

A REFORT TALIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) A DEFORE COMPLETING FORM BEFORE COMPLETING FORM BEFORE COMPLETING FORM BEFORE COMPLETING FORM C DESTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, if different from Report) F. DISTRIBUTION STATEMENT (of the	LIAPTOOT DOCUMENTATION DACE	READ INSTRUCTIONS
APCSSTTR. 7.8 - 0.4 4 1 TTLE (and Statistic) ON THE CONVOLUTION OF LOCISTIC RANDON ARIABLES. AUTHOR: C. ONUCLAISE C. ONUCL	VAREPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
A TTLE (and JBHTHS) ON THE CONVOLUTION OF LOCISTIC RANDON ARIABLES. 7. AUTHOR: 7. AUTHOR: 8. CONVOLUTION OF LOCISTIC RANDON 9. PERFORMING ONE AUTOON THUMBER 7. AUTHOR: 9. CONTRACT OR GRANT HUMBER 9. CONTRACT OR GRANT HUMBER 9. CONTRACT OR GRANT HUMBER 9. CONTRACT OR GRANT HUMBER 9. CONTRACT OR GRANT HUMBER 10. CONTROLLING OFFICE HARE AND ADDRESS AIR FORCE Office of Scientific Research/NM Bolling AFB, DC 2032 14. MONITORING AGENCY HAME & ADDRESS(II different free Contracting Office) 14. BECURITY CLASS. (of his Report) 15. DESTRIBUTION STATEMENT (of the Abstract entered in Block 30, II different free Report) 16. DISTRIBUTION STATEMENT (of the Abstract entered in Block 30, II different free Report) 17. DISTRIBUTION STATEMENT (of the Abstract entered in Block 30, II different free Report) 18. KEY WORDS (Continue on reverse of the Inscensery and Mentify by block number) 19. REFY RORDS (Continue on reverse of the Inscensery and Mentify by block number) 10. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, II different free Report) 10. STATEMENT (Continue on reverse of the Inscensery and Mentify by block number) 10. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, II different free Report) 10. STATEMENT (Continue on reverse of the Inscensery and Mentify by block number) 10. DISTRIBUTION STATEMENT (of the statement on Block 30, II different free Report) 10. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, II different free Report) 10. DISTRIBUTION STATEMENT (of the convolution, approximations, student's t 10. DISTRIBUTION STATEMENT (of the convolution, approximations, student's t 10. DISTRIBUTION STATEMENT (of the convolution, It is demonstrated that a student's 1- distribution. In this paper the characteristic function is inverted to obtain a neat 20. Provent for the d.f. of the convolution. It is demonstrated that a student's 1- distribution provides a very close approximation to the convolution 20. Provent for the d.f. of the convolution to the co		NO. 3. RECIPIENT'S CATALOG NUMBER
ON THE CONVOLUTION OF LOGISTIC RANDOM VARIABLES. AUTHORY E. Olusegun/George Govind S./Mudholkar PERFORMING ONG. MEDONT HUMBER OF CONTRACT OR GRANT HUMBER PERFORMING ONG. MEDONT SALE Department of Statistics Rochester, NY 14627 TO CONTROLLING OFFICE HAME AND ADDRESS AIF FORCE Office of Scientific Research/NM Bolling AFB, DC 2032 TO CONTROLLING OFFICE HAME AND ADDRESS AIF FORCE Office of Scientific Research/NM Bolling AFB, DC 2032 TO CONTROLLING OFFICE HAME AND ADDRESS AIF FORCE Office of Scientific Research/NM Bolling AFB, DC 2032 TO CONTROLLING OFFICE HAME AND ADDRESS AIF FORCE Office of Scientific Research/NM Bolling AFB, DC 2032 TO CONTROLLING OFFICE HAME AND ADDRESS (I AREPORT DATE DUTON STATEMENT (of the ADDRESS (If different from Controlling Office) TO DISTRIBUTION STATEMENT (of the Abstract entered in Block 20, If different from Report) UNCLASSIFIED The Distribution, convolution, approximations, student's t ADDRESS (Continue on reverse slds if necessary and identify by block member) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to dobian a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution, provides a very close approximation to the convolution (A 100 A 20 Co (A 100 A 20		h
AARTABLES. AUTHOR(0) E. Olusegun/Ceorge & Govind S./Mudholkar PERFORMING ONGAMIZATION NAME AND ADDRESS University of Rochester Department of Statistics Rochester, NY 14627 M. CONTROLLING OFFICE NAME AND ADDRESS Acir Force Office of Scientific Research/NM Bolling AFB, DC 20322 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 19. SECURITY CLASS. (of this report) UNCLASSIFIED 19. DECLASSIFIED 19. DECLASS		9. TYPE OF REPORT & PERIOD COVER
ANTRONO AUTHOR(2) E. Olusegun/George Govind S./Mudholkar PERFORMING ORGANIZATION NAME AND ADDRESS University OfRochester Department of Statistics Rochester, NY 14627 C. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 A MONITORING AGENCY NAME & ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 A MONITORING AGENCY NAME & ADDRESS A DOTTORING AGENCY NAME & ADDRESS C. DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING C. DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced in Block 20, 11 different from Report) DISTRIBUTION STATEMENT (of the Advanced and Identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an importan	ON THE CONVOLUTION OF LOGISTIC RANDOM	Interim rect.
A UTHOR() C. OUTRACT OR GRAFT HUMBER() C. OUTCAS AND HUMBER() C. OUTRACT OR GRAFT HUMBER()	VARIABLES.	
E. Olusegun George Govind S. Mudholkar P. E. Olusegun George Govind S. Mudholkar P. Controchuko Grochul 24100 Hade ADD ADDRESS Rochester, NY 14627 C. ControlLiko Gorfice NAME ADD ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 M. HONITORING AGENCY NAME & ADD ADDRESS M. HONITORING AGENCY MAME & ADD ADDRESS M. HONITORING AGENCY MAM		6. PERFORMING ORG. REPORT NUMBE
