

TR 77016

AD A 0 49576

f.

IC FILE

ROYAL AIRCRAFT ESTABLISHMENT

*

Technical Report 77016

THE FLEXIBILITY OF WEATHERED RUBBER-COATED FABRICS

by

J.E.Swallow M.Webb

*

DDC DECOEDD 172 FEB 2 1978

TR 77016

BR57343 -

Procurement Executive, Ministry of Defence Farnborough, Hants

UNLIMITED

UDC 677.55 : 539.557 : 620.193.1/2 : 621-413 : 677.027.83 (19) BR-59343 DRIC 14) RAE-TR-17016 ROYAL AIRCRAFT ESTABLISHMENT DTechnical Kepet 77016 Received for printing 2 February 1977 Defet 77 THE FLEXIBILITY OF WEATHERED RUBBER-COATED FABRICS. by J. E. Swallow M. Webb

SUMMARY

The effects of 1 year of weathering on the flexibility of rubber-coated fabrics was studied in 208 combinations of base fabric, rubber type, time, site and stress level. Throughout, coated nylon fabrics were thicker, heavier and less flexible than coated cotton fabrics, the base fabrics being similar in mass per unit area. Fabrics coated with polyurethane or chlorosulphonated polyethylene tended to be thicker than those with natural or neoprene rubbers, whilst chlorosulphonated polyethylene coated fabrics were the heaviest. Polyurethane stiffened more than the other rubbers on storage or exposure, particularly when used on nylon. Load level had little effect on flexibility.

4715	Whit	e Section	×
000	Guff	Section	C
MARNOUNC	ED		C
JUSTIFICAT	10%		
87			
BY DISTRIDE	FION/AYAILA	BILITY G	10:53
BY. DISTRIOU Dist.	FION/AVAILA AVAIL. NO	aillity Gr id/or SPE	DE3
BY DISTRIDU DIST.	TION/AVAILA AVAIL, 63	BILITY G 10/07 SPE	10:53 ČIAL
BY DISTRIDU DIST.	TTOM/AYATLA AVAIL. 60	SILITY G d/or SPE	TO ES CIAL

Departmental Reference: Mat 314

Copyright © Controller HMSO London 1977

316450

CONTENTS

		Page
1	INTRODUCTION	3
2	DIVISION OF EFFORT	3
3	MATERIALS	4
4	EXPOSURE CONDITIONS	5
5	TEST METHODS	7
6	METHOD OF ANALYSIS OF RESULTS	7
7	ANALYSIS OF ERRORS	8
8	RESULTS AND DISCUSSION	8
	8.1 Thickness	8
	8.2 Mass per unit area	9
	8.3 Bending length	10
	8.4 Flexural rigidity	12
	8.5 Bending modulus	13
9	CONCLUSIONS	15
Ackno	owledgments	15
Apper	ndix Composition of rubbers by mass	17
Table	es 1 to 11	18-28
Refer	rences	29
Illus	strations	Figures 1 and 2
Repor	t documentation page	inside back cover

INTRODUCTION

1

Considerable work has been done on the weathering of uncoated textiles. Little has been published, however, on rubber-coated fabrics, probably because it has generally been assumed that deterioration is considerably less than with uncoated textiles and the problem therefore less urgent. Thus, a neoprene sleeve was found to protect a nylon rope for at least two years¹.

This paucity of data on coated fabrics showed the need for a study of their properties when exposed to various types of weather, and shared work was therefore undertaken by interested parties within the Ministry of Defence (see section 2). The aims of this work were:

- (a) to prove a method of exposing rubber-coated fabrics under stress;
- (b) to evaluate test methods for assessing the degradation arising therefrom;
- (c) to obtain data on cotton and nylon fabrics coated with four types of rubber on exposure.

The present Report summarises the trial and gives the results and their analysis for the flexibility of coated fabrics. A forthcoming RAE publication will deal with the strengths of the fabrics on weathering.

2 DIVISION OF EFFORT

The organisations which participated and their contributions were:

(a) RAE, Cardington: design, construction and testing of a prototype exposure unit; making ready fabrics for despatch to sites; cutting and despatch of fabric pieces to laboratories for testing after exposures.

(b) DR Mat/Mat R6: financial support for supply of eight coated fabrics from a contractor (Dunlop Ltd) and for material for exposure rigs.

(c) RAE, Bedford: making up kits for exposure rigs.

(d) ERDE, Waltham Abbey: writing of trial schedule; exposure of one set of fabrics; liaison with JTRU; transport arrangements for exposure rigs and fabrics; direct-tension adhesion testing of coatings to base fabrics.

(e) JTRU, Queensland: exposure of sets of test fabrics at Cloncurry and Innisfail (UK Trial 81).

(f) MQAD, Woolwich and Chorley: determination of hydrostatic-head permeability, Martindale abrasion resistance and wing-rip tear strength of fabrics.

(g) RAE Materials Department: chairmanship (Mr J.E. Swallow) and secretaryship (Mrs M. Webb) of Working Party (formed in 1968 from members of the Coated Fabrics Sub-Committee which reported via the Rubber Committee to the Joint Services Non-Metallic Materials Research Board; all these committees are now defunct); determination of and analysis of data on flexibility and strength of fabrics.

3 MATERIALS

The following base fabrics were selected as being as similar as possible to each other in mass per unit area:

(a) Nylon to Specification² UK/AID/961, designation 85 g. This fabric is required to be scoured and heat set so as to be suitable for subsequent rubber coating. It has a maximum permitted mass per unit area of 88 g/m² and a minimum average breaking strength of 230 N/cm.

(b) Cotton to Specification³ BS 2F (now 3F) 57 C fabric, scoured and rotproofed⁴ with 2% lauryl pentachlorophenol. The fabric has a maximum mass per unit area of 80 g/m², and a minimum average breaking strength of 75 N/cm.

The base fabrics had the following measured properties (see section 5):

	(i)	Thickness,	(ii)	Mass per unit area,	(iii)	Bonding length,	(iv)	Flexural rigidity,	(v)	Bonding modulus,
		mm		g/m²		mm		N mm		
Nylon		0.13		77		29.5		0.019		105
Cotton		0.14		82		20.6		0.007		34

The following rubbers were applied, nominally at 100 g/m^2 to each face, and the resultant coated fabrics identified by Roman numeral:

				Measure	d total	r	ubber,	g/m-	
			N	ylon		c	otton		Mean
(a)	Natural	I	:	213	v	:	190		202
(b)	Neoprene	11	:	237	VI	:	197		217

5

		N	ylon	с	otton	Mean
(c)	Polyesterurethane (PU)	111:	230	VII :	190	210
(d)	Chlorosulphonated polyethylene (CSPE)	IV :	241	VIII:	236	238
	Mean		230		203	217

Measured total rubber, g/m²

The compositions of the rubbers were agreed by the Working Party in consultation with the Rubber Committee, and adopted with slight modifications by the Contractor as given in the Appendix.

