x + O u + 0  1 Lz 2j

1 0 0  1 0 0

I 0 0  1 [0
U 

~~.
- U

u 
1 0 0

z
1

( t )  — 0 ; z 2 ( t )  — &(t)

I Application of the estimation scheme gave

I z1(t )  - ~(t ) ; z
2

(t ) = 0

so that we get the same results as with the basic “velocity” model! This is

because

C
k
F
k~~ {: :]

I 
i.e., a

2 
does not enter into y. However , these same results would not be true

if an 1>1 step delayed estimation is used as in Eqs. (3.20)— (3.22). In this

I case the WLS formulation ta quite poorly conditioned , and the scheme diverges ,

a
1 ~~~~~ The problem is that the continuous CF is not of full rank. If we set

I F—I, allowing uncertainty on all states, the model predictions of e(t) and

agree with the basic “velocity” model. We conclude that to expect mean—

I ingful results from an “acceleration” model, x2
.
~ must be included within the

I human ’s observation set {
~} .  This is discussed further in Section 3.4.

When NZ < NY the matrix Hk 
is usually of rank NZ. In this case the

I estimates of zk are relatively insensitive to the fad ing memory fac tor 8 over

a wide range. For our k/s tracking system with NZ 1 this range was .1—. 99.

However, when NZ • NX >> NY there is a lower limit to 8 below which the decrease

in S~ is offset by the increase 1/B, resulting in instability. For our k/s

system, this limit - .85. Instability of 2k 
can sometimes be avoided by

: 11
— r -~~



i
p 1 using Eqs. (3.20—3.22), which assume constancy of over interval , to

I obtain augmented measurements.

When the innovations sequence (v
1
} is filtered temporally, in an on—line

I manner to obtain
— 6/ -i:

V
k 

b Vk l  + (1—b) ‘
~k 

; b = e m (3.23)

it is recommended that a test be performed to determine whether the computed

I V
k 
Is statistically different from zero. If V

k 
is white , V

k 
is a Gaussian

process w ith

COV [V
k

I — -~i_ (V~ + 6 Ck E k Ck
) = V.~ (3.24 )

Thus, a t—test can be performed on each component of V
k 

(using this a priori

I covariance), thereby effecting a probabalistic editing of Vk• Preliminary

work , using a covariance propagation model to study the ensemble characteristics

I of Eqs. (3.23)—(3.24), has shown the following :

1. Model predictions are not very sensitive to the t ime constant tm 
over

I the range 0.1—1.0. This Is due in part to the use of overall ensemble

statist ics in Eq. (3.23 ) .

1 2. Probabalistic editing gives results that are similar to those obtained

using Eqs. (3.16)—(3.l7) with — V
k~ 

I.e. uncertain measurements

I are discounted .

3. With no probabalistic editing, filtering V
k 

gives (on the ensemble

i 
average) model predictions that are similar to filtering the estimate

I obtained via Eq. (3.15).

[ 
On the basis of our limited experience to date , it appears that editing is

advantageous and will give improved model—data comparisons. We expect to

t study this process in more detail, using both covartance propagation and Monte—

Carlo models, investigating several different (but related) schemes for apply— I -

