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ABSTRACT

This report is concerned with a class of models for
natural images that treat an image as a mosaic , composed of
patches generated by a random geometric process. These
models are contrasted with conventional statistical image
models. Proposed applications of such models in image
analysis and synthesis are discussed.
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1. Introduction

Real world images very often appear to be piecewise

constant. At any level of detail of the scene captured in

the image, one can often identify patches that are relatively

uniform and have relatively sharp borders. Sometimes these

patches are very small compared to the image size, so that,

in spite of the sharpness of the inter-patch borders, the

image can be regarded as a uniform point process.

The image models currently in use characterize the

entire image, or its TV scan, as a stochastic process that

best accounts for the gray level variations. Thus, these

models are primarily applicable to the subclass of images

that are relatively uniform , as discussed above. This report

describes a class of “mosaic models” that assume the image

to be a spatial arrangement of patches.

In Section 2, we discuss the important properties of the F
various kinds of statistical image models that have been

conventionally used. We subdivide these into two major

classes: time series models and random field models.

In Section 3 and Appendices A and B we describe some

mosaic models, and contrast their properties with those of

conventional models. The implications of these differences

for the relative usefulness of the models in dealing with the

complexity of natural images are also discussed .

Section 4 discusses the approach we propose to take

toward applying mosaic models to image analysis and synthesis,

and Section 5 briefly discusses the potential applications of

the proposed work.

-- -~~~~~-~~~~~-~~~~~~ -~~~~.
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2. Statistical Image Models

We will divide the types of models used for images into

two categories:

2.1 Time Series Models

Time series analysis (1] has been extensively used (2,

3, 12] to study visual textures. The image is TV scanned to

provide a one—dimensional series of gray level fluctuations,

which is treated as a one-dimensional stochastic process

evolving in “time” . The future course of the process is pre-

sumed to be predictable by knowing enough about its past.

Before summarizing the models, we would like to introduce

some often used notation in time series.

Let

zt_l z~ 
z
~~1

be a discrete time series where Z~ is the value of the random

variable Z at time i. We denote the series by [Z].

Let ji be the mean of [Z], called the “level” of the pro-

cess.

Let [Z] denote the series of deviations about ~~, i.e.,

~i = z i—1J

Let [a] be a series of outputs of a white noise source,

with mean zero and variance

Let B be the “backward” shift operator such that

B = Zt-i; hence

Bm Z~ Zt m ; 
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and let V be the “backward” difference operator such that

VZ~ = 
~~~~~~~~~~~~~~~~~~~ 

= (l_ B ) Z
~~

;

hence ~~~ = ( 1_B) m Z~

The dependence of the current value of the random variable

Z, Z~ , on the past values of Z and a is expressed in differ-

ent ways, and this gives rise to several different models [12].

(a) Autoregressive Model:

In this model the current Z-value depends on the pre-

vious p Z—values , and on the current noise term

= cpiZt_i + 
~2~ t-.2~ ” 

•+~p
Zt_p + a

~ 
(U

If we let

~~(B) = 1-~~1
B-~~2B2- ~~~~~~ : —

then (1) becomes =
[c~~(B)] (~~~) = a

~

[Z], as defined above, is known as the autoregressive

process of order p, and P~ (B) as the autoregressive operator

of order p. The name “autoregressive” comes from the model’s

similarity to regression analysis, and the fact that the van-

able ~ is being regressed on previous values of itself.

(b) Moving Average Model:

In (a) above, can be eliminated from the ex-

pression for Z~ by substituting

= 
~~~~~~ 

+ 
~~ 

Z t_ 3  + . .+ 
~p

Zt_~..,i 
+ at_i

-



This process can be repeated to y ield eventually an expression

for Z~ as an infini te series in the a ’s.

The moving average model allows a finite number q of

previous a-values in the expression for This explicitly

treats the series as being observations on linearly filtered

Gaussian noise.

Letting

8q(B) = 1-91B-92B
2
- ..

we have

= Eeq(B)](at)

as the moving average process of order q.

(c) Mixed Model:

To achieve greater flexibility in fitting of actual

time series , this model includes both the autoregressive and

the moving average terms. Thus

= 

~1~~ -1 + 4 2 z t...2 +•~ • 4 1~pZ~~.p + a
~
_e

ia~_i
_e

2a~_2
_ . .

i.e., [P~~(B)] (Z~
) = [8q(B)] (at

) (2)

In all the three models just mentioned, the process

generating the series is assumed to be in equilibrium about a

constant mean level. Such models are called stationary models.

There is another class of models called non-

stationary models , in which the level ~ does not remain con-

stant. The series involved may , nevertheless , exhibit homogeneous

behavior when the differences due to level-drift are accounted 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—-~~~~~~
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for. It has been shown ti] that such a behavior may be repre-

sented by a generalized autoregressive operator ~(B), in which

one or more of the zeroes of the polynomial ~(B) (i.e., roots

of the equation ~(B) 0) is unity .

Thus 
d

4 (B) = 4 (B ) . (1—B)

where ~(B) is a stationary operator.

