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The Time to Failure of Cables Subjected to Random Loads

Howard M. Taylor
Cornell University

ABSTRACT

The effect on cable reliability of random cyclic loading such as
that generated by the wave induced rocking of ocean vessels deploying
these cables is examined. A simple model yielding explicit formulas is
first explored. In this model, the failure time of a single element under
a constant load is assumed to be exponentially distributed, and the random
loadings are a two state stationary Markov process. The effect of load
on failure time is assumed to follow a power law breakdown rule. In this
setting, explicit results concerning the distribution of bundle or cable
failure time, and especially the mean failure time, are obtained. Where
the fluctuations in load are frequent relative to cable life, such as may
occur in long-lived cables, it is shown that randomness in load tends to
decrease mean cable life, but it is suggested that the reduction in mean
life often can be restored by modestly reducing the base load on the structure
or by modestly increasing the number of elements in the cable,

In later pages this simple model is extended to cover a broader range
of materials and random loadings. Asymptotic distributions and mean failure
times are given for cable elements that follow a Weibull distribution of
failure time under constant load, and loads that are general nonnegative
stationary processes subject only to some mild condition of asymptotic
independence. When the power law breakdown exponent is large, the mean
time to cable failure depends heavily on the exact form of the marginal
probability distribution for the random load process and cannot be summarized

by the first two moments of this distribution alone.
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The Time to Failure of Cables Subjected to Random Loads

1. Introduction.
AN VLV

The Naval Undersea Center in Hawaii is involved in the construction of
electromechanical cables for deep sea operation, some of which are 20,000
feet long. Kevlar—ug+ is being used in the strength members because of the : i
tremendous weight savings over steel, which can hardly support its own
weight in these lengths. The severing of such cables is enormously expensive i;
because of the equipment involved on the ocean floor.

This paper examines the effect on cable reliability of random cyclic
loading such as that generated by the wave induced rocking of ocean vessels

deploying these cables. A simple model yielding explicit formulas is first i

explored. In this model, the failure time of a single element under a
constant load is assumed to be exponentially distributed, and the random

loadings are a two state stationary Markov process. The effect of load on

s 1 o N i B 5 A e

failure time is assumed to follow a power law breakdown rule. In this
setting, explicit results concerning the distribution of bundle or cable
failure time, and especially the mean failure time, are obtained. Where
the fluctuations in load are frequent relative to cable life, such as may
occur in long-lived cables, it is shown that randomness in load tends to
decrease mean cable life, but it is suggested that the reduction in mean
life often can be restored by modestly reducing the base load on the struc-

ture or by modestly increasing the number of elements in the cable.

In later pages this simple model is extended to cover a broader range
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of materials and random loadings. Asymptotic distributions and mean failure
times are given for cable elements that follow a Weibull distribution of
failure time under constant load, and loads that are general nonnegative
stationary processes subject only to some mild condition of asymptotic
independence. Cable behavior in these more general circumstances may
differ from that found in the simple model first explored. The exact form
of the marginal distribution of the stationary load process seems critical

when the exponent in the power law breakdown rule is large.
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2. A simple model with deterministic loads.
AN NN NN

A single fiber subjected to the time varying tensile load (t) fails

at the random time T. We postulate the failure time distribution
PeiT < t} = 1 ~ expl~ fg K[e(s)lds},

which corresponds to the failure rate or hazard rate r(t) = K[&(t)].

That is, a single fiber, having not failed prior to time t and carrying
load 2(t), will fail during the interval [t, t+At) with probability
K[2(t)JAt + o(At) where o(At) denotes remainder terms of order less than
At as At vanishes.

The function K, called the breakdown rule, expresses how changes in

the load affect the failure probability. We concentrate on the power law

breakdown rule in which K(&) = k2P for positive constants «k and »p.
Under a constant load &(t) = &, the failure time of a fiber obeying power
law breakdown is exponentially distributed with mean E[T|2] = 1/K(R) =

£_p/x. A plot of mean failure time versus load is linear on log-log axes,

a relationship which is commonly observed in fatigue and stress rupture

studies.

