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The Time to Failure of Cables Subjected to Random Loads

Howard M. Taylor
Cornell University

ABSTRACT

The effect on cable reliability of random cyclic loading such as

that generated by the wave induced rocking of ocean vessels deploying

these cables is examined . A simple model yielding explicit formulas is

first explored . In this model, the failure time of a single element under

a constant load is assumed to be exponentially distributed , and the random
• loadings are a two state stationary Markov process. The effect of load

on failure time is assumed to follow a power law breakdown rule. In this

setting, explicit results concerning the distribution of bundle or cable

failure time , and especially the mean failure time , are obtained. Where

the fluctuations in load are frequent relative to cable life, such as may
occur in long-lived cables, it is shown that randomness in load tends to

decrease mean cable life, but it is suggested that the reduction in mean

life often can be restored by modestly reducing the base load on the structure

or by modestly increasing the number of elements in the cable.

In later pages this simple model is extended to cover a broader range

of materials and random loadings. Asymptotic distributions and mean failure

times are given for cable elements that follow a Weibull distribution of

failure time under constant load, and loads that are general nonnegative

stationary processes subject only to some mild condition of asymptotic

independence . When the power law breakdown exponent is large , the mean

time to cable failure depends heavily on the exact form of the marginal

probability distribution for the random load process and cannot be summarized

by the first two moments of this distribution alone.

Ac LS~~~ i~r

~TtS ryt~ ~~~~~~

it~SflhGA1t~ N

py
1~~~fiI~iuO~ *V ~~t ~1fl~ CODES

*t . ~i.T ~~~~ ~ ~PLCIA(



- ‘ ~ --~~ — —--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
_______- ~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~-~~~~-~~~~~ ~~~~~~~~ - - -  ~~~~~- -~~—~~-

3

The Time to Failure of Cables Subjected to Random Loads

1.. Introduction.

The Naval Undersea Center in Hawaii is involved in the construction of

electromechanical cables for deep sea operation, some of which are 20,000

feet long. Kevlar_~49
t is being used in the strength members because of the

tremendous weight savings over steel, which can hardly support its own

• weight in these lengths. The severing of such cables is enormously expensive

because of the equipment involved on the ocean floor.

This paper examines the effect on cable reliability of random cyclic

loading such as that generated by the wave induced rocking of ocean vessels

deploying these cables. A simple model yielding explicit formulas is first

explored. In this model , the failure time of a single element under a

constant load is assumed to be exponentially distributed , and the random

loadings are a two state stationary Markov process . The effect of load on

failure time is assumed to follow a power law breakdown rule. In this

setting, explic~ t results concerning the distribution of bundle or cable

failure time, and especially the mean failure time, are obtained . Where

the fluctuations in load are frequent relative to cable life, such as may

occur in long-lived cables, it is shown that randomness in load tends to

decrease mean cable life , but it is suggested that the reduction in mean

life often can be restored by modestly reducing the base load on the struc-

ture or by modestly increasing the number of elements in the cable.

In later pages this simple model is extended to cover a broader range

trademark
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of materials and random loadings. Asymptotic distributions and mean failure

times are given for cable elements that follow a Weibull distribution of

failure time under constant load, and loads that are general nonnegative

stationary processes subject only to some mild condition of asymptotic

independence . Cable behavior in these more general circumstances may

differ from that found in the simple model first explored. The exact form

of the marginal distribution of the stationary load process seems critical

when the exponent in the power law breakdown rule is large.

-
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2. A simole model with deterministic loads .
w w- ~I~~’wvvwwv~~w~

A single fiber subjected to the time varying tensile load ~~t
) fails

at the random time T. We postulate the failure time distribution

Pr{T c t} 1 - exp(-. f ~ K[~.(s)]ds},

which corresponds to the failure rate or hazard rate r(t) = K[Q.(t)].

That is, a single fiber, having not failed prior to time t and carrying

load £(t), will fail during the interval Et , t1-~t) with probability

K [Z( t )]L~t + o(&t) where o(~t) denotes remainder terms of order less than

t~t as & vanishes.

The function K , called the breakdown rule, expresses how changes in

the load affect the failure probability . We concentrate on the power law

breakdown rule in which KU) = KR.~ for positive constants K and p.

