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ABSTRACT

The optimal control model of human response is applied to study
target tracking performance of an AAA system. The effects on tracking
error of different target motions, i.e. acceleration profiles, are studied
via a covariance propagation modeling approach and via experiment. Diff-
erent assumptions relative to the adaptive trhcking behavior of the human
are explored along with different schemes for inter-axis attention allo-
cation. The effects of visual information inherent in a moving target
image (e.g. size, aspect angle, etc.) are explored via comparison of
results with a moving image vs. image of fixed size and shape. Experi-
mental tracking results are compared with those predicted by the model.
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I. OVERVIEW

1.1 Project Background

The suggested use of control theoretic principles to model human operator
response in AAA tracking tasks dates back to the 1946 work of Tustin [1]. How-
ever, it has only been of late that the tools of modern control and estimation
theory have made the modeling process a reality [2-4]. In recent studies,
model predictions -- generated via an optimal control approach -- were in ex-
cellent agreement with experimental ensemble statistics of target tracking
error in both the Vulcan (VADS) (2] and S60 [3-4] weapons systems. Figures
1-4 show typical model-data comparisons for a straight-and-level target flyby
against the S60 system [4]. Moreover, the quality of these results was uni-
formly consistent over a variety of (maneuvering) target profiles. Despite
the success of these efforts, it was recognized that numerous assumptions
made in the modeling process required further justification and analysis.
Moreover, there were facets of human response in target tracking tasks not
adressed by the earlier efforts. Accordingly, AFOSR-supported research at
the University of Connecticut, and concomitant efforts at the Aerospace Medical
Research Laboratory, WPAFB, has sought to enlarge our understanding of human
;nformntion processing and control behavior in target tracking. Among the
issues that have been studied via a combined experimental/analytic program
during our first year's effort are the following:

1. Effect of target image and size. The experimental program reported in
Refs. [3-4] used a target image of fixed size, shape and aspect ratio.
The present work explores the added visual cues the human may derive from
a realistic (moving) target image.

2., Sample-path simulation of human operator response. We have developed
and documented the equations and neccessary software with which to gen-
erate simulated time histories of pertinent variables in a target tracking
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loop [8]. Sample paths have been compared with real AAA tracking data.
The ensemble statistics of these model-generated paths are compared with

. averaged data and analytic covariance propagation results [9].

3. Effect of Attention Allocation. The tracking system of Refs. [3-4] had
two operators for dual tasks of azimuth and elevation tracking. As such,
inter-axis attention allocation was not of concern. VADS [2] was a
single-operator system, and an ad~hoc attentional scheme was proposed. The
issues of dynamic attention allocation are studied further in our work.

4. Use of High-order Derivatives. All of the past modeling efforts required

use of either target acceleration, 6,_, or jerk, BT by the state estimator/

filter. This information was used :2 compute a pseudo-driving noise, to
adaptively adjust filter bandwidth. We have now developed a technique for
estimating the unknown (to the human) higher derivatives using the filter
innovations process.

5. "lInternal Model" Assumptions. The choice of target model in the Kalman
filter had received little attention in previous efforts. The use of
polynomial models (e.g. velocity vs. acceleration models), and first-order

Markov models have now been explored in more detail within an analytic context.

1.2 Experimental Tracking Task

The intent is to focus our modeling efforts on the human's information
processing and control.behavior without the attendent éomplexitieslof high-
order system dynamics. Accordingly, we shall consider a simplified k/s track-
ing loop with command input, OT-target angle, as shown in Fig. 5. Elevation
and azimuth loops are assumed identical in structure. This is not a restrictive
situation as most tracking systems employ essentially rate command dynamics,

e.g. k/s modified by adding high frequency filtering.

H.O.

. f e‘ = gight angle

Fig. 5: BASIC TRACKING LOOP
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The basic loop equations are, with x. = 6_, x, = e= tracking error,

1 T
. 0 0 0 0
X 1(.°+ u + z(t) (1.1)
1 0 -1 0
where z(t) = gT' Other forms for the target representation (here given by
*1 = z(t)) will be considered in the sequel.

The experimental program that we conducted used two different trajectories
eT(-). A straight-and-level, constant velocity, aircraft flyby was used for
baseline work and for comparisons with similar on-going efforts at AMRL. A
target flyby with low-bandwidth random pitching was used to enhance the effects
of any visual cues derived from the target image. For each target, two sets
of experiments were conducted to study image effects. In cne set, the target
was represented on the CRT display as a triangle of fixed size and shape.

In the second set, the target was assumed to be a A-shaped aircraft. The image
presented on the CRT was the actual contour of the aircraft as would be seen

by a human observer. Thus, the image appeared to rotate, change aspect angle
‘and grow in size inversely with range.

: Another set of experiments, using only the basic flyby trajectory, were
done to isolate the effects of inter-axis attentional allocation. Azimuth and
elevation axes were controlled separately, but with elevation and azimuth
errors, respectively, held at zero. In this manner full attention is available
for single-axis control. This set of single-axis tasks was repeated with and
without explicit visual cues from the target 1mage;

In all experiments the subjects tracked to minimize error, and were scored
using an RMS criterion. The data colloétcd were the time-histories of track-
ing error, e(t), and human input, u(t). For the same experimental condition,

these time-histories were ensemble averaged to obtain mean tracking error,

;(t), and standard deviation, a.(t). ve. time. The averaging process first

A
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was done for each subject, and then across subjects to obtain the
averages. A complete description of the experimental setup and procedures
is given in Chapter 2. The experimental results are plotted in Appendix B.

1.3 Modeling Approach

The application of the Optimal Control Model [5] of human response to
obtain performance predictions is relatively straightforward [2]. The system

dynamics are given in the requisite form

Eo(t) = A go(t) + go u(t) + F z(t) (1.2)
via Eq. (1.1). The displayed information consists of tracking error e(t),
and hence also error rate &(t), in those cases where there are no target
image cues. Thus,
0l 0
(t) + D u(t) = x + u (1.3)
S T ¢ e T
The visual assumption in the Optimal Control Model (OCM) is that the human

perceives a delayed noisy replica of y(t),
1p(t) = y(t-1) + \_ry(t-T) (1.4)

where each white-gaussian noise vyi(t) has covariance

"Pyi 2
v . (t) = . E{y,(t)} (1.5)
yi ¢ NZ i

11

The quantity pyi = ,01 1is the noise/signal ratio, f1 is the attention allo-

cation to output pair (yi,ii)f, and N1 is the linearized describing function

gain of the visual/indifference threshold of width + a,. The gain Ni is .
1’smco there is only one indicator per axis, f1 - fA or fE is the attention ;;
@
to either the azimuth or elevation axis tracking task, as the case may be. r

We require !A + ‘l =1, >
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a function of the mean and standard deviation of yi(t) [6]. Figure 6 shows
the structure of the Optimal Control Model. The human's feedback control

strategy is represented by

" U+us= -L & (t) + T vu(t) (1.6)

or
R

] _1] o

R e it + v (©) (1.6a)

u
where the "neuro-motor'" time-constant iy .1 and vu(t) is a white gaussian
noise. In a slight departure from past modeling efforts, the covariance
vu(t) is assumed to scale with commanded control rate as opposed to commanded
control. This has been found to give results consistent with past steady-
state mcdeling work, and is moré appropriate to non-stationary tasks (as here)
where large mean control inputs are usual. Thus,

v,(t) = 7o E{ﬁc} (1.7)

where Du = ,01 - .003.

1

The control gains [LJ.LZI = [Tn_ Ls rn-ll are selected to minimize the

quadratic cost functional

J(u) = 1lim %2{7 [ylz(c) +g &Z(t))dt (1.8)
0

T

i.e., to minimize mean-squared tracking error. The control rate weighting,
g 1s adjusted to give a value ‘n = .1 sec. For this system, g = .0004.
]
The state estimate X (t) = [io,ﬁl is generated by the cascade combination

of an (augmented) Kalman filter and a linear predictor. The filter equation 1is

x (t-1) = A x(t-1) + B u, (e=1) + G(t-7) (1,(') - C ®(t-1)) (1.9)
where
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g(t-t) = E ggﬁt-t) 'zp(a), o < t}
} & o (1.10)
A= 1o MR P €76 B
du(t)=-t 1L2g(e)
an uc Tn 28 .
The filter gain G(t) is
\J _1 ¥
= ¥ .
gtc) =K1 € X Kt (1.11)

where I(t) is generated from the Riccati equation

"arc v e cxee + (1.12)

LA
i _ 0 Vu/rn

Jd<

j The 'pseudo-noise" !d is chosen such that the filter adapts to the changing

characteristics of the input signal z(t). In previous modeling efforts [2,4]

[rr——

it was found that choosing according to

¥,

2
Wy(t) = Fz'(¢t) F (1.13)

gave model predicticns that accurately matched human response data, viz
Figs. 1-4. Although the agreements were excellent, it must be recognized that
the signal z(t) is not "observed" by the human, and so model modifications are
warranted.