4 EXPOSURE CONDITIONS

The rigs on which the specimens were exposed are illustrated in Fig 1. They were constructed so as to carry the specimens, under load, at 45° to the horizontal, and were disposed at the sites so that the fabrics faced the equator.

The specimens were 2 m long by 40 cm wide. Each end was turned twice over a webbing 5 cm wide by 6 mm thick, and cemented to it with a neoprene adhesive. Fabrics were identified by marking their Roman numeral (I to VIII, see section 3) with paint on the under side, and further by notches cut into each end according to a binary code corresponding to 1 to 8. Both methods proved satisfactory; the first made visual identification easier, whilst the latter was more permanent and was not positioned in the exposed portion of the specimen. The specimens were then mounted in the rigs as shown in Fig 2, five bolts being inserted through the fabrics and webbings; this system was adopted so as to minimise slippage, though it was not entirely eliminated and some degree of uneven loading across the specimens had to be accepted.

The lower ends carried masses of concrete or railway sleeper which, inclusive of fittings, were 9.5 kg or 94.6 kg for the nylon fabrics, and 3.2 kg or 32 kg for the cotton fabrics, producing 1% and 10% load levels, relative to the nominal breaking loads, respectively.

Each rig carried three specimens, so that 16 rigs (for 2 fabrics × 4 rubbers × 3 times × 2 load levels/3 specimens per rig) were required at each site for the coated fabrics. In addition, 4 rigs (for 2 fabrics × 3 times × 2 load levels/3 specimens per rig) were supplied to each site for exposures of uncoated fabrics.

Exposures were commenced at ERDE on 4 July 1973, at the hot, dry (HD) desert site at Cloncurry on 27 July 1973, and at the hot, wet cleared (HWC) jungle site at Innisfail on 16 August 1973. Three specimens of each fabric were exposed at each site and load level so that one could be withdrawn after each of 3, 6 and 12 months, and at the end of 6 months a further specimen of each was exposed to give a 6 months' 'stepped' result.

In Australia, 12 of the coated fabrics under 10% load (5 nylon/PU, 2 cotton/PU, 3 cotton/neoprene and 2 cotton/CSPE), and almost all the uncoated fabric specimens at all the sites, broke before their due withdrawal date, and sometimes within a few hours of exposing. These became too badly creased for subsequent reliable measurements of flexibility, and in some cases were lost altogether.

Initial control specimens were taken at the commencement of the trial, and final controls, having been stored flat between sheets of capacitor tissue, in the dark, and without mechanical stress, were taken at the end of 12 months.

The controls and the specimens received back from the exposure sites were cut into test pieces of the required sizes and despatched, flat and wrapped with capacitor tissue, to the various laboratories, no test piece being taken closer than 5 cm from an edge or a clamped region.

The 3 month Australian specimens were not marked so as to distinguish between 1% and 10% loadings. The flexibility results did not obviously separate them, but the breaking strengths⁵ of the nylon/natural rubber specimens at 3 months in comparison with the results at the other times gave what was considered to be a reasonable probability to the tabulation in columns K, L, S and T in Tables 1 to 5 (see section 6). Should this be incorrect, however, the effect would be an inflation of the error rather than a reversal of conclusions concerning the influence of load level: there were more marked than unmarked specimens, and these were exposed for longer times so that any effects might be expected to be more noticeable.

From visual examination of the test pieces the most noticeable change was with the PU specimens at Innisfail where there was marked dulling and blotching on both upper and lower faces. This result probably reflects hydrolytic action on PU which would be worst at the hot wet site, and is in line with observations on the effect of PU finishes on nylon yarns⁶. The natural rubber and neoprene coatings on nylon were somewhat dulled and blotched at both Australian sites.

There was only slight dulling or blotching at ERDE, and the CSPE coating was not noticeably altered in appearance at any of the sites.

7

5 TEST METHODS

The following tests were performed mainly by one operator (BMM) after conditioning the samples for at least 24 h in a room maintained at 20°C and 65% relative humidity.

(i) Thickness was measured in mm on a 100 cm² piece of each fabric, using a Schopper automatic micrometer exerting a pressure of 0.5 N/cm^2 over a circle of diameter 3.0 cm. Five determinations were made and the mean taken.

(ii) Mass per unit area was calculated in g/m^2 after weighing the above pieces of fabric.

(iii) Bending length was determined by the method given' in the 1956 edition of BS Handbook 11, where it is stated that it gives "a measure of draping quality". Two warpway 25mm wide strips were used. The mean of four determinations of the bending angle for a measured length of each strip was found and converted to bending length (the length which would bend to an angle θ such that $\cos \theta = 8 \tan \theta$, or $\theta \approx 7^{\circ}$), by means of a table given in the Handbook. The mean of the two bending lengths, expressed in mm, was taken.

(iv) Flexural rigidity, stated⁷ to be "one of the chief factors in handle", was obtained in N mm by multiplying the cube of the mean bending length (iii) by the mass per unit area (ii) and a constant $(g/10^9, where g = 9.81 \text{ m/s}^2)$.

(v) Bending modulus, which according to Ref 7 "characterises fullness and paperiness", was obtained in N/mm^2 by dividing the flexural rigidity (iv) by the cube of the thickness (i) and a constant (1/12).

6 METHOD OF ANALYSIS OF RESULTS

The loss of 12 specimens nullified the possibility of analysing all the exposure results together. Nevertheless, it was still possible to analyse five complete factorial sub-experiments⁸ in the following sets:

(a) The 'controls' (Tables 1 to 5, columns A and B).

(b) All the '3 month' exposures (Tables 1 to 5, columns C, D, K, L, S, T).

- (c) All exposures under '1%' load (Tables 1 to 5, columns C, E, G, I, K, M, O, Q, S, U, W, Y).
- (d) All exposures with 'natural rubber' coating (Tables 1 to 5, columns C to Z, rows I and V only).
- (e) All exposures at 'ERDE' (Tables 1 to 5, columns C to J).

The controls were also incorporated into the analysis by considering them in conjunction with the results at 1% loading at each site, giving three more sub-experiments:

- (f) "ERDE, 1%, with controls" (Tables 1 to 5, columns A, B, C, E, G, I).
- (g) "Cloncurry, 1%, with controls" (Tables 1 to 5, columns A, B, K, M, O, Q).
- (h) "Innisfail, 1%, with controls" (Tables 1 to 5, columns A, B, S, U, W,
 Y).

It will be noted that (f), (g) and (h) cannot satisfactorily be combined, nor can (a) be included with (b), (c), (d) or (e) because of the usual unavoidable inadequacies of the factorial arrangement (ie in the construction of the tree diagram) in accommodating controls.