E. Olusegun George Govind S. Mudholkar S. PERFORMING ORGANIZATION NAME AND ADDRESS University of Rochester Department of Statistics Rochester, NY 14627 M. CONTROLLING OFFICE NAME AND ADDRESS AIF FORCe Office of Scientific Research/NM Bolling AFB, DC 20332 M. BONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) M. SECURITY CLASS. (of this report) UNCLASS IF IED 18. SECURITY CLASS. (of this report) CLASS IF IED 18. SECURITY CLASS. (of the obstract oniver and identify by block number) 19. SECURITY NOTES ADD 10. STATEMENT NOTES ADD 10. STATEMENT AND TES ADD 10. STA	7. AUTHOR(a)	. CONTRACT OR GRANT NUMBER(+)
S. PERFORMING ONGANIZATION NAME AND ADDRESS University of Rochester Department of Statistics Rochester, NY 14627 The ControlLing ofFice MAME AND ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20322 The Monitroning AGENCY MAME & ADDRESS(II different from Controlling Office) The SECURITY CLASS. (of mis report) UNCLASS IFIED The SECURITY CLASS. (of mis report) UNCLASS IFIED The SECURITY CLASS. (of mis report) UNCLASS IFIED The SECURITY CLASS. (of mis report) Distribution STATEMENT (of the Append) The Supplementation of the states of the		
University of Rochester Department of Statistics Rochester, NY 14627 The Contracting Office of Scientific Research/NM Bolling AFB, DC 20322 TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA MONITORING AGENCY NAME A ADDRESS(If different from Controlling Office) TA DISTRIBUTION STATEMENT (of the abstract enford in Block 20, If different from Report) TA SUPPLEMENTARY NOTES TA SUPPLEMENTARY NOTES ADDRESS (Continue on reverse aids if necessary and identify by block number) To DISTRIBUTION STATEMENT (of the abstract enford in Block 20, If different from Report) TA SUPPLEMENTARY NOTES ADDRESS (Continue on reverse aids If necessary and identify by block number) To DISTRIBUTION STATEMENT (of the abstract onford in Block 20, If different from Report) The logistic distribution, convolution, approximations, student's t Distribution. In this paper the characteristic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution (4 100 20 6	E. Olusegun George Govind S./Mudholkar	AFOSR-77-3360
Department of Statistics Rochester, NY 14627 The CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) THE DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) FEB 15 FEB 15	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT, TA
Rochester, NY 14627 The CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 TA MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) TA MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) TA MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) TA DECLASSIFIED Ta DECLASSIFICATION/DOWNGRADIN TA DECLASSIFICATION/DOWNGRADIN TA DECLASSIFICATION/DOWNGRADIN TA DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) TR SUPPLEMENTARY NOTES TA SUPPLEMENTARY NOTES TA DISTRIBUTION, convolution, approximations, student's t CASSTRACT (Continue on reverse side if necessary and identify by block number) The logistic distribution, convolution, approximations, student's t Distribution. In this paper the characteristic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution, to the convolution is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 4100 2016		(GE1102E 1230/1 A5 (77 A
Air Force Office of Scientific Research/NM Bolling AFB, DC 20332 It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING AGENCY NAME & ADDRESS(II dillowent from Controlling Office) It HONITORING TATEMENT (of this Report) Approved for public release; distribution unlimited. It DISTRIBUTION STATEMENT (of the abetract entered in Block 20, II dillowent from Report) It Supplementary notes It Supplementary notes It Supplementary notes It Supplementary notes ASSTRACT (Continue on reverse side II necessary and Identify by block number) In logistic distribution, convolution, approximations, student's t It logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution It and It AT Control of 'How 68 is ossolette		CHOZE ZSCALAS CAL
Bolling AFB, DC 20332 It WONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) It. SECURITY CLASS. (of this report) UNCLASSIFIED It. DECLASSIFICATION/DOWNGRADIN It. DECLASSIFICATION/DOWNGRADIN It. DECLASSIFICATION/DOWNGRADIN It. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If dilferent from Report) It. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If dilferent from Report) It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES ABSTRACT (Continue on reverse side if necessary and Identify by block number) It. Digistic distribution, convolution, approximations, student's t It. SUPPLEMENT role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution It. SUPPLEMENTARY NOTES It. Distribution is used for stochastic modelling in fields of applications such the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution It. Strong 1473 EDITION OF ! HOV 65 (5 0050LETE	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Bolling AFB, DC 20332 It WONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) It. SECURITY CLASS. (of this report) UNCLASSIFIED It. DECLASSIFICATION/DOWNGRADIN It. DECLASSIFICATION/DOWNGRADIN It. DECLASSIFICATION/DOWNGRADIN It. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If dilferent from Report) It. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If dilferent from Report) It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES It. SUPPLEMENTARY NOTES ABSTRACT (Continue on reverse side if necessary and Identify by block number) It. Digistic distribution, convolution, approximations, student's t It. SUPPLEMENT role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution It. SUPPLEMENTARY NOTES It. Distribution is used for stochastic modelling in fields of applications such the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution It. Strong 1473 EDITION OF ! HOV 65 (5 0050LETE	Air Force Office of Scientific Research/NM	1/2/1077 7 (12/130
14. MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) 15. SECURITY CLASS. (el this report) UNCLASS IFIED 18. SECURITY CLASS. (el this report) UNCLASS IFIED 18. SECURITY CLASS. (el this report) UNCLASS IFIED 18. DECLASSIFICATION/DOWNGRADING INCLASS (el this report) OUTCOM STATEMENT (el this Report) INTERENTION STATEMENT (el the abetrect entered in Block 20, II different from Report) INTERENTION STATEMENT (el the abetrect entered in Block 20, II different from Report) INTERENTION STATEMENT (el the abetrect entered in Block 20, II different from Report) INTERENTION STATEMENT (el the abetrect entered in Block 20, II different from Report) INTERENTION STATEMENT (el the abetrect entered in Block 20, II different from Report) INTERENTIARY NOTES INTERENTIARY NOTES INTERENT (Continue on reverse side II necessary and Identify by block number) The logistic distribution, convolution, approximations, student's t Interestion distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses rega		10 BAGES
UNCLASSIFIED Is. BECLASSIFICATION/DOWNGRADIN Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, if different from Report) IS. SUPPLEMENTARY NOTES IS. KEY WORDS (Continue on reverse slds if necessary and identify by block number) logistic distribution, convolution, approximations, student's t The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 100 1001, 1007, 1073 cortion of 'MOV 45 is OBSOLETE		ce) 15. SECURITY CLASS. (of this report)
15. DECLASSIFICATION/DOWNGRADIN 16. DISTRIBUTION STATEMENT (of the Report) 17. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different from Report) 17. DISTRIBUTION STATEMENT (of the observed entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 18. KEY WORDS (Continue on reverse side if necessary and identify by block number) 10. gistic distribution, convolution, approximations, student's t 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) 10. distribution, convolution, approximations, student's t 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) 10. distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t-distribution provides a very close approximation to the convolution 4100 2006		
Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) FB is SUPPLEMENTARY NOTES S. KEY WORDS (Continue on reverse side if necessary and identify by block number) logistic distribution, convolution, approximations, student's t biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution provides a very close approximation to the convolution It is demonstrated that a student's t- distribution provides a very close approximation to the convolution I approximation to the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution I approximation to the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution I approximation of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution I approximation of the convolution I approximation to the convolution I approximation of the convolution to the convolution I approximation of the convolution I approxima		
Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) FB is SUPPLEMENTARY NOTES S. KEY WORDS (Continue on reverse elde if necessary and identify by block number) logistic distribution, convolution, approximations, student's t biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution provides a very close approximation to the convolution It is demonstrated that a student's t- distribution provides a very close approximation to the convolution H 100 2016		15. DECLASSIFICATION/DOWNGRADIN SCHEDULE
Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) F. SUPPLEMENTARY NOTES F. SUPPLEMENTARY NOTES F. KEY WORDS (Continue on reverse side if necessary and identify by block number) logistic distribution, convolution, approximations, student's t biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 4100 2006		
The SUPPLEMENTARY NOTES The SUPPLEMENTARY NOTES In the Supplementary of reverse elde if necessary and identify by block number) logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse elde if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 4100200	Approved for public release; distribution unlimited.	- 0
The SUPPLEMENTARY NOTES The SUPPLEMENTARY NOTES In the Supplementary of reverse elde if necessary and identify by block number) logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse elde if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 4100200		
 KEY WORDS (Continue on reverse side if necessary and identify by block number) logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse side if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t-distribution provides a very close approximation to the convolution 4100 276		nt from Report)
 KEY WORDS (Continue on reverse side if necessary and identify by block number) logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse side if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t-distribution provides a very close approximation to the convolution 4100 276		nt from Report) D D C