The general model for a homogeneous nonstationary pro-

cess, therefore , is of the following form:

= ~~(B) (l_B)
dzt = eq (B)a t

i.e., 
~~

(l3)w
~ 

= eq (B)at

where w~ = ( l_ B ) dz t = (3)

Comparing (3) with (2) , we see that the homogeneous nonstation—

arity can be accounted for by appropriately reweighting the

differences.

A time series may show a repetitive pattern of period s

of similar characteristics. For example , in the TV scan of an

image the intervals corresponding to rows will have similar

characteristics. The following generalized model [12] incor-

porates the presence of such “seasonal effects” in the time

series:

~~~(B) ~~~(B 5) ~
d 

~~ = øq(B) e~ (B 5) at - 

--- -—--~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



where s is the seasonal period ,

V = (l~ BS ) ,

and ~~ (B
5) and ~~~~ (~~~5 ) are polynomials in BS, of order p and q,

respectively .

By studying the statistical properties of a given tex-

ture , e.g., its autocorrelation function , etc., McCormick and

Jayaramamurthy [12] have made a choice of the best fitting

model from among those described above. They also use the

same information to estimate the required set of parameter

values , and generate synthetic texture using the model.

In an earlier paper Whittle [21] pointed out the diff i-

culty of using time series for spatial processes. The problem

is that in a two—dimensional process, the dependence of a point

extends in all directions, and there is no direct way to map

the two-dimensional grid points onto a series such that the

original dependence is preserved , although it is unilateral

(depends only on the past values). Whittle analyzes the prob-

lem in two steps:

(1) Consider a series in which a point depends upon

both the preceding and the following points. For

example, 
~~ 

may depend on 
~~~~~~

_ and Z~~ 1. Whittle

obtains a set of constraints on [Z] , and the corres—

ponding bilateral autoregression operator , such that

the influence of the future values vanishes .

(2) Now consider a two-dimensional grid . The simplifica-

tion amounts, in terms of Fig. 1, to expressing the 

-- - —- --—-.- ---- --- ---— 
~
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value at the 0 as a function of the values at the

upper—case X’s, when , in fact, it depends upon all

the X ’ s, both upper and lower—case. Whittle argues

that this is a much more complicated process than

the one-dimensional case in (1), and hence, there

is no escaping the explicit introduction of depen-

dence in all directions.

He derives the conditions to be satisfied by the para-

meters optimizing the reduced models resulting in (1) and (2).

While it is already difficult to obtain the appropriate

values in case (1), case (2) is still worse, in addition to

being less accurate. He points out that the problem is due

to the fact that in two dimensions, unlike one dimension, the

unilateral representation of a finite autoregression is not a

finite autoregression . The real usefulness of the unilateral

representation is that it suggests a simplifying change of

parameters . For most two—dimensional models , however , the

appropriate transformation, even if evident, is so complicated

that nothing is gained by performing it.

One would like to try to capture as much of the two-

dimensional dependence as possible without getting into the

analytical problems due to bilateral dependence. Tou et al.

[2] have done this by making a point depend on its upper and

left neighbors, as shown in Figure 2; the 0 depends only upon

the X ’ s. For such a case, the autoregressive process of order

(q,p) is
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= ~ Z .  + ~ Z .  + ~ Z .  + ...+ 4 Z .01 i , j 1 10 x —l ,j  11 i—l , j — l  qp i — q , J — p ;