Phoenix (1976) gives the following estimates for p:

Strand type ol t
Kevlar-49/Epoxy 42 g
Graphite Fiber/Epoxy 78 f
S~Glass/Epoxy 30 ﬁ

Beryllium Wire/Epoxy 26




The analysis of cable behavior when p < 1 involves several additional
technical nuisances that do not significantly add to our understanding and
that are not present when p > 1. In-as-much as Phoenix's estimates indi-
cate that a restriction to p > 1 1is not severe in practice for some material

types, henceforth we consider only values p > 1.

Now place n of these fibers in parallel and subject the resulting
bundle or cable to a total load, constant in time, of nL wunits, where L

is thenominal load per fiber. What is the probability distribution of the

time at which the bundle fails? 1In the next section we will see that the
affect of the constant load L and the power law breakdown coefficient «
can both be absorbed in a simple scale change. Therefore in the remainder
of this section we concentrate on a unit load L =1 and « = 1.

Since the fibers are in parallel, the bundle failure time equals the
failure time of the last fiber. Let Sl be the time that the first

(earliest) fiber fails, let S, be the time that the second fiber fails,

and so on. The bundle carries total load nL = n, and at the start, assuming
equal load sharing, each of the n fibers carries load ul/n = 1. Any

particular fiber has the survival distribution

Pr{T > t} = e_K(l)t;

and S,, being the minimum of n such individual fiber failure times, has

19

a survival distribution which is the nth power of this,

Pris, >t} = e PK(L)E

That is, S, has an exponential distribution with parameter nK(1l).

b




When the first fiber fails, each of the n-1 remaining fibers carries

load nL/(n-1) = n/(n-1) and has the failure rate K[n/(n-1)]. Since there
are n-1 fibers remaining in the bundle, the rate at which the next

failure in the bundle occurs is (n-1) times this, or (n-1)K[n/(n-1)],
which leads to

o (-L)la/(e-100c . 0.

2 =

Pr{82 = Sl > &} =

This reasoning continues, and we deduce that, when 1 fibers have failed,
the n-i remaining fibers each carry load n/(n-i) and have individual
failure rates K[n/(n-i)]. The rate at which the next failure occurs among
the n-i fibers remaining in the bundle is

e—(n-i)K[n/(n-i)]t

Pr{s, , - 8; > t} = e ks

This analysis allows us tc write the bundle failure time Sn as a sum
of independent and exponentially distributed differences Y. =S - 8§

Al n n-1°

Y2 = Sn-l - Sn-2""’Yn = Sl - S0 where S0 = 0. That is

where

Pr{Yk >t} = ekp{— 0Pk Pt}

s T

v
o

We have




ELY, ] = Pl

Var[Yk] = n-2p k2p—2,

E[Exp{-sY, }] 2°xXP s (s+nPx1 )

1/(1 + sk /oP) for s > —npkl‘p,

and

ELs 1 = Ip., G/ ha/n) (2.1)
var[s_1 = (1/n) [P (/m)*® %(1/n) (2.2)

)p"l

E[exp{—ssn}] = l/Hizl[l + s(k/n (L/n)l for s > -1. (2.3)

Asymptotic distribution. Study of the limiting distribution of Sn as n

becomes large divides into several cases according to the value of p. The
simplest case is, at the same time, the most important case in practice and

concerns p > l. We concentrate on it. Then

4 3 n kyp-11
Mo RIS 3= 1s ) . =

n->e N-»0

o S g e e,

¢ WRE " N L |
lim n Var[Sn] = lim 2k=l ) =
n- n-
= é 7 gy 1/(2p-1),

which suggests that Zn = /;ISn - 1/p) should have a limiting distribution
whose mean is zero and whose variance equals 1/(2p-1). Indeed, this is the

case, the limiting distribution being normal (Gaussian). This may be
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established via Liapounov's central limit theorem or by a direct argument
invoking Levy's convergence theorem for moment generating functions. We

proceed with the latter approach. First

n
Elexpl-sv/als_ - )} (P )] =

k=1

H:zl expl{s/n LE)D A %}

e, {1+ s &Pt Ly
$ k-1 1
k=1 a4y S'/IT (_I;) E

n
4 ﬂ' 1.2k\20-2 1 -3/2
= {l+§s (n) n+0(n )}
k=1

12 (1 2p-2 5 3 SO
=2 expl3s IO X dx} = explzs™/(20 1)3.