A method for estimating z(t), or equivalently F z(t), was developed in
the current effort. The signal z(t) is what gives rise to the ensemble mean

statistics via the mean filtering error equation,

e~ (A-C0 e +Falt-1) (1.14)

where gf(t) = E{x(t-1) - X(t-1)}. The mean error gives rise to a mean inno-

vations in the Kalman Filter,

. 2 % R ———— @ 7
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v(t) = € e (), (1.15)

Rewriting Eq. (1.14) in the form

e AS - GV +F z(t-1) , (1.16)

:,
a fading memory, recursive least-squares algorithm has been derived to estimate
z(t-1) from the non-zero mean residuals. The technique has been remarkably
successful in generating an estimate 2(t-t) that accurately "tracks" z(t-t)
for all target profiles considered to date. The details of the estimation

scheme are presented in Section 3.1.

1.3.1 Model Application Process

Once the model parameters

2 = {1, p_,, Dui’ Tnt .1}

yi
are specified, the OCM can be used to generate predictions of ensemble sta-
tistics for all pertinent variables in the tracking loop. The mean and co-
variance propagation equations that must be integrated to obtain these results
are given in full detail in Ref. [7]. Also presented are the discretized
equations for computer implementation.

The selection of model parameters can be a diffieult subprocess in general.
However, past research in human vesponse theory has shown that typical parameter
values are

T=,15 - .2 sec pyi ~ =20 dB
" .08 - .1 sec Py =20 to -25 dB
and that these values are not dependent on the type of dynamics being con-
trolled. Thus, when the OCM is applied to "match" target tracking data we
have found it relatively easy to first make nominel predictions using a priori

values, and then fine-tune using one or more parameters. Moreover, if one con-

siders only tracking error statistics, changes in T, Pui and py1 have been found

e

Pyt a4l 7 s A A ®
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to produce very similar effects on model predictions: both e(t) and ae(t)
increase with larger parameter values. Thus one can fix any two of these
parameters and adjust the third. In this effort we picked tr = .2 sec, g
=20 dB (to reflect a medium quality hand-position controller), and adjusted
py about its nominal value.

The identification of visual/indifference thresholds a, is a bit more

subtle. Here one looks for periods of easy (and hence good) tracking, where

|z(t)| is small, and then adjusts a, to match the tracking error standard

i
deviation. This is possible since sensitivity studies show that the value of

a, has little or no effect on the ensemble mean error statistics. It is also
possible to obtain estimates of a, from questionnaire, or more often by a simple
analysis of display gain, format and/or scale markings. In our work we found

it necessary to use a small visual display gain (Kd =~ 1/8), which resulted in

a threshold value of about 1.5° on tracking error. In accordance with past

work, error rate thresholds are selected as 1/2 of this value.

1.4 Overview of Model-Data Comparisons

Typical OCM predictions of (ensemble) mean tracking errors and standard
deviations for a k/s-type system are shown in Figs. 2 and 4. These results
are for a straight-and-level flyby. The mean errors arc quite symmetric (or
anti-symmetric) about crossover, with a structure that is very nearly propor-
L
tional to z(t) = OT. y

produce a scaling effect on the magnitude of the mean error, but have little

Changes in the basic model parameters {T, T Py? pu}

or no effect on the inherent symmetric structure. With these results as back-
ground, we give an overview of the modeling efforts conducted during the first
year's research.

1.4.1 Internal Model Studies

Our experimentally obtained mean tracking error for a flyby (no visual

*
A further analyeis of the efficacy of this "rule-of-thumb" is being undertaken.

st el . S5 i
y - >l
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image cues, full attention to a single axis) igs shown in Fig. 7 , Notice that
the mean errors have the same general form as the corresponding model predic-
tions, but show an asymmetry. There is relatively more lag prior to crossover
with less lead (overshoot) after crossover. Numerous attempts to reproduce
this tracking characteristic by changing model parameters, cost functional

weights, etc., have reached one conclusion: Since mean tracking error is

similar in form to z(t) in Eq. (1.2), it is necessary to change the internal

target model so as to change z(t). Accordingly, we model the target motion via

a first-order Markov process

il(t) = -q xl(t) + z(t) (1.17)
where now
2(t) = b'T(:) +a éT (1.18)

The parameter o > O represents, to some extent, the "bandwidth" of the signal
xl(t). The form (1.17) is a natural extension of the earlier Weiner-process
model, with a = 0, and is examined in Section 3.2.

Model results have shown that this modification does indeed give the
asymmetry required in E(t). However, a is not a constant. In order to match
data, and provide consistent modeling hypotheses, a must be a function of
(estimated) target accéleration and velocity, plus the human's uncertainty in
the latter. This means that the correlation time 1/a is directly dependent
on target motion, but depends indirectly on target visual cues and/or attention
allocation requirements. This also implies that changes in display quality
can alter (indirectly) tracking error structure.

1.4.2 Velocity vs. Acceleration Models

The target representation *1 = z(t) is called a "velocity" model. It is
the simplest form of a general polynomial approximation to the target motion.

The next model in the hierarchy would be an "acceleration" model. If we let

14
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x = OT, x2 = BT then,
X =% (1.19a)
x, = z(t) = GT (1.19b)
and with Xy ® e(t) = tracking error we have the final state equation
i3 -x -u (1.19¢)

L
This state-space representation is in the form of Eq. (1.2), where F = [0 1 0]

and z(t) = 6(t). If the optimal control model is applied to this case, using

]
¥ - F zz(t)|x , then the mean tracking error is similar to 6(t). This does

16

not match the data. Moreover there is no reason to stop the polynomial modeling

process at b! A way out of this dilemma is provided by the scheme we have de-

veloped for estimation of 2(t). If Eq. (1.19a-b) is rewritten as

5

= x_+ zl(t) (1.20a)

2
- zz(t) (1.20b)

*2
we can then estimate, via the innovations technique, the vector process z(t)=
[zl. zzl'. This gives the model the ability to ascribe uncertainty to both
target velocity and acceleration. In actuality zl(t) = 0. But when estimated
we find

il(c) = 3&(:) and iz(t) =0 (1.21)

Therefore, writing the target motion as a higher-order model has no effect

on the OCM predictions, as should be the case. In retrospect this result is
due to the fact that no information concerning 5(:) is contained in the obser-
vations yl - e, y2 = @¢. Hence, it is unreasonable to expect any estimation of
; in the Kalman filter. Of course this would not be the case if the human

were presented or could derive, target acceleration cues.
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1.4.3 Target Image Effects

Experimental results with and without the target image showed that
1) mean tracking errors were always reduced, but 2) error standard deviations
had mixed changes when the human tracked a realistic image. It also appears
that the structural form of e(t) tends to become slightly more symmetric when
the visual cues are added.

Several different assumptions for modeling the added information are
considered in Section 3.4. It is assumed that the visual cues can modify
indifference thresholds and can provide information relative to target angular
velocity é(t), and possibly angular acceleration, 8(t). These can be brought
into the OCM structure by defining additional '"observations'.

y,(6) = 6,(t) 5 y,(6) = 8 (e) | (1.22)
Note that in order to write the observations y in the form of Eq. (1.3), when
ya(t) is included, we must use an acceleration model for the target, Eq. (1.20a-b).
Thus, y3(t) = xl(t) and ya(t) = xz(t).

We have addressed the problem of intra-axis attention allocation (using
a steady-state model), and have found that 6 information has a small effect on
performance, whereas (6,5) information gives a large improvement in performance.
With intra-axis attention allocati&n considered, a 50-50 split in attention
between (e,e) and (5.3) was found to be best. Running the OCM for the tracking
task with the expanded information base, and the acceleration model*, gave
predictions of mean tracking error that did not adequately match the data.

The structural form of e(t) differed substantially from the data, and the
error magnitudes were much too small. This leads us to conclude that little

or no useful acceleration information is contained in the target image. Our

1'Notc that estimates of z, and 2z, are now generated, i.e. 22(:) ¥ 0.

1 2




present assumption is that the image does provide additional velocity infor-

mation, 6 This does not alter the structural form of E(t), yet provides

T
the potential for enhanced error rate information.

1.4.4 Inter-axis Attentional Allocation

As expected, the experimental results showed that single-axis tracking
errors are less than their counterpart two-axis errors. The OCM includes
attention allocation via a modification of the observation noise covariance.
It further presupposes that the human chooses the attentions fi to minimize

*
the cost functional J(u ,f). The problem of optimizing the measurement sub-
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system with respect to fi has been solved, but only for steady-state (stationary)

manual control tasks [10]. If one is to model the results of the target tracking

experiments, it is necessary to solve the dypamic attentional allocation problem.

This is a very difficult requirement.

For a two-axis tracking task it can be shown that
* 1 T ] '
x = - S .
Ju ,f) = 5 jf [L, £,(e) L +1L, I (e) L] de (1.23)

0
where T is the time interval, Le are "equivalent” gains and EA (ZE) is the

azimuth (elevation) axis filter Riccati solution. I(t) is a function of Vy(t),

and thus of f(t), via Eq. (1.5). An ad-hoc attention allocation scheme was

proposed in Ref. [2], under the assumption that "optimal' attention was pro-

portional to L £ L . The result was

£,(8) = (1+ P (1.24)

L
L L L

s gy 3

E (1.25)
e A

fE(t) -]~ fA(t) ;] R

In Section 3.3 it 1s shown that this simple model gives reasonable results in
reproducing the attention vs. no attention trends in the data. This brings

up the question of whether development of a more complex dynamic attention

g e

L. 2
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model is warranted. The question may be answered in part by comparing model
predictions of tracking errors obtained with somewhat different, but plausible,
ad-hoc attention allocation schemes. Accordingly, the ratio R in Eq. (1.24)
was replaced with Rp where we consider p=1 (as before), p=2 and p=~. The
latter case corresponds to 0-1, or time-shared behavior between the two axes.
Each of these 3 schemes resulted in somewhat different time histories for
fA(t) and fE(t). However, the various tracking error statistics showed little
differences among the 3 schemes. Our conclusion is that almost any plausible
inter-axis attention allocation scheme will give rise to very similar ensemble
error statistics. Our preference is p=2 since I has a natural dependence on
/f via the Riccati equation (1.12).