I
I ing the editing feature. -

Alternate methods for estimating 2k 
and/or W

d 
have been investigated in

- 
~~~~~~~~~~~~~ 
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,
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the course of our work. Two methods estimate Z
k 

from the non—zero-mean property

I of the suboptimal Kalman filter innovations. A third method represents

by an “equivalent” white noise, and then estimates W
d 
by using innovation

I correlations with a WLS algorithm. The last method requires excessive compu—

I 
tations, whereas the first two methods are quite ad—hoc in nature. None of

these other schemes have been implemented, due in part , to the excellent per—

I formance of the method we are now using. A description of these alternate

methods, along with a brief review of relevant adaptive estimation literature,

I is given in Ref. [131 .

I 
3.2 Modeling Asymmetries in Tracking Errors

The predictions of ensemble error statistics using the 0CM are shown in

I Figs. 17—18, for azimuth and elevation axes, respectively. As discussed pre-

viously, the a priori model parameters are

I — .2 p • —20 db on all observations

i — .1 p — —20 db

I
n U

The indIfference thresholds were a1 1.5° for position errors and 1.5/2 for

I their rates. These results correspond to the case of full attentional allocation,

i.e.,

I 
~A~~~~E

’0

and where no model modifications have beer. introduced for target image effects.

Thus , the predictions of Figs. 17 and 18 should be compared with the no visual

cues, full attention experimental results of Figs. Bi and B2, respectively.

The model-data agreements are reasonably good —- being generally within

1 experimental standard deviation. However, our concerns in this study are

to understand the reasons behind the mismatches, and to modify the 0CM

1 accordingly. Major points we note from the comparisons are the following:

U
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I
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1. The predicted e(t) are essentially synunetric, much as previous results

I u3ing the 0CM have shown. But the data show an apyinmetry towards more

lag prior to crossover.

I 
2. Predicted mean errors are somewhat smaller than the experimental re-

sults, especially for elevation axis. The max—to—mm spread for

azimuth Is -6° vs. 7—8° for data. For elevation it is _ 30  vs. 5—6°

I for data.

3. Predicted standard deviations agree quite closely with experimental

I results in general form . 0
e 

for azimuth has a broader peak than that

for elevation in both model and data.

I We do not find any major concern in items 2 and 3, which deal primarily with

the relative magnitude of the model vs. data results. Sensitivity analyses

I have shown that such data—model mismatches can be adjusted via tuning of one

I 
or more key parameters. For example, an increase in p (dB)t will impart a

scaling increase to both (t)  and a (t), with a greater effect being seen in

I 0 (t). On the other hand , the correlation time T in Eq. (3.5) has little

effect on e(t); but a ± factor of 2 in Tc has about the same effect on a (t)

I as a ± 1 dB change in p .  Thus, to “match” data one could adjust p to match

e(t), and then adjust T to match 0 (t). As it was not our objective to con—

tinually fine—tune the results (once the possibility was established), we

I merely fixed p — —20 dB and -r — 1 sec to explore the more challenging first

point of model structure. Follow—on efforts will deal more with parameter

I identification schemes.

The asymmetry itt mean tracking errors is noticable in most all of our

data runs. Similar trends also occured in some recent 2—axis Q—23 system

- experiments at ANRL. However, these trends were not readily apparent in

earlier S60 data (different system, display, etc.), as shown in Figs. 1 and 3.

tChanges in p , p and -t have similar effects on error statistics. We thus

keep T and p fixed and vary only p .

- _____- 
.—

~~ ~~~~~~~~ ,~
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ps~ I We feel that this asymmetry phenomenon is statistically significant, and have

I spent considerable effort to find a suitable explanation.

it is not believed that use of a priori knowledge of the target plays

I a role. If it did, the relative spread le — e I would have been muchmax mitt