The limit above is an easy consequence of the lemma preceding Theorem 7.1.2

in Chung (1968): As the limit function is the moment generating function

corresponding to a mean zero normal distribution having variance 1/(2p-1),

this must be the asymptotic distribution for vn (Sn - z; (EJQ-I &Q. But
n n

et W

2= Va(s, - 1/p) = Yas - [T (5PH Ly 4 r

n

where

it e




R = /n(]] (%0””1 % ~ 1fg).

s EPTH - T ax).

k k-1
whenever — > x > ~
n= =n

- -1
Because p > 1 we have (E)p \ 2 x° B

whence

Thus Rn +0 as n »+ = and it follows by Slutsky's theorem (Cramer, 1345
Theorem 20.6, p. 254) that Zn = /n (Sn ~ 1/p) asymptotically shares the

. . . k.p~1 : § 3
same distribution as V/n (Sn - Zl (EJD %J. That is, 2 is asymptotically
normally distributed with mean zero and variance 1/(2p-1) as claimed.

It is often suggestive to write this result in the form

8, = 1lp * zn/JE

where Z has a limiting zero mean normal distribution with variance equal
to 1/(2p-1).

For what follows, let us define M(s) to be the number of unfailed
fibers at time s assuming the unit nominal load per fiber L =1 and

power law coefficient « = 1. Then

n
=

M(s) for. 0 s SS

l,
= n-1 for Sl - 82,
= <
L for Sn-l <5 Sn’
=0 for Sn £8,




[

is the sojourn time for the process in state k. The independent

and Yk

exponential distributions for Yn’ Yn-l""’Yl show that {M(s); s > 0}

is a pure death stochastic process with death rates
o s Ol
Pr{M(t+At) = k-1|M(t) =k} = n"k” "At + o(At),

and Sn = inf{s > 0; M(s) = 0} is the first time this process hits zero.

Time varying loads. Consider now a bundle of n fibers following power

law breakdown K(2) = x2° and subjected to a total load nL(t) that may
vary with time. To avoid trivialities, assume that L(t) is strictly

positive for positive t, define
H(w|L) = «[y L()dr
and let
G(s|L) = H (s |L)

be the inverse to the strictly increasing function H(+|L). For typographi-
cal convenience we will often omit the load L from our notation and
simply write H(w) for H(w|L) and G(s) for G(s|L).

We will relate the time varying load problem to the constant load
problem by using H as a time scale change. Let N(t) be the number of

unfailed fibers at time t. Introduce the rescaled process

M(s) = N(t) where s = H(t|L).
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Evaluate

Pr{M(s+ds) = k-1|M(s) = k} = Pr{N(t+dt) = k-1|N(t) = k}

k « (nL(t)/k)? dt

npkl—pds, since ds = KL(t)pdt,

to discover that M(s) evolves as a bundle of fibers carrying unit nominal
load and for which «k = 1. If Wn denotes the bundle failure time under
the time varying load, then Sn = H(WnlL) is the failure time of a bundle

subjected to a constant unit load and we have the explicit respresentaticn
W, = G(SnlL)

which relates the bundle failure time Wn under varying load and arbitrary
K to the failure time Sn under unit load and with « = 1.
Under a constant nominal load L(t) = L we have H(w) = Kpr, and

G(s) = s/(xL") so that W= Sn/(KLp) and

W= 1/(ekL?) + 21 /A, (2.4)
where Zé = Zn/(KLp) is asymptotically normally distributed with mean zero
and variance equal to 1/0xL? /T§5:1712.