Under a constant load 9~(t) E 9., the failure time of a fiber obeying power

law breakdown is exponentially distributed with mean E[TI2.J 1/KU) =

A plot of mean failure time versus load is linear on log-log axes,

a relationship which is commonly observed in fatigue and stress rupture

studies.

Phoenix (1976) gives the following estimates for p:

Strand type p

Kevlar-49/Epoxy

Graphite Fiber/Epoxy 78

S-Class/Epoxy 30

Beryllium Wire/Epoxy 26
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The analysis of cable behavior when p < 1 involves several additional

technical nuisances that do not signif icantly add to our understanding and

that are not present when p 
~ 
1. In—as-much as Phoenix’s estimates indi-

cate that a restriction to p ?. 1 is not severe in practice for some material

types, henceforth we consd der only values p ~ 1.

Now place n of these fibers in parallel and subject the resulting

bundle or cable to a total load, constant in time, of nL units, where L

is the nominal load per fiber. What is the probability distribution of the

time at which the bundle fails? In the next section we will see that the

affect of the constant load L and the power law breakdown coefficient K

can both be absorbed in a simple scale change. Therefore in the remainder

of this section we concentrate on a unit load L = 1 and K = 1.

Since the fibers are in parallel, the bundle failure time equals the

failure time of the last fiber. Let 
~l 

be the time that the first

(earliest) fiber fails, let S2 be the time that the second fiber fails,

and so on. The bundle carries total load nL = n , and at the start, assuming

equal load sharing, each of the n fibers carries load nL/n 1. Any

particular fiber has the survival distribution

Pr{T > t } = e_KWt; t ~ 0,

and S1, being the minimum of n such individual f iber failure times , has -:

a survival distribution which is the nth power of this,

Pr{ S
1 

> t} ~~~~~~~~ ~ ~ 0.

That is, S1 
has an exponential distribut ion with parameter nK(l).
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When the first fiber fails, each of the n-i remaining fibers carries

load nL/(n—l) n/(n-l) and has the failure rate K[n/(n-1)]. Since there

are n-i fibers remaining in the bundle, the rate at which the next

failure in the bundle occurs is (n-i) times this, or (n-l)K[nI(n-.i)],

which leads to

Pr(S2 
— S1 > t} = e /(n—i)Jt 

, ~~ > ~~~.

This reasoning continues, and we deduce that, when i fibers have failed,

the n-i remaining fibers each carry ioad n/(n-i) and have individual

failure rates KUn/(n-i)]. The rate at which the next failure occurs among

the n-i fibers remaining in the bundle is

Pr{S. - S. > t} = e
_ _ _i)]t

, ~ > o.
— 

~+l i =

This analysis allows us to write the bundle failure time Sn as a sum

of independent and exponentially distributed differences = S - S
1.

= 5
n—l 

— . . ,Y = S
1 

- S0 where S0 
0. That is

S = Y  + ...+Yn 1 n

where

Pr{Y
k 

> t} exp{- n~k~~~t}, t ~ 0.

We have
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E[Y
k
] = n k ~~

1
,

VarEYk
] ~-2 r k2~~

2
,

EfExp {_ sY
k
}] = n~k~~~/(s+n~k~~~)

= 1/(1 + sk~~~/n~) for s >

and

ECS ] 
~~~~ 

(k/n)~~
1(i/n) (2.1)

Var{S ] = (1/n) 
~~~ 

(k/n)2~~
2(1/n) (2.2)

• EEexp~-sS~ }] 1/ll~~~[l + s(k/n)~~~ (l /n ) ] , for s > -1. (2.3)

Asymptotic distribution. Study of the limiting distribution of S as n

becomes large divides into several cases according to the value of p . The

simplest case is, at the same time, the most important case in practice and

concerns p > 1. We concentrate on it. Then

u r n  E[S~] = jim r (.~.)P-l ~

rl p—i
= x dx = lip ,

u r n  ri Var[S ] = lim ~~ (~~) 2P_ 2 !

f ~ x
2
~~

2 dx = 1/ (2p— l) ,

which suggests that ~c(S~ - lip) should have a limiting distribution

whose mean is zero and whose variance equals l/(2P-l) . Indeed , this is the

case , the limiting distribution being normal (Gaussian). This may be
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established via Liapounov ’s central limit theorem or by a direct argument

invoking Levy ’s convergence theorem for moment generating functions. We

proceed with the latter approach. First

E[exp{—s/~(S~ — 

k=l 
(k)