 KEY WORDS (Continue on reverse side if necessary and identify by block number) logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse side if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t-distribution provides a very close approximation to the convolution 4100 276		FEB 15
logistic distribution, convolution, approximations, student's t C . ABSTRACT (Continue on reverse elde II necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution $\frac{4100276}{276}$		FEB 15
logistic distribution, convolution, approximations, student's t ABSTRACT (Continue on reverse aide if necessary and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if differen	FEB 15
ABSTRACT (Continue on reverse elde II necessery and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if differen	FEB 15
P. ABSTRACT (Continue on reverse elde II necessery and identify by block number) The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different and the abetract entered in Bl	FEB 15 10
The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu	FEB 15 15 15 15 15 15 15 15 15 15 15 15 15
The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu	FEB 15 15 15 15 15 15 15 15 15 15 15 15 15
The logistic distribution is used for stochastic modelling in fields of applications such biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu	FEB 15 15 15 15 15 15 15 15 15 15 15 15 15
biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block num logistic distribution, convolution, approximations, st	mber)
an important role in estimation of and testing of hypotheses regarding the parameters the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block num logistic distribution, convolution, approximations, st ABSTRACT (Continue on reverse side if necessary and identify by block num 	mber)
the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block num logistic distribution, convolution, approximations, st ABSTRACT (Continue on reverse side if necessary and identify by block num The logistic distribution is used for stochastic model 	mber) rudent's t
expression for the d.f. of the convolution. It is demonstrated that a student's t- distribution provides a very close approximation to the convolution 410 276	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block num logistic distribution, convolution, approximations, st 20. ABSTRACT (Continue on reverse side if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of the state of the st	mber) sudent's t
distribution provides a very close approximation to the convolution 410 276	 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block num logistic distribution, convolution, approximations, st 20. ABSTRACT (Continue on reverse side if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of an important role in estimation of and testing of hypot 	mber) nudent's t
D 1 JAN 73 1473 EDITION OF I NOV 65 15 DESOLETE	 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num logistic distribution, convolution, approximations, st 29. ABSTRACT (Continue on reverse elde if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of an important role in estimation of and testing of hypot the distribution. In this paper the characteristic fundamentary and identify and its paper the characteristic fundamentary is a statement of the characteristic fundamentary is a statementary of the distribution. 	mber) nudent's t
D I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num logistic distribution, convolution, approximations, st 29. ABSTRACT (Continue on reverse elde if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of an important role in estimation of and testing of hypot the distribution. In this paper the characteristic fun expression for the d.f. of the convolution. It is demu	mber) rudent's t ling in fields of applications such logistic random variables plays theses regarding the parameters action is inverted to obtain a neat onstrated that a student's t-
D 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num logistic distribution, convolution, approximations, st 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of an important role in estimation of and testing of hypot the distribution. In this paper the characteristic fun expression for the d.f. of the convolution. It is demu	mber) nudent's t her) ling in fields of applications such logistic random variables plays heses regarding the parameters het to obtain a neat onstrated that a student's t- he convolution
	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differentiation is supplementary notes 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num logistic distribution, convolution, approximations, st 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num The logistic distribution is used for stochastic model biology, economics and medicine. The convolution of an important role in estimation of and testing of hypot the distribution. In this paper the characteristic fun expression for the d.f. of the convolution. It is demu distribution provides a very close approximation to the statement of the distribution is used approximation to the distribution provides a very close approximation to the distribution provides approximation provides approximation to the distribution provides approximation to the distribution provides approximation provides approximatin to the distrib	mber) nudent's t her) ling in fields of applications such logistic random variables plays heses regarding the parameters het to obtain a neat onstrated that a student's t- he convolution