This analysis of bundle failure time under deterministic loads and
the assumed exponentially distributed failure times of single fibers under
constant load is due to Coleman (1958), and later, to Birnbaum and Saunders

(1958).




While explicit results concerning bundles of finite size n are not

generally obtainable, the asymptotic normal distribution of bundle failure
times prevails under more general circumstances than so far indicated. In
particular, suppose that a single fiber subjected to a load 2(s) for

s > 0 follows the failure time distribution
F(t[2) = ¥([§ ka(s)Pds)

for some cumulative distribution function V¥. Introduce the notation

glu) = W-l(u) for the inverse function to V¥, and ¢(y) = (l-y)p. Next,
let Sn be the failure time of a bundle of such fibers subjected to a unit
nominal load per fiber and for which k = 1. For a broad class of functions
¥, Phoenix (1977) has shown that, asymptotically for large n, the standard-
ized bundle failure time Zn = /E{Sn—u} is normally distributed with mean

. 2
zero and variance o, where

J'é ¢(y)g' (y)dy

)
n

o’ =[5 I3 8" @' (v)g' (wg' (v) (uav-uv)dudv,

with "prime" denoting differentiation.
The most interesting special case concerns the particular function
¥(x) = 1 - exp{-cx”} where ¢ and o are fixed positive parameters.
In this case, the failure time T of a single fiber subjected to a constant

load 2(t) = L. follows the Weibull distribution

F(t|L) = 1 - expl- c(xt”)®}, t 20,
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and then

Aot | 1 p-1 1 y1(1-a)/a
e acl/a jo(l~y) {log(l_y)} dy,

02 = 2(——172——3)2 fé(l-v)p-l{log(i%;)}(l-a)/ufgu(l«u)p-z{log(i%a)}(l_a)/adu dv.
ac kL

The Weibull family possesses several properties that are desirable for
distributions of time to failure or strength of filaments. In particular,
if the time to failure of a typical segment of a filament follows a Weibull
distribution, then the time to failure of a filament comprised of several
independent segments will also follow a (different) Weibull distribution.
For a review of the Weibull distribution in this context, see Harlow,
Smith and Taylor (1978), which contains other material as well.

When c¢ = a = 1 we return to the exponential case treated in such
detail in the beginning of this section, and then u = 1/p and
02 = 1/(2p-1), as may be verified easily.

Returning to the general Weibull distribution ¥(x) = 1 - exp{-cx’},
i Wn is the failure time of a bundle having the time varying nominal

load per fiber of L(s), s > 0, and whose breakdown rule has an arbitrary

value Kk, then again we have the representation

W= G(Sn]L)

The crucial assumption here is the postulated power law breakdown rule 3

K(2) = k2P, .




|

Now suppose that the nominal load per fiber L(t) is a nonnegative
stationary process with mean E[L(t)] = L. We concentrate in this section
on the model where-in L(t) has only the two possible values L+A and
L-A, with 0 < A < L, and where the sojourn time in each state is expon-
entially distributed with parameter A. This process is stationary
provided that we stipulate the initial probabilities Pr{L(0) = L + A} =1/2.

Set a, = k(L+A)?  and a_ = k(L-0)°. Figure 1 shows a typical path of

BN

"

H(w) = H(wIL), given that L(0)

H(w) slope = a_

FIGURE 1




Given L(0) = L+A, the process H(w) increases linearly at rate a,
for a duration which is exponentially distributed with parameter A. It
then increases linearly at rate & for a similarly distributed time, and

so on. The inverse function G(s) = -

(s) has a similar, but distinct,
behavior. It increases at rate 1/a+ for an exponentially distributed
time having parameter A/a+. It then increases at rate 1l/a_  for an

exponentially distributed time having parameter A/a_, and so on. We have

the representation
s
6(s) = [, ¥(o)do

where {Y(0); o > 0} in a two-state Markov process, the states being
l/a+ = 1/[x(L+A)°] and 1l/a_ = l/[K(L—A)p] and the times in these states

being exponentially distributed with respective parameters A/a+ and

A/a_. The transition function for Y is known to be
a a
= & 1 1
P (o) = + exp{-A(= + = )ol,
- a,ta_  ata oyt
and
a a
o = 1 1
P (o) = - exp{-A(= + = )o}.
+- ata.  a ta a, a