1.4.5 Monte-Carlo Modeling Results

A major effort during the first year of the grant was the implementatioﬂ
of the OCM equations for Monte-Carlo, or sample path, simulation to generate
time histories of tracking error, control input, etc., in response to any
given target trajectory. Thus, the model mimics the input-output response
of the human, complete with random noise generators to produce the operator's
internal observation and motor noises. The three basic equations that are
simulated are:

1) Kalman Filter
% (t-1) = A #(t-1) + B uc(t-—T) + G(t) [yp(t) -C :‘:(c-r)] (1.26)

2) Predictor

t
2(t) = &M 2(t-1) + f

t=1

A(t=0) 4 u_(0) do (1.27)
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3) Controller

T u(t) + u(t) = uc(t) + vu(t) (1.28)
uc(t) = -L &(t)

In addition, the covariance equation for I must be integrated forward in time.
Using a Monte-Carlo model one can study performance measures not readily
available from the averaged ensemble statistics, such as

1. Oscillation frequency content in the responses
2. Autocorrelation and cross-correlation functions
3. Spectral characteristics over time windows

4. Effects of transient phenomena

5. General time-domain oriented items.

Theoretically, the statistics of the ensemble of such model-generated waveforms
will agree with the covariance propagation results obtained directly. Moreover,

it 1s possible to study (numerically) the smoothing process in forming ensemble

averages,
N
- 1
eN(t) e E ei(t) (1.29)

to determine characteristics of EN(t) vs N as N,

The model has been applied to a k/s azimuth axis tracking task with a
straight-and-level aircraft flyby. The model results are compared with Air-
Force (AMRL) experimental data gathered on the S60 System. Fig.8 shows
typical time histories of tracking error e(t) generated by both a human and
the model. They are quite similar in form, demonstrating oscillatory behavior
that 1s not evident from the predicted ensemble statistics of Fig. 2 alone.
As we build an ensemble, the oscillations tend to be smeared-out as the wave-
forms are averaged via Eq. (1.29). This process is seen in Fig. 9 where
data and model ensemble means are presented for N=]5 sample runs.

As No» ye expect ;l(t) + e(t) and the sample variance a.“(t) > o.(t)
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i 5
aeN(t) - i}—l 12_:1 e, (t) - Eﬂ(c)]2 (1.30)

This is essentially true. Fig.l0 shows the ensemble statistics of ;N(t)
and cen(t) for N=100. Compare these with e(t) and oe(t) in Fig. 2. We see
that Eu(t) = E(t)f, and that the standard deviations agree very well except
for a small region near crossover. This "mismatch" is due in large part to
temporal averaging of the observation noise covariance in the model implemen-
tation [8].
1.5 Summary

The first year's work has been directed towards analyzing the effects of
human limitations on target tracking performance in a basic rate command system,
by means of a combined analytic-experimental program. Our efforts to-date have
focused primarily on the development of a human-centered model for target motion,
and transient analysis/sample path simulation. An experimental facility for
studying human operator tracking has been established in the Electrical Engi-
neering and Computer Science department at UConn. With this facility, and
concomitant OCM analytic efforts we have studied effects of visual cues and
inter-axis attentional allocation. Data-model comparisons have been used
to isolate plausible model assumptions and hypotheses. Further details on
our results are given in Chapters 2 and 3, and in the Appendices.

Research is presently continuing at the University of Connecticut to
examine further the various issues that have impact on human tracking perfor-

mance. Target tracking experiments with interrupted (i.e. blanked) visual

+Por Gaussian distributions we expect |:N(t) - e(t)| < o (t) with 952

2
probability. CHE
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information have been completed, but the results have yet to be analyzed.
We will continue sensitivity analyses of model results, and refine our para-
meter tuning methods. Further experimental/analytic work will focus on op-

timizing the man-machine interface via selected system/display modifications.

W e Ay b i
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ITI. EXPERIMENTAL PROGRAM

In the first year of the program, efforts were directed towards esta-
blishing an experimental facility that would enable us to study human operator
performarnice in simulated man-machine systems. Our goal was to generate the
data needed to both refine and tune the optimal~control model, and to test
that model's predictive accuracy. The effort concentrated on the simultaneous
development of computer~controlled dynamic simulation and data-acquisition
capabilities and involved five phases:

1. Hardware acquisition, configuration and interfacing,
2. Software development,

3. Experimental design and shakedown runs,

4. Final experiments, and

5. Data reduction and analysis.
These are detailed below.

2.1 Hardware

The heart of our experimental facility is a DEC PDP 11/20 computer with
dual floppy disks; to this were added later a high-speed DEC-pack disk drive
and a magnetic tape unit. An oscilloscope with an eight-incﬁ CRT was connected
to the computer's processor, via two digital-to-analog converters, to provide
our display medium. The 10 bit D/A converters enable horizontal and vertical
deflections of the oscilloscope's beam to any desired point on the screen with
a 1024 x 1024 grid resolution.

Sampling the subjects' responses to the displayed stimulus required a
spring-centered, two-axis joystick to be wired into the computer's processor
via analog-to-digital converters. The A/D's map the joystick deflections in
the two axes to digital quantities with a resolution of 10 bits (one part in

1024).

26
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2.2 Software

The operating system of the PDP 11/20 was expanded to run FORTRAN programs,
and handle the peripheral devices. Extensive software has been written to:

1. simulate arbitrary controlled-element dynamics of the tracking system,
2. generate simulated target trajectories with arbitrary attitude,

altitude and cross-over range,

collect data in real time, storing it in memory buffers, and

?

4. shipping the data to files on mass-storage peripherals for off-line
! processing.

Our repertoire of target trajectories currently ranges from straight-and-
level flybys to some quite complex profiles. For the more complex trajec-
tories, the aircraft bank and/or pitch angles are computed as the sum of up
to five sine waves of independent amplitudes, periods and phase angles.'r

The output data files consist of the sampled time-histories of the
tracking errors in azimuth and elevation, and of the joystick control inputs
in these axes. The sampling time Te = ,025 sec. Additional subroutines were

written to:

1. retrieve the output data files,

2. perform preliminary sequential analyses on the raw data, such as
ensemble mean, variance, temporal RMS error scores,

3. compute ensemble t-tests to detect statistically significant
differences among the experimental conditions (at any one of five
levels of significance), and

4, to display the results in graphic form on the CRT screen and/or
to produce hard copy on an X-Y plotter.

It was necessary to write special pufpooe software to ﬁilplay the sim-
ulated target on the screen and to sample the subject's control input signal.

The standard DEC-supplied asynchronous interrupt-handling routines (LPSLIB)

¥ 4 —_—

1"l'hu is not a restriction -- any time history of ¢(t) and/or y(t) may be used.
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proved much too slow for real-time simulation of high~bandwidth dynamics.

Even under the most favorable circumstances it could not effect sampling rates
in excess of 10/second. Writing our own software enabled us, at the outset,
to sample consistently at 20/second; further refinements and optimization
increased the rate to 40/second for both sampling the input signal and re-
freshing the display. This rate of 40/second was used throughout the formal
experimental runs.

2.3 Pre-Experimental Detail

A major goal of our first~year experimental program was to provide a data
base for refining the Optimal Control Model of human response, with emphasis
on the human information processing submodel. 1In order to avoid the attendant
complexities of high-order system dynamics, a rate-command system was simulated

with transfer function Gp (Figure 11) equal to K /s.

sample sample
1 & store & store 0
6 Display u s
T gain, K, 1 » H-0- Gp(s) -
target sight
position angle

Fig. 11. STRUCTURE OF SIMULATION LOOP

The rate-command gain Kp was set at 1.70 as this value was judged "most
comfortable" by subjects during the shakedown runs. The display gain Kd was
set to 0.106. At this setting a straight-and-level pass (to be described
shortly) fits exactly within one screen-width (8 inches).

2.3.1 Forcing Functions

The forcing function OT(t) was the position of a delta-shaped target

image during a fly-by trajectory. We have the capability to specify the cross-

i ¢ 4 :“-—‘
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over range XOR, initial target altitude IA and its attitude (Figures 12 & 13).
The target's velocity is computed from these to produce, in a straight-and-
level flyby, a symmetric trajectory subtending a 2 x 84.26° angle (Figure 14),
independent of the cross-over range. Therefore, all straight-and-level flybys
effect identical profiles of angular velocity and angular acceleration (éT and
6}, respectively) regardless of cross-over range. The only range cue is the
size of the target image.

We used three trajectories (labeled "A", "B"” and "C") which were defined
as follows (see Figure 12):

Trajectory "A": IA = 50 ft., XOR = 50 ft., B = a (S & L fly by)

Trajectory "B": 1IA = 2000 ft., XOR = 2000 ft., B = a (S & L fly by)

Trajectory '"C": IA = 50 ft., XOR = 100 ft., B # a; the target follows a
path in the vertical plane with its flight path angle
Y defined by

y(t) = gin (le t + l) =0.5 8in (ﬁl t - 0.5) + 0.5 gin (%1 t + O.S) +

T T
0.3 sin (l%! t + 0.375) radians

where T is the total :time for a run.

