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Abstract
The logistic distribution is used for stochastic modelling in fields of
applications such as biology, economics and medicine. The convolution of

logistic random variables plays an important role in estimation of and

testing of hypotheses regarding the parameters of the distribution. In

this paper the characteristic function is inverted to obtain a neat expres-
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1. Introduction

The logistic distribution given by the distribution function

F(x) = (1 + exp(-(c*ﬁx))'l , ® <X <@, (1.1)
where -» <a < and B > 0, is remarkably similar to the normal distri-
bution with mean = a and standard deviation = Br//3. Moreover for a = 0
and B =1, the logistic r.v. X and its p.d.f. f£(<) are related to
the d.f. F(+) by analytically simple forms x = log(F/(1-F)) and
£(x) = F(x)(1-F(x)). Because of these reasons this distribution is widely
employed as a substitute for the normal distribution in applications such
as bioassay and quantal response data problems, e.g. Berkson (1944), and
growth curve analysis (Verhulst (1845)). The importance of the logistic
law in modelling of stochastic phenomena has resulted in numerous studies
involving probabilistic and statistical aspects of this distribution. For
example, Gumbel (1944), Gumbel and Keeney (1950), and Talacko (1956) show
that it arises as a limiting distribution in various situations; Birnbaum
and Dudman (1963), Gupta and Shah (1967) study order statistics from it;
and many, e.g. Antle et al. (1970) and Tartar and Clark (1965) study in-
ference questions concerning it. For an excellent summary of results about
logistic distribution refer to Chapter 22 of Johnson and Kotz (1970).

As might be expected in view of the similarity between the logistic
and normal distributions, the sample mean and the sample variance, the
moment estimators of a and B, are effective tools for statistical deci-
sions involving the logistic distribution. Antle et al. (1970) give a func-

tion of the mean as a confidence interval estimate of a when 8 is known.
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Schaffer and Sheffield (1973) make a case that in terms of mean squared

error the moment estimators are as good estimators of a, 8 as their M.L.E.'s.
The fact that the distribution of the sample mean has monotone likelihood ratio with
respect to a when B is known leads to a uniformly most accurate confi-
dence interval for a and UMP tests for one-sided hypotheses involving a.
The sampling distribution of the mean is a primary requirement for these
statistical purposes. The papers due to Antle et al. (1970) and Schafer

and Clark (1965) both contain Monte Carlo'ed results for this distribution.
Goel (1975) obtains an expression for the d.f. of the sum of i.i.d. logistic
variates by using the Laplace transform inversion method for convolutions

of Polya type function developed by Schoenberg (1953) and Hirschman and

Widder (1955). He uses this approach because an inversion of the character-
istic function of the sum leads him to a very slowly converging series for

its d.f. In this paper we demonstrate that the characteristic function can

be inverted to obtain a neat expression for the d.f. Also by noting the

length of the tails of the distribution we develop a simple student-t approxi- :

e

mation for it and compare it with the normal and an Edgeworth series approxi-

b

mation.

2. D.F. of the Sum of I.I.D. logistic Variates

Let Xl. Xz, ey X‘ be i.i.d. with d.f£.
F(x) = (1+ exp(-x))7 (2.1)
and let
n
$ s 1 X (2.2)
i=]
Goel (1975) obtains the expression
Folx) = 0.5+ 1 20 ((men-1)1/mI)Re((coid)™) , (2.3)
o=
where c = (m+n/2)/a, d = x(u/S)hzo. as (me n/2)2 B (xz n/12) for the
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d.f. of Z by applying the inversion formula directly. As he notes, this
series converges slowly and is therefore computationally inconvenient. 1In
this section we use the inversion formula for characteristic functions to
obtain a finite series expression for Fn(-). The method used requires
only a knowledge of contour integration and the Mittag-Leffler expansion
of the characteristic function of Z which may be found in sources such as
the monograph by Widder (1972).