(See Karlin and Taylor (1975) Problem 7, page 154.) Since Y(0) = l/a+

or 1l/a_ with probability 1/2 each, we have




W ,v-:zﬁm::-*ﬁ-ﬁ'h'rﬁmm' 3
- - SRt 1 5
k-]

P_(o)

and
P+(o) =

Then
=1
ELY(0)] = a
- a+

which we abbreviate in

and

Then, since

= Pri{Y(0) = 1/a_}
=P () + P (o))

2 +- e

a gni—a 5

o S . 1
= PR (e G

a+ + a_ 2 (a+ + a_)exP{ A(a+ i a_)O}
1l - P_(c)

a, e T i >
a_+a_ | (a+ + a_)exP{-A(E: * Ej)d}'

1

P+(o) + 5? P_(0)
2 A ! A i 1
TEREL ot R m e

o
the form E[Y(9)] = A + Be < with

+
: A A S
i 5'(5—-- E_)(a + a )
- + + -

S
- n
W= [,"y(o)do

(3.1)

(3.2}

(3.3)

(3.4)

15




we have

ELW_] E{E[wnlsn]}

5 c
E(f,"(A + Be™*)do}

~(8
A E[s 1+ (B/C){1 - Ele i (3.5)

In conjunction with equations (2.1) and (2.3), this provides an explicit
formula for the mean time to bundle failure under the random load L.
While Equation (3.5) is explicit, it never-the-less remains clumsy.
The formula simplifies in certain extreme czses, however, which enables
us to gain some insight as to how random loads affect mean bundle failure
times. When X becomes small, the frequency of the load fluctuations
decreases and in the limit, when X = 0, the load process remains at

whichever level it began. We then have

lim E[W_] = (A + B)E[S_]
o ° G
% 5 2.1 S, A
it TR AR ey
+ - - + °+ -

If we postulate that A 1is small compared to the base load L, and that

p 1is moderate so that 0 < pA << L, we have the Taylor series expansions

ne

kLP(1 + pb/L + 35%112(902)

L Y
. (L + A) T

and
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1
olo-1) A2 '

1im E(W 1 %
A40 KL

]
—~
N’

-~

pA 2
. (—ﬁ—) }E[Sn]

ne

(W/k1P) (1 + 5 0(+1)(8/L)°JELS T, 0 < pA << L. (3.6)

Now it is doubtful that the mean failure time is a relevant criterion of
reliability in the extreme case at hand since half the time the bundle will
encounter the heavy load L + A and will fail relatively quickly. Never-
the-less, recalling that the mean failure time under no random load (A = 0)
is (l/KLp)E[Sn], we see from (3.6) that the randomness has actually
increased the mean failure time. That under certain circumstances randomness
could actually increase mean failure times was a surprising discovery.

Much more relevant in practice, it would seem, is the case where A
is large since this corresponds to many random fluctuations in the load

prior to bundle failure. Letting A * @ we have

iiﬂ E[Wn] = A E[SnJ
e 2
e T v

When p > 1 we have the convexity inequality that (a+ +a_)/2 =

(c/2) (L + 8)° + (¢/2) (L - 8)° > «” whence

2
lim E[W ] = ———E[S_]
X n RE e

< /e’y Els_1.