the moving average process of order (q,p) is

= a1~ — 801a~~,~~_i — 

~ lO ~~~~~~ 
— 

~ l1 ~~~~~~~~~ — . • ~~~ ~~~~~~~~~

and the two—dimensional mixed autoregressive/moving average

process is

z.  = q z .  . + q z .  + q z .  ÷ ...+ ~ z .
13 01 i ,j — l  10 i—l , j  11 i—l , j — l  qp i — q , j — p

+ ~~~ — e 01 ~~~~~~ — e10 a11  ~ 
— 

~ ll ~~~~~~~~~

rs ai_r , j_ s

If the coefficients of the process satisfy the condition

~mn = 

~mO ~0n

then the process becomes a multiplicative process in which the

influence of rows and columns on the autocorrelation is

separable. Thus

P u = P io P oj

Tou et al. consider fitting a model to a given texture.

The choice among the autoregressive , moving average and mixed

models , as well as the choice of the order of the process, is

made by comparing the behavior of some observed statistical

properties, e.g., the autocorrela tion function , with that pre- 

-- -— ~~~~~~~~~~ -~~~~~~~~~~ — — --~~~~ - -~~~~
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dicted by each of the different models. For each of the possibly

many choices of models , the values of the parameters are deter-

mined so as to minimize , say, the least square error in fit.

A comparison of the predictions of autocorrelation func-

tion, results of transformations of the series, etc., based

upon the model obtained above , with similar proper ties of the

available data can be used to establish its appropriateness ,

or to suggest desirable modifications in the model , e.g.,

changing the order , etc .

In a subsequent paper , Tou and Chang [3] use the maximum

likelihood principle to optimize the values of the parameters ,

in order to obtain a refinement of the preliminary model as

suggested by the autocorrelation function .

~



2 . 2  Random Field Models

The second class of models treats the image as a two-

dimensional random field ( for a def in i t ion  of random fi e ld , ~.ee

Rosenfeld and Kak [ 2 0 ] )

Oceanographers [9 , 10 , 11, 13] have long been interested

in the patterns formed by waves on the ocean sur face .  Longuet-

Higgins [9 , 10 , 11] treats the ocean surface as a random f ie ld

satisf ying the following assumptions:

(a) the wave spectrum contains a single narrow band of

frequencies , and

(b ) the wave energy is being received from a large nurn-

ber of d i f fe ren t  sources whose phases are random .

Considering such a random field , he obtains [11] the

statistical distribution of wave heights , and derives rela-

tions between the root mean square wave height , the mean height

of the highest p% of the wave s , and the most l ikely height of

t.he largest wave in a given interval of time .

In subsequent papers [9 , 10], Longuet-Higgins obtains an

additional set of statistical relations among the parameters

describing (a )  a random moving Gaussian surface [9 ] ,  and (b )

a Gaussian isotropic surface [10].

Some of the results that he derives are :

( 1) the probability distr ibution of the surface elevation ,

and that of the magnitude and orientation of the

gradient ,

(2) the average number of zero crossings per unit dis-
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tance along a l ine in an arbi trary direction ,

(3) the average length of contour per unit area,

( 4 )  the average density of maxima and minima per unit

area , and

(5) for a narrow spectrum , the probability distribution

of the heights of maxima and minima .

All the results are expressed in terms of the two—

dimensional energy spectrum up to a finite order only. The

converse of the problem is also studied and solved , i. e . ,

given cer tain statist ical propert ies of the sur fa ce , to f ind

a convergent sequence of approximations to the energy spec-

trurn .

The analogy between this work and image processing , and

the significance of the results obtained therein, is obvious.

Fortunately the assumptions made are also acceptable for

images.

Panda [15] uses an analogous approach to analyze back-

ground regions selected from Forward Looking InfraRed (FLIR)

imagery . He derives expressions for (a) density of border

points and (b) average number of connected components in a row

of the thresholded picture . There is good agreement between

the observed and the predicted values in most cases, for most

of the pictures considered . Panda [14] also uses the same

model to predict the properties of the pictures obtained by

running several edge operators (based on d i f fe rences  of aver-

age gray levels) on some synthetic pictures with normally dis-

tributed gray levels , and having different correlation co- 

.-~ --- -- . .
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efficients . The images are assumed to be continuous-valued

stationary Gaussian random fields with continuous parameters.

Hunt [16 , 17] points out that  stationary, Ga ussian

modelling of images is an oversimplif ication . Consider the

vector F of the picture points obtained by concatenating them

as in a TV scan. Let RF be the covariance matrix of the gray

levels in F. Then according to the Gaussian assumption, the

probability density function of F is

p(F) K exp[- -~ (F-~ ) R~~ (F-~ )]

where ~ = mean vector of identical, constant gray level corn—

ponents

RF 
= covariance matrix

and K = normalizing constant

The stationarity assumption makes ~ a vector of identical

components . This means that each point in the image has the

same ensemble statistics. Images , however , seldom have a

bell-shaped histogram.

A Gaussian model for any set of multivariate data, how-

ever , is the only model that is mathematically tractable to

any reasonable extent. Hunt [16] proposes a nonstationary

Gaussian model which differs from the stationary model only

in that the mean vector ~ has unequal components. He shows

the appropriateness of this model by subtracting, from each

point on the image , its local ensemble average , and showing

that the resulting picture fits a stationary Gaussian model
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reasonably well , the mean vector F being the vector of local

ensemble averages.

In work on image restora tion , images have often been

modelled by a two-dimensional random field with a given auto-

correlation function. An autocorrelation function that has

been found to be reasonably good [4-8] for a variety of pic-

torial data is

R (T1, 12) = ~
2 exp [—ct1~ T1~ 

—

which is stationary and separable.

In a recent paper , Nahi and Jahanshahi [18] model the

image as a background statistical process combined with a set

of foreground statistical processes, each replacing the back-

ground in the reg ion s occupied by the obj ects of the category

which it is assumed to characterize. In estimating the boun-