AFOSR-TR- 78-0041

Same a

On the Convolution of Logistic Random Variables^{*}

by

E. Olusegun George and Govind S. Mudholkar University of Ife and University of Rochester

Abstract

The logistic distribution is used for stochastic modelling in fields of applications such as biology, economics and medicine. The convolution of logistic random variables plays an important role in estimation of and testing of hypotheses regarding the parameters of the distribution. In this paper the characteristic function is inverted to obtain a neat expression for the d.f. of the convolution. It is demonstrated that a student's t-distribution provides a very close approximation to the convolution.

Approved for public release; distribution unlimited.

Key Words: Logistic Distribution, Convolution, Approximations, student's t.

> ALF FORTE OFFICE OF SCLUNTIFIC ESSENCE (APOC) BOILOS OF TRADUMITEL TO DEG To is technical report Mar boom replaced and is

* Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF under Grant No. AFOSR-77-3360 and, in part, by the Office of Naval Research under contract number N00014/26-0001. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.

AFOSK-TR. 7 8 - 0 0 4 I

an the Langel data is of appreciate Landon Mar (20145)

we we have a set of the restrict constants of

service of the service and the service of services

testing of bratheses territies the second and antiperior sector of the distance of

Approved for pablic releases:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) NOTICE OF TRANSMITTAL TO DDC This technical report has been reviewed and is appreved for public release IAW AFR 190-12 (7b). Distribution is unlimited. A. D. BLOSE Tochnical Information Officer

1. Introduction

The logistic distribution given by the distribution function

NTIS DDC DDC

 $F(x) = (1 + exp(-(\alpha + \beta x))^{-1}, -\infty < x < \infty,$ (1.1)where $-\infty < \alpha < \infty$ and $\beta > 0$, is remarkably similar to the normal distribution with mean = α and standard deviation = $\beta \pi / \sqrt{3}$. Moreover for $\alpha = 0$ and $\beta = 1$, the logistic r.v. X and its p.d.f. $f(\cdot)$ are related to the d.f. $F(\cdot)$ by analytically simple forms $x = \log(F/(1-F))$ and f(x) = F(x)(1-F(x)). Because of these reasons this distribution is widely employed as a substitute for the normal distribution in applications such as bioassay and quantal response data problems, e.g. Berkson (1944), and growth curve analysis (Verhulst (1845)). The importance of the logistic law in modelling of stochastic phenomena has resulted in numerous studies involving probabilistic and statistical aspects of this distribution. For example, Gumbel (1944), Gumbel and Keeney (1950), and Talacko (1956) show that it arises as a limiting distribution in various situations; Birnbaum and Dudman (1963), Gupta and Shah (1967) study order statistics from it: and many, e.g. Antle et al. (1970) and Tartar and Clark (1965) study inference questions concerning it. For an excellent summary of results about logistic distribution refer to Chapter 22 of Johnson and Kotz (1970).

As might be expected in view of the similarity between the logistic and normal distributions, the sample mean and the sample variance, the moment estimators of α and β , are effective tools for statistical decisions involving the logistic distribution. Antle et al. (1970) give a function of the mean as a confidence interval estimate of α when β is known.

Schaffer and Sheffield (1973) make a case that in terms of mean squared error the moment estimators are as good estimators of α , β as their M.L.E.'s. The fact that the distribution of the sample mean has monotone likelihood ratio with respect to a when β is known leads to a uniformly most accurate confidence interval for a and UMP tests for one-sided hypotheses involving a. The sampling distribution of the mean is a primary requirement for these statistical purposes. The papers due to Antle et al. (1970) and Schafer and Clark (1965) both contain Monte Carlo'ed results for this distribution. Goel (1975) obtains an expression for the d.f. of the sum of i.i.d. logistic variates by using the Laplace transform inversion method for convolutions of Polya type function developed by Schoenberg (1953) and Hirschman and Widder (1955). He uses this approach because an inversion of the characteristic function of the sum leads him to a very slowly converging series for its d.f. In this paper we demonstrate that the characteristic function can be inverted to obtain a neat expression for the d.f. Also by noting the length of the tails of the distribution we develop a simple student-t approximation for it and compare it with the normal and an Edgeworth series approximation.

2. D.F. of the Sum of I.I.D. Logistic Variates
Let
$$X_1, X_2, ..., X_n$$
 be i.i.d. with d.f.
 $F(x) = (1 + exp(-x))^{-1}$ (2.1)

and let

$$z = \sum_{i=1}^{n} x_i.$$
 (2.2)

Goel (1975) obtains the expression

$$F_{n}(x) = 0.5 + \frac{1}{\pi} \sum_{m=0}^{\infty} ((m+n-1)!/m!) \operatorname{Re}((c+id)^{n}), \quad (2.3)$$

where $c = (m + n/2)/\alpha$, $d = x(n/3)^{\frac{1}{2}}2\alpha$, $\alpha = (m + n/2)^{2} + (x^{2} n/12)$ for the

-2-

d.f. of Z by applying the inversion formula directly. As he notes, this series converges slowly and is therefore computationally inconvenient. In this section we use the inversion formula for characteristic functions to obtain a finite series expression for $F_n(\cdot)$. The method used requires only a knowledge of contour integration and the Mittag-Leffler expansion of the characteristic function of Z which may be found in sources such as the monograph by Widder (1972).