P_l !)fl =

n ,— k p-l l

~k=l 
exp{sYn (—) —}

11k= 2. 
(1 + s1~ (

l o P 1  1)

- 

n ÷ s/~ (
l
~)P~~ 

1 
+ 
12 (k)

2P_2 ! + 0(n 3”2)
- 

~ + ~~~~~~ 
~~~~~~~~~~~ ~

= {l + 
12 (k)2P~

2 I 
+ o(n 3/2 )}

—-- ~~ exp{!s~ f 1 x2~~2 dx) = exp{!.s2/(2p~1)}.2 0 2

The limit above is an easy consequence of the lemma preceding Theorem 7.1.2

in Chung (1968). As the • limit function is the moment generating function

corresponding to a mean zero normal distribution having variance l/(2p-l),

this must be the asymptotic distribution for v’7 (S~ - ~~ (~.)P 1 
~~) .  But

Z = v~ (S - l/p) = &(S~— r (1~.)P 1  .
~
.) + R~

where
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K = ,/~~(~~fl (~$.)P~~ •~~ — lip).

= 
~~ 

(~.)P~~ ! - x’~~ dx).

k p-l p—i k—i p—i k k-l
Because p > I we have (—) > x ~ (—) whenever — > x >n — n n =  = n

whence

0 < R <  ii;;- ~ [ ( lo ) P~~ 
1 

- ( J0
~~~) P 1  1)

v”~ (!) (Collapsing sum.)

Thus R~ -
~ 0 as n -

~~ and it follows by Slutsky’s theorem (Cramer, 1945

Theorem 20.6, p. 254) that Zn 
= /~ (S

n 
- l/p) asymptotically shares the

same distribution as ‘
~~ 

- r (.!~.)P 1  i-). That is, Z~ is asymptotically

normally distributed with mean zero and variance l/(2p-l) as claimed.

It is often suggestive to write this result in the form

S l /p + Z / /~

where Z0 
has a limiting zero mean normal distribution with variance equal

to 1/(2p—l).

For what follows, let us define M (s) to be the number of unfailed

fibers at time s assuming the unit nominal load per fiber L = 1 and

power law coefficient K = 1. Then

M(s) = n for 0 ~ 
S < S1,

= n-i for S1 1 5 
< S2,

1 for S Is < S ,n-i—

0 for S < s ,

I

- - 



~ ~~~~~~~~~~~~~~~~~~~ -— -- — -

* 9

and is the sojourn time for the process in ~ t~it-- ~~~. Tr~ independent

exponential distributions for 
~n’ 