These eight sets were subjected to analysis of variance by computer for each of the five properties, viz thickness, mass per unit area, bending length, flexural rigidity and bending modulus.

7 ANALYSIS OF ERRORS

8

Table 6 gives the error variances for the analyses⁸. The 3 month results had the lowest errors for thickness and mass per unit area, whilst the natural rubber results were lowest for flexibility. Innisfail had the highest errors for flexibility.

Coefficients of variation are also given in Table 6. For thickness and mass per unit area, they were about 2 to 3%, for bending length generally about twice this, and for flexural rigidity and bending modulus mainly about tenfold.

8 RESULTS AND DISCUSSION

8.1 Thickness

The measured thicknesses are given in Table 1, and analysis of variance for each set in Table 7. The coated nylon fabrics were thicker than the coated cotton, usually at the 99.9% level of probability, reflecting the greater uptake of rubber on nylon (section 3), and the thicknesses in the natural rubber set (d) were less than in the other sets.

Mean thickness, mm

All sets except 'natural rubber'	'Natural rubber'
0.267	0.257
0.237	0.226
	All sets except 'natural rubber' 0.267 0.237

The effect of rubber type was also significant, usually at the 99.9% level of probability. The PU and CSPE coated fabrics were thicker than the natural rubber and neoprene, but there were no significant differences between sets (a) to (h) except (d).

Rubber type	Mean thickness, mm
PU	0.262
CSPE	0.262
Neoprene	0.244
Natural	0.239
Mean difference required for	
significance at 99.9% level	0.009

There was no evidence that thickness was affected by the site, or by the interactions between fabric and time, fabric and site, fabric and load, rubber and time, rubber and load, time and site, time and load, or site and load. There was only slight evidence that thickness was affected by the time, the load, or by the interactions between fabric and rubber or rubber and site.

8.2 Mass per unit area

The masses per unit area are given in Table 2, and analysis of variance for each set in Table 8. The coated nylon fabrics were heavier than the coated cotton, usually at the 99.9% level of probability (*cf* section 8.1), and the masses in the natural rubber set (d) were lower than in the other sets.

2

	Mean mass per unit area, g/m	
Fabric type	All sets except natural rubber	Natural rubber
Nylon	300	269
Cotton	280	260

9

The effect of rubber type was also significant, usually at the 99.9% level of probability. The order was CSPE > neoprene > PU > natural, this reflecting the higher densities of the chlorinated rubbers. There was also evidence of weight loss for all the rubbers except CSPE in all sets, compared with the controls (a):

Mean mass per unit area, g/m²

Rubber type	Sets (b) to (h), exc	cept (d) Con	trols (set (a))
CSPE	315		316
Neoprene	291		300
PU	281		290
Natural	266		280
Mean difference	required at		
99.9% level of	probability	9	

The weight loss with time was most significant at Innisfail (set (h)), for which the results were:

Time, months

					Initial	Final	3	6	12	6	'stepped
Mass	per	unit	area,	g/m ²	296	297	285	283	274		288

There was no evidence that mass per unit area was affected by the load or by the interactions between fabric and time, fabric and site, fabric and load, rubber and time, rubber and load, time and site, time and load, or site and load.

8.3 Bending length

The bending lengths are given in Table 3, and analysis of variance for each set in Table 9. The bending lengths of the coated controls were on the average 30% higher than of the uncoated controls (section 3). The bending lengths of the coated nylon fabrics were greater than of the coated cotton, usually at the 99.9% level of probability, possibly partly due to the greater amount of rubber on the nylon (section 3). The results in the natural rubber set (d) tended to be lower and those in the other sets higher than those in the control set (a). The mean values in mm were:

Fabric type	Controls	Natural rubber	Others
Nylon	36.2	33.8	39.5
Cotton	28.2	25.1	30.2

The effect of rubber type was also significant, usually at the 99.9% level of probability. The PU had a higher bending length than the neoprene, which in turn had a higher bending length than CSPE or natural. This result did not appear to be due entirely to the amount of rubber, since the order did not correlate with the order of rubber masses (sections 3 and 8.2).

Rubber type	Controls	3 months	17	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
PU	43.3	46.0	51.2	45.5	45.6	49.8	50.2
Neoprene	29.5	32.7	34.1	33.0	31.7	32.9	33.1
CSPE	29.1	29.9	30.1	29.6	29.5	30.1	29.6
Natural	27.0	28.0	29.4	29.3	28.7	28.4	28.7
Difference required at 99.9% level of probability	17.0	3.0	2.0	3.1	2.1	2.9	3.8

Exposed specimens had increased bending length compared with the controls, and this tended to increase with time of exposure, though not always significantly at the 99.9% level of probability.

Time, months	1%	Natural rubber	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
Initial				30.9	30.9	30.9
Final				33.6	33.6	33.6
3	34.2	28.0	33.8	34.1	34.3	34.1
6	36.4	29.0	33.7	33.4	37.3	38.4
12	37.4	31.2	34.9	36.1	38.2	37.8
6 'stepped'	36.8	29.7	35.0	35.2	37.4	37.8
Difference required at 99.9% level of probability	2.0	1.9	3.1	2.7	3.6	4.7

The mean bending lengths at both Australian sites were greater than at ERDE in the '1%' set (c).

Site	Bending length
ERDE	34.7
Cloncurry	36.8
Innisfail	37.0
Difference required at 99.9% level of probability	1.8 y

There was evidence that PU on nylon had a higher bending length than expected from these components. Thus, from the '1%' set, the mean values in mm were:

	Rubber	type		
abric type	Natural	Neoprene	PU	CSPE
Nylon	34.1	39.0	59.2	31.9
Cotton	24.7	29.2	43.2	28.3

There was no evidence that bending length was affected by the load, or by the interactions between fabric and time, fabric and site, rubber and load, time and load, or site and load; there was only slight evidence that bending length was affected by the interactions between fabric and load, or time and site.

8.4 Flexural rigidity

The flexural rigidities are given in Table 4, and analysis of variance for each set in Table 10. For the coated controls, the values were on average about an order of magnitude higher than for the uncoated controls (section 3), due partly to increased bending length and partly to increased mass per unit area. Those variance ratios which were significant were similar to those for bending length, though the values were generally lower because of the higher errors.

The flexural rigidities of the coated nylon fabrics were higher than those of the coated cotton, usually at the 99.9% level of probability, the mean values in N mm being:

Fabric	Controls	3 months	17	Natural rubber	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
Nylon	0.174	0.205	0.245	0.103	0.195	0.200	0.235	0.228
Cotton	0.069	0.074	0.099	0.040	0.080	0.075	0.094	0.097

The effect of rubber type was also significant, usually at the 99.9% level of probability. The order was PU > neoprene > CSPE > natural, though CSPE was not significantly higher than natural.