daries of horizontally convex objects on a background in

noisy binary pictures, Nahi and Jahanshahi assume that

the two kinds of regions in the picture are formed by two

statistically independent stationary random processes with

known (estimated) first two moments. The end-points of the

intercepts of the given object on successive rows are assumed

to form a f irst order Markov process.

Thus , using the notation

b(m ,n) = gray level at the nth column c~f the mth row

Y (m,n) = a binary function carrying tt~e boundary information

bb 
= a sample gray level from the background process,

b0 = a sample gray level from the object process, and

= a sample gray level from the noise process, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~. .
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the model allows us to write

b(m,n) = y ( m ,n) b0 (m ,n) + [l-y (m ,n)] bh (rn ,n) + v(m,n)

where I incorporates the Markov constraints on the object

• boundaries.

In a theoretical treatment , Wong [22]  discusses the

characterization of second order random fields (having finite

first and second moments) from the point of view of their

possible use in representing images. He considers various

properties of a two—dimensional random field , and their im-

plications in terms of its second order properties. Some of

the results he obtains are as follows:

(1) There is no continuous Gaussian random field of two

dimensions (or higher dimensions) which is both

homogeneous and Markov (degree 1).

(2) If the covariance function is invariant under

translation as well as rotation , then it can only

depend upon the Euclidian distance. The second

order properties of such fields (Wong calls them

homogeneous) are characterizable in terms of a

single one-dimensional spectral distribution.

Wong generalizes his notion of hornoqenitv to include

random fields that are not homogeneous , but can be easily

transformed into homogeneous fields. Even this generalized

class of fields is no more complicated than a one—dimensional

stationary process.

~ 

- 
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3. Mosaic Image Models

We briefly reviewed , in Section 2, various types of

models that have been used in earlier work on image modelling .

In this section we consider another class of models which, we

think, provides an alternative that may prove to be useful

for a large class of natural images.

Schachter and Ahuja [191 (reproduced here as Appendix

A) discuss several processes that could give rise to visual

spatial patterns. Many of these processes, although very

likely to be present in nature, and hence to give rise to

natural images, are too complex to be mathematically tract—

able. [19] discusses, at length, the description , specifica-

tion, generation and properties of the models based on some

of the relatively less complex processes, and brings out the

differences between the class of models being proposed and

those reviewed in Section 2. It also provides examples of

the patterns generated by some of the processes. An addition-

al type of process, based on a random walk , is described in

Appendix B.

Various similarities and differences among the mosaic ,

time series, and random field models will now be discussed .

(1) Mosaic models describe images by specifying geo-

metrical processes tha t may have generated the visual pattern

under consideration . Such a constructive description, there-

fore, inherently encompasses the specification of all the in-

formation about the pattern. One may extract from the model

L. - 
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as much information as desired , e.g., autocorrelation proper-

ties which may not be unique to the image. For example ,

characterization of a pattern in terms of its autocorrelation

properties ignores any phase information .

( 2 )  Time series models allow the current value of an

image point to depend on a f in i t e  number of previous values.

There is , thus , an inherent assumption in the defini t ion of

the model about the Markoviari ity of the data . While it is a

different issue how useful the model could still be in prac-

tice, such an assumption places a definite theoretical restric-

tion on the generality of the model. Both the random field

and mosaic models are free of such a restriction.

(3)  Images are inherently two-dimensional and hence

should be treated as such .

The time series model clearly fails to meet this re-

quirement. It allows a point to depend on, at best, only a

part of its neighborhood . A time series model also cannot

make use of the rich class of two—dimensional features , e . g . ,

shape and orientation of subpatterns, edge density , connected-

ness of components , etc. ,  which seem to play an important role

in human perception of images. Some of these features have

one—dimensional counterparts which could , in principle , be

used. But they are much less useful because of their lesser

semantic relevance. The random field and mosaic models, on

the other hand , are two-dimensional models. Longuet-Higgins

[9, 10, 11] and Panda [14, 151 provide examples of the

analysis of two—dimensional features of random fields. Some
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two-dimensional features of mosaic models are presented by

Schachter and Ahuja [19].

(4) In time series modelling the choice of the model is

based upon a qualitative assessment of the autocorrelation

function . The order of the underlying process is guessed , to

begin with , and then iteratively improved until a set of para-

meter values is found that, along with the chosen order of

the model , predicts an autocorrelation function sufficiently

close to the observed one [3). Thus the process of model

specification involves some amount of trial and error.

The problem of fitting random field models to real

images does not seem to have been given much thought, although

different models have been proposed as described in Section

3. Therefore , we do not have examples to show the amount of

difficulty involved in the process. Considering the simi-

larity in the nature of descriptions of the data according to

the two models, however, the procedures for fully specifying

a random field model for a given image may be expected to be

similar in approach, and hence in difficulty , to those used

by the time series models.

Furthermore , the model arrived at in order to obtain a

good fit of properties such as autocorrelation may , in fact,

turn out to be worse than expected , due to the fact that the

characterization of the image in terms of correlation proper-

ties ignores phase information , as pointed out in (1) above.

It may be observed that in both the time series and ran- 