The characteristic function $\phi_n(\cdot)$ of Z is given by

$$\phi_n(s) = (\pi i s / \sin \pi i s)^n.$$
 (2.4)

Its Mittag-Leffler expansions are given by

$$(\pi i s/sin \pi i s)^n = (is)^n \sum_{k=-\infty}^{\infty} \sum_{p=0}^{n-1} A_{n-1,p}/(is+k)^{n-p},$$
 (2.5)

when n is even, and

$$(\pi i s/sin \pi i s)^n = (is)^n \sum_{k=-\infty}^{\infty} \sum_{p=0}^{n-1} (-1)^k A_{n-1,p}/(is+k)^{n-p}$$
 (2.6)

when n is odd.

The constants $A_{n,p}$ in (2.5) and (2.6) can be computed by using the following equations:

$$(\pi s/\sin \pi s)^n = A_{n,0} + A_{n,1}s + ... + A_{n,n}s^n,$$
 (2.7)

and

$$\pi s/\sin \pi s = \sum_{k=0}^{\infty} (-1)^{k-1} (2^{2k}-2)/(2k)! B_{2k}(\pi s)^{2k},$$
 (2.8)

the B_{2k}'s being Bernoulli numbers. Since the d.f. of Z is symmetric about zero, it suffices to find $F_n(x)$ for x > 0. The inversion formula gives, $0 < x < b < \infty$,

$$F_n(b)-F_n(x) = \lim_{N \to \infty} \frac{1}{2\pi} \int_{-N-l_2}^{N+l_2} \left(\frac{e^{-isx} - e^{-isb}}{is} \right) \left(\frac{\pi is}{\sin \pi is} \right)^n ds$$
 (2.9)

Consider the contour integral

$$I_N(b,x) = \frac{1}{2\pi} \int_{C_N} \frac{(e^{-ixz} - e^{-ibz})}{iz} (\frac{\pi i z}{\sin \pi i z})^n dz$$
, (2.10)

where C_N is a clockwisely oriented contour given by $C_N = C_N^{\prime} + C_N^{\prime\prime}$,

$$C_N^* = \{z : |z| < N + \frac{1}{2} \text{ and } Im \ z = 0\}$$

and

 $C_{N}^{**} = \{z : |z| = N+l_{2} \text{ and } Im \ z < 0\}$.

(2.11)

It is clear that

$$F_n(b)-F_n(x) = \lim_{N \to \infty} I_N(b,x),$$
 (2.12)

provided that

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{C_N} \frac{(e^{-ixz} - e^{-ibz})}{iz} (\frac{\pi iz}{\sin \pi iz})^n dz = 0. \quad (2.13)$$

(2.13) is easy to establish because

$$\left|\int_{C_N'} \frac{e^{-1Xz}}{iz} \left(\frac{iz}{\sin iz}\right)^n dz \right| \leq \left(\frac{2\pi (N+l_2)}{e^{\pi (N+l_2)} - e^{-(N+l_2)}}\right) \int_{C_N''} \left|\frac{e^{-1Xz}}{iz}\right| dz \neq 0 \quad (2.14)$$

as $N \rightarrow \infty$. Now we use (2.4) to evaluate $F_n(x)$ when n is even:

$$\frac{1}{2\pi} \int_{N}^{n-1} \sum_{k=0}^{n-1} A_{n,p} \frac{(e^{-ix\tilde{z}} - e^{-ibz})}{(iz+k)^{n-p}} (iz)^{n-1}$$

$$= \sum_{p=0}^{n-1} \sum_{k=1}^{N} A_{n,p} i^{p} \frac{1}{2\pi i} \int_{C_{N}}^{z^{n-1}} \frac{(e^{-ixz} - e^{-ibz})}{(z+ik)^{n-p}} dz$$

$$+ \sum_{p=0}^{n-1} \frac{1}{2\pi i} \int_{C_{N}}^{\infty} A_{n,p} i^{p} z^{n-1} \frac{(e^{-ixz} - e^{-ibz})}{(z+ik)^{n-p}} dz$$

$$+ \sum_{p=0}^{n-1} \frac{1}{2\pi i} \int_{C_{N}}^{\infty} A_{n,p} i^{p} z^{n-1} \frac{(e^{-ixz} - e^{-ibz})}{(z+ik)^{n-p}} dz$$

$$+ \sum_{p=0}^{n-1} \frac{1}{2\pi i} \int_{C_{N}}^{\infty} A_{n,p} i^{p} z^{n-1} \frac{(e^{-ixz} - e^{-ibz})}{(z-ik)^{n-p}} dz.$$

$$(2.15)$$

The integrand of equation (2.15) has a removable singularity at zero, and poles of order (n - p) at z = -ik, k = 1, 2, ... Hence the integrands in the last two terms of equation (2.16) are analytic in C_N . Therefore

$$I_{N}(b,x) = \sum_{p=0}^{n-1} \sum_{k=1}^{N} A_{n,p} i^{p} \frac{1}{2\pi i} \int_{C_{N}} z^{n-1} \frac{(e^{-ixz} - e^{-ibz})}{(z+ik)^{n-p}} dz.$$