Rubber type	Controls	3 months	17	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
PU	0.270	0.304	0.407	0.291	0.305	0.394	0.385
Neoprene	0.080	0.106	0.124	0.109	0.099	0.111	0.117
CSPE	0.077	0.085	0.086	0.081	0.081	0.087	0.081
Natural	0.059	0.063	0.071	0.070	0.068	0.067	0.067

Flexural rigidity tended to increase during exposure in sets (d), (f), (g) and (h), the mean values in N mm being:

Time months	Natural rubber	ERDE, 1%	Cloncurry, 1%	Innisfail, 1%
Initial	0.060	0.097	0.097	0.097
Time	0.058	0.146	0.146	0.146
3	0.063	0.142	0.148	0.140
6	0.069	0.123	0.211	0.211
12	0.080	0.163	0.201	0.174
6 'stepped'	0.074	0.158	0.187	0.206

The PU on nylon had a higher flexural rigidity than expected from these components, the interaction between fabric and rubber usually being significant at the 99.9% level of probability. Thus, from the 3 month set, the mean values in N mm were:

Rubber type

Fabric type	Natural	Neoprene	PU	CSPE
Nylon	0.094	0.148	0.474	0.104
Cotton	0.032	0.064	0.133	0.066

There was no evidence that flexural rigidity was affected by the load, or by the interactions between fabric and time, fabric and site, rubber and load, or time and load.

8.5 Bending modulus

The bending moduli are given in Table 5, and analysis of variance for each set in Table 11. The bending moduli of the coated nylon fabrics were not, on the average, significantly higher than those of the uncoated fabrics (see section 3), though those of the cotton fabrics probably were. This reflects the introduction of thickness into the calculations. Those variance ratios which

were significant were similar to those for bending length, though the values were generally lower, and also usually lower than for flexural rigidity.

The bending moduli of the coated nylon fabrics were higher than those of the cotton, usually at the 99.9% level of probability, the mean values in N/mm^2 being:

Fabric type	Controls	3 months	12	Natural rubber	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
Nylon	109	117	147	73	116	123	141	138
Cotton	58	65	84	41	71	67	81	79

The effect of rubber type was also significant, usually at the 99.9% level of probability. The PU had higher values than the other rubbers, and neoprene often was higher than CSPE or natural.

Rubber type	Controls	3 months	1%	ERDE	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail, 1%, with controls
PU	173	181	252	176	188	250	238
Neoprene	63	78	95	87	79	84	90
CSPE	50	54	56	56	56	55	51
Natural	48	50	59	57	58	55	54

Time was significant, sometimes at the 99.9% level of probability, the effect being an increase in bending modulus:

Bending modulus, N/mm²

Time, months	Natural rubber	ERDE, 1%, with controls	Cloncurry, 1%, with controls	Innisfail 1%, with controls
Initial	48	65	65	65
Final	49	103	103	103
3	50	92	97	90
6	54	84	141	140
12	65	116	135	111
6 'stepped'	60	112	126	142

The PU on nylon gave a higher bending modulus than expected from these components, the interaction between fabric and rubber often being significant at the 99.9% level of probability. Thus, for the 3 months set, the mean values in N/mm^2 were:

Rubber type

Fabric type	Natural	Neoprene	PU	CSPE
Nylon	66	95	249	56
Cotton	34	60	112	52

There was no evidence that bending modulus was affected by the interactions between fabric and time, fabric and site, or time and site; there was only slight evidence that bending modulus was affected by the site, the load, or the interactions between rubber and load, time and load, or site and load.

9 CONCLUSIONS

(1) A method for exposure of coated fabrics has been proved. Data on flexibility of a nylon and a cotton fabric coated with natural rubber, neoprene, polyurethane or chlorosulphonated polyethylene have been determined after weathering for up to 1 year in UK and Australia.

(2) Throughout, the coated nylon fabrics were thicker, heavier and less flexible than the coated cotton fabrics. Fabrics coated with polyurethane or chlorosulphonated polyethylene tended to be thicker than those coated with natural rubber or neoprene whilst those coated with chlorosulphonated polyethene were the heaviest.

(3) Polyurethane stiffened more than the other rubbers on storage or exposure, particularly when used on nylon.

(4) Stiffening tended to increase with time of exposure or storage.

(5) Stiffening after weathering in UK was less than that in Australia.

(6) Load level had little effect on stiffness.

Acknowledgments

The authors thank Miss B.M. McInroy, formerly of Materials Department, RAE, for assistance with the experimental work, and Mr J.H. Cadwell, Mathematics Department, RAE, for arranging the computer programmes.

Appendix

COMPOSITION OF RUBBERS BY MASS

Ingredient	Natural	Neoprene	PU	CSPE
Natural rubber smoked sheet	58			
Neoprene		54.5		
Polyurethane (PU)			77	
Chlorosulphonated polyethylene (CSPE)				50
Black	34.8	32.7	22.8	7.5
Antioxidant (phenol condensation product)	1.25	1.06		
Sulphur	0.75			
Mercaptobenzthiazole	0.5			
2-Mercaptoimidazoline		0.25		
Tetramethylthiuramdisulphide	0.125			1.0
Stearic acid	0.5		0.25	
Pentaerythritol				1.5
Paraffin wax	1.25	1.06		
Process oil		5.5		
Polyisocyanate phenol adduct			15.5	
Magnesium oxide		2.2		2.0
Zinc oxide	2.8	2.8		
Whiting				38
Lauryl pentachlorophenol, %	2	2	2	2