~~~~ 
j
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dom field models the complexity of modelling is very unevenly

~-hared by the two levels of (a) model selection , and (b) par-a-

meter evaluation . There is only a limited choice about the

type of model to be selected , and the specification of the

chosen model is the ma~or part of the modelling process. The

variety of natural images must, therefore , be represented by

the assignment of values to the parameter set of the model.

Mosaic models, on the other hand, are much richer in

variety , and each of these models is simpler to specify, as

compared to the time series and random field models. The corn-

plete process of modeling thus gets more evenly split into

the two steps. This should have the effect of reducing the

size of the search space when fitting models to a given image.

(5) Natural visual patterns can often be characterized

by a repetitive arrangement of certain subpatterns , accord ing

to a set of rules. The subpatterns, recur sively, may be

patterns of smaller extent, but of independent complexity

(busyness , entropy , f i neness) . A small set of relatively less

busy subpatterns with sharp borders may give the image a

patchy appearance, whereas a large set of busy patterns may

give rise to a f iner , textured pattern . . 
-

One reason why mosaic models may be more appropriate for

complex natural images is that they provide a hierarchical

character to the problem of image nodelling . We will illustrate

this through a one-dimensional example.

Consider the function of one variable shown in Figure 3.

Clearly, any global , closed form characterization of such a
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functional form is gcing to be complicated because of the lack

of well—behavedness of the function at the points of non-

differentiability . However , if we realize that the function

admits a set of simple, local descriptions, we can characterize

it in two steps, as follows:

(a) describe the analytically simpler components

(straight lines) individually, and

(b) specify the arrangement of these components that de-

fines the entire functional form .

The hierarchy of such a piecewise decomposition may , in

general, consist of any number of levels. The patterns may be

recursively decomposed into components until they are easy to

describe . For example , the one-dimensional pattern of Figure

4a can be described as formed of subpatterns of the type

shown in Figure 4b , which , in turn , can be described as formed

of the subpatterns of the type shown in Figure 4c, which are

trivial to specify. Clearly, an image can also have more than

one kind of component without any added complexity in the

hierarchical description. Figures 3 and 4a provide one-

dimensional counterparts of the types of images that have been

called patchy above.

Mosaic models extend the hierarchical approach to two

dimensions . The arrangement of the components , possibly of

more than one type, in the mosaic is often specified statisti-

cally.

For the nonpatchy class of patterns, both the time

~
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series and random field models may not turn out to be very com-

plex . Although one could also attempt to apply these models

to images with regularly shaped patches having relatively sharp

borders , such an approach is likely to defy an easy analysis ,

and is likely to provide a complex model. For examp le , the

order of the resultant time series model may be very high in

order to incorporate enough information about the magnitudes

of gray level jumps across the patch borders. Clearly, al-

though the interior patch-points do not contain much informa-

tion, they do increase the order of the model, making it more

complex and computationally more expensive .

Not surprisingly , in view of the above observations ,

the time series model has been used [2, 3, 12] only for those

images that are relatively well suited for such an approach,

as pointed out above. The work on random field modelling , for

the most part, has been confined to suggesting different

theoretical models , and has payed little attention to actually

fitting the models to real images. The recent work of Panda

[14, 15] also uses images that fall under the nonpatchy

category .

It may be seen that an image from the patchy category

can be transformed into a picture of the nonpatchy category

by sampling it sufficiently coarsely . Since this transforma-

tion should not change the structure of the image , the model

should still be valid with a different set of parameter

values. The validity of the choice of a mosaic model thus 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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appears to be insensitive to scale changes , and mimics the

underlying generating process of the image so as to incorporate

as much of the detail as is captured n th e image to be

modelled .

Under certain conditions the mosaic mod€~ls and the ran-

dom field models may produce similar patterns . For example ,

a random f ield model may fit certain coarsely sampled (dense)

mosaics.

(6) Mosaic models are likely to be intuitively more

meaningful. A pattern corresponding to a specified model, and

the implications for it of the variations in parameter values ,

may be easier to visualize in case of the mosaic models than

the others.

~ 

__________________________
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4. Proposed Research

Considering the potential advantages of mosaic models

over conventional models as discussed in Section 3, we propose

to explore the feasibility of using mosaic models for natural

images, and to develop a set of computer programs (hereafter

called IMP, for Image Modelling Package) that accepts a

homogeneous, isotropic visual pattern as an input, and pro-

vides as output a concise description of the image in terms

of a completely specified model out of those known to IMP.

If none of the known models provides a sufficiently good fit

to the input image, a failure may be reported .

At present, we plan to confine ourselves to homogenous,

isotropic images, but extensions to other classes of images

will be considered for later investigation.

We intend to divide the research into three phases , as

follows:

4.1 Choice of Models

Currently , we have in mind the following two broad

classes of mosaic models:

(a) Cell Structure Models:

Cell structure models tessellate the plane into

nonoverlapping cells (for details , see [19]) . Some examples

of cell structure models , namely,  the Poisson line, occupancy,

rotated checkerboard , and rotated hexagon models, are dis-

cussed in [191. In addition , we propose here a random walk

model , which is described in Appendix B. 

-_ - —-



(b) Bombing Models:

Bombing models randomly drop certain geometrical

figures on the plane. The area covered by the bombs is

colored differently (for further details see [191). Different

kinds of geometrical figures give rise to different kinds of

bombing models. We may include the following types of bombs

for consideration : circles, ellipses, line segments, rec-

tangles, and squares. We may also consider bombs of a given

shape whose sizes are governed by some probability distribu-

tion . For example , the radii of the circular bombs , sides of

the square bombs, lengths of the linear bombs, etc., can be

chosen from a specified distribution over a certain range.