smaller than the 0CM [11] —— not merely shifted . In cooperation with colleagues

I at A}IRL, various modificat ions to the 0CM were tested in order to Induce an

I asymmetry in 0CM results, e.g.

1. changing basic parameters, e.g. -r , p , e tc . ,
f l y  2

2. adding cost functional weights to ~(t) and control magnitude, u (t),1 3. filtering the estimated signal (t)’ before using it to form Wd~
4. f i l ter ing the residual process V

k 
as in Eq. (3.23),

1 5. using an “acceleration” model for target motion.

As noted earlier, the last item circles back to a velocity model when we require

I estimation of z( t) — [z
1
,z
2
1 .  if we impose (t )  — z (t )  — [~ ,O] without

i estimation, mean tracking errors (which resemble z or ) have a different form

structurally than the data. The other items were found to give little struc—

I tural change to the model results; errors generally increased or decreased

uniformly. Any asymmetries that developed were generally in the wrong direction

I -- I.e. towards higher post—crossover overshoot. It was believed that items

I 3 or 4 would introduce the sought—for lagging tendency. They had little

effec t on e( t) ,  but did reduce ~a ( t )~ slightly.

I The only model modification that was found to have a structural impact

on e(t) was a generalized Markov model for the target motion, viz.

I — —o x1 + z(t) (3.25)

with Xl
•O
T~ 

z • + ° 8T~ 
When included with the system dynamics we have

I -a 0 l o l ii
i(t) — x(t) +

~ I u(t) + z(t) (3.26)
1 0 L ’ J

II I
a —~~ ~~ .$— .. , ,
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I o i l  0

y( t )  — x (t )  + u(t) (3.27)

I ‘° i  -l
I The “lag” 1/a introduces the asymmetric lagging tendency observed in the data.

However a cannot simply be a constant. Figure 19 shows that the lagging ten—

I dency would persist veil past crossover —— a trend not seen In the data. We

I 
conclude that a must be a function of 0

T’
0T’ ~~, etc., in order to mat h data.

Indeed , a(t) can be Interpreted as a “local” bandwidth, so that art a(t) of

I the form

.21½E {x1 I 18TI —la(t )  c - sec (3.28)I E(x
i}j 

1 l e l

I could be expected. We assume that ci > 0.

Several different ad—hoc combinations of target—related variables were

simulated for a( t) ,  with varying degrees of success. The question of whether

an “optimal” value of a exists was studied using Eq. (3.25). The Kalman filter

implementation for this equation assumes

I i1(t) — —a x
1
(t) + ((t) (3.29)

~ 2where ~(t )  is a white—noise with covariance W
d 

- t ( a  e
T + ~~ 

Neglecting

the other states, and assuming an “observation” of x
1
(t) with measurement

I noise V
1 

— c2 E{x~ (t) }, a Kalman filter would estimate x
1 
with covariance

error

I - -2a E + W
d 

- E~ /V1 (3.30)

Assuming

• ~ ~
2 g{92) + r g(~

2 )
d c c

I we see that there exists a value of 0 that minimizes 
1 —— the local rate of

r

- - -  
—

— - — 1’- 
.
~ 

—
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1
increase of the estimation uncertainty . Setting ~E1

/3cz — 0 gives

I — E
l
/C
c 
E{Ô2} (3.31)

I For small a, E
1 

/i~JJ Wd and we see that Eq. (3.31) is quite similar to Eq.

(3.28). An alternate approach “solves” Eq. (3.30) for its steady—state (frozen—

I point) value. Finding the a that minimizes E gives results that are quite

similar to Eq. (3.31).

I Motivated by the above approximate analysis, we have selected 0(t) over

I the interval [k,k+l] according to the uncertainty in x
1
,

3/i-

I 0k — sec~~ (3.32)

The scaling of with E
k
½ is particularly appealing. It implies that there

I should be more lag (asymmetry ) with higher uncertainties, as for  example when

observation noises increase or target motions become more rapid. It also

corrobora tes subject ’s comments that they “felt more comfortable when lagging”.

I The quantity ~—3 v’iis the model’s anticipated spread in the x
1 
estimate, i.e.,

x1(t) c [x1— F,, x1 + ~J with 99% probability.

I Note that with a(t) now time—varying, the system matrix A — A(t). This

means tha t • — exp (A6 ) and the feedback gain L~ on x1(t )  must be recomputed

each time a changes. Fortunately, the only a—dependent terms in are

I —a6
; •21 (1—e ) /a

so that is easy to change . Also , it can be shown that the continuous gains

L — 

~
t
~ 

t
2 

£
3
) on the augmented state areI. I I

1 
_ _ _ _ _ _ _ _  

I
- ~1 — — — ~ 2 1 (3.33a)

I r 1 0  _ l
~~~+ soJ