‘1
n-l’ ,Y1 

show that 91(s), s 01

is a pure death stochastic process with death rates

Pr{M(t+~t) k lIM(t) k} n~k
1
~~~t + o(~t),

• and S~ = inf{s ?. 0; M(s) 0) is the first time this process hits zero.

Time varying loads. Consider now a bundle of n fibers following power

law breakdown KU) = K9)~ and subjected to a total load nL(t) that may

vary with time. To avoid trivialities, assume that L(t) is strictly

positive for positive t, define

H(wIL) = KJ~ 
L(T)2dt

and let

G(s~L) H 1(slL)

be the inverse to the strictly increasing function H(.IL). For typographi- -- 
-

cal convenience we will often omit the load L from our notation and

simply write H(w) for H(wJL) and C(s) for G(sIL).

We will relate the time varying load problem to the constant load

problem by using H as a time scale change . Let N (t) be the number of

unfailed fibers at time t. Introduce the rescaled process

M(s) = N(t) where s H (tIL).
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- • Evaluate -

Pr(M(s+ds) k-lIM(s) = k} Pr~N(t+dt) = k—lIN(t) = k}

= k K (nL(t)/k)~ dt

= n~k~~~ds , since ds = KL(t)~dt,

to discover that M(s) evolves as a bundle of fibers carrying unit nominal

• load and for which K = 1. If W~ denotes the bundle failure time under

the time varying load, then S~ = H (W
~ IL) is the failure time of a bundle

subjected to a constant unit load and we have the explicit respresentaticn

W = G(S IL)n n

which relates the bundle failure time Wn under varying load and arbitrary

K to the failure time S~ under unit load and with K = 1.

Under a constant nominal load L(t) E L we have H(w) = KL?w , and

C(s) = s / ( K L ) so that W = S~ / (KrY ) and

W = l /(pKL~~) + Z ’ / v ~~, ( 2 . 4 )
n n

where Zt = Z~~/ ( K L ~~) is asymptotically normally distributed with mean zero

and variance equal to l/[i’zL~ /(20_l)]
2.

This analysis of bundle failure time under deterministic loads and

the assumed exponentially distributed failure times of single fibers under

constant load is due to Coleman (1958), and later, to Birnbaum and Saunders

(1958).

j
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While explicit results concerning bundles of finite size n are not

generally obtainable, the asymptotic normal distribution of bundle failure

times prevails under more general circumstances than so far indicated . In

particular, suppose that a single fiber subjected to a load £(s) for

s > 0 follows the failure time distribution

F ( t I 9 . )  = ‘i~(f ~ K 9 .( S )~~~d S )

for some cumulative distribution function ‘P. Introduce the notation

—l . . p
g(u) = ‘P (u) for the inverse function to ‘I’, and 4(y) = (l-y ) . Next,

let S~ be the failure time of a bundle of such fibers subjected to a unit

nominal load per fiber and for which K 1. For a broad class of functions

‘I’, Phoenix ( 1977) has shown that , asymptotically for large n , the standard-

ized bundle failure time Zn V’~{S0-1i} is normally distributed with mean

zero and variance ~
2
, where

p = f ~ 4 ( y)g ’(y )dy

= f ~ f ~ ~‘(u)$’(v)g’(u)g’(v)(uAv—uv )dudv ,

with “prime” denoting differentiation.

The most interesting special case concerns the particular function

‘flx) = 1 - exp{-cx~ } where c and n are fixed positive parameters.

In this case, the failure time T of a single fiber subjected to a constant

load £(t) I. follows the Weibull distribution

F(tjL) 1 — exp{— c (KLPt)C*}, t 2~0,
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and then

p = 
~~~~~~ 

J (l_y) tlog(~~~ )}~~~~~
’ady,

a
2 = 2( i,~~~~

)2 f~(~~v ) P (log(~~~~)) afv u (1• u ) 2{log(~~~~)}
l-a)/ adu dv.

The Weibull family possesses several properties that are desirable for

distributions of time to failure or strength of filaments. In particular,

if the time to failure of a typical segment of a filament follows a Weibuli

distribution , then the time to failure of a filament comprised of several

independent segments will also follow a (different) Weibull distribution .

For a review of the Weibull distribution in this context, see Harlow,

Smith and Taylor (1978), which contains other material as well.

When C = a 1 we return to the exponential case treated in such

detail in the beginning of this section , and then p = 1/p and

a
2 

= l/’2p-l), as may be verified easily.

Returning to the general Weibull distribution ‘V(x) = 1 - exp{_cxa),

if W0 is the failure time of a bundle having the time varying nominal

load per fiber of L(s) , S ~ 0, and whose breakdown rule has an arbitrary

value K , then again we have the representation

w = G(S IL)
ii 0

The crucial assumption here is the postulated power law breakdown rule

K ( L )  = KL~~. 
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Now suppose that the nominal load per fiber L(t) is a nonnegative

stationary process with mean E[L(t)] = L. We concentrate in this section

- ~- 
on the model where-in L(t) has only the two possible values L÷A and

L-~ , with 0 < ti < L, and where the sojourn time in each state is expon-

entially distributed with parameter A. This process is stationary

provided that we stipulate the initial probabilities Pr{L(0) = L + A) = 1/2.

Set a~ = K ( L+A )~ and a K(L-A)~. Figure 1 shows a typical path of

• H(w)  = H(wIL), given that L(0) = L + A.