Trajectories "A" and "B" looked identical -- that is, their forcing functions

eT(t) were identical -- except that the target image was much smaller for
trajectory "B" (due to its further range) and looked like a dot on our CRT

screen.
2.3.2 Subjects and Training

Some thirty candidates were screened as potential subjects for our ex-
periments. Of these, about half were then selected to participate in the
experimental program, based on their ability, attitude and enthusiasm. These
subjects were then trained on a variety of simulated trajectories, including

the three flybys described above, until their performance met a preset criter-
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ion (RMS tracking error consistently below 5° in both azimuth and elevation).
We chose our subjects from among the University's undergraduate students,
graduate students and staff for the first two experiments (to be described in
the next section) and from among Air Force ROTC candidates for subsequent
experiments. All our subjects were male. Their ages ranged from 20 to 53
years for the seven subjects in the first group, with a mean of 31; the ages
of the ROTC group ranged from 20 to 23 years with mean age of 21. There was
one pilot, one subject with sharpshooting experience and one person with AAA
experience in the first group. In the ROTC group there were three pilots,

two sharpshooters and two subjects with some experience as radar operators.
The training and familiarization runs were intended to ensure data homogeneity
in spite of these diverse backgrounds by bringing all subjects to a common
level of proficiency before the formal experimental runs. In addition, the
data which were obtained from the individual subjects in the course of the formal
experiments were tested for outlyers, which were then eliminated from further
analysis. This procedure will be discussed in more detail in the section on
Data Reduction and Analysis.

2.4 Experimental Design

2.4.1 Visual vs. No Visual Cues

Our first experiment was designed to detect possible effects on tracking
errors of direct observations of target visual cues such as target size and
aspect ratio. A 3 x 2 factorial design was utilized, so that each of the seven
subjects tracked three different trajectories ("A", "B" and "C"). Each tra-
jectory was tracked both under ccnditions of "visual cues present" (i.e., a
realistic target image) and of "no visual cues” (the target image retained
a fixed size and shape). These six conditions were repeated by each subject
from three to twelve times, depending on the subject's availability, in random-

ized blocks of 18 runs each.




Fig. 15a:

TARGET IMAGE WITH VISUAL CUES SIMULATED

Fig. 15b:

TARGET IMAGE WITH NO VISUAL CUES
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The display presented a symbolic cross-hairs centered on the CRT screen
(Fig. 15a) and a triangular target. Under the "visual cues present' condition
the triangular image simulated a delta planform. It varied in size and shape
as the simulated target's range, bearing and altitude varied (see Appendix A
for details). Under the "no visual cues" condition, the triangular target
followed identical trajectories but the triangle retained a fixed size and
aspect ratio throughout the run (Fig. 15b).

Each experimental run lasted 25.575 seconds. At a sampling rate of 40/
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second we thus collected 1024 datum points per run for each variable of interest.

The ensemble means and standard deviations of the tracking errors in azimuth
and in elevation are grouped in Appendix B.

We have also been collaborating with Ms. Sandra Hart of the Biotechnology
Division of NASA-Ames Research Center, who is studying possible correlation
between subjective time estimation and mental workload associated with wanual
tracking. In the framework of this first experiment we recorded at the end
of each run the subjects' estimate of the duration of that run. Even though
all runs were of identical durations the subjects' estimates varied over a
wide range. Subsequent analysis of the data, however, failed to reveal any
correlation between the time estimates and the difficulty of the particular
trajectory ot the tracking performance. (Surprisingly, the means and variances
of the time estimates under the different conditions come remarkably close
to each other.)+ We are continuing to collaborate with Ms. Hart and will in-
clude further results in next year's program plan.

2.4.2 Inter-axis Attentional Allocation

We attempted to control the unknown effects of inter-axis attention-

+It may be that intersublect variability masks any differences due to workload.
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sharing in our second set of runs. This experiment was of a 2 x 2 factorial
design, with each subject tracking two trajectories ("A" and "B'") in azimuth
alone (with the error in elevation clamped at zero) and in elevation alone
(with zero azimuth error). Each of the three subjects repeated the experiment
6 times in a randomized order, for a total of 18 runs for each experimental
condition.

As mentioned earlier, trajectories "A" and "B" were equivalent with re-
spéct to the forcing functton GT and differed only by the range to the target
and hence, by the size of the displayed target. Within the bounds imposed
by the resolution of our equipment, the target image in trajectory "B" re-
sembled a dot and hence trajectories "A' And "B" represented equivalent flybys,

with visual cues and without visual cues, respectively. During the data-reduc-

tion phase that followed the first experiment, we had determined that, from the
a Eaﬁggt rfpresented by a triangle of fixed size and shape were not different
AN
statiszically.
:%he results of this set of runs are also grouped in Appendix B.

-

2.4.3 Interrupted Observations T

A third experiment was begun during the last months of the first year.
In this set of ru;a we attempted to investigate some transient and target-
acquisition modes via interrupted observations. We are now in the data
analysis phase of this study.

2.5 Data Reduction and Analysis Methods

Pour variables were sampled and stored during each formal run: the in-
stantaneous tracking errors in azimuth and elevation, and the control stick
positions in these two axes. At a sampling rate of 40/eecond, each 25.575-

second run produced 1024 datum points for each of these four variables. In

l standpoint of visual cues, a target represented by a dimensionless dot and
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addition, some header information, such as forcing function, subject iden~
tification symbol, date and time of run, etc., was recorded.

The first step in analyzing this vast amount of data was to aggregate,
i.e., to compute and store the point-by-point ensemble means and mean-squares.
We utilized a sequential approach to the computation, by which the mean mi+1

of the j-th point (0<j<1024) of k+l runs was computed from mi by

miﬂ = (mi Pk zi_u )/ &+ 1) (2.1)

where zi+l is the value of the j-th point in the (k+l1l)-th run, and mi =0,

i=1, 2 ... 1024.

The mean-square qi+1 was computed similarly from qi by
S e 3 .2
U1 (qk k+ (z 1)) / (k+1) (2.2)

and the unbiased estimate of the variance, vi, was then found from

v - (qi - @)’ ) x| OB (2.3)

Utilizing the ensemble means and variances, two-sided t-tests could be
performed (with the appropriate number of degrees of freedom) to test the null
hypothesis of equality of the means. We first tested the assumption that our
subjects came from a homogeneous population. If they did, then the mean track-
ing error of each subject should not be statistically different from the mean
tracking error of all the subjects combined. For each subject we compared
the mean tracking errors in azimuth and elevation to the corresponding mean
tracking error of all the subjects combined for the same experimental conditions
(trajectory, visual cues/no visual cues). We found that the mean tracking errors
of one of the seven subjects were significantly different in the crossover

region (Pa < 0.01). This subject's data was removed from the combined mean,
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and the averaging process was then repeated with the data of the remaining six
subjects. The data obtained from the one outlying subject was not used in any
of the subsequent analyses.

Plots of the summarized data are grouped in Appendix B. As expected,
the availability of visual cues (target image's size and shape) effected
amaller tracking errors (Pa < 0.05) and error variances. Unexpected, however,
were some characteristics of the data, such as

1. the asymmetry in the tracking error profile before and after crossover,
with a tendency to lag prior to crossover,

2. the slight lagging tendency during the first 5 seconds of the runm,

3. the smaller variance associated with the tracking error in elevation
without visual cues (trajectory C) than with visual cues (Figures

B6 vs. Bl1l2),
4. the large (~1°) standard deviations in the tracking errors during

periods of good mean tracking.

The last point has been attributed to the choice of small display gain, Kd
~1/9, which in turn, resulted in large visual/indifference thresholds for the
subjects. Thresholds vary inversely with display gain.+ In previous studies,
visual thresholds used in the OCM were in the order of .15-.2°. Thus, we
might expect values for a, * 1.5-2.0°. An analysis of the display image/
resolution gives comparable numbers: For example, the angle between the center
of the "crosshairs" and the first dot is B ~ 4.5°. When we lack an explicit
zero reference point, the OCM adds an observation noise V = .01w82. It can
be shown that this effect is almost equivalent to a threshold of value 8/3
(This corresponds to a "middle-third" indifference region). Finally, the min-
imal quanta of display resolution is 168/1024 = .16°. With a spot of light

smearing over 10-15 quanta, a 1.5-2.0° threshold value is to be expected.

Indeed, OCM-data matching gave position threshold values a, = ) I

*300 also Section 1.3.1.
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III. ANALYTIC MODELING

This chapter describes the various modifications and extensions that
were made to the OCM during the analytic phase of the project. These include
adaptive tracking of target acceleration, methods for modeling visual cues
and attentional allocation, and use of generalized first-order aircraft motion
models. Model predictions of tracking error statistics are given for compar-
ison with the experimental results of Appendix B.