The latter being the strength under no random stress, we conclude that

rapidly varying random loads always decrease mean failure time.
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1f we introduce the notion of an equivalent load Leq where
(> e e ol - AP
L = 5-(L + &) ¢+ 5-(L )" we observe that a bundle under the random

eq
load L + A has a mean failure time equal to that of a bundle under the

fixed load Leq when A > @,
Let us highlight from (3.5) that the design formula limx*a E[W ]
n

A E[Sn] = 1/(KpL2q ) 1is conservative in the sense that B[wn] > & els 1
= n

for all A. As already pointed out, the presence of rapidly fluctuating
random loads tends to decrease mean failure time, and it is of major interest
to estimate the additional number of fibers that would be needed to restore
the loss. An increase to n, fibers from n, fibers will decrease the

equivalent load to (no/nl)Leq and this is equated to the deterministic
design load L to obtain
n L
1. _eg
n e

0

This ratio Leq/L as a function of A/L for various values of p is

evaluated in the next section, along with the same ratio under some different

distributions for the stationary load process.
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It is possible, on the one hand, to extend the preceding analysis to
cover quite general stationary load processes, and on the other, to refine
the analysis and obtain some information concerning the random fluctuations
in failure time about the asymptotic mean. The key to this further analysis
is a far reaching generalization of the central limit theorem due to
Stratonovich (1968) and Has'minskii (1966) which we enunciate only in a
very limited case that suffices to meet our needs. Let {L(t); t > 0} be
a stationary process taking values in the strictly positive bounded interval

(L

min’LmaxJ' .

L = E[L(t)] and Leq = {E[L(r)p]}l/p-

Let F: be the o-algebra of events generated by L(t) for s <t <t

and assume an asymptotic independence for L(t) in the form

sup{|P(B|A) - P(B)|; A « Fg, Bek

t+s} < B(s)

where B(s) + 0 as s » «® sufficiently fast so that sGB(s) + 0 as well.

o

Let F(%) be a smooth function of &, bounded on the interval [Lmi -

n
and for which E[F(L(t))] = 0, and

1im 2 7 [S ELF(L(s))F(L(0))]do ds = &% > 0.

T

Next, for a fixed X > 0, consider the solution ZA(t) to the differential

equation




dz, (t)/dt = /A F(L(At)), z,(0) = 0.

Of course, the solution is Zx(t) = /x fg F(L(As))ds = (1//X) fgt F(L(v))dv.
Note that large values for A correspond to load processes LA(S) = L(As)
having "many fluctuations" prior to time s, or alternatively, observing
the fixed load process L(v) over the long duration At. That is, large
values for A are quite relevant to many cable design situations. The
result of Stratonovich and Has'minskii, restricted to the case at hand,
asserts that, as )\ » «, the processes {Zx(t), t > 0} converge weakly in
the space of continuous functions to a Brownian motion process having
variance parameter 3.

We apply this result using for F the smooth function

SIS
F(R) = k(2 Leq), B KSR,

whence

t
z,(t) = /X K{fo Lk(s)pds - qu t}

[o]
ey {1,(¢) - KLeq t}

where LA(s) = L(As) and HA(t) = K f; LA(S)p ds. We conclude that
{Zx(t), t > 0} is, asymptotically for large A, a Brownian motion. The
next step is to relate this convergence to the behavior of GA(S) = H;l(s).

To this end, define

V,(s) = 5y {6,(s) - s/(.cr.gq)}.
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A careful study of Figure 2 will reveal that

Now when A

processes that HA(t) =

B P
VA(S)- -(1/x Leq) ZA[GA(S)].

is large, we know via the ergodic theorem for stationary

S fg Lk(s)pds = K(%) IétL(v)pdv is near its mean

value « qu t, and hence, for the inverse, that GA(S)

HA(W)

P
K Leq GA(S)

H, (G, (s))

e c— — — — ———

l
|
|
I
l
f
1

s/(k 1° ) G,(s) W
eq A

FIGURE 2: Showing that

P
X 15g Gy(3) - KIGy(s)]
q Gy(s) - s/(x qu)

p
=K
slope Le

Py (4 p
or JX{GA(S) - s8/(x Leq)}= -(1/x Leq)/iIHA[GA(S)] - X LquA(s)}.