17

PRECEDENC PACE NOT FILMED

THICKNESS OF FABRICS, mm

Time, monthsInitial Final3Load Level,I110Load level,ABCDColumnBCDDColumnBCDDColumnBCDDColumnBCDDColumnBC	9 - M - C						-												
Load 1 10 level, Z A B C D Column A B C D D Costed A B C D D See B C D D D D I Ny1/Nat D <t< th=""><th></th><th></th><th>12</th><th>6S</th><th></th><th>e</th><th></th><th>9</th><th>1</th><th></th><th>3</th><th></th><th>•</th><th>-</th><th>•</th><th></th><th>12</th><th></th><th>s</th></t<>			12	6S		e		9	1		3		•	-	•		12		s
Column A B C D I Coated Eabric Coated Eabric C D I Coated Eabric (See 0.25 0.26 0.27 0 I 0.26 0.25 0.26 0.27 0 II 0.26 0.25 0.26 0.26 0	R R	-	10	-	0		-	10	-	0	-	9	-	-	-	-	-	-	2
Coated Eabric Coated Eabric (See section 3) 1 I 0.26 0.26 0.27 0 Nyl/Nac 0.26 0.25 0.26 0.26 0 II 0.26 0.25 0.26 0.26 0		9	H	I	5	K L	M	N	0	đ	0	R	5	Þ	•	-	*	A	8
(See section 3) I Ny1/Nat 0.26 0.25 0.26 0.27 0 II Ny1/Neo 0.26 0.25 0.26 0.26 0														-					
I Nyl/Nat 0.26 0.25 0.26 0.27 0 II Nyl/Neo 0.26 0.25 0.26 0.26 0	0 36 0																		
II Nyl/Neo 0.26 0.25 0.26 0.26 0	1.0 07.0	6 0.2	0.26	0.24 0	.26 0	.26 0.3	5 0.25	0.28	0.25	0.27	0.26 0	.26 0	.26 0	25 0.2	5 0.2	.0	25 0.	26 0.2	6 0.2
	0.26 0.2	10.26	0.26	0.25 0	.25 0	.26 0.2	6 0.26	0.27	0.26	0.26	0.26 0	.26 0	.26 0	27 0.2	6 0.2	0.	26 0.	27 0.2	5 0.20
Ny1/PU 0.28 0.27 0.28 0.29 0	0.28 0.2	0.21	0.28	0.28 0	.29 0	.28 0.2	18 0.28	(0.28)	0.28	0.28)	0.28	0	.28 0	29 0.2	8 0.2	0	29	0.2	7 (0.2
IV Ny1/CSPE 0.27 0.27 0.27 0.27 0	0.28 0.2	28 0.26	0.28	0.27 0	.26 0	28 0.2	8 0.26	0.29	0.28	0.28	0.28 0	.28 0	29 0	29 0.2	6 0.2	0.0	27 0.	29 0.2	8 0.25
V Cot/Nat 0.23 0.22 0.22 0.23 0	0.22 0.2	13 0.2	0.22	0.22 0	.23 0	22 0.2	2 0.23	0.23	0.22	0.23	0.22 0	.23 0	.22 0	22 0.2	2 0.2	4 0.	24 0.	24 0.2	2 0.2
VI Cot/Neo 0.23 0.24 0.24 0.24 0	0.23 0.2	13 0.22	0.23	0.23 0	.23 0	.22 0.2	4 0.22	(0.24)	0.24	1	0.22 0	.23 0	.23 0.	23 0.2	2 0.2	<u>s</u>	24 0.	22 0.2	2 0.2
VII Cot/PU 0.25 0.24 0.25 0.24 0	0.25 0.2	25 0.24	0.24	0.24 0	.24 0	.24 0.2	4 0.24	0.24	0.24	0.25)	0.24 0	.25 0	.24 0	24 0.2	6 (0.2	5) 0.	26 0.	24 0.2	4 0.24
VIII Cot/CSPE 0.26 0.25 0.24 0.25 0	0.24 0.2	25 0.24	0.25	0.24 0	.24 0	.24 0.:	14 0.26	1	0.25	1	0.26 0	.26 0	.26 0.	26 0.3	10.2	6 0.	26 0.	25 0.2	6 0.2

specimen lost
 specimen broken and creased

MASS PER UNIT AREA OF FABRICS, g/m²

	s	0	2		274	305	(285)	322	259	280	270	306
	•	-	Y		278	304	289	328	264	258	274	313
	5	0	×		250	298	•	322	254	(268)	247	299
lisi	-	-	3		252	300	248	308	248	272	258	306
Innisi	9	10	٨		269	300	258	315	264	289	(249)	317
		1	n		274	313	270	309	254	269	264	314
	-	10	T		272	315	282	335	257	267	263	318
		1	s		266	314	283	327	248	274	263	305
	ŞS	10	R		278	300	1	320	264	276	285	325
	-	1	6		282	304	281	329	263	270	283	316
	5	10	đ		273	301	(564)	319	262	1	(267)	1
urry.	-	1	0		267	316	288	325	262	273	273	318
Cloncu	9	10	N		279	308	(289)	330	267	(283)	274	ı
		-	W		263	308	293	309	275	270	279	322
		10	L		270	305	291	319	258	284	271	306
	e	1	K		271	301	290	328	264	265	274	302
	S	10	ſ		267	309	293	305	273	282	273	303
		-	I	1	269	306	295	329	264	281	275	300
	12	10	H		253	307	284	334	244	279	273	301
RDE		-	U		257	306	300	316	259	272	273	300
E	9	10	4		260	303	286	328	257	269	278	301
		-	3		282	303	290	335	250	272	276	299
	3	10	9		282	299	288	319	262	272	262	304
			U		278	304	294	322	266	272	278	296
ls	Final		B		289	317	303	319	267	162	279	311
Contre	Initial		V		290	314	307	318	272	279	272	318
Site	Time, months	Load level, Z	Column	Coated fabric (see section 3)	I Nyl/Nat	II Ny1/Neo	III Nyl/PU	IV Ny1/CSPE	V Cot/Nat	VI Cot/Neo	VII Cot/PU	VIII Cot/CSPE

specimen lost
 specimen broken and creased

19

BENDING LENGTH OF FABRICS, mm

Site	Conti	ols				ER	8							lonct	IT I						-	nnief	Ŧ			
Time, months	Initial	Final			9		-	~	65		"		9		-	~	6		~		•		12		Se la	
Load level, Z			-	01	-	10	-	10	-	10	1	10	1	10	-	10	-	0	-	0	-	0	-	10	-	10
Column	V	8	v	٩	2	4	IJ	H	H	r	K	L	M	N	0	A	ø	×	s	H	D	Δ	3	×	A	2
Costed fabric (see section 3)																					-					
I Nyl/Nat	31.4	31.0	33.5	33.2	33.5	32.4	35.0	33.5	35.0	32.0	31.2	32.8	34.0	12.5	12.0	34.5	35.0	3.5 3	32.2	13.4 3	4.0 3	4.9	36.0	5.5	4.5	35.0
II Ny1/Neo	32.0	33.5	37.5	36.1	35.9	35.9	38.5	36.0	37.0	37.5	36.1	34.8	38.5	17.5	0.11	39.5	0.11	5.9	17.5	17.6 4	6.5 3	8.0	0.6	0.6	0.6	38.5
NA1/IAN	44.4	57.5	55.9	50.2	49.7	50.6	57.0	44.6	57.5	56.5	58.2	53.6	67.0	1	0.13	1	50.5	1	5.8	9.9	3.5 6	4.0	.8.0	1	0.9	
IV Ny1/CSPE	29.8	30.5	32.1	32.0	31.5	32.0	32.0	30.5	31.0	32.0	32.2	32.3	32.0	0.11	33.0	32.0	33.0	0.4	0.18	6.11	0.11	0.11	32.0 2	12.0	32.0	32.5
V Cot/Nat	23.2	22.5	22.8	23.6	25.5	27.7	27.0	24.5	24.0	25.0	23.6	24.3	22.0	3.5	27.0	27.5	24.5	24.5	2.5	2.4 2	3.5 2	5.0 2	8.5 3	0.0	25.5	27.5
VI Cot/Neo	26.9	25.5	28.2	30.2	27.0	28.8	29.0	30.5	29.0	31.0	29.0	28.0	29.5	1	31.5	1	30.0	12.5	27.8	9.5 2	0.03	12.0 3	0.0	1	30.5	31.5
VII Cot/PU	32.7	39.0	35.0	35.0	36.8	38.4	42.0	42.0	40.0	36.5	36.0	38.7	47.0	8.5	.8.5	1	0.91	2.5	38.5	18.2	1.5	1	0.5 4	5.0	0.9	48.0
VIII Cot/CSPE	27.0	29.0	27.8	27.2	27.5	26.4	28.0	27.5	28.0	28.5	28.4	28.4	28.5	1	0.6	1	0.62	8.5	27.6	8.5 2	8.0 2	8.5	28.5	8.5	0.61	28.5
											1	1		-	1	1		1	-	-	1	1	-	-	1	