The geometrical processes mentioned in both (a) and (b)

are primarily based on their intuitive appeal and expected

potential to give rise to interesting patterns. We may find

other processes worth considering during the course of the

research. Their ultimate selection for use in modelling images ,

however , is critically dependent on their analytical tractabi—

lity, as discussed below.

4.2 Analysis of Models

In the second phase of the research we intend to carry

out a mathematical analysis of some of the properties of the

models chosen for consideration in (1) above. We seek

answers to the following kind of questions about the patterns

generated by the models:

(a) What is the probability that a pair of points dis—

—V.—---
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tance d apart will fall in regions of colors i and

j ?

(b) What is the edge density per unit area?

( c)  What is the expected number of connected components

of color i?

(d) What is the expected length of an intercept of the

region of color i on a randomly positioned and

oriented straight line?

(e) What is the nature of the autocorrelation function?

(f) How do various properties of the pattern change

when it is sampled at varying degree of coarseness?

(g) Consider a chain of sample points extracted from

the pattern according to a certain scheme , say a

chain of equidistant points. Can we identify the

one-dimensional stochastic process defined by the

chain? Can we describe some of its properties , e.g.,

autocorrelation function , single—step transition

probabilities , expected length of runs of color i,

etc.?

• (h) What is the expected area of a connected component

of color i? Or , what is the total area having

color i? Note that in case of cell structure models

this information is implicit in the answer to

question (~‘) above, since from the model we already

know the stationary probability vector of the

colors. This is because the cells are nonoverlapping .

However , in the case of bombing models this question

~~~~~ 
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involves a different property .

Some of the features referred to by these questions may

be difficult to answer for some of the models because of their

mathematical intractability . We would like to obtain as large

a set of features for each model as we can. We would also

like to explore the possibility of finding the probability

distributions of some of the features. Some of the properties

that are not mathematically tractable can be empirically

estimated .

Based upon the geometrical process underlying a given

model , we may be able to visualize some properties of the

model that may distinguish the pattern generated by it from

those generated by the other models. We may then look for a

dimensionless measure of such a property and its probability

distribution . An example of such a property might be the

total border-length per unit area , and the corresponding

dimensionless measure might be the square of the border-

length per unit area. We will call such a measure an

“applicability measure ” of the model.

4 . 3  App lication to Image Modell ing

Some of the features described in (2), e.g., those

dealing with connected components , border per unit area ,

t rans i t ion  probabil i t ies, et c . ,  concern the interact ion among

various regions , and not the informat ion wi th in  them . These

fea tures may be easier to compute on t ransformed images where

each of the regions is given a single gray level .
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Our major tool in discovering the appropriate model for

the image is the observation of a variety of features on the

image. We have two approaches in mind from the point of view

of subdividing the modelling process into (a) selecting the

type of model , and (b) evaluating its parameters , as described

below :

(a) The first approach separates the choice of the

model from its parameter specification. An applicability

measure , which is a dimensionless quantity, is computed on the

image for each of the models. Knowing the distributions of

these measures for the various models , we determine the level

of confidence with which each model represents the input

image. The model having the maximum confidence may be assumed

to provide the best description of the image. If none of the

models is applicable with the desired degree of confidence , a

failure may be reported .

The applicability measure used reflects an abstraction

of the image that the model presents. Therefore , its choice

has to be made with great care . We may want to include

several import ant geometrical properties of the image in the

definition of the applicability measure , so that the chosen

model resembles the image to be modelled in as many ways as

possible. Since it is not clear what constitute “important ”

prope rties , the choice of the appl icabi l i ty  measure may need

some experimentation .

(b) In the second approach , we consider a sufficiently

large set of predicted fea tures  that  involve al l  the para-
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meters of a model , and use the corresponding observed values

to solve for the parameters. Thus , the problems of the choice

of the type of model , and i- he values of its parameters , are

treated simultaneously.

Using the computed values of the parameters , the model

is used to predict those of the remaining features which have

been found predictable for the model under consideration .

The model whose predictions are closest to the observations

is assumed to be the most appropriate for the given image.

Note that there is no notion of an absolute degree of fit , and

the approach always yields an answer. The validity of the

model depends upon how important the features used for model-

ling the images are in characterizing visual patterns.

It may be noted that  the propert ies of a one-dimensional

series extracted out of the image , which are fundamental to

the time series model , are being used here only as some of the

many features. Similarly, the autocorrelation function , which

often completely characterizes the pattern in the random

field models , is used only as one of the features.

Because of the possibility of identically colored cells

being contiguous in cell structured models, or of overlap

of the bombed areas in bombing models , it may be very diffi-

cult to extract from the image features directly relating to

a single , isolated cell or a bomb . We shall therefore avoid

the use of any such features whenever possible.

Among the various properties of the models discussed

above , the transition probabilities as a function of distance

4
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seem to be very powerful in predicting many properties of the

image. We shall now give two examples of using the transition

probabilit ies to der ive some of the characteristics of the

model . These examples also illustrate the kind of analysis

of the models that we want to carry out.

(1) Autocorrelation function :

We will derive the expression for the autocorrela-

tion function of a mosaic in terms of the parameters of the

underlying model, and of the transition probabilities. Be-

cause of the assumptions of homogenity and isotropicity , the

autocorrelation function depends only upon the distance . We

will also show that one of the mosaic models , the Poisson line

mode l [19],  has an autocorrelation funct ion which , as pointed

out earlier, happens to be precisely the function that has

been widely and successfully used to model a large class of

natural images.

We shall use the following notation :

= Probability that a randomly selected point belongs

to reg ion i.

P
~~~

(d) = Probability that a pair of points distance d apart,

having one point in a type-j cell , has the other

point in a type-i cell.

g~ = The mean gray level of the population of gray

levels in the type—i cells.