i '.;_,"_“;‘a
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is near s/(k L%q). To be precise, these convergences take place with proba-

bility one uniformly on compact s intervals. We exploit this by writing
s P P i p
V)‘(s) = -(1/x Leq) ZA(S/K Leq) (1/x Leq) RA(S)
where

R, (s) = 2,(G,(s)) - Z,(s/x qu;‘.
We claim that RA(S) converges to zero in probability uniformly on
compact s intervals, and consequently, that VA(s) converges weakly to
a Brownian motion process. We begin to establish this claim by invoking
Skorodhod's theorem (Skorodhod (1965) Section 6, p. 9) implying in this
situation that (with probability one in some probability space) we may
suppose that the processes ZA(W) converge uniformly on compact w
2

intervals to a Brownian motion Z_(w) having variance parameter 6°. We

then have

1im R,(s) = 1im{Z,(G,(s)) - 2.(G,(s))}
iy i A

+ 1im{2,(G,(s)) ~ Z.(s/x qu)}

A->0

¥ (9] ¢}
+ 1im{z (s/x Leq) - Z,(s/x Leq)}

Ao

:0’

where again the convergence is uniform on compact s intervals in view of
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3 . P p
the inequality s/(x Lmax) 5 GX(S)’é s/(k Lmin)' It follows that

1]

1im V. ()

(o o}
£ A -(1/x Leq) Zm(S/K Le )

q

n

v (s)
where V_(s) is a Brownian motion process having variance parameters
22 p L3
ELV,(1)°] = 87/Cx L )"

As an illustration, we evaluate 62 for the two state Markov load
process L(t) that introduced our study of random loads. Recall that the
possible states are L t A, and denote the transition function for L(T)
by Q in the form Q+_(T) = Prl{L(t) = L - BJL(0) = L + A},etc. We have

-2\o

q__Co) =Q (o} = %{1 + e )

and

-2A0
(-

X o ¢
Q. te) = Q (o) = =ld - ).

Since L(t)p is equally likely to begin in either of its states, its mean

value is E[L(1)°] = %(L+A)p + %(L—A)p = qu, and for o < 1,

E[L(0)°L(1)°] = (1/2¢”)la,a,Q,,(1-0) + a,a_ Q, (1-0)

taa, Q_+(r-o) +a_a_Q__(t-0)]
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which, after subtracting the product of means E[L(T)p L(o)p] = qu and
simplyfying leads to the covariance
1
| ECF(L(e))F(L(t)] = k° Cov[L(0)®, L(1)°]
- g2 o2A|1-0]
where B = (a,-a_)/2 = [(1+8)° - (1-8)°1/2.
Then
f5 I3 ELF(L())F(L(0))1do ds = 87 [[ [ o ATl o
= (82/2X) fg (l—e-QAS)ds
= (B EMiT w00 ST L
and

6% = 1im 2 [7 3 ELF(L(s))F(L(0))]do ds = 82/a.

T

That is, 6% = A '[(a,-a_)/21° = 3 [k ((1+0)® - (1-8)°)/21.

Returning to the general stationary load process, let us consider

it s AR 2

large bundles (n»®) and set A = 6n so that A becomes infinite with

n. We have, on the one hand,

/n {S -u} =2
n n

where Zn has a limit normal distribution with mean zero and variance 02;

while on the other hand
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i it 0
vy (s) v’(en){Gen(S) s/(x Leq})
is converging weakly to a Brownian motion process V_ having variance
coefficient 62/(K Liq)s. Since the bundle failure time W is given by
e = Gen(Sn), we write
o e = 2 e L P
e, - uite B} = /LG, (S)) - 8. /(k Ly, )} + /ails -ub/(x I.,)
= P
= (1//8) V(s ) + 2 /(k Leg
= P
= (1//8) V () + 2 /(x L) + &
where
g, = (L//B)V (S ) - V (w1}
Now 1lim S = u, while V is converging (uniformly on compact intervals)