H(w) slope =

slope a
+

i i  I
1 I

I I
I I

I J I 
_ _ _ _ _ _ _

w

FIGURE 1
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Given L(0) = L+A , the process H(w) increases linearly at rate a

for a duration which is exponentially distributed with parameter A. It

then increases linearly at rate a for a similarly distributed time , and

so on. The inverse function G(s) = H~~
( s) has a similar , but distinct ,

behavior. It increases at rate l/a+ for an exponentially distributed

time having parameter A/a
+
. It then increases at rate 1/a for an

exponentially distributed time having parameter Xia , and so on. We have

- 

- 

the representation

G( s) = Y (o) da

where {Y(o); a ~ 
0) in a two-state Markov process, the states being

i/a
÷ 

= l/[K(L+A)~] and l/a. = l/[K(L-A)~ ] and the times in these states

being exponentially distributed with respective parameters A/a
÷ 

and

A/a . The transition function for Y is known to be

P (a) = + 
_a~ exp{~ A(! + ~~ )a} ,

-- a
+
+a_ a

++a_ a
÷ 

a

and

a a
P (a ) = 

- 

— 

— exp {_ X( !. + ! ~°i.a + a  a + a  a a
+ 

- ÷ - + -

(See Karlin and Taylor (1975) Problem 7, page 154.) Since Y(0) = 1/a

or l/a_ wi th probability 1/2 each , we have
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C P (a) Pr{Y(a) = 1/a)

+ P (a) )

~~~~ a 
+ * ~: ÷

-~~)exp(~ X(~L +

and

P
÷

(o)  = 1 — P (a)

= 
~~~~ a 

- * ~ :I exP
~~

A
~~~ 

+ —)aI .

Then

E[Y(a)] = !_ P (a) + P (o)

= 
a~ a + * - 

~~ :I
exP

~~
X
~~~ 

+

which we abbreviate in the form E[Y(ø)] A + Be
_CU 

with

A = 2/(a ÷ a_ ), (3.1)

B ~~~~~~~~~~~ :-
~ 

(3.2)

and

C = A (-~-- + (3.3)

Then, since

S
W = J0

0y ( a ) d a  (3.4)
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we have

E[W ] = E{E[W IS ])

= E{f0
0(A + Be~~

0)da }

-CS
= A E [S ] i- (B/C ){l — E[e ‘

~~]}. (3.5)

In conjunction with equations (2.1) and (2.3), this provides an explicit

formula for the mean time to bundle failure under the random load L.

While Equation ~~~~~~~~~~~ is explicit , it never-the-less remains clumsy .

The f ormula simplifies in certain extren~ c’~ses, however, which enables

us to gain some insight as to how random loads affect mean bundle failure

times. When A becomes small, the frequency of the load fluctuations

decreases and in the limit, when A 0, the load process remains at

whichever level it began . We then have

lim E[W ] = (A + B)E [S ]
A40

2 
+ 

1 ( 1 
- 

1 +  
- 

] .
a+ 

+ a 2 a_ a
+ 

a
÷ 
s a n

If we postulate that A is small compared to the base load L, and that

p is moderate so that 0 < pA << L, we have the Taylor series expansions

a~ = K(L s~ A )’~ ~ KL~ (l 4. 
~~~~ + 

P(P-l)(~~)
2
)

and
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u r n  EEW ] ~ 
1 + ~~~~~~ (~~)2 

~ (~~ )
2)E[S ]

- 

~ (l/K L~~) (1 ÷ *p ( p ~~~
) ( A/ L ) 2 }E[S0], 0 < pA << L. (3 .6 )

Now it is doubtful that the mean failure time is a relevant criterion of

reliability in the extreme case at hand since half the time the bundle will

encounter the heavy load L + A and will fail relatively quickly. Never-

the-less, recalling that the mean failure time under no random load (A 0)

is (i/KL~ )E[S0], we see from 
(3.6) that the randomness has actually

increased the mean failure time. That under certain circumstances randomness

could actually increase mean failure times was a surprising discovery .

Much more relevant in practice , it would seem, is the case where A

is large since this corresponds to many random fluctuations in the load

prior to bundle failure. Letting A + we have

lirn EiW I = A ELS In n

2 -Ets ].
a
+
+ a  0

When p > 1 we have the convexity inequality that (a+ + a ) /2 =

(K/2) (L + A)~ + (K/2) (L — A)~ > KL~~ whence

u r n  E[W~ ] = 
a~ ~ a_

E[Sn]

< (1/KL~) E[S ].

The latter being the strength under no random stress, we conclude that

rap id~y~ varying random loads always decrease mean failure time.
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If we introduce the notion of an equivalent load Leq where

L0 = (L + A )~ + (L - A )P we observe that a bundle under the random
eq 2 2

- 

— load L + A has a mean failure time equal to that of a bundle under the

fixed load Leq when A -
~

Let us highlight from (3.5) that the design formula lim
~~~ 