3.1 Adaptive Tracking Problem

A weighted-least-square technique 1is proposed for estimating higher deriv-
ative target information from the OCM Kalman filter residuals process. The
results have application in areas beyond human operator modeling in systems
with non-random inputs. Some of these areas are:

* Compensation of modeling errors caused by linearization of non-
linear systems

* Design of adaptive filters to determine the path of a maneuvering
target

* Estimation of unknown, time~varying mean and variance of a random input
disturbance

* Detection of sudden changes in the state of a system with application to

failure detection

3.1.1 Problem Background

The relevant discretized equations that describe the OCM in non-stationary
systems are given in Ref. [7 ]. For notational simplicity in the subsequent
development it is assumed that N = t/6 = 0. This is not a theoretical re-
striction as the Kalman filter/estimator does not involve state prediction.

The (augmented) state equation of the system is given b)"r

~"WQ follow the notation and definitions of Ref. [7 ].
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xk+1 - Ok xk + Bk uc K + Ek "k + Fk zk (3.1)
1
where zk is a deterministic input that represents the target motion. It is
assumed that zk is unknown to the human,
The Kalman filter generates pk, the (a priori) estimate of X, » from

the observations

s * Ce % t i (3.2)
The estimation error e =X ~ P is given by

- - + + A

G " & -4 G v E, W tF 2 (3.3a)
or, equivalently by

e = e +Ew + F z (3.3b)

U T M TR T T LY
where Gk is the filter gain and ¢ = ®(I-GC) is the closed-loop filter matrix.
The innovations process is

L . v’ :
Yk "ok T APk T Gt Vi bl

When the Kalman filter is optimal, Ve is a zero-mean white noise sequence.

However an input z renders v, non-white. This fact will be exploited to

k k
generate Ek’ an estimate of z, .

In the OCM a pse¢udo-noise matrix Fk wd,k Fk' is added to the filter
Riccati equation to account for the human's uncertainty in the signal 2. It
has been shown that choosing

wd,k = diag [l;l!-. z:’i] oAy 1 (3.5)

approximately minimizes the mean-square filtering error, and results in model

predictions that match data quite well (see Figs. 1-4). Eq. (3.5) has physical
appeal, as the uncertainty in target estimation, (and hence the Kalman filter

bandwidth), increase as target motion 2, increases. However, there is an
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inconsistency in this model: z was assumed to be unknown to the human!

A way out of this dilemma is the obvious modification of Eq. (3.5) to replace

z with an on-1line computed estimate Z

3.1.2 Adaptive Estimation Algorithm

k'

Eqs. (3.3-3.4) are the basic set of equations for generating ik. Taking

expectations, noting that ;k =0, ;k = 0 and ;k = z,, ylelds

L

el K gk Fk z, (3.6a)

vV o= e

X Ck e (3.7)
From "measurements" of ;k (the signal vk is readily available in the Kalman
filter), wé;will obtain an estimate of zZ,. Note that this problem is tanta-

mount to designing the inverse system to Eq. (3.6-3.7).

In actual implementation an estimate of V, would be obtained by on-line

j k
filtering (i.e., averaging) of vk' We would thus obtain an estimate of
Ck ;k' where e now denotes the temporal mean, from
Vk - ck ek + Vk (3-8)
where ;k is filtered white observation noise.
Solving Eqs. (3.6a-3.7) for Gk’ assuming EO-O, yields
. k-1
B v, = ¢C Z ¥Y(k-1, 1) F, 2 (3.9)
k k 1
i=0
where

Y(k-l,4) = 8, 0 o . 0 ¥ =1 (3.10)

If &, 1<k denotes the estimate of z given all the measurements {30, i ;k}

By e e e e A R O AEEe S B I B A B AT e

then our best estimate of V., 1is

| b k
§
a cicl
j &= Vk - Ck 1;0 ¥(k-1,1) 1'1 '1/k (3.11)
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The estimates zi/k can be obtained via a weighted-least-squares method to

minimize the criterion (at step k),

k
I - Z g3 |
1=0

2

G G

(3.12)

where R, 1s an NY by NY diagonal matrix used to give relative weighting to

]

the importance of each measurement ;j R
’

i=1,...

The constant 0<B<1l

is a fading memory factor used to place greater emphasis on the more recent

data. This is particularly helpful when z varies rapidly.

The minimization of J , Eq. (3.12), is a formidable problem as it requires

k

the recomputation (i.e. smoothing) of past estimates 21.

Thus storage and

CPU time increase with k. Since there is no evidence of such behavior in human

operator tracking, we simplify the WLS problem by replacing the smoothed estim-

ate 21/k in Eq. (3.11) with the filtered estimate 2

k

i/1+1°
of J, with respect to the on-line computable quantity 2

The minimization

é 2 follows

1/1+1 i

least-squares theory. Define the "effective' measurement Yy as

k-2

RS N T 12-0 ¥(k-2,1) F, 2,

Thus, by construction,

RS Bahaty
1]

- Hk zk_l + Ck

. - a
where :k is the residual vk - vk. and “k

is NZ by NY.

(3.13)

(3.14)

The estimate zk-l (obtained at step k) is generated recursively according

to

fIt R, = cov [v,-v,] we obtain a minimum variance estimator, assuming white

residual sequence. Plausible choices are R,=V, or R, =~I.

3

A g b e 5
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ik-l W rk (yk g Hk zk-z) (3.15)
where

r - B -1

k=S B (B S B +R) (3.16)

*osT-SH (M S H -1 s

S, "R - B @ B R +R) H B (3.17)

. =%8 s ion)

1 T F Sy me propagation

- 5
and So = 10" I is the initial condition. The update Eq. (3.17) can also be

written in the more computationally stable Joseph's form,
* ' - r e '
sk = (I - Pk Hk) Sk (I - Fk Hk) + Pk Rk Fk (3.17a)

The least squares algorithm operates most efficiently when the NY "measurements"

Tead* " Teom
one at a time. Dropping the time index, for simplicity, the pertinent re-

are processed through the update sequence Eqs. (3.15)~(3.17)

cursive replacements are, for 1 = 1,..., NY
L
-1
y =S hi (hi S h1 + ri)

L}
S« (I - yhi)S (or use Joseph's form)

)

sk L S T
’

If we start with z = 2, ,, S = S_ we end up with 2 = zk—l and S = S+ 1t is

k-2 k k'
worth noting that 1f we define I = BS, the Equations (3.16-3.17) remain the

\

same but with I replacing S and BRk replacing Rk.

The above algorithm for 2 is very simple to implement and requires minimal
extra storage. In computing Y via Eq. (3.13) note that the summation term

is ;k-l' i.e. the result of passing ii 1 < k-2 through the "system" Eq. (3.6a)

with initial condition ;o = 0. Thus, is easily obtained recursively by

Yk
using

~ -~ ~
-

€1 " Y2 &2 P2 2 (3.18a)
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3.1.3 Modifications and Extensions

The WLS algorithm, as derived, was based upon Eq. (3.3a) which involves

the closed-loop matrix ¢ . An alternate formulation is based on using Eq. (3.3b),

k
involving the open-loop system matrix Qk' Taking expectations of Eq. (3.3b)

yields

e =¢ e +F z -0 G v (3.6b)

where the "measurements' ;k are known. If we use Eq. (3.6b) in lieu of Eq.

(3.6a) in estimating 2 » we find that all of the previous equations remain

k-1

exactly as before, except that the estimated mean and "measurement'" Eqs.

(3.18a)-(3.19a) become, respectively

p? wo,
-

-1 " %2 %%-2 ¥ Fi-2 B2 T -2 B2 V-2 (3,18b)

Yk

"
-

e % N Nt e T % Mt Nt

-

=y (3.19b)

We have found that these equations produce somewhat better estimates of { than
do their closed-loop counterparts. Fig. (16) shows open-vs-closed loop results
for the k/s tracking system with a straight-and-level flyby. The estimation
of z, = Sk is excellent; model predictions of e and oe (not shown) are
virtually identical for these cases.

Another modification to the basic algorithm gathers more information
before estimating. Of course this introduces a lag into the process. We

assume that z, is constant over the last £ > 1 time steps, i.e.

w5 zk-l

and wve estimate zk_ This modifies Eqs. (3.13~3.14) to

1-
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k-1-2
: gl Ve Ck z ¥Y(k-£,1) Fi éi
1=0
TN W e e
™ % kel ka2 k=2 k-1 (3.20)
where
%k " Baier Bt T Cetor Yo (3.21)
and Eq. (3.14) becomes
k-1
y = :E: C. ¥(k-1,1) F, |z, . + ¢ (3.22)
k i=k-2 k i k-1 k

'
*hehath

In this latter case the matrix Hk will become bettér conditioned as ¢ is in-
creased.

In many situations, such as in an aircraft subject té turbulence, the
human does not know a priori which states of the system are affected by zk.
Therefore, it is necessary to extend the estimation scheme to allow for z to
affect any state (or a subset of states such as those associated with the target
motion). This is possible by setting F = I, and Hk = C; in the algorithm.