Now let

$$I_{N}(y) = \sum_{k=1}^{N} \frac{1}{2\pi i} \int_{C_{N}} \frac{z^{n-1} e^{-iyz}}{(z+ik)^{n-p}} dz. \qquad (2.17)$$

Then

$$I_N(y) = \sum_{k=1}^{N} \text{Res}(-ik),$$
 (2.18)

where Res(-ik) is the residue of $\frac{z^{n-1}e^{-iyz}}{(z+ik)^{n-p}}$ at z = -ik, k = 1,...,Nand is given by

Res(-ik) =
$$\frac{-1}{(n-1-p)!} \frac{d^{n-1-p}}{dz^{n-1-p}} (e^{-iyz} z^{n-1})$$
 (2.19)

$$= \sum_{r=0}^{n-1-p} (-1)^{r+1} (-1)^{p} {n-1 \choose p+r} \frac{y^{r}}{r!} k^{p+r} e^{-ky}. \quad (2.20)$$

-4-

Thus

$$\lim_{N \to \infty} I_N(y) = \sum_{r=0}^{n-1-p} (-1)^{r+1} (-1)^p \binom{n-1}{p+r} \frac{y^r}{r!} \sum_{k=1}^{\infty} k^{p+r} e^{-ky}.$$
 (2.21)

In the development from (2.12) if we let $b + \infty$ then

$$1 - F_{n}(x) = \lim_{b \to \infty} \lim_{N \to \infty} I_{N}(b, x)$$

= $\sum_{p=0}^{n-1} \sum_{r=0}^{n-1-1-p} (-1)^{r+1} A_{n,p} (\sum_{p+r}^{n-1}) \frac{x^{r}}{r!} \sum_{k=1}^{\infty} k^{p+r} e^{-kx}.$

Using induction, the infinite series $\sum_{k=1}^{\infty} k^{p+r} e^{-kx}$ can be shown to converge to $\sum_{m=1}^{p+r} s_{p+r,m}(m-1)! (e^{-x}/(1-e^{-x}))^m$, where $s_{p+r,m}$'s are Stirling's number of the second kind given by

$$s_{p+r,m} = ((p+r)!)^{-1} \sum_{i=0}^{m} (-1)^{i} {\binom{m}{i}} (m-i)^{p+r}.$$
 (2.22)

By a similar method, an expression can be obtained for $F_n(\cdot)$ when n is odd. These results are stated in the following theorem:

THEOREM 2.1. Let
$$X_1, X_2, ..., X_n$$
 be i.i.d. with d.f. given by
(2.1). Then the d.f. of $Z = \sum_{i=1}^{n} X_i$ is given by
 $1 - F_n(z) = \sum_{p=0}^{n-1} \sum_{r=0}^{n-1} \sum_{k=1}^{n-p-1} (-1)^{r+1} A_{n,p} s_{p+r+1,k} \frac{x^r}{r!} {n-1 \choose p+r} (k-1)! \frac{e^{-kx}}{(1+e^{-x})^k},$
(2.23)

when n is even, and by

$$1 - F_{n}(z) = \sum_{p=0}^{n-1} \sum_{r=0}^{n-p-1} \sum_{k=1}^{p+r+1} (-1)^{r+k+1} A_{n,p} S_{p+r+1,k} \frac{x^{r}}{r!} {n-1 \choose p+r} (k-1)! \frac{e^{-kx}}{(1+e^{-x})^{k}},$$
(2.24)

when n is odd.

3. Some Approximations for the Convolution of Logistic R.V.'s

As mentioned earlier the logistic distribution is very similar to the normal distribution. It is therefore to be expected that the normal distribution would reasonably approximate the distribution of the sum of k independent logistic r.v.'s for $k \ge 2$. Specifically, if

$$Z'' = \sqrt{3/k} Z/\pi$$
 (3.1)

denotes the standardized sum of k i.i.d. logistic r.v.'s; then we have a simple approximation:

$$F_k^*(z) \neq \phi(z),$$
 (3.2)

where $F_k^*(\cdot)$ is the d.f. of Z^* and Φ is the standard normal d.f. This approximation can be improved by applying a two term Edgeworth correction to it to obtain

$$F_{k}^{*}(z) \neq \phi(z) - (20k)^{-1}(z^{3}-3z)W(z),$$
 (3.3)

where $W(z) = (2\pi)^{-\frac{1}{2}} \exp(-z^2/2)$.