I -

F -
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Fig. 20: AZIMUTH PREDICTIONS WITH TIME-VARYING a, FULL ATTENTION
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Fig. 21: ELEVATION PREDICTIONS WITH TIME-VARYING a, FULL ATTE NTION
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I where r — g½ (g — control—rate weighting). For r— .02 (corresponding to t .l),

a simple approximation to the discrete gain equivalent to Eq. (3.33a) Is

I — 8.765 + .75~ ; a < 2

I so that t
1 
does not depend strongly on a.

The model predictions with a generated according to Eq. (3.32) are shown

I in Figs. 20 and 21. Clearly this gives a closer facimile to data than did

I 
the previous model plots.

3.3 Attention Allocation Submodel -

I When a human is required to track azimuth and elevation axes simultaneously,

there must be a mechanism by which attention is allocated between the two par—

I allel tasks. This issue of interaxis attentional allocation is not of concern

I 
in a dual opera tor system (such S60) where each operator controls bu t one

axis. In a single operator system tracking performance degrades, as workload

I 
increases. If we define 

~A ~~~ 
as the fractional attention allocation to

azimuth (elevation) tracking with

J I
A

+ I
E LO ,

I our objective is to model the allocation process via prediction of vs. time.

As indicated in Section 1.4.4, a model for obtaining optimal attention

allocation has been derived for stationary single—axis tracking tasks . In

such cases, the total cost functional is given by

I J(u*, f )  • L £ L + terms independent of E (3.34)

where L. are “equivalent” gains

. g
½ L •

Ar (3.35)

II
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and E is the steady—state error covariance matrix which satisfies the Riccati

I equation. The matrix E depends on the observation noise covariance V , and

thus in turn on the attentional allocations f
~ 

to each posiLion—velocity

I observation pair via Eq. (1.5). For two—axis tracking in a non—stationary

I context, J(u*,f )  is given approximately by Eq. (1.23). In this case the op-

timal choice of f
A
(t) and f

E
(t) is not straightforward , involving the solution

I of a complex non—linear dynamic programming problem.

A simpler , suboptimal , approach has been followed in our work . Borrowing

I from the techni ques of Ref.  [2) , we attempt to find f
A
(t) and f

E
(t) so as to

I minimize at every time instant the integrand of Eq. (1.23),

L Z (t) L + L Z (t) L (3.36)

I 
e A  e e E  e

The matrix E A (t)  decreases with increases in f
A
(t). If we assume 2 1/f,

I then the “optimal” attention allocation should be proportIonal to L
e
E L •

Under the cons train t 
~A 

+ 
~ E 

— 1, we then have

I f A
(t )  — (1 + R) 4 

(3.37)

I t E L
I fE

(t) 1 — ; R — t E L ’ (3.38)
e A e

I This was the model suggested in Ref. [21.

I Depend ing on the assumed relationship between E ( t )  and f ( t) ,  other models

are possible. For example, the choice E if/i is motivated by the

~ 

ECV ~ 
‘CE term in the Riccati equation. When V is small (i.e. good obser—

r 
vations), this term becomes dominant. Under this assumption, the “optimal”

1 attention allocation is proportional to (LeEL.)
2
• A third , plausible approach

J to model th. att.ntional subprocsss is to assume that the human is a single

channel processor, internally switching full attention between the axes in

F

¶—~~~-: -
~ 

~

___________ _________ ~~~ 

L - —-
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turn.
t Thus 

~A 
and will be either 0 or 1, depending on the relation

I L E L  ‘ t E L .e A e >  e E e
All three of these models may be combined in the same mathematical

I framework by replacing the ratic R in Eq. (3.28) with R1~ where p 1 ,2, or~~.

The model predictions of ensemble error statistics are given in Figs. 22—23

I (p— l) and Figs . 24—25 (p—2 ) . The corresponding time histories of f A (t )  are

I shown in Figs. 26a and b, respectively. As can be seen, the ensemble error

results and the attentional time histories are virtually identical, with an

I elevation vs. azimuth attention split approxImately 50—50 during the “good

tracking” phases.

I The results for p~~ are shown in Figs. 27—28; the time history of f
A
(t)

I ts not shown . f
A
(t) was found to switch rapidly between 0 and 1 with a period

of .1 to .3 sec. During the “good—tracking” phases approximately equal time

I was spent on elevation and azimuth , further corroborating the results of Fig.

26b . In the immediate pre—crossover interval most t ime was spent on azimuth ;

• I the reverse was found in the immediate post—crossover region. The error

statistics e(t), 0 (t)  are quite similar to those of p—i or 2 , especially

for azimuth tracking. Some differences are noted in elevation mean tracking

immed iately before crossover , and in standard deviations during crossover,

with slightly more oscillatory behavior noted .

The basic trend exhib ited by all three schemes, over the f ull attentional

resulLs, is that both error mean and especially standard deviations increase.

Relatively little change is Reen in ~(c) with m ax—to—m m excursions increasing

from 5 to 6 for azimuth and from 2½0 to 3½° for elevation. The corresponding

f 
tIn steady—state cases it has been shown that, under rapid switching, single .; -

I channel and parallel processing models are equivalent [12].

*

‘ I I

__ 
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I a) Mean Tracking Error
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b) Standard Deviation

Fig. 22: AZIMUTH PRED ICTIONS , SHARED ATTENTION p—i
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b) Standard Deviation
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a) Mean Tracking Error
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b~ Standard Deviation
I Fig. 24: AZIMUTH PREDICTIONS, SHARED ATTENTION p•2
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I experimental results (attention sharing, no visual cues) are shown in Figs.