We now will estimate a full NX-dimensional vector ;, and construct the Kalman

pseudo-noise matrix via

T
ci
W s

d,k

ot?
diag zk,i

The modifications to this scheme when z, ie assumed to affect a subset of states
1s trivial. Application of this method has been made to study the utility

f

of higher-order target models in k/s tracking. Use of an "acceleration"

/ aYRRATES b G it o 2 LR P
f_ e -7'7 \."7 ; i Rl
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submodel for the target motion gives a system model

¥ 7] ]
g I -0 r0 1 0 z,
2= 10 G Ofx+j0 jJu+jl 1 z,
1 S ey = 0 o0
s
.
0 Q0 1 0
y=- X + u
1 A ) SR -1
b - .

zl(t) =0 ; zz(t) = 6(t)
Application of the estimation scheme gave
a (e) = 6CE) 5 2.(E) = O
so that we get the same results as with the basic "velocity' model! This is

because

i.e., z, does not enter into y. However, these same results would not be true
if an 2>1 step delayed estimation is used as in Eqs. (3.20)-(3.22). 1In this
case the WLS formulation is quite poorly conditioned, and the scheme diverges,

~

zl + ., The problem is that the continuous CF is not of full rank. If we set
F=1, allowing uncertainty on all states, the model predictions of e(t) and
ae(t) agree with the basic '"velocity” model. We conclude that to expect mean-
ingful results from an "acceleration" model, x2-§ must be included within the
human's observation set {y}. This is discussed further in Section 3.4.

When NZ < NY the matrix Hk is usually of rank NZ. In this case the
estimates of z, are relatively insensitive to the fading memory factor B over
a wide range. For our k/s tracking system with NZ=1 this range was .1-.99.
However, when NZ = NX >> NY there is a lower limit to B below which the decrease
in S+ is offset by the increase 1/8, resulting in instability. For our k/s :g

system, this limit anin ~ .85. 1Instability of zk can sometimes be avoided by

kT
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using Eqs. (3.20-3.22), which assume constancy of z, over iﬁ interval, to

1

obtain augmented measurements.
When tﬁe innovations sequence {vi} is filtered temporally, in an on-line

manner to obtain ;k’
. -8/t

= b v o . B m
vk b vk-l + (1-b) vk e e (3.23)

it 1s recommended that a test be performed to determine whether the computed

;k is statistically different from zero. If vk is white, ;k is a Gaussian

process with

' ~

) =V (3.24)

- 1
= = +
Cov[vk] (Vk § Ck Zk Ck K

2t
m

Thus, a t-test can be performed on each component of ;k (using this a priori

covariance), thereby effecting a probabalistic editing of v Preliminary

"
work, using a covariance propagation model to study the ensemble characteristics

of Egs. (3.23)-(3.24), has shown the following:

1. Model predictions are not very sensitive to the time constant L7 over
the range 0.1-1.0. This 1s due in part to the use of overall ensemble
statistics in Eq. (3.23).

2. Probabalistic editing gives results that are similar to those obtainea
using Egs. (3.16)-(3.17) with Rk = Vk’ i.e. uncertain measurements
are discounted.

3. With no probabalistic editing, filtering v, gives (on the ensemble

k
average) model predictions that are similar to filtering the estimate

z, obtained via Eq. (3.15).

On the basis of our limited experience to date, it appears that editing is
advantageous and will give improved model-data comparisons. We expect to

study this process in more detail, using both covariance propagation and Monte-
Carlo models, investigating several different (but related) schemes for apply-
ing the editing feature.

Alternate methods for estimating z, and/or W, have been investigated in

d
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the course of our work. Two methods estimate 2, from the non-zero-mean property

of the suboptimal Kalman filter innovations. A third method represents z,

by an "equivalent" white noise, and then estimates W, by using innovation

d
correlations with a WLS algorithm. The last method requires excessive compu-
tations, whereas the first two methods are quite ad-hoc in nature. None of
these other schemes have been implemented, due in part, to the excellent per-
formance of the method we are now using. A description of these alternate
methods, along with a brief review of relevant adaptive estimation literature,

is given in Ref. [13].

3.2 Modeling Asymmetries in Tracking Errors

The predictions of ensemble error statistics using the OCM are shown in
Figs. 17-18, for azimuth and elevation axes, respectively. As discussed pre-
viously, the a priori model parameters are

T = ,2 py = -20 db on all observations

T = .1 p = -20 db
u “

The indifference thresholds were .= 1.5° for position errors and 1.5/2 for
their rates. These results correspond to the case of full attentional allocation,

i.e.,

fA = fE = 1.0
and where no model modifications have been introduced for target image effects.
Thus, the predictions of Figs. 17 and 18 should be compared with the no visual
cues, full attention experimental results of Figs. Bl and B2, respectively.
The model-data agreements are reasonably good -- being generally within

1 experimental standard deviation. However, our concerns in this study are

to understand the reasons behind the mismatches, and to modify the OCM

accordingly. Major points we note from the comparisons are the following:

4
e
&
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1. The predicted E(t) are essentially symmetric, much as previous results
using the OCM have shown. But the data show an asymmetry towards more
lag prior to crossover.

2. Predicted mean errors are somewhat smaller than the experimental re-
sults, especially for elevation axis. The max-to-min spread for
azimuth is ~6° vs. 7-8° for data. For elevation it is -~3° vs. 5-6°
for data.

3. Predicted standard deviations agree quite closely with experimental
results in general form. & for azimuth has a broader peak than that

for elevation in both medel and data.

We do not find any major concern in items 2 and 3, which deal primarily with
the relative magnitude of the model vs. data results. Sensitivity analyses
have shown that such data-model mismatches can be adjusted via tuning of one
or more key parameters. For example, an increase in Dy (dB)+ will impart a
scaling increase to both e(t) and oe(t), with a greater effect being seen in
oe(t). On the other hand, the correlation time 5% in Eq. (3.5) has little
effect on e(t); but a + factor of 2 in o has about the same effect on ae(c)
as a + 1 dB change in py. Thus, to "match" data one could adjust py to match
e(t), and then adjust N to match oe(t). As it was not our objective<;o con-
tinually fine-tune the results (once the possibility was established), we
merely fixed py = -20 dB and s 1 sec to explore the more challenging first
point of model structure. Follow-on efforts will deal more with parameter
identification schemes. ;

The asymmetry in mean tracking errors is noticable in most all of our
data runs. Similar trends also occured in some recent 2-axis Q-23 system

experiments at AMRL. However, these trends were not readily apparent in

earlier S60 data (different system, display, etc.), as shown in Figs. 1 and 3.

fChangea in py, Py and Tt have similar effects on error statistics. We thus

keep T and Py fixed and vary only py.

51
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We feel that this asymmetry phenomenon is statistically significant, and have
spent considerable effort to find a suitable explanation.
It is not believed that use of a priori knowledge of the target plays
a role. If it did, the relative spread Ie =8 | would have been much
max min
smaller than the OCM [11] -- not merely shifted. In cooperation with colleagues
at AMRL, various modifications to the OCM were tested in order to induce an

asymmetry in OCM results, e.g.
1. changing basic parameters, e.g. Tn' py, etc., 5
2. adding cost functional weights to é(t) and control magnitude, u”(t),
3. filtering the estimated signal z(t) before using it to form W
b as in Eq. (3.23),

5. using an "acceleration" model for target motion.

s
4. filtering the residual process v :
As noted earlier, the last item circles back to a velocity model when we require
estimation of z(t) = [zl,zzl'. If we impose z(t) = z(t) = [5:0]' without
estimation, mean tracking errors (which resemble z or z) have a different form
structurally than the data. The other items were found to give little struc-
tural change to the model results; errors generally increased or decreased
uniformly. Any asymmetries that developed were generally in the wrong direction
-- 1.e. towards higher post-crossover overshoot. It was believed that items
3 or 4 would introduce the sought-for lagging tendency. They had little
effect on e(t), but did reduce loe(t)l slightly.
The only model modification that was found to have a structural impact

on E(:) was a generalized Markov model for the target motion, viz.

X, = -a X, + z(t) (3.25)
with xl-ér, z = gT +a éT' When included with the system dynamics we have
-a 0 0 1
x(t) = x(t) + u(t) + z(t) (3.26)
1 0 -1 0

% i . —— ”
¢~ > i e ; g A e e el 7 A ¢ :
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y(t) = x(t) + u(t) (3.27)
1

The "lag" 1/a introduces the asymmetric lagging tendency observed in the data.
However a cannot simply be a constant. Figure 19 shows that the lagging ten-
dency would persist well past crossover -- a trend not seen in the data. We
conclude that a must be a function of éT’ET’ 2, etc., in order to match data.
Indeed, a(t) can be interpreted as a "local" bandwidth, so that an a(t) of

the form

= ¢, ——— sgecC (3.28)

could be expected. We assume that a > 0.

Several different ad-hoc combinations of target-related variables were
simulated for a(t), with varying degrees of success. The question of whether
an "optimal” value of a exists was studied using Eq. (3.25). The Kalman filter

implementation for this equation assumes

x,(t) = -a x, () + &¢) (3.29) ¢
. (1]
where £(t) 1s a white-noise with covariance wd ~ rc(a eT + OT)Z. Neglecting
the other states, and assuming an "observation" of xl(t) with measurement
noise V1 = c2 E{xi(t)}, a Kalman filter would estimate X with covariance
error
3 2
R ool oy ik .
) 2 1 wd l/V1 (3.30)
Assuming

2 a2 a2
~ 0 0
"d Tc a® g{6%} 4 1c g(6%)

we see that there exists a value of @ that minimizes xl -- the local rate of

P g e Y o
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increase of the estimation uncertainty. Setting 321/3a = 0 gives

- 2 L/t E{6%) (3.31)

For small a, Zl = sz-ﬁ; and we see that Eq. (3.31) is quite similar to Eq.
(3.28). An alternate approach "solves" Eq. (3.30) for its steady-state (frozen-
point) value. Finding the a that minimizes Ess gives results that are quite
similar to Eq. (3.31).