The characteristic function on(-) of Z is given by

Qn(s) = (wis/sin nis)™. (2.4)
Its Mittag-Leffler expansions are given by
@ n-1
(ris/sin wis)" = (is)" T [ A . /(isek)"P, (2.5)
k=z-= p=( el 4
when n is even, and
® n-1
(vis/sin vis)® = (1) T [ (-0KA_ /(isek)"P (2.6)
k=-» p=) -1,P

when n is odd.
The constants A, P in (2.5) and (2.6) can be computed by using the follow-

ing equations: 4

(vs/sin 7s)® = An,o + An,l’ T An,n’n’ (2.7)
and
s . ] (-0*22%*-2)7(20)1 By (rs), (2.8)

the 'Zk" being Bernoulli numbers. Since the d.f. of Z is symmetric
about zero, it suffices to find Fn(x) for x > 0. The inversion formula

gives, 0<x<b<cew, - i
N -isx -is n
Fo(b)-F (x) = ’1“1:,%{"-" () (o) ds - (2.9)

Consider the contour integral

-ixz -ibz n
1(bx) o f lece ) ui ), , (2.10)

where CN is a clockwisely oriented contour given by cN = C& + C§ ’
cy = f(z: |2] < Neig and Im z = 0}

(2.11)
g = f(z: |2] = Nols and Im z < 0} .
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It is clear that

Pn(b)-Fn(x) = ;i: IN(b,x). (2.12)
provided that .
-ixz -ibz n
1 (e -e ¢, miz 5
;i: n éﬁ 1z ‘sin wiz) dz 0. (2.13)
(2.13) is easy to establish because :
-ixz n -ixz
2 iz 2w ( N+ I e
[ Gt | < Gl L | Spfes -0 (230
e -e CN

as N+ =, Now we use (2.4) to evaluate F_(x) when n is even:

n-1 = (e-ix 2 ‘-ibz) (iz)n'l o i3

1
pi !;.én pzo kZ-. An,p (iz+k)™P

- 1 I APl
",

: Zni I k-£+1 np " (z+ik)™P

-ixz -ibz

& .p .n-1 (e - e )
Lo k§0 fap T PRTIL

pe0 ™ Gy

The integrand of equation (2.15) has a removable singularity at zero,

-ixz -ibz
.t ) dz

(z+ik)™P
-ixz _ e-ibz) &

and poles of order (n-p) at z = -ik, k = 1,2,... . Hence the inte-
grands in the last two terms of equation (2.16) are analytic in Cy- There-

fore
n-1 N -ixz -ibz
1.(b,x) = iP 1 L et Boend 4s.
o pzo kgl “n.p I;I'éN ; (zoik)™P
Now let
1.(y) ? L. | bl (2.17)
= - 39 .
i N ksl !;I'CN (z+ik)™P
N
I(y) = 1 Res(-ik), (2.18)
" ka1
n-1 _-iyz
where Res(-ik) is the residue of 2 2 at z = -ik, k=1,...,N
(z+ik)™P
and is given by
ki
Res(-1k) o gether ST (qive 1) (2.19)

(n-T-p]T A-T-p %
zm-
n-1- r
syl P (1)) (op) S ¥7T 7. (2.20)
re




lin Iy(y) « r-Z- e erzl T e, (2.2)

In the development from (2.12) if we let b + = then

1- Fn(x) = lim lim I (b x)

b+® Now
n-1 n-1- ®
% Z Z P (_1)r+1 (n-l) Z KP*T -kx.
psr’ TT
p=0 r=0 k=1
T -kx
Using induction, the infinite series [ kP*T e can be shown to con-
p*r k=
- -X
verge to 'zl sp+r"(n-1)! (e "/(1-e""))", where ’p+r,m" are Stirling's
number of the second kind given by
-1
sp+r,n ((per) )~ 120( 1)1 (m)(m 1)p+r (2.22)

By a similar method, an expression can be obtained for Fn(-) when
n is odd. These results are stated in the following theorem:

X X be i.i.d. with d.f. given by

THEOREM 2.1. Let X

1’ 2’ ek
(2.1). Then the d.f. of Z = Z X; is given by
i=]
n-1 n-p-1 p+r+l ’1 1 e-kx
1-F = £ n=) (k-1)! S
n(:) pZ rg kgl (-1) A, ,pper+l,k -T'(p¢r)( ) z::::;;r
(2.23)
when n is even, and by
n-l n-p-1 p«r*l -kx
k+1 n-1 e
- 0.0s) » e (-1)™* (™1) (1)1 .
n p-O L k-l A ,p perelk _T p+r (1+e'x)E
(2.24)

when n is odd.

3. Some gggzgxilltions for the Convolution of Logistic R.V.'s

As mentioned earlier the logistic distribution is very similar to the

normal distribution. It is therefore to be expected that the normal distri-
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bution would reasonably approximate the distribution of the sum of k in-
dependent logistic r.v.'s for k > 2. Specifically, if

2" = /K zn (3.1)
denotes the standardized sum of k i.i.d. logistic r.v.'s; then we have a
simple approximation:

F(z) & o(z), (3.2)
where F;(-) is the d.f. of Z and ¢ is the standard normal d.f.
This approximation can be improved by applying a two term Edgeworth correc-
tion to it to obtain

F(z) & o(z) - (20k)7(23-32)W(z), (3.3)

where W(z) = (Zn)'k exp(-zzlz).

Although the above approximations are good, it may be possible to im-
prove on them by using student's t distributions which is similar to the
normal distribution in shape but has relatively long tails. The degree of
freedom v of the approximating t distribution can be obtained by equating
the coefficients of kurtosis,

8,(2) = B,(t)) , (3.4)
which gives v = Sk + 4, (3.5)

»* *
Thus considering the standardized Z and t,, i.e. Z and t,» Trespec-

tively, where

*

t, = tJ/oft) = (v=2]/v By (3.6)
this approximation is given by

Fk(z) F P{t5k*4 iZ/W (3.7)




ih

4. Evaluation of the Approximation

Figure 1 and Table 1 illustrate the quality of the three viz. the
normal, the Edgeworth-corrected normal, and the student's t, approximations
for k = 2 and 3, respectively. The maximum error for the t-approximation
for k = 2 is about 0.005 and decreases to 0.0007 when k = 3. Goel (1975)
gives a table of cumulative d.f. of the standarized mean of samples from
logistic population for k = 10 correct to seven decimal places. We believe
that for this value of k the t-approximation would yield results of compar-

able accuracy.
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TABLE 1.

A Comparison of Three Approximations

k = 3.

x  Fglx)  Fi(x)-0(x)  Fy(x)-6,(x) Fylx)-H;(x)
0.05 0.5209 0.0010 0.0000 0.0001
0.15 0.5625 0.0029 0.0000 0.0003
0.25 0.6033 0.0046 0.0008 0.0005
0.45 0.6809 0.0073 -0.0017 0.0007
0.65 0.7506 0.0084 -0.0006 0.0007
0.85 0.8106 0.0083 -0.0007 0.0007
1.00 0.8486 0.0073 -0.0008 0.0004
1.20 0.8903 0.0054 -0.0007 0.0002
1.45 0.9291 0.0026 -0.0004 0.0000
1.75 0.9598 -0.0001 0.0001 -0.0002
2.50 0.9918 -0.0020 0.0004 -0.0002
3.00 0.9975 -0.0012 0.0001 0.0000

F;(x) = Distribution function of the standardized sum of 3 i.i.d.
logistic r.v.'s

¢(x) = Distribution function of the standard normal r.v.

Gs(x) = Edgeworth series approximation given by right hand side of
equation (3.3).

Hs(x) = Distribution function of standardized student's t r.v. with
19 degrees of freedom, as given by equation (3.7).
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