B3—B4 for the 50 x 50 straight—and—level flyby. The comparisons of model—va—

data results are quite encouraging. The qualitative trends in the data have

I been very well captured by the model predictions; quantitative % increases

in e and a also agree closely .
I.

We are somewhat puzzled by the steady—state mean error offset (.5°— .6°)

in the model predictions. A brief numerical analysis indicates that it arises

In part from the large model thresholds, and is compounded by the increase in

V due to attention sharing. There have also been numerical approximations

made in the time—varying a case that introduce propagation errors. Allowing

( estimation of ~(t) on all states should help reduce this offset.

At this point there is no statistically significant differences among

the three-~(p~l,2,x ) attentional allocation schemes when compared with data.

I This is especially true for p—i or 2. Our current preference is towards the

p—2 model , which treats the human operator as a parallel channel information

processor. In order to distinguish further between the p—2 vs p
~~ 

cases it

- will be advisable in future efforts to:

1. examine model vs. data results for control stick input signals,

searching for any piecewise—constant control trends,

2. determine whether the pseudo—noise W
d 
should be modeled as a function

of

• 3. examine interactions between probabalistic editing schemes (Section

3.1.3) and attentional allocation.

Under the selection p—2 the model predictions of ~ and o~ for trajectory

C (the random pitching target) are given in Figs. 29 and 30. The corresponding

experimental results are shown in Figs. B5—66, respectively. The comparisons

h are excellent , lending further credence to the 0CM modifications thus far

introduced to treat target tracking and human information processin g behavior.

II
• ~~~
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•• 
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• • b) Standard Deviation

Fig. 29: AZIMUTH PREDICTIONS , PITCHING 1A~GET , SHARED ATTN ., NO VISUAL CUES
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a) Mean Tracking Error

I

_ _ _ _ _  t

b) Standard Deviation

Fig. 30: ELEVATION PREDICTIOIIS , PITCHING TARGET, SHARED ATTN., NO VISUAL CUES
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3.4 Modeling Target Visual Cues

A set of experiments was conducted to explore the effects of visual

cues, both with and without the presence of inter—axis attentional allocation

I requirements. The three experiments of concern are:

1. Straight—and—level pass with fu l l  attention to either azimuth or
- elevation, (see Figs. B7—B8)

- 2. Straight—and—level pass with attention sharing (see Fig. 89—10)

3. Random pitching trajectory with attention sharing (see Figs. Bll— 12) .

Our model development work focuses on item 1, since this experiment is notr
complicated doubly by the attentional allocation subprocess. The model can

u then be used to predict the results of the more complex cases 2 and 3. The

initial assumption regarding the visual cues is that the target Image provides

I the human with enhanced information relative to the target motion. In the

- 
0CM, the only target—related variables are 0 and ~~. Thus, we have investi—

1 gated the hypotheses that the image provides explicit (relative) target velocity

and/or velocity plus acceleration cues.

3.4.1 Potential Use of Target Acceleration Cues

It is first assumed that a human can derive both velocity and acceleration

cues from the target image.. The rationale beh ind this assumption is that

target velocity eT in azimuth is related to the target ’s aspect angle and

relative heading angle . In elevation , is related to observed pitch angle.

Thus, assuming implicitly derived rate information by the human , we obtain the

I 
- 

two additional “observations”

y
3
(t) _

~~~T

y, (t)~~~~~~~~T

In order to include this position—velocity pair within the 0~M it is necessary

to go to an acceleration model , Eq. (1.19) , with observations

Th • -;‘~~
-
~~ - 

-
~~~

.. 
..-~~, -  

—
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• y C x + D u

0 0 1 0

1 0 0 —l
— u (3.39)

- 1 0 0  0

-o 1

This is true for both azimuth and elevation axes.