- no measurement possible (specimen lost or badly creased)

20

FLEXURAL RIGIDITY OF FABRICS, N mm

	8	10 1 10	X Y Z		110 0.113 0.114	175 0.175 0.174	- 0.818 -	103 0.106 0.108	066 0.029 0.053	- 0.072 0.086	224 0.258 0.293	
118	2	-			.114 0.	1.175 0.	1.478	.100 0.	.057 0.	.072	0.328 0.	0 020
Innist		2	>		0.112 0	0.162 0	0.669 0	0.094 0	0.040	0.093 0	•	620.0
		-	n		0.104	0.306	0.678	0.091	0.032	0.065	0.348	0.067
		2	T		0.099	0.165	0.501	0.107	0.028	0.067	0.143	0 039
		-	5		0.087	0.162	0.481	0.096	0.028	0.058	0.147	C30 0
	83	6	æ		8 0.103	3 0.181	•	6 0.12	8 0.03	2 0.094	7 0.412	1000
		-	•		0.11	1 0.20	0.60	0.11	33 0.03	0.07	0.26	000
	12	7	•		0.10	0.16	1	0.10	0.0	•	•	
curry		-	•		0.11	0.21	0.64	0.11	0.05	0.08	0*30	0 0
Clen	9	\$	-		10.094	0.160	•	0*00	0.034	•	0.302	
		-	=		0.100	0.174	0.856	0.100	0.029	0,068	0.285	
		9	-		460.0	0.126	0.441	0.106	0.036	0.061	0.154	000
		-	¥		0.081	0.139	0.562	0.107	0.034	0.063	0.126	000 0
	12	9	7		0.087	0.160	0.513	0.100	0.041	0.082	0.129	000 0
		-	-		0.114	0.154	0.560	0.096	0.035	0.067	0.176	90.0
	2	9	=		0.092	0.142	0.244	0.092	0.035	0.078	0.196	500
8		-	ø		0.109	0.174	0.545	0.103	0.050	0.065	0.196	990 0
85	9	\$	•		0.087	0.138	0.364	0.105	0.053	0.063	0.154	U DEL
		-	w		0.104	0.138	0.350	0.103	0.040	0.053	0.135	130.0
		9	٥		0.101	0.138	0.357	0.103	0.034	0.073	0.111	0.060
		-	J		0.102	0.157	0.504	0.104	0.031	0,060	0.116	0.063
role	Final		8		0.085	0.118	0.560	0.089	0.030	0.047	0.163	10.07
Cont	Initial		•		0,088	0.101	0.264	0.083	0.033	0.053	0,093	1 064
Site	lime. months	Load level, Z	Column	Coated fabric (see section 3)	i Nyl/Nat	11 Ny 1/Neo	NJ/14	IV Ny1/CSPE	v Cot/Nat	VI Cot/Neo	vii Cot/PU	VIII

- no measurement possible (specimen lost or badly creased)

BENDING MODULUS OF FABRICS, N/mm²

- I I 00 10 10 10 10 10 10 10 10 10 10 10 10	12 65 12 65 12 65 12 10 1 10 1 10 12 10 10	12 65 1 10 1 10 1 C H I J 10 1 C H I J X 00 59 59 59 59	12 65 0 1 10 1 10 1 C H I J X 0 95 63 99 59 51	6 12 65 10 1 10 1 10 1 F C H I J X 60 95 63 99 59 59	6 12 65 1 10 1 10 1 1 10 1 10 1 10 1 1 10 1 10 1 10 1 10 1 1 2 4 1 1 1 10 1 1 2 4 1 <	6 12 65 10 1 10 1 10 1 D E F G H 10 1 D E F G H 1 10 1 D E F G H I J K 1 71 60 95 63 99 59 53	3 6 12 65 1 10 1 10 1 10 1 10 1 10 1 10 2 D E F G H I J 2 D E F G H I J K 70 61 71 60 95 63 99 59 53
	8	118	4 118 96	94 118 96	100 94 118 96	94 100 94 118 96	114 94 100 94 118 96
	7 133	297 133	9 297 133	179 297 133	191 179 297 133	176 191 179 297 133	261 176 191 179 297 133
-	7 50	67 50	8 67 50	58 67 50	56 58 67 50	63 56 58 67 50	64 63 56 58 67 50
-	6 39	49 39	3 49 39	53 49 39	49 53 49 39	33 49 53 49 39	33 33 49 53 49 39
	3 77	73 77	2 73 77	62 73 77	52 62 73 77	64 52 62 73 77	52 64 52 62 73 77
	1 17	171 17	8 171 17	118 171 17	104 118 171 17	96 104 118 171 17	90 96 104 118 171 17
	6 48	56 48	2 56 48	42 56 48	53 42 56 48	46 53 42 56 48	54 46 53 42 56 48

- no measurement possible (specimen lost or badly creased)

Table 6 ANALYSIS OF ERRORS

(a) Variances

				Se	t analysed (see se	ction 6)			
A	roperty	3	ନ	(0)	(9)	()	(£)	(8)	Ð
(see	section 6)	Controls	3 months	12	Natural rubber	ERDE	ERDE, 17, with controls	Cloncurry, 17, with controls	Innisfail, 17, with controls
(1)	Thickness	39.6/10 ⁶	22.2/106	48.6/10 ⁶	57.6/10 ⁶	34.7/10 ⁶	51.3/10 ⁶	43.2/10 ⁶	37.1/10 ⁶
(II)	Mase per unit area	22.2	15.1	48.1	57.0	55.4	60.8	64.2	44.5
(111)	Bending length	3.44	1.48	2.97	0.58	3.34	1.66	3.05	5.22
(iv)	Flexural rigidity	30.8/10 ⁴	5.6/10 ⁴	24.8/10 ⁴	0.2/10 ⁴	12.7/10 ⁴	11.4/10 ⁴	21.3/10 ⁴	31.8/10 ⁴
3	Bending modulus	1064	261	966	29	327	312	813	1320
No. of freedo	f degrees of om in error	e	9	18	9	6	15	15	15
(P)	Coefficients	of variation							
(I)	Thickness	2.5	6.1	2.8	3.1	2.3	2.9	2.6	2.4
(ii)	Mass per unit area	1.6	1.4	2.4	2.8	2.6	2.7	2.7	2.3
(111)	Bending length	5.8	3.6	4.8	2.6	5.3	3.8	5.0	6.4
(iv)	Flexural rigidity	45.8	17.0	29.0	6.2	25.8	24.5	28.0	34.8
(A)	Bending modulus	39.0	17.8	27.2	9.4	19.2	18.5	25.7	33.5