Although the above approximations are good, it may be possible to improve on them by using student's t distributions which is similar to the normal distribution in shape but has relatively long tails. The degree of freedom v of the approximating t distribution can be obtained by equating the coefficients of kurtosis,

$$\beta_2(Z) = \beta_2(t_v),$$
 (3.4)

v = 5k + 4. (3.5)

Thus considering the standardized Z and t_v , i.e. Z^* and t_v^* , respectively, where

$$t_{v}^{*} = t_{v}/\sigma(t_{v}) = \sqrt{(v-2)/v} t_{v}$$
, (3.6)

this approximation is given by

which gives

$$F_{k}^{*}(z) \neq P\{t_{5k+4} \leq z / \frac{5k+4}{5k+2}\}.$$
 (3.7)

-6-

4. Evaluation of the Approximation

Figure 1 and Table 1 illustrate the quality of the three viz. the normal, the Edgeworth-corrected normal, and the student's t, approximations for k = 2 and 3, respectively. The maximum error for the t-approximation for k = 2 is about 0.005 and decreases to 0.0007 when k = 3. Goel (1975) gives a table of cumulative d.f. of the standarized mean of samples from logistic population for k = 10 correct to seven decimal places. We believe that for this value of k the t-approximation would yield results of comparable accuracy.

Acknowledgement

The authors wish to thank Mr. C. Pun for computing assistance.

-7-

TABLE	1.

A Comparison of Three Approximations

k = 3.

x	$F_3^{\star}(x)$	$F_3^{\star}(x)-\phi(x)$	$F_{3}^{*}(x) - G_{2}(x)$	$F_{3}^{*}(x) - H_{3}(x)$
0.05	0.5209	0.0010	0.0000	0.0001
0.15	0.5625	0.0029	0.0000	0.0003
0.25	0.6033	0.0046	0.0008	0.0005
0.45	0.6809	0.0073	-0.0017	0.0007
0.65	0.7506	0.0084	-0.0006	0.0007
0.85	0.8106	0.0083	-0.0007	0.0007
1.00	0.8486	0.0073	-0.0008	0.0004
1.20	0.8903	0.0054	-0.0007	0.0002
1.45	0.9291	0.0026	-0.0004	0.0000
1.75	0.9598	-0.0001	0.0001	-0.0002
2.50	0.9918	-0.0020	0.0004	-0.0002
3.00	0.9975	-0.0012	0.0001	0.0000

- $F_3^*(x) =$ Distribution function of the standardized sum of 3 i.i.d. logistic r.v.'s
- $\Phi(x)$ = Distribution function of the standard normal r.v.
- $G_3(x)$ = Edgeworth series approximation given by right hand side of equation (3.3).
- $H_3(x)$ = Distribution function of standardized student's t r.v. with 19 degrees of freedom, as given by equation (3.7).

.

REFERENCES

Antle, C. E., Klimko, L. and Harkness, W. (1970). Confidence intervals for the parameters of the logistic distribution. Biometrika 57, 397-402.

Berkson, J. (1944). Application of the logistic function to bio-assay. J. American Statist. Assoc. 39, 357-365.

Birnbaum, A. and Dudman, J. (1963). Logistic order statistics. Ann. Math. Statist. 34, 658-663.

Goel, P. K. (1975). On the distribution of standardized mean of samples from the logistic population. Sankhya 37, Series B, 165-172.

Gumbel, E. J. (1944). Ranges and midranges. Ann. Math. Statist. 15, 414-422.

Gumbel, E. J. and Keeney, R. D. (1950). The extremal quotient. Ann. Math. Statist. 21, 523-538.

Gupta, S. S. and Shah, B. K. (1965). The exact moments and percentage points of the order statistics and the distribution of the range from the logistic distribution. Ann. Math. Statist. 36, 907-920.

Hirschman, I. I. and Widder, D. V. (1955). The Convolution Transform. Princeton Univ. Press, Princeton, N.J.

Johnson, N. L. and Kotz, S. (1970). Continuous univariate distributions-2. Houghton-Mifflin Co., Boston, Mass.

Schaffer, R. E. and Sheffield, T. S. (1973). Inferences on the parameters of logistic distribution. Biometrics 24, 449-455.

Schoenberg, I. J. (1953). On Polya frequency functions 1: The totally positive functions and their Laplace transforms. J. d'Annal. Math. 1, 331-374.

Talacko, J. (1956). Perk's distributions and their role in the theory of Wiener's stochastic variables. Trabajos de Estadística 7, 159-174.

Tartar, M. E. and Clark, V. A. (1965). Properties of the median and other order statistics of logistic variates. Ann. Math. Statist. 36, 1779-1786.

Verhulst, P. F. (1845). Recherches mathématiques sur la loi d'accroissement de la population. Académie de Bruxelles 18, 1-38.

Widder, D. V. (1972). The Laplace Transform. Eighth printing. Princeton Univ. Press, Princeton, N.J.