Motivated by the above approximate analysis, we have selected a(t) over

the interval [k,k+l] according to the uncertainty in x

35
k,11 %
-
% §7.3 To¢ (3.32)

l’

The scaling of o with tkk

should be more lag (asymmetry) with higher uncertainties, as for example when

is particulerly appealing. It implies that there

observation noises increase or target motions become more rapid. It also
corroborates subject's comments that they 'felt more comfortable when lagging'.

The quantity £=3/T is the model's anticipated spread in the x, estimate, i.e.,

1

-4

xl(t) € [xl-e, ;1 + £] with 99% probability.
Note that with a(t) now time-varying, the system matrix A = A(t). This
means that ¢ = exp(A§) and the feedback gain 21 on xl(t) must be recomputed

each time a changes. Fortunately, the only a-dependent terms in ok are

ad

PO B e e e AR GRS T AR 00 GERAEE 00 DI 0 SRR 0 GEEEw I

6., =e ; 021-(1-e' )/ a

so that .k is easy to change. Also, it can be shown that the continuous gains

L= (l.l lz la) on the augmented state are

! 1 2/t - a
& E ll - - -.r_ z (3-33.)
3 a = 10a + 50
3
{
1
!
!
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(3.33b)

13 o /2/r (3.33c)

where r = g!i (g = control-rate weighting). For r=.02 (corresponding to Tn=.1),
a simple approximation to the discrete gain equivalent to Eq. (3.33a) is

21 = - 8,765 + .75 ; a < 2

so that 21 does not depend strongly on a.
The model predictions with o generated according to Eq. (3.32) are shown
in Figs. 20 and 21. Clearly this gives a closer facimile to data than did

the previous model plots.

3.3 Attention Allocation Submodel

When a human is required to track azimuth and elevation axes simultaneously,
there must be a mechanism by which éttention is allocated between the two par-
allel tasks. This issue of interaxis attentional allocation is not of concern
in a dual operator system (such S60) where each operator controls but one
axis. In a single operator system tracking performance degrades, as workload
increases. If we define fA (fE) as the fractional attention allocation to
azimuth (elevation) tracking with

fA + fz = 1.0,
our objective is to model the allocation process via prediction of fA vs. time.

As indicated in Section 1.4.4, a model for obtaining optimal attention
allocation has been derived for stationary single-axis tracking tasks. In

such cases, the total cost functional is given by

’
J(un,f) = L, by L. + terms independent of I (3.34)

where L' are "equivalent" gains

L, ® gt M (3.35)
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and I is the steady-state error covariance matrix which satisfies the Riccati
equation. The matrix I depends on the observation noise covariance Vy, and
thus in turn on the attentional allocations fi to each posiiion-velocity
observation pair via Eq. (1.5). For two-axis tracking in a non-stationary
context, J(u*,f) is given approximately by Eq. (1.23). 1In this case the op-
timal choice of fA(t) and fE(t) is not straightforward, involving the solution
of a complex non-linear dynamic programming problem.

A simpler, suboptimal, approach has been followed in our work. Borrowing
from the techniques of Ref. [2], we attempt to find fA(t) and fE(t) so as to

minimize at every time instant the integrand of Eq. (1.23),
1] 1]
+ .
Le ZA(t) Le Le ZE(t) Le (3.36)

The matrix ZA(t) decreases with increases in fA(t). If we assume I « 1/f,

Ll
then the "optimal' attention allocation should be proportional to LeZLe.

Under the constraint fA + fE = 1, we then have

fA(t) = (1+ R)'1 (3.37)
LezEL;

fE(t) =] - fA(t) ; R = LI L' (3.38)
eAe

This was the model suggested in Ref. [2].

Depending on the assumed relationship between I(t) and f(t), other models
are possible. For example, the choice I « 1//% 1s motivated by the
ZC'Vy-ICE term in the Riccati equation. When Vy is small (i.e. good obser-
vations), this term becomes dominant. Under this assumption, the "optimal"
attention allocation is proportional to (L.ZL;)Z. A third, plausible approach
to model the attentional subprocess is to assume that the human is a single

channel processor, internally switching full attention between the axes in
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turn.* Thus fA and f
L L

E will be either O or 1, depending on the relation

Le XA Le ¥ Le XE Le.

All three of these models may be combined in the same mathematical
framework by replacing the ratic R in Eq. (3.28) with rP where p=1,2, or =.
The model predictions of ensemble error statistics are given in Figs. 22-23
(p=1) and Figs. 24-25 (p=2). The corresponding time histories of fA(t) are
shown in Figs. 26a and b, respectively. As can be seen, the ensemble error
results and the attentional time histories are virtually identical, with an
elevation vs. azimuth attention split approximately 50-50 during the ''good
tracking'" phases.

The results for p=c are shown in Figs. 27-28; the time history of fA(t)
is not shown. fA(t) was found to switch rapidly between 0 and 1 with a period
of .1 to .3 sec. During the "good-tracking'" phases approximately equal time
was spent on elevation and azimuth, further corroborating the results of Fig.
26b. In the immediate pre-crossover interval most time was spent on azimuth;
the reverse was found in the immediate post-crossover region. The error
statistics E(t), oe(t) are quite similar tc those of p=1 or 2, especially
for azimuth tracking. Some differences are noted in elevation mean tracking
immediately before crossover, and in standard deviations during crossover,
with slightly more oscillatory behavior noted. g

The basic trend exhibited by all three schemes, over the full attentional
results, is that both error mean and especially standard deviations increase.
Relatively little change is seen in e(t) with max-to-min excursions increasing

from 5° to 6° for azimuth and from 2k%° to 3%° for elevation. The corresponding !

1'Iﬂ steady-state cases it has been shown that, under rapid switching, single
channel and parallel processing models are equivalent [12].
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experimental results (attention sharing, no visual cues) are shown in Figs.
B3-B4 for the 50 x 50 straight-and-level flyby. The comparisons of model-vs-
data results are quite encouraging. The qualitative trends in the data have
been very'well captured by the model predictions; quantitative % increases

in e and . also agree closely.

We are somewhat puzzled by the steady-state mean error offset (.5°-.6°)
in the model predictions. A brief numerical analysis indicates that it arises
in part from the large model thresholds, and is compounded by the increase in
Vy due to attention sharing. There have also been numerical approximations
made in the time-varying a case that introduce propagation errors. Allowing
estimation of E(t) on all states should help reduce this offset.

At this point there is no statistically significant differences among
the three{(p-1,2,w) attentional allocation schemes when compared with data.
This is especially true for p=1 or 2. Our current preference is towards the
p=2 model, which treats the human operator as a parallel channel information
processor. In order to distinguish further between the p=2 vs p=~ cases it
will be advisable in future efforts to:

1. examine model vs. data results for control stick input signals,
searching for any piecewise~constant control trends,

2. determine whether the pseudo-noise Wd should be modeled as a function
of fi(t)’

3. examine interactions between probabalistic editing schemes (Section

2.1.3) and attentional allocation.
Unde; the selection p=2 the model predictions of e and 5 for trajectory
C (the random pitching target) are given in Figs. 29 and 30. The corresponding
experimental results are shown in Figs. B5-B6, respectively. The comparisons
are excellent, lending further credence to the OCM modifications thus far

introduced to treat target tracking and human information processing behavior.
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3.4 Modeling Target Visual Cues

A set of experiments was conducted to explore the effects of visual
cues, both with and without the presence of inter-axis attentional allocation
requirements. The three experiments of concern are:

1. Straight-and-level pass with full attention to either azimuth or
elevation, (see Figs. B7-B8)

2. Straight-and-level pass with attention sharing (see Fig. B9-10)

3. Random pitching trajectory with attention sharing (see Figs. B11-12).

Our model development work focuses on item 1, since this experiment is not
complicated doubly by the attentional allocation subprocess. The model can

then be used to predict the results of the more complex cases 2 and 3. The
initial assumption regarding the visual cues is that the target image provides
the human with enhanced information relative to the target motion. In the

OCM, the only target-related variables are § and 6. Thus, we have investi-
gated the hypotheses that the image provides explicit (relative) target velocity
and/or velocity plus acceleration cues.

3.4.1 Potential Use of Target Acceleration Cues

It is first assumed that a human can derive both velocity and acceleration
cues from the target image.. The rationale behind this assumption is that
target velocity éT in azimuth is related to the target's aspect angle and
relative heading angle. In elevation, éT is related to observed pitch angle.
Thus, assuming implicitly derived rate information by the human, we obtain the
two additional "observations"

y3(t) = GT

y,(8) = 8
In order to include this position-velocity pair within the OCM it is necessary

to go to an acceleration model, Eq. (1.19), with observations

PR s ; - -ommci B o 0 T o
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S
B y = Cx + Du
rO 0 1- i 0 ]
L 0 0 -1
| = x + u (3.39)
. L 0. -0 0
_0 1 Q_ 3 0 i
This is true for both azimuth and elevation axes.
By adding a second set of information to each axis, the problem of intra-
% axis attention allocation between (e,e) and (é,y) must be addressed. While 1
; there are potential arguements for assuming no interference between the image
: being tracked and the crosshairs, our initial work assumes interference to
! determine the relative importance of image cues. This was done using a
: steady-state analysis for the system
a S S e 0 0
i x=] 0 -1 O|x+| OjJu+| 1|w (3.40)
S -1 0 4

where w(t) 1s a white N(0,1) noise. This equation corresponds to a filtered
1/(l+1)2 random target velocity. The observation set is the same as Eq. (3.39),
except that

v, 6y =[-1 1 0]x+[0]u

Three attentional allocation cases were considered

1. Full attention to (e,e), i.e. f1'f2'1 and f3-f6-0' |

2. No attentional interference, fl-fz-f3-f4-1'
; 3. Attention optimization with fl + f3 =1., fl'fz' f3-f4'
§ The results are shown in Table 1, using the nominal OCM parameter values.