016

VARIANCE RATIOS FOR THICKNESS

							Set (see sect	ion 6)	No. of Contraction	
Tector	No. of levels	No. of results per level	No. of degrees of freedom	(a) Controls	(b) 3 months	(c) 12	(d) Natural rubber	(e) ERDE	(f) ERDE, 1%, with controls	(g) Cloncurry, II, with controls	(h) Innisfail, 12, with controls
Tabric T	2 2 2 2	8 24 32 48		57.0 _G	645GG	432 _{QC}	209 ₀₆	450 _{GG}	182 ₆₆	243 _{GG}	209 _{GG}
Rubber R		4 12 16 24	3 3 3 3	12.4	74.3 ₀₀	79 _{GG}		54.5 _{GG}	29.7 _{GG}	39.8 _{CG}	57.6 _{GG}
Time T	2	8 12 16 24	1 3 3 3 3 5	3.9 _N		0.9 _N	0.9 ₁₁	5.0	2.1 ₁₁	1.0 _N	3.1
Site	3	16	2		4.9N	3.2	0.3 ₉				
Load	2	24	1		2.3M		9.2				
n	8	2 6 8 12	3	1.48	4.6 ₁₁	3.3		4.4	0.9 _N	3.4	4.1
n	4 8 8	4 6 8 12	1 3 3 3	0.2 _N		2.3µ	1.3 ₁₁	0.5 _N	0.7 _w	2.1 ₂	2.1
78	6	8	2		1.5 _W	1.6	0.7 _N				
n	1	12	1		0.1W		0.7 _N	0.7 _N			
RT .	8 16 16 24	2 4 6 2	3 9 9 15	0.6 _N		1.0%		0.6 _N	0.4 _N	0.6 ₈	1.6 _N
25	12		6		5.6	1.80					
RL	8	6	3		0.6 _W			1.34			
TS	12 12	*	6			2.1	1.3	-			
TL	8	6	3			-	1.3	0.2N			
SL	6	8	2		0.4 _N		0.5 _N				

Note: For error variances, see Table 6.

GG Significant at 99.9% level of probability.

G Significant at 99% level of probability.

No suffix Significant at 95% level of probability.

W Significant at less than 95% level of probability.

T	a	Ь	1	e		8
-	-		-	-	-	-

				Set	(see se	ction 6)		
Factor	(a) Controls	(b) 3 months	(c) 17	(d) Natural rubber	(e) ERDE	(f) ERDE, 1Z, with controls	(g) Cloncurry, 1%, with controls	(h) Innisfail, 1%, with controls
Fabric F	79.6 _C	380 _{GG}	167 _{GG}	19.0 _G	114 _{GG}	93 _{GG}	55.6 _{GG}	94 _{GG}
Rubber R	44.6 _G	346 _{GG}	222 _{GG}		114 _{GG}	63.3 _{GG}	69.5 _{GG}	119 _{GG}
Time	0.1		3.7	6.4	0.8 _N	2.8	1.9.	13.4
Site	1	0.1 _N	8.5	3.7 _N				GG
Load		0.4 _N	G	0.0 _N	1.3,			
FR	6.8 _N	14.5 _G	17.6 _{GG}		5.5	2.2 _N	7.7 _G	10.7 ₆₆
FT	0.2 _N		1.6 _N	0.9 _N	0.9 _N	0.4 _N	1.0 _N	2.1 _N
FS		2.4 _N	1.9 _N	0.1 _N				
FL	1	0.5 _N		0.1 _N	1.3			
RT	1.1 _N		1.0 _N		1.9 _N	0.6 _N	0.7 _N	2.2 _N
RS		8.4 _G	3.1					
RL.		2.2 _N			0.6 _N			
TS			1.9 _N	1.6 _N				
TL				0.1 _N	0.1 _N			
		77.	1	0.5.		T	1	

VARIANCE RATIOS FOR MASS PER UNIT AREA

Note: For number of levels, number of results per level, and numbers of degrees of freedom, see Table 7.

For error variances, see Table 6.

GG Significant at 99.97 level of probability.

G Significant at 99% level of probability.

No suffix Significant at 95% level of probability.

N Significant at less than 95% level of probability.

VARIANCE RATIOS FOR BENDING LENGTH

				Set	(see sec	tion 6)		
Factor	(a) Controls	(b) 3 months	(c) 12	(d) Natural rubber	(e) ERDE	(f) ERDE, 1%, with controls	(g) Cloncurry, 12, with controls	(h) Innisfail, 12, with controls
Fabric F	74.1 _G	792 _{GG}	760 _{GG}	1597 _{GG}	359 _{GG}	600gg	340 _{GG}	184 _{GG}
Rubber R	64.7 _G	536 _{GG}	842 _{GG}		278 _{GG}	452 _{GG}	381 _{GG}	233 _{GG}
Time T	8.4 _N		15.7 _{GG}	37.4 _{GG}	2.3 _N	15.3 ₀₀	21.3	14.1 _{cc}
Site	1	1.2 _N	18.0 _{GG}	6.9				
Load		0.0 _N		0.4 _N	2.3 _N			
FR	8.1 _N	72.3 _{GG}	51.9 00		22.8 _{GG}	49.8 _{GG}	29.3 _{GG}	12.9 _{GG}
FT	1.5 _N		2.2 _N	4.0 _N	2.4 _N	2.6 _N	1.5 _N	1.1 _N
75		0.6N	0.2	0.4 _N				
FL	1	3.6 _N		7.9				
RT	6.9 _N		3.5 ₀		1.1 _N	4.7 _G	5.6 _c	3.8 _c
RS		2.9 _N	8.8					
RL		1.3 _N			2.0			
TS	1		11	5.3				
TL	1		3.4	1.7 _N	1.9,			
SL	1	1.4 _N		3.5 _N		1		

Note: For number of levels, number of results per level, and number of degrees of freedom, see Table 7.

For error variances, see Table 6.

GG Significant at 99.9% level of probability.

G Significant at 99% level of probability.

No suffix Significant at 95% level of probability.