By adding a second set of information to each axis, the problem of intra—

axis attention allocation between (e ,é) and (è , é~) must be addressed . WhIle

there are potential arguements for assuming no interference between the image

being tracked and the crosshairs , our initial work assumes interference to

I 
determine the relative importance of image cues . This was done using a

- 

steady—state analysis for the system

—1 1 01 0 0

3 F 0 —1 0 x + 0 u + 1 w (3.40)

~ 1 0 0  —l 0

• where w(t) is a white N( O, l) noise. This equation corresponds to a filtered

1 11(5+1)2 random target velocity. The observation set is the same as Eq. (3.39) ,

I 
except that

t 11 
~~4 

— 9
T 

— 
~~~~ 0] !+[0]

I Three attentional allocation cases were considered

1. Full attention to (e,i), i.e. f1
f
2

l and f
3
f
4
0.

I 2. No attentional interference, f
1
.f
2
.f
3

f
4
.l.

3. Attention optimization with f
1 
+ f

3 
— 1., f1 f2, f3 f4.

The results are shown in Table 1, using the nominal 0CM parameter values .

- —• -• I - - - 
-
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I Case 
~1 ~3 

aJ
O~ 3f 3f 3f 3f4

1 1 1.0 0.0 .19 .38 1.1 5.5 .0156

1 2 1.0 1.0 .05 .07 .03 .08 .0062

3 .54 .46 .24 .26 .14 .35 .0088

I
Tab le 1. ATTENTION ALLOCATION RESULTS

As can be seen , the introduction of (è ,b) information has a great effect  on

I reducing tracking errors. The relatively large grad ients aJ/af1 for i—3,4

in case 1 evidences this fact. When we allow optimization there is roughly

a 50:50 split between (e,~) and (8,0), with a large (40%) decrease in cost

I J(u*,f). The differences between cases 2 and 3 show the effects of non—inter—

farence. But clearly, the more dramatic effect is between cases 1 and 3.

I The 0CM was exercised under the hypothesis of the observations Eq. (3 .39)

with an acceleration model Eq. (1.19). A 50:50 attentional split between in-

formation pairs was assumed for azimuth tracking only. The relative results

I were much the same as for the steady—state case; tracking errors were reduced

by almost 50% . Mo reover , the s t ructure of the mean error response changed

significantly. Now, (t) resembled the target jerk , 0. This result remained

- true —— in varying degrees —— over numerous modeling modifications involving
estimation of z, probabalistic editing schemes, etc . The combination of small

11 errors with a form not resembling the data lead us to conclude that acceleration

cues are probably not provided from the visual image . Indeed , the experimental

results of ~(t) with and without image cues are structurally similar, with

11 
I (t)l being somewhat smaller in the former case.

3.4.2 Potential Use of Tar~get Velocity Cues
- I I The analysis of the potential use of 0T information followed a process

- 
- -~ — — 

~~~~~~~~
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I
similar to that described above. Preliminary steady—state studies showed

I that optimizing attention allocation of (e,~) vs. 0T 
resulted in a 65:35%

split. However, unlike the previous case, the decrease in performance cost

I (J) was less than 5% over the 100:0% case. As a result,use of 0
T 

information

is expected to be minimal for target tracking. Thus, to accentuate any effects

introduced by 8T ’ we will assume that the visual cues from the target image

j are perceived with no interference.

Using a threshold on 0
T 

of 30 , the 0CM predictions of tracking error have

I been obtained for:

1. Full attention to azimuth and elevation axes (Figs . 31 and 32 , respec—I tively). Straight—and—level target.

- 
2. Shared attention, straight—and—level flyby
3. Shared attention, random pitching target.

- 
The inter—axis attention allocation scheme in runs 2 and 3 used p—2 as described

in Section 3.3. The comparisons between Figs . 31—32 and the no—visual cues

• r case, Figs . 20—21 show that information has little effect, as anticipated .

There are slight decreases in e(t)I and in 0 (t). These results are somewhat

disappointing, when contrasted with the corresponding experimental findings

(Figs. B7—8) which show more pronounced visual vs. no—visual differences.

Similar comparisons have been found for the two dual—axis tracking cases.

The model results are in the right direction, but do not go far enough in

their magnitude decrease for e(t). It appears that either smaller noise ratios

~ I : are needed on observations, or that target visual cues may actually affect

the error/error rate noise ratios . These would give noticeably smaller model

I . errors for I.(t)J and 0 (t).

On th. other hand , the data (Figs . B9— 12) show an increase in Ce
(t )  over P

the no visual cues cases. This is especially true for the random pitching

target . It appears that to match the data we need to have a threshold on
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Pr error/error—rate that is monotonic with image size, or to assume that the

correlation time Tc increases. Either of these changes would have a minor

effect on e(t), but would tend to increase 0 (t). The idea of changing thres—

I holda with image size has been used succe~~ful1y at AMRL, and appears to be

a valid model modification in our effort . One of the reasons we did not see

I any differences between tracking a fixed size triangle and tracking a dot ,

was that we placed a zero—error “dot” inside the triange. Apparently it was

the dot that the stibjects tracked and not the image . In the visual cues case,

I 
the “dot ” was still present but was more difficult to discern possibly because

of confusion as the subjects saw the target roll, pitch and yaw.