E[W ]

= A E[S0
] = 1/(KPL~q 

) is conservative in the sense that E[W
n
] 

:~~. 
A E[S

n
]

for all A . As already pointed out, the presence of rapidly fluctuating

random loads tends to decrease mean failure time, and it is of major interest

to estimate the additional number of fibers that would be needed to restore

the loss. An increase to 01 
fibers from fibers will decrease the

equivalent load to (no/rii
)Leq and this is equated to the deterministic

design load L to obtain

n L

n0 L

This ratio Leq/L~ 
as a function of A/L for various values of 

~~ 
is

evaluated in the next section, along with the same ratio under some different

distributions for the stationary load process. 
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It is possible, on the one hand, to extend the preceding analysis to

cover quite general stationary load processes, and on the other, to refine

the analysis and obtain some information concerning the random fluctuations

in failure time about the asymptotic mean . The key to this further analysis

is a far reaching generalization of the central limit theorem due to

— Stratonovich (1968) and Has’minskii (1966) which we enunciate only in a

- 
~

- very limited case that suffices to meet our needs. Let (L(-t); t > 0) be

• a stationary process taking values in the strictly positive bounded interval

[L . ,L 3. Let
mm max

• L = E[L(t)] and Leq =

Let be the a-algebra of events generated by L(t) for s ~~, t ~~, t

and assume an asymptotic independence for L(r) in the form

sup{)P (BIA) - P(B)I; A o F~ , B € F ÷
} < B(s)

where B(s) -~ 0 as s + ~ sufficiently fast so that 5
68(s) + 0 as well.

Let F(P.) be a smooth function of 9., bounded on the interval [L . , Lmm max

and for which ECF(L(t))] 0, and

u r n  ~ f ~ f ~ E[F(L(s))F(L(a))]do ds ~2 ‘ 0.

Next , for a fixed A ~ 0, consider the solution Zx(t) to the differential

equation
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dZ
x
(t)Idt = ~~ F(L(At)), ZA

(0) = 0.

Of course, the solution is ZA
(t)  = vT f ~ F(L(As))ds = (l//r) 

~ 
At F(L( v ))dv

Note that large values for A correspond to load processes L
x
(s) = L(ks)

having “many fluctuations” prior to time s, or alternatively , observing

the fixed load process L(v) over the long duration At. That is, large

values for A are quite relevant to many cable design situations. The

result of Stratonovich and Has’minskii, restricted to the case at hand ,

asserts that, as A -‘ ~~~, the processes (Z
A
(t), t ~~ . 

o} converge weakly in

the space of continuous functions to a Brownian motion process having

variance parameter ó2.

We apply this result using for F the smooth function

F( 2.) = K( 9 .~ — L~ ), L . < t < L
eq mmn = max

whence

Zx (t) = ~~ K { f ~ L
~

(s )
~
ds - L:q t}

= /5 {H~(t) - KL:q t}

where LA(s) L(Xs) and }I
A
(t) = K f ~ LA

(s)
~ 

ds. We conclude that

{Z
A
(t), t ~ 0} is, asymptotically f or large A , a Brownian motion . The

next step is to relate this convergence to the behavior of GA(S) Hz(s).

To this end, define

V A
(s) = ñ {G

A
(s) - S/(KL:q)).
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A careful study of Figure 2 will reveal that

VA (s)=~~
(l/K L~q

) ZA IGA (S)].

Now when A is large, we know via the ergodic theorem for stationary

processes that HA
(t) = K f ~ Lx (s)

~
ds = K(~~ ) J

XtL(v)Pdv is near its mean

value K L q 
t~ and hence, 

for the inverse, that GA
(S)

slope = K L~q

HA
(w )

K L ~ C (s)
eq A

5 — — — — — — —  — — H~(G~ ( s) )

I I
I I
I I
I I

s/(K i? ) G (s) w
eq A

FIGURE 2: Showing that

K L~g 
GA (s) - Hx{G A ( s ) )

slope K Leq G A ( s)  - s / ( K  L~q
) —

or ~/T(G A ( s )  - s/(K L q)}= -(1/K L~q
)*/T(H~[G~(sfl - K I.