N Significant at less than 95% level of probability.

VARIANCE RATIOS FOR FLEXURAL RIGIDITY

				S	et (see s	ection 6)		
Factor	(a) Controls	(b) 3 months	(c) 12	(d) Natural rubber	(e) ERDE	(f) ERDE, 12, with controls	(g) Cloncurry, 17, with controls	(h) Innisfail, 1%, with controls
Fabric F	14.1	373 _{GG}	206 _{GG}	2417 _{GG}	166 _{GG}	161 _{GG}	112 _{GG}	65 _{GG}
Rubber R	12.8	265 _{GG}	242 _{GG}		135 _{GG}	131 _{GG}	134 _{GG}	84GG
Time T	3.1 _N		3.6	31.3 ₆₆	1.8 _N	4.3	6.9 _G	4.7 ₆
Site		1.2 _N	6.3 _C	4.5 _N				
Load		1.4 _N		0.0 _N	4.1 _N			
FR	4.8 _N	108 _{GG}	55.2 _{GG}		38.4 _{GG}	44.8 _{GG}	35.8 _{GG}	16.6 _{GG}
FT	1.2 _N		0.7 _N	4.2 _N	1.6 _N	1.6 _N	1.4 _N	1.4 _N
FS		0.2 _N	0.5 _N	1.6 _N				
FL		3.3 _N		14.0g	4.6N			
RT	2.6 _N		1.7 _N		1.2 _N	2.4	3.6g	2.5
RS		1.6 _N	4.0 _G					
RL		2.2 _N			3.0 _N			
TS			1.7 _N	5.6				
TL				2.9 _N	1.4 _N			
SL		0.4N		9.9				

Note: For number of levels, number of results per level, and number of degrees of freedom, see Table 7.

For error variances, see Table 6.

N

GG Significant at 99.9% level of probability.

G Significant at 99% level of probability.

No suffix Significant at 95% level of probability.

Significant at less than 95% of probability.

VARIANCE RATIOS FOR BENDING MODULUS

				Se	t (see se	ction 6)		
Factor	(a) Controls	(b) 3 months	(c) 17	(d) Natural rubber	(e) ERDE	(f) ERDE, 1%, with controls	(g) Cloncurry, 1%, with controls	(h) Innisfail, 17, with controls
Fabric F	9.6 _N	124GG	94 _{GG}	419 _{GG}	99 _{GG}	120 _{GG}	53 _{GG}	31.8 _{GG}
Rubber R	13.4	173 _{GG}	207 _{GG}		157 _{GG}	152 _{GG}	128 _{GG}	71 ₆₆
Time T	5.3 _N		5.7 _G	17.6 _C	5.9	9.3 _{GG}	8.1 _{CG}	5.3 ₆₆
Site		1.3 _N	5.2	0.9 _N				
Load		0.8 _N		6.9	10.0			
R	3.0 _N	39.1 _{GC}	21.900		18.2 _{GG}	28.8 _{GG}	1.7 _N	6.7 _G
n	1.5 _N		1.0 _N	2.2 _N	2.9 _N	1.8 _N	1.0 _N	1.3 _N
78		0.1 _N	0.1 _W	1.0 _N				
n.		2.8 _N		18.8 _G	8.9			
RT	4.1 _N		2.1 _N		2.0 _N	4.2 _g	4.0 _G	2.7
RS		2.6 _N	4.9g					
RL		1.8 _N			4.0			
TS			2.2 _N	1.4 _N				
TL				5.3	1.9 _N			
SL		0.4N	1	9.9				

Note: For number of levels, number of results per level, and number of degrees of freedom, see Table 7.

For error variances, see Table 6.

GG Significant at 99.9% level of probability.

G Significant at 99% level of probability.

No suffix Significant at 95% level of probability.

Significant at less than 95% of probability.

REFERENCES

No.	Author	<u>Title, etc</u>
1	J.E. Swallow F.A. Baldock M. Webb	Weathering of fibrous nylon and assessment of some protective treatments. RAE Technical Report 64081 (1964)
2	Aeronautical Quality Assurance Directorate	Nylon fabrics. Specification UK/AID/961 (1971)
3	British Standards Institution	Scoured cotton fabrics for aeronautical purposes. BS2F 57 (1963)
4	British Standards Institution	Preservative textile treatments. BS 2087 (1971)
5	J.E. Swallow M. Webb	The breaking strength and extension of weathered rubber- coated fabrics. Forthcoming RAE publication
6	J.E. Swallow	The effect of dyes and finishes on the weathering of nylon textiles. RAE Technical Report 74179 (1975)
7	British Standards Institution	Methods of test for textiles. BS Handbook 11, second edition (1956)
8	J.E. Swallow M. Webb	Some statistical methods used in the Textiles Section, Materials Department, RAE. RAE Technical Memorandum Mat 86 (1970)

REPORT DOCUMENTATION PAGE

Overall security classification of this page

UNCLASSIFIED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

1. DRIC Reference (to be added by DRIC)	2. Originator's Reference RAE TR 77016	3. Agency Reference N/A	4. Report Security Classification/Marking UNCLASSIFIED			
5. DRIC Code for Originato 850100	r 6. Originator (Corp Royal Aircraft	6. Originator (Corporate Author) Name and Location Royal Aircraft Establishment, Farnborough, Hants, UK				
5a. Sponsoring Agency's Co	de 6a. Sponsoring Age	6a. Sponsoring Agency (Contract Authority) Name and Location				
N/A		N/A				

7. Title The flexibility of weathered rubber-coated fabrics

7a. (For Translations) Title in Foreign Language

7b. (For Conference Papers) Title, Place and Date of Conference

8. Author 1. Surname, Initials Swallow, J.E.	9a. Author 2 Webb, M.	9b. Authors 3, 4	10. DatePagesRefs.February3081977	
11. Contract Number	12. Period	13. Project	14. Other Reference Nos.	
N/A	N/A		Mat 314	

15. Distribution statement (a) Controlled by -

(b) Special limitations (if any) -

16. Descriptors (Keywords) (Descriptors marked * are selected from TEST)

Costed fabrics. Natural weathering. Flexibility. Mass per unit area. Flexibility. Thickness.

17. Abstract

The effects of 1 year of weathering on the flexibility of rubber-costed fabrics was studied in 208 combinations of base fabric, rubber type, time, site and stress level. Throughout, coated nylon fabrics were thicker, heavier and less flexible than coated cotton fabrics, the base fabrics being similar in mass per unit area. Fabrics coated with polyurethane or chlorosulphonated polyethene tended to be thicker than those with natural or neoprene rubbers, whilst chlorosulphonated polyethylene coated fabrics were the heaviest. Polyurethane stiffened more than the other rubbers on storage or exposure, particularly when used on nylon. Load level had little effect on flexibility.