The experimental mean error results show a trade—off between dual—axis

attention sharing, and the use of a visual image. Thus, the mean errors e(t)

in Figs. Bi and B2 compare very closely with their counterparts in Figs.

F
I—

1~

I-i

• — ,.- •- _ - - - —~
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IV. CONCLUSIONS

A combined analytic—experimental program has been undertaken to examine,

in more detail, various Issues that have impact on human performance in target

tracking tasks. The use of different internal model representations has been

clarified, along with a scheme for adaptation of the Kalman filter pseudo—

noise. Different assumptions relative to target visual cues and inter—axis

- attention allocation have been exercised using the Optimal Control Model. Data—

model comparisons have been used to isolate correct model assumptions and hy-

potheses. However, not all of the originally posed questions have been answered

fully. These are now under continuing investigation.
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APPENDIX A

Mapping a Three—Dimensional World onto a
Two—Dimensional Viewing Screen

In mapping a target (a low—flying aircraft, in our case) onto a CRT screen ,

the basic approach is to view the screen as a semi—transparent “window” between

the observer and the target; the target image on the screen is then the observer—

centered projection of the real target on this “window” (see Fig. 1).

I

I window observer
target

Figure 1

j It is not necessary that the “window” be planar; as a matter of fact, in our

- 
simulation the “window” was assumed to be hemispherical, to simulate the effec ts

I. of the observer’s head motion while visually following a moving target.

1~ 
The position of the projected target image on the screen , d1, is determined

- by geomet ry (see Fig. 2).
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1 
1. Image size (see Fig. 3):

• 
j 

The projected image size, 1, is determined from the target’s size, L,

as follows: ½
I diet — 

[(~~
‘ ) 2 

+ (D ’ — d~’)
2 
+ (Altitude)2]

-I g diet

I t /2  — H~B — H~~tg
1 

~~~~~~~

J ‘~~~~~ £ — 2~H~tg~~ 
~~~~

2. Image Aspect Ratio (see Fig. 4)

The projected image’s aspect ratio due to the difference in elevation

I between the observer and the target is determined by the elevation angle 6:

1 -l A
- 2 2 ½{

~~
‘ + (D’ — d

1
’) ]

1
3. Rotation

• In general , given a point (x0 , y , z )  in the coordinate system (x,y,z),

• its coordinates in the system (X ,Y,Z) which is rotated with respect to (x,y, z)

will be:

x0 cos (X ,x) cos (X ,y) cos (X ,z) x

— cos (Y,x) cos (Y ,y) cos (T a) y

- cos (Z ,x) cos (Z ,y) cos (1,z)

I where (A,b) is the angle between the axes A and b.
I

II
S

II
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Define a coordinate system (X,Y,Z) with the axes (X,Z) defining a plane

tangent to the CRT screen, and a second coordinate system (x ,y,z) attached to

the target aircraft (see FIgure 5). The systems (X,Y,Z) and (x,y,z) are ini-

tially parallel.
a

~~~~~~~~~~~ ~
,�

~

•“
__

~~ 

y 

x

I Figure S

I. a. Roll , $: The aircraft (and its coordinates (x,y, z)] roll around the

- X axis . The rotation matrix R* is then :

- ~~~~ ,

0 —sine cos$

~1
b. Pitch, e, around the Y axis :

1 
rcose 0

0 I

• L5i
~~~~ 

0 cos e

c. Heading, ~~~, around Z axis (define j — 0 along X).

I [cost —lin t

~~~~~~ 

sink COCk 0

L 0  1

Ii
- U-- - —

.
• -

~1- • ~~~~~~~~~~~~~~
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d. The tilt 6 due to the difference in elevations between the observer

and the target may be modeled as another rotation of the aircraf t

around the X axis, after its •, 8 and ~ rotations :

[ 1 0 01

R 6—  0 cos6 sinó
- 

[0 —sin6 cos6

and the coordinates of the aircraft in the CRT coordinate system are:

[x  [x

[: ~~~
°
~~‘[::

or

X — cos~ cose x — (sink . cos$ — cosj sine sin+)y —(cost sine

cos$ + sinj sine) a

Z — (cos6 sine — sin6 sink . coee)x — (sinó . i~~ sine sin$ +

- 
sin6 COst . cost + cos6 cosO sin~)y + (sin6 . sin*_~ sine cost —

I sin6 cost ein~ + cosö cos8 cos$)s

F
F

~ I-

F •
F
11
II
_ _  

-

_____ - -
_ _

~~~~~ • 1 _ ~~~~~ • •
•
:,~_~ __ 

•~ 
- 

_•.__ 1____ _ 
- -  •
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APPENDIX B

I
I SUMMARY OF EXPERIMENTAL ENSEMBLE STATISTICS

I
I
I
I
I

-
~~ I

I’
$ 1

Li
_ 

S-
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I a) Ensemble Mean, N—18

I 
- _ _ _ _ _

I

I

F :~

b) Ensimble Standard Deviation, N•18

I ~ Fig. Bi: AZIMUTH ERRORS, S & L TARGET, FULL ATTENTION, NO VISUAL CUES

I 

— --  — —5— -—

•~~.,

_______________________
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~~~~~~~~

1 a) Ensemble Mean, Nc18

I - -_ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _- -

1 7 -

I 
-

I I  ::
I

is
1 

1 •

0 
~~~‘ t

b) Ensu~ le Standard Deviation, N 1 8

Fig. B2: ELEVATION ERRORS, S & I. TARGET, FULL ATTENTION, NO VISUAL CUES
II _ •~~~~~~~~~_~~~~~~~ 
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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I 2~~~~~

I
I ~~~~ -2 -

I
. ‘ .
—s —

I 
10 25 20 25

I a) Ensemble I~ an , N 4 2

I

I 
0 .

b) Enseut%e Standai*d Deviation, N 4 2

Fl9. B3~ AZIMUTH ERRORS, S & L TARGET, SHARED ATTN., NO VISUAL CUES

~~~~~~
. It

• —‘-5- --5 -5 — -5
- 

—-5-
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a) Ensemble Mean, N~42

I
II b) Ens ,bl. St ndard bsvlatlon, N42

Fig. 14: ELEVATION ERRORS, S & L TARGET, SHARED ATTN., NO VISUAL CUES
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a) Ensemble Mean, N~42

I

I

I
2 —

I 2 .

t i  
1 .

I I I I I I
2 10 U U

I b) Ensemble Standard Deviation, I4~42

Fig. 85: AZI*JTH ERRORS, PITCHING TARGET, SHARED ATTN., NO VISUAL CUES
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I 
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a) Ensemble Mean, N—42

I 7 .  
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I I.

2 —
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3 .

I 2 . .

I 1 .

II I I I
S 10 15 2)

b) Eneembl e Standard Deviation, N.42

11 Fig. 86: ELEVATION ERRORS, PITCHING TARGET, SHARED ATTN., NO VISUAL CUES
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I a) Ensemb’e Mean,

I
1 7 -

I
. 1

b) Enu~~1s Standerd Deviation, NaiB
Fie. 57: AZIMUTH ERRORS, S $ L TARGET, FULL ATTENTION, VISUAL CUES
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a) Ensemble Mean , N—18 .

I 
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I
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1’

~~~~~~~~~~~~~~~~~~
b) Ensemble Standard Deviation, N18

Ii Fig. 88: ELEVATION ERRORS, s s  L TARGET, FULCATTEN11~ 4, VISUAL CUES
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I a) Ensemble Mean, 14•43

I

I 4

i

b) Ensemb le Standard Deviation, N—43

Fig 89: AZIMUTH ERRORS, S $ L TARGET, SHARED ATTENTION, VISUAL CUES
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a) Ensemble Mean , Pl’43

I

I — - —
~

I ::
I 

?. 
~~~~~~~~~~~~~~~~~

b) Ensemble Standard Deviation , N•43

Fig. 810: ELEVATION ERRORS, S & L TARGET, SOARED ATTN., VISUAL CUES
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I a) Ensemble Mean, N•42
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b) Ensemble Standard Deviation , N•42

I II Fig. Bil: AZIMUTH ERRORS, PITCHING TARGET, SHARED ATTN., VISUAL CUES
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a) Ensemble Mean, N~42
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b) Ensemble Standa rd Deviation , N—42 
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