~ q
GA
(S)}

~

L~~~~~~~~I
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~~. is near s /(K  L q)• 
To be precise, these convergences take place with proba-

bility one uniformly on compact s intervals. We exploit this by writing

V
~
(S) = — (1/K L~q

) Z
A
(s/K L

q
) -(1/K L:q) RA

( s)

where

R
A

( s) = Z
x

(G
A

( s) )  — Zx (s/K L~ q ) •

We claim that Rx
(s) converges to zero in probability uniformly on

compact s intervals, and consequently , that VA (S) converges weakly to

a Brownian motion process. We begin to establish this claim by invoking

Skorodhod ’s theorem (Skorodhod (1965) Section 6, p. 9) irnplying in this

situation that (with probability one in some probability space) we may

suppose that the processes ZA
(w) converge uniformly on compact w

intervals to a Brownian motion Z~(w) having variance parameter 62 We 
•

then have

lim R x
( s ) = lim {Z

A
(GA(s)) — Z

~
(G x(s))}

+ lim{Z
~

(G
A

( s) )  — Z,,,(s/K L ) )

+ 1im{Z~(s/K L~q) 
- ZA(s/K L~q

)}

= 0 ,

where again the convergence is uniform on compact s intervals in view of
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the inequality s /(K  L
~ax

) 
~ G~ (s)  ~ S/CK L~ 1~~). It follows that

1mm Vx
(S) = —(1/K L~q ) Z~ ( s/K L q )

V~,(s)

where V~(s) is a Brownian motion process having variance parameters

E[V 0,(l)
2] = 6

2
/ ( K  L:q

)3.

As an illustration, we evaluate 62 for the two state Markov load

process T.kr) that introduced our study of random loads. Recall that the

possible states are L ± A , and denote the transition function for L (r)

by Q in the form Q4.(t) Pr{L(r) L - AIL (o) = L + A),etc. We have

Q (a)  = Q
÷

(a) 
~~~ 

÷ e
2
~~)

and

Q
÷
(a) Q~~ (a)  = ~(l - e 2A

~ ). 
•

Since L ( t ) ~ is equally likely to beg in in either of its states, its mean

value is E C L ( t ) ~~J = *(L+A)~ 
+ *(L-A)’~ 

= L
q i and for a < ~t ,

E[L(a)~ L(i)~ I = ( l /2K 2 )[a
÷
a

÷
Q~ ÷

(r -a )  + a a  Q ( i -a )

+ a a ~ Q
÷
(t - a)  + a a  Q (t-o)j
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which , after subtracting the product of means E[L(t)~ L( o )’~] = L~~ and

simplyfying leads to the covariance

E [ F ( L ( a ) ) F ( L ( r ) ) ]  = K Cov[ L a ~~, L(t)~]

2 — 2A 1t—o Ie

where B = (a÷
—a )/2 [(L+A)~ — (L—A )2]/2.

Then

5~ 5~ E[F(L(s))F(L(o))]da ds B~ 
f ~ f~ e

2A
~~~

0) da ds

(82/2A) f ~ (l_ e
2X5

)ds

= (8 /2A)~T + (2A) 1(e
_ 2AT 

-

and

62 = 1im~~ 
f ~ f ~ E [F(L( s) ) F ( L ( a) ) ]da ds 82/A .

That is, 62 = A~~[(a4.-a_ )/2]2 = A~~[K ((L+A)~ - (L A)~ )/2].

Returning to the general stationary load process, let us consider

large bundles (n-~°) and set A On so that A becomes infinite with

n. We have, on the one hand,

= Z
n n

where Zn 
has a limit normal distribution with mean zero and variance a2;

while on the other hand
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V
a
(S) = V’(Ofl){Gøn

(S) - s/ ( K  L~q
))

is converging weakly to a Brownian motion process V,~ having variance

coefficient 6
2/(K t~ q

)3~ Since the bundle failure time W~ is given by

Wn = G
00

(S
0
), we write

- p /(K L~q
)} = v’~(G

00
(S0
) - S~/(K L~q 

)} + /i~{S
0
—p)/(K L

q
)

= (l//ë ) Vn0
(Sn) 1~ Z~/(K L~q

)

= (l/ I~ ) V
0
(p) + Z~/(K L~q

) +

where

= (l/Jö)(V 00
(S~) — V

e
(p)}.