We do not put any constraints on the nature of the distribu-

tions of gray levels in the various types of cells , as this
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is not crucial for the following analysis .

From the homogeneity and isotropicity properties, we

know that the autocovariance is only a function of the dis-

tance d. Thus , by def ini t ion of autocovariance function , we

have

AC (d) = ~ ~~~~~~~~~~~ g
~ 

— g2

where

g = 
~

is the expected gray level o f a randomly selected point. The

autocorrelation coefficient, then, is

(d) — 
AC(d) AC (d)
AC(0) 

—

where ci
2 = AC(0) = Var (g~)

Now, for the Poisson line model , we know that [19]

p. + (l_p .)e kd 
i f  

i i

P~~~(d) = 

{p~
(l_e

~~~~ 
if j~ i

where k is a known constant related to the intensity of the

Poisson process. Therefore

p(d) = ~~~~~~~~~~~~~~~~~~~~~ — g21 —

= ~~~~~~~~~~~~~~~~~~~ + P1~~(d)g~ } 
— g21
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= -4 ( ~~~~~~~~~~~~~~~~~~~~ + ~~~ + (l—p ~ )e~~~ )g1} 
— g2]

= 
~~~~~~~~~~~~~~~~ 

- e ”~~~~p~g~ +

+ e~ ”~g~ - e dp •g 1 } - g2]

l r  -kd -kd 2
= —~ [Lp ~g~ {g (l_e ) + g~e 

} - g
c 1

1 -kd r -kdr 2 2
= —~[g(l-e )LP~~~ + e 

~~~~~ 
- g I

0 1 1

= —~~[g2 ( l— e 1”
~) + e~~~ E(g~) - g2]

= ~~ [E(g~) 
- g2]e~~~

— 

Var(g~) -kd
— e

a

-kd
= —i- e

a

= e~~~

which is the exponential model of autocorrelation .

(2) Expected edge density :

If we let ~~~ denote the expected absolute differ-

ence between the gray levels of two points from regions i and

j ,  we can express the edge value between a pair of points at

a distance d, E(d), as follows :

V . - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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E ( d )  = 
~~~~~~~~~~~~~~1 )