U R i Sh
e gl Y o S 1 R e




e ) S A T By R SR S
afl 3f2 3f3 8f4
1 1.0 0.0 .19 .38 1.1 5.5 .0156
2 1.0 1.0 .05 .07 .03 .08 .0062
3 .54 46| .24 .26 .14 .35 .0088

Table 1. ATTENTION ALLOCATION RESULTS

As can be seen, the introduction of (é,é) information has a great effect on
reducing tracking errors. The relatively large gradients aJ/Bfi for 1=3,4

in case 1 evidences this fact. When we allow optimization there is roughly

a 50:50 split between (e,e) and (é,g), with a large (~40%) decrease in cost
J(u*,f). The differences between cases 2 and 3 show the effects of non-inter-
farence. But clearly, the more dramatic effect is between cases 1 and 3.

The OCM was exercised under the hypothesis of the observations Eq. (3.39)
with an acceleration model Eq. (1.19). A 50:50 attentional split between in-
formation pairs was assumed for azimuth tracking only. The relative results
were much the same as for the steady-state case; tracking errors were reduced
by almost 50%. Moreover, the structure of the mean error response changed
significantly. Now, e(t) resembled the target jerk, 8. This result remained
true ~- in varying degrees -- over numerous modeling modifications involving
estimation of 2, probabalistic editing schemes, etc. The combination of small
errors with a form not resembling the data lead us to conclude that acceleration
cues 6 are probably not provided from the visual image. Indeed, the experimental
results of Z(t) with and without image cues are structurally similar, with

|e(t)| being somewhat smaller in the former case.

3.4.2 Potential Use of Target Velocity Cues

The analysis of the potential use of GT information followed a process
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similar to that described above. Preliminary steady-state studies showed

that optimizing attention allocation of (e,e) vs. GT resulted in a 65:35%

split. However, unlike the previous case, the decrease in performance cost

(J) was less than 5% over the 100:07% case. As a result,use of OT information

is expected to be minimal for target tracking. Thus, to accentuate any effects

introduced by 8 , we will assume that the visual cues from the target image

T

are perceived with no interference.

Using a threshold on BT of 3°, the OCM predictions of tracking error have
been obtained for:

1. Full attention to azimuth and elevation axes (Figs. 31 and 32, respec-
tively). Straight-and-level target.

2. Shared attention, straight-and-level flyby

3. Shared attention, random pitching target.

The inter-axis attention allocation scheme in runs 2 and 3 used p=2 as described
in Section 3.3. The comparisons between Figs. 31-32 and the no-visual cues

case> Figs. 20-21 show that 6 information has little effect, as anticipated.

T
There are slight decreases in lE(t)| and in oe(t). These results are somewhat
disappointing, when contrasted with the corresponding experimental findings
(Figs. B7-8) which show more pronounced visual vs. no-visual differences.
Similar comparisons have been found for the two dual-axis tracking cases.
The mddel results are in the right direction, but do not go far enough in
their magnitude decrease for e(t). It appears that either smaller noise ratios
are needed on éT observations, or that target visual cues may actually affect
the error/error rate noise ratios. These would give noticeably smaller model
errors for |e(t)| and 0, (t).

On the other hand, the data (Figs. B9-12) show an increase in ae(t) over

the no visual cues cases. This is especially true for the random pitching

target. It appears that to match the data we need to have a threshold on

- v et e T x - )
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3 ' error/error-rate that is monotonic with image size, or to assume that the
correlation time 5 increases. Either of these changes would have a minor
effect on e(t), but would tend to increase oe(t). The idea of changing thres-
holds with image size has been used succezefully at AMRL, and appears to be
a valid model modification in our effort. One of the reasons we did not see
any differences between tracking a fixed size triangle and tracking a dot,
was that we placed a zero-error '"dot" inside the triange. Apparently it was
the dot that the subjects tracked and not the image. In the visual cues case,

i the "dot" was still present but was more difficult to discern possibly because
of confusion as the subjects saw the target roll, pitch and yaw.
! The experimental mean error results show a trade-off between dual-axis

attention sharing, and the use of a visual image. Thus, the mean errors e(t)

v

in Figs. Bl and B2 compare very closely with their counterparts in Figs.

B9-B10.
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IV. CONCLUSIONS

A combined analytic-experimental program has been undertaken to examine,

in more detail, various issues that have impact on human performance in target
tracking tasks. The use of different internal model representations has been
clarified, along with a scheme for adaptation of the Kalman filter pseudo-
noise. Different assumptions relative to target visual cues and inter-axis
attention allocation have been exercised using the Optimal Control Model. Data-
model comparisons have been used to isolate correct model assumptions and hy-
potheses. However, not all of the originally posed questions have been answered

fully. These are now under continuing investigation.
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APPENDIX A
Mapping a Three-Dimensional World énto a
Two~-Dimensional Viewing Screen
In mapping a target (a low-flying aircraft, in our case) onto a CRT screen,
the basic approach is to view the screen as a sémi-transparent "window" between
the observer and the target; the target image on the screen is then the observer-

centered projection of the real target on this "window" (see Fig. 1).

window observer

target

Figure 1

It is not necessary that the "window'" be planar; as a matter of fact, in our
simulation the "window'" was assumed to be hemispherical, to simulate the effects
of the observer's head motion while visually following a moving target.

The position of the projected target image on the screen, di’ is determined

by geometry (see Fig. 2).

1p'
=r (A.1)

a=tg

R o AR g s
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1. Image size (see Fig. 3):
l The projected image size, L, is determined from the target's size, L,
as follows: "
' 2 (] (] 2 2
atet = [, + @' - a4, + (Aleitude) ]

1 Y,
dist

L
2/2 = H-B = H'tg ¢ jé%;

L
= ¢ = 2:H-tg"} ..L'&’_

dist

B = tg-

2. Image Aspect Ratio (see Fig. 4)

The projected image's aspect ratio due to the difference in elevation

R St d

between the observer and the target is determined by the elevation angle §:

! vty A
[(1!1')2 +( -d ')2] e
. i
3
l 3. Rotation
In general, given a point (xo,yo,zo) in the coordinate system (x,y,z),
li its coordinates in the system (X,Y,Z) which is rotated with respect to (x,y,z)
will be:
™ i > = e S
) X, cos (X,x) cos (X,y) cos (X,z) x
] Yo = | cos (Y,x) cos (Y,y) cos (Y,z) Yy
z° cos (Z,x) cos (2,y) cos (Z,2z) 2,
. - = — b o
where (A,b) is the sngle between the axes A and b.
i . e ——— =
o SR re S gt T e — ARt oM U e RS AR TR T AT
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Define a coordinate system (X,Y,2) with the axes (X,Z) defining a plane

tangent to the CRT screen, and a second coordinate system (x,y,z) attached to

the target aircraft (see Pigure 5). The systems (X,Y,Z) and (x,y,z) are ini-

tially parallel.

C.

Roll, ¢: The aircraft [and its coordinates (x,y,z)] roll around the

X axis. The rotation matrix R¢ is then: f
|
1 0 0 t
Ré= |0 cosé sing %
0 -sin¢ cos¢ r
I
!
Pitch, 6, around the Y axis: }
}
I
cos® 0 -sing f
B_e - 0 1 0 ; }
1
sing 0 cos @ ‘ f
Heading, ¥, around Z axis (define y = 0 along X). o
cosy -siny 0
Ry = siny cosy 0 ;
0 1
»
4
‘V‘&

o M
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d. The tilt § due to the difference in elevations between the observer
and the target may be modeled as another rotation of the aircraft
around the X axis, after its ¢, 6 and y rotations:
1 0 0
Ré= 0 cosé 8iné
0 -8iné cosé
and the coordinates of the aircraft in the CRT coordinate system are:
xo A 1
Y |=RS - Ry ‘RO ROy
Z z
o o

or
X = cosy ° cosf ° x, - (siny ° cos¢ - cosy * sinb * sin¢)y°-(coqy * sinb °

cos¢ + siny sing) z :
z, = (cosé + 8in® - siné * siny °* coae)xo -~ (8iné ° siny ° sin® ° sin¢ +

8iné ° cosy ° cos$ + cosS ° cosb ° sinQ)yo + (sin§ * siny * sin® ° cos¢ -

cosb

8iné ° cosy ° sin¢ + cosd

cos&)zo

A S s s
- i R b i, "*‘!ﬁ}iﬂ‘-‘\\l‘”,'?"- G e “)
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APPENDIX B

SUMMARY OF EXPERIMENTAL ENSEMBLE STATISTICS
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Fig. 810: ELEVATION ERRORS, S & L TARGET, SHARED ATTN., VISUAL CUES
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b) Ensemble Standard Deviation, N=42
Fig. B11: AZIMUTH ERRORS, PITCHING TARGET, SHARED ATTN., VISUAL CUES
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