n>© n no

to the Brownian motion V_, and 27/ is converging to the normally distri-
buted random variable Z. Thus ¢ =+ 0 in probability and we have the

weak convergence
A, - w12 )} = (1/78) Y (u) + 2/ Log)-

It follows that, asymptotically for large n, the standardized failure

time vn {wn - w/(k qu)} is normally distributed with mean zero and

variance

62 02
+

P 3 T
(k Leq) 6 (x Leq)
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We see that random loads add a term to the variance of the failure
time in addition to decreasing the asymptotic mean failure time from
u/(c °) to u/(k qu)-

Let us suppose that n, is the number of fibers needed to achieve a
prescribed target mean cable lifetime under a fixed load L, and that ny
is the greater number of fibers needed to achieve the same target mean
cable life under a random loading L(t) having an associated Leq =
{E[L(T)p]}l/p. As shown earlier, we have the equivalence nl/n0 = Leq/L
so that the ratio Leq/L provides some measure of the increased "cost"
associated with random loads. This ratio is sensitive to the fiber break-

down rule parameter p and the marginal distribution of the load process

as we shall see.

Let A2 = E[(L(t) - L)2] be the variance of the load process. When

A is very small relative to L and p is moderate, so that pA

remains small, we have the Taylor series approximation

1/p

=2

~

&=
"

p
eq {EL(L(T)/L)" ]}

(EC(1 + DEEEL)Pyyl/e

{1+ %—p(p—l)(-ﬁ—)z}l/p.

ne

On the other hand, suppose that Lmax is the essential supremum of L{T)
in that Pr{L(t) > L - €} >0 for any € >0 while Pr{L(T) <L __}=1.
max max

Then, as is well known (see e.g. Taylor, A.E. (1958) p. 91)

1i

=1 pqyl/0 _
L. = llmo»m{E[L(T) 1} = Lmax'

m
p+ “eq
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That is, the behavior of Leq for large values of p 1is quite distinct
from that at small values. To obtain a better understanding of the effect
of p on the ratio Leq/L’ explicit formulas have been derived in several

special cases.

(I) Recall that when L(t) = L + A, each with probability 1/2, then

L P 1/0
Leq/L = {2(1+A/L) (1 AP}

(II) Suppose that L(t) is normally distributed with mean L and variance

AQ. Then for p = 2m, where m = 1,2,... we have

L(t)-L 1/p
eq {E[(l e —T—)p:}

p/2
k=0

0/2
2k | 1/p
{1 + kz ——__—_Q(k')(p 5T (A/L) } ‘

e

~

B
]

(III) Suppose L(t) 1is uniformly distributed on the interval [L-A, L+Al.

Then ELIAT)] & & and Varli(t) = 4° = &°73, while

T T TIRTN

!L+A P _ ()t T e

o
BEL(T) 3 = 2A(l+p)

Then

2! L AP e l+p, \1/p
Leq/L = {:§KTT?37 [((1+A/L) (1-A/L) ;}

{— 3 [+ By . - /:?A/L)l""} /e
2/30(1+0)

head
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Leq/L as a function of the coefficient of variation A/L for various
values of p and distributions I, II and III is depicted in Figure 3. It
is readily apparent that the ratic depends strongly on the form of the
distribution of the random loads and cannot, for example, be adequately
summarized by the mean and variance of this distribution alone, even at
modest values of A/L. This dependence on the load distribution becomes

more acute at the higher values of »p.
It is clear that parallel systems whose elements exhibit fatigue of
the power law breakdown type should be designed with caution when randomly

varying loads may be encountered.
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Figure 3: The loss in efficiency due to random loads as measured by L /L
versus .the coefficient of variation A/L of the random load process for
various values of the fatlgue parameter p. Curves I, II and III correspond
to two~valued loads, normally distributed 1loads and unxformly distributed
loads, respectively.
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