= 
~~~~~~~~~~~~ 

+
1 J~~ 1

Let G~ be a random variable denoting the gray level of

a point within region i; then

E.. = E I G .  - G . I  , and
11 1~~

E.. = EIG. - Gj
1] 1 J

where G
~
, G1 and G

~ 
are independent and identically distri-

1 2
buted random variables.

The expected total edge value between pairs of points

at distance d apart is

TE(d) = N E(d)

The expression for E .. and E. . can be derived for
11

various coloring schemes, using different gray level distribu-

tions to color different regions in the image.

The fact  that the Poisson line mode l has an exponential

autocorrelation function further suggests that the mosaic

models may be realistic in the sense that their properties

such as autocorrelation function , which have been convention-

ally treated as characteristic of a pattern, may be similar

to those of natural images. The Poisson line model is one of

the more random ones [19] and we may expect other mosaic

models not to have exponential autocorrelation functions.

L~ . 
~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _  _ _ _
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Thus , the mosaic models are expected to give rise to a more

- 

general class of patterns, including patterns that do not fit

the conventional exponential model of autocorrelation , and

hence , cannot be represented by models based on that assump-

tion .

L. _ _ _ _ _ _ _ _  —-- - —— _ --~-~ ~~~~~~~—
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5. Summary and Discussion

We have discussed the conventionally used time series

and random field models of images, as well as the proposed

mosaic models, and have compared their important structural

properties. We have also described our proposed approach to

the problem of using the class of mosaic models to represent

natural images.

Our references to the uses of mosaic models have

alluded to their applications in both synthesizing and

analyzing images. A knowledge of the physical process that

gave rise to a certain pattern may well determine the geometri-

cal process governing the image structure. For example ,

knowing that an image shows farms, wild vegetation, a heap of

hay , leaves or pebbles on ground, drying mud , etc. provides a

strong clue to the kind of mosaic model that will be suitable

for the image. On the other hand, a study of the patterns

generated by various mosaic models can provide an insight into

the relationship between the properties of the models and the

patterns they generate. This could also help us to understand

better the features of the images that most influence their

perception by humans.

We believe that IMP will be able to deal with a variety

of complex images, and, more important, that the modular

nature of its knowledge about the world will allow for con-

tinuous , cumulative growth as more processes and models be-

come understood .

k
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APPENDIX A. MOSAIC MODELS

(Technical Report 549)

.
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APPENDIX B. A RANDOM WALK MODEL

In addition to the cell structure models described in

Appendix A , we may also consider the following model, based

upon a random walk on a two-dimensional grid . We will call

it the “random walk” model. It generates a set of curves,

beginning at a randomly chosen set of points.

A Poisson process drops points onto a plane . Each point

immediately advances in two of the four principal directions

with equal probability . The endpoints of the resulting curve

segments then independently begin a random walk on the grid. 
F

The number of endpoints before the random walk begins is

related to the intensity of the Poisson process and will be at

most twice the number of points originally dropped . Each of

the endpoints represents one of the ends of a growing curve,

and is classified into one of four possible categories accord-

ing to the direction of its first step, as mentioned in the

previous paragraph . This direction characterizes its random

walk and will be called its “characteristic direction” .

At any step, the probabilities of a point moving in its

characteristic direction , or in any of the remaining three

directions, depend only on the last step. A walk ends when

it hits any of the borders of the plane. When all of the

points have finished their walks, their traces provide a ran-

dom tessellation of the plane.

Since the direction of the current step of any point de-

pends only on the direction of its previous step, its random

V.—- - - -
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walk describes a first-order Markov process.

A nonzero probability of a point taking a step in the

direction opposite to the characteristic direction would lead

to a nonzero probability of its

(1) retracing some portion of its own walk, and thus

having protruding curve segments with dead ends

(Figure 5a), and

(2) intersecting its own walk, and thus having isolated

-V loops or loop-stem pairs (Figure 5b) .

Since our ultimate interest is to obtain a tessellation

of the plane , both ( 1) and (2 )  are undesirable . We will ,

therefore , have zero probability associated with the event

that a point takes a step in the direction opposite to the

characteristic direction. The probabilities of moving in any

of the remaining three directions will depend only upon the

previous step such that a point is never allowed to step back

to the position it just  visited.

The above description of the random walk model is only a

specific illustration of using the random walk process to gen-

erate a random tessellation of the plane. A generalized model

may allow several options at various steps of the tessellation

process. Some of these are discussed below :

(1) We have used random curves advancing in two direc-

tions, originating at the given set of starting points located

throughout the plane . Instead , the starting points could be

distributed along the borders of the plane. The curves re-

-- -V V .- --. - -———~~~~~~~~~~~~~~ •, —-— V- —V. V~V.~
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suiting from the random walks of these points grow only at

one of their ends, the other end being fixed at the border.

It is clear that such a process would provide a

• much less traversed interior of the plane and , hence, the re-

sulting tessellation will have larger cells away from the bor-

der. On an average , approximately one-fourth of the total

number of starting points would take their very first step

out of the plane. Alternatively, a starting point may be

assigned a characteristic direction from the set of only

those directions which are not directed out of the plane.

(2) We have allowed only the four principal directions

for the steps in the random walk of a point. We can also

consider steps in the four diagonal directions. r~owever , in

order to avoid undesirable patterns as in (1) and (2) above,

we will have to prohibit a point from not only taking a step

in the direction opposite to the characteristic direction ,

but also in the two adjacent directions.

When a given point, on its random walk , mee€s another

point, it can do one of two things:

(a) It continues its walk uninfluenced by the other,

or ,

(b) ILs ~alk merges with that of the other, to result

in a single walk which is characterized by one of

the two constituent characteristic directions with

equal probabili ty.

The f i r s t  choice mentioned above is likely to be

analytically simpler because of lack of interaction among
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different random walks.

Among the models discussed in [19], the random walk

model comes closest, in terms of the tessellating process, to

the Poisson line model. Following are some of the points of

comparison between the two models:

(1) Both are cell structure models.

(2) The random walk model uses randomly located zig-zag

curves to tessellate the plane, whereas the Poisson

li n e model uses randomly located and oriented

straight lines.

(3) The random walk model uses a Poisson process to de-

termine the locations of the points that grow into

curves, whereas the Poisson line model uses a

Poisson process in the re plane to choose pairs of

r8 values, each of which describes a line in the

tessellation .

(4) The cells obtained by the random walk model need

not be convex, unlike the situation in the Poisson

line model.

(5) The expected number of cells meeting at a vertex

in a Poisson line tessellation is 3 [19] . However ,

in the random walk model this number depend s on the

nature of the walks; for example , choices (a) and

(b) for the interaction between two walks , as men-

tioned above, yield different results.

The random walk model embodies a process that appears to

be similar to those responsible for propagation of cracks in 

- — —- -- -- --- -- - --V~~~~-— —---- —- - -— V.-- -
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mud , of borders of vegetation , of boundaries of regions in a

map, e tc . ,  and may be a reasonable model for a certain class

of natural images. It may , therefore , be useful to be able

to characterize the random walk tessellation by the intrinsic

properties of its cells and their interaction, and to contrast

these with similar features of the other cell structure

models, especially the Poisson line model; and to make a

similar comparison between random walk colored patterns,

natural images , and the patterns generated by the Poisson Line

model.
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