Now lim~~~ Sn 
= p, while V

0 
is converging (uniformly on compact intervals)

to the Brownian motion V00, and Z0 is converging to the normally distri-

buted random variable Z. Thus 4. 0 in probability and we have the

weak convergence

- p I (K L~q 
) )  (l/’~~~

) V~(p) + z/(K L:q).

It follows that, asymptotically for large n, the standardiz ed failure

time vc {Wn - p/(K Li q)} is normally distributed with mean zero and

var iance

2 2

(K L:q ) 3
6 

+ 
( K  L~q

)2
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We see that random loads add a term to the variance of the failure

time in addition to decreasing the asymptotic mean failure time from

p / ( K  i?) to p / ( K  L~q
).

Let us suppose that n0 is the number of fibers needed to achieve a

prescribed target mean cable lifetime under a fixed load L, and that n1

is the greater number of fibers needed to achieve the same target mean

cable life under a random loading L(T) having an associated L =

As shown earlier , we have the equivalence n
1/n0 

= L / L

so that the ratio Leq/L 
provides some measure of the increased “cost”

associated with random loads. This ratio is sensitive to the fiber break-

down rule parameter p and the marginal distribution of the load process

as we shall see.

Let A
2 E[(L(t) - L)2] be the variance of the load process. When

A is very small relative to L and p is moderate, so that pA

remains small, we have the Taylor series approximation

Leq
/L = {E [(L( r ) /L)~ ]}~~~

= {E[(l + L(t)-L)P]}l/P

1 A 2 l / p
= (1 + 

~~~~~~ ~

On the other hand , suppose that Lmax is the essential supremum of L ( r )

• in that Pr{L(T) > L - c} > 0 for any c > 0 while Pr{L(r) ~~. L } = 1.max — max

Then, as is well known (see e.g. Taylor, A.E. (1958) p. 91)

lim L = lim {E[L(~~)’~]}
1”
~ = L

- p-’~ eq p-’~ max

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
______________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
. -•• ________
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That is, the behavior of Leq 
for large values of p is quite distinct

from that at small values. To obtain a better understanding of the effect

of ~ 
on the ratio explicit formulas have been derived in several

special cases.

( I )  Recall that when L( r ) = L + A , each with probability 1/2, then

— Leq
/L = {*(l+A/L)

~ 
+

(II) Suppose that L(t) is normally distributed with mean L and variance

— A
2. Then for p = 2m , where m = 1,2,... we have

Leq/L = (E[ 1 ÷

~~~~ :~: 
(
k
)E[( T

~~~~
2k
])1~~

( 1 + 
~~~ 

2(k!)(p-2k)! 
(A /L)2k)l/P.

(III) Suppose L(t) is uniformly distributed on the interval [L-A , Li-A].

Then E[L(t)] = L and Var [L(r) = A
2 

A
2
/3, while - -

= 
~~~ 

x~dx = 
(L+A)~ - (L-A)~~~

Then

Leq/L = 
(2A(1+P) 

[( l+A/L ) 1
~~ - (l_ A/L) P

))l~~

= [ - 
L [(1 + ~~A/L ) 1i-~ - (1- ~~AIL)~~~~~

1
~~.

L. 2v5A( 1+P ) )
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Leq/L as a function of the coefficient of variation A/L for various

values of p and distributions I, II and III is depicted in Figure 3. It

is readily apparent that the ratio depends strongly on the form of the

distribution of the random loads and cannot , for example , be adequately

summarized by the mean and variance of this distribution alone , even at

modest values of A/ L .  This dependence on the load distribution becomes

more acute at the higher values of p.

• It is clear that parallel systems whose elements exhibit fatigue 
of

the power law breakdown type should be designed with caution when randomly

varying loads may be encountered.
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Coefficient of variation of 1oad~ A/L

Figure 3: The loss in efficiency due to random loads as measured by L /L
versus -the coefficient of variation A/L of the random load process for -

various values of the fatigue parameter p. . Curves I, II and III correspond
i~o twb-valued loads, normally distributed loa4s and uniformly distributed
loads, respectively. -
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