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ABSTRACT

It has been knowr for quite a while that if a function u(x,y) is
harmonic in a region with reentrant corners, there are almost certainly infinite
discontinuities of the first derivative of u in the neighborhood of the
reentrant corner (or corners). Simple examples are for an L-shaped region or
T-shaped region. Some instances of these have been treated by conférnally
mapping the region into the interior of a rectangle. Attempts to solve the
problem as first posed by a finite difference scheme or a finite element scheme
will usually give poor approximations near any reentrant corner because the
finite differences or finite elements have large truncation errors when a first
derivative is infinite. When conformal mapping is tried, the conformal maps
are usually only approximate, and similar errors arise, for more or less
similar reasons.

In view of recent work giving convergent expansions for u in the
neighborhood of reentrant corners (see "Calculation of Potential in a Sector,
Part I," by J. Barkley Rosser, MRC TSR #1535) one can now give accurate solu-

tions for such problems. Some experiments with such regions are reported.
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Key Words: Partial differential equations, Boundary value problems,
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SIGNIFICANCE AND EXPLANATION

There are numerous situations in which the behavior is given by a
function which is harmonic in a region; temperature in the region, fluid flow
through the region, diffusion through a permeable medium in the region, to
name a few. If there are no obstacles in the region, there are numerous
techniques which give the desired harmonic function efficiently. However,
there are getting to be more and more cases in which the medium has obstacles
in it, commonly obstacles with corners. Typically a corner of an obstacle
will be a reentrant corner as far as the medium is concerned. That is, one
must traverse more than 180° THROUGH THE MEDIUM to get from one edge of
the angle to the other. It was discovered more than twenty years ago that,
at such a reentrant corner, the harmonic function that one is seeking usually
has infinite derivatives. In such case, the familiar techniques for finding
the harmonic function give very poor approximations near the corner. The
present paper gives a new technique which will give high accuracy approxima-
tions to the desired harmonic function without undue labor. Part I, which
is presented here, gives the theoretical background of the technique. Part IT,
which i1l follow, will give numerical examples, to show how the technique

works in practical situations.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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HARMONIC FUNCTIONS ON REGIONS WITH REENTRANT CORNERS, PART I

J. Barkley Rosser

1. Background. A function u(x,y) is said to be harmonic if

2 2
(1.1) a—%+3—32‘-=o.
ax dy

We approximate (1.1) by the familiar difference formula
(1.2) u(x + h,y) + u(x - h,y) + u(x,y + h) + u(x,y - h) - 4u(x,y) =0 .

The error involves fourth derivatives of u. We suppose that these exist
and are reasonably well behaved. This is usually the case, so for a long time
it has been customary to seek an approximate solution for (1.1) by solving the
set of linear equations resulting from using various values of (x,y) in (1.2).
If h is small, so that the error in (1.2) is small, the solution of (1.2)
gives good approximations to the values of u at a set of grid points.

Unfortunately, if h is smalil, then one has a very large number of
linear equations to solve, and the labor of computation is very great. Until
the advent of the computer, one compromised by using a fairly large value of
h, to curtail the calculation, but one had to be content with not a very good
approximation.

One effort to use computers to improve this situation is embodied in item
[1] of the Bibliography, by Kantorovich, Krylov, and Chernin. If one has
values for u prescribed on the boundary of a rectangle, the tables in [1]
allow one to get fairly quickly the solution of (1.2) inside the rectangle.
(This can now be done more quickly by means of the Fast Fourier Transform, so
that [1] is now obsolete.)

To show the effectiveness of their tables, the authors of [1] undertook to
find the solution of (1.2) inside an L-shaped region (see Fig. 1). They
prescribed values for u around the boundary, and used the Schwarz alternating
procedure. Specifically, they first guessed values along CF. Using these
with the boundary conditions, the tables gave the solution of (1.2) inside the
rectangle ABFG. In particular, they gave values along HC. Using these with
the boundary conditions, the tables gave the solution of (1.2) inside the
rectangle HDEG. This led to a better guess for the values along CF. Using
the better guess, the process was repeated. After a modest number of repeti-
tions, the procedure converged to give about six decimal accuracy.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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Figure 1

! This was the solution of (1.2) inside the L-shaped region. As noted, the
error of (1.2) as an approximation to (1.1) depends on fourth derivatives of u.
In [2) and (3], which appeared six to four years before (1], Wasow and Lehman
had shown that in the neighborhood of a reentrant corner (such as C in Fig. 1)
one should expect to have an unbounded first derivative. With an unbounded
first derivative, one cannot expect good behavior from fourth derivatives. So,
in the neighborhood of C in Fig. 1, one should expect the solution of (1.2)
(which was obtained in [1]) to be a poor approximation to the solution of (1.1).

| 2. Two lemmas. To get some comprehension of the results of Wasow and
Lehman in (2] and (3], we use two lemmas, which we state here without proof.

Lemma 2.1. Let a < b. Let f(a) = f(b) = 0. Let f(x) have almost every-
where a second derivative for a < x < b which is of bounded variation. Then

the Fourier series for f(x) in the interval a < x < b,

x©
i . mm(x - a)
(2.1) flx) =} D sin ~St===C
m=1
{
iy o mm(x ~ a)
(2.2) P et £ T et

converges very rapidly, and a large number of the Dm can be calculated very
quickly by means of the Fast Fourier Transform.




By "converges very rapidly” is meant that IDui goes to zero at least of

the order of m 3. Thus one can truncate the series on the right of (2.1) after
500 terms and reasonably expect to get from six to eight significant decimal
places correct. And the Fast Fourier Transform will enable one to calculate the
needed 500 coefficients very quickly. The reasoning to establish this lemma is
given in pp. 6-8 of [4].

Lemma 2.2. Let u(x,y) be harmonic in a region, part of the boundary of ﬁ
which is a straight line segment. Let u(x,y) = f(s) on this straight line
segment, where s is length along the segment. Let f(s) and its first n ‘
derivatives be continuous, and let the (n + l)-st derivative be bounded and h
continuous except at a set of points of measure zero. Then each partial deriva- f
tive of u(x,y) of order < n has a continuous extension to the straight line i
boundary.

Thm. 2.3 on p. 27 of [5) states this for a special case. The truth of the
lemma in general follows easily from the special case.

In the present report, we shall confine our attention to the case where the
prescribed values of u around the boundary are quite smooth; say that the third
derivative is bounded and continuous except at a set of measure zero. It is
planned to write a sequel to (5] explaining how to handle a variety of irregular-
ities along the boundary. Certain sorts of irregularities that could occur along
the boundary can be "removed" by the methods given on pp. 221-222 of [6]. So it
does not seem unduly restrictive to confine our attention to harmonic functions
u(x,y) which are quite smooth around the boundary. In the present report we do so.

Let u(x,y) be such a harmonic function in the L-shaped region of Fig. 2.




Indeed we will shortly specialize to prescribing that on the boundary in Fig. 2
we will have

(2.3) ulx,y) = % i+ 0% s 3~ 1%,

In Fig. 2 we have shown three-quarters of a circle of radius A and center
at the origin. We undertake to determine the behavior of wu(x.,y) inside the
three-quarters circle.

Choose u(s)(x,y) a function which in the interior of the figure is harmonic
in the neighborhood of the sides BC and CD, including the three-quarters
circle (one can take A quite small if need be), and which takes the same values
along BC and CD that are prescribed for u(x,y). Instructions for finding

such a function u(s)(x.y) are set forth in (5]. If we have prescribed the
particular boundary conditions (2.3) for u(x,y), such a function is

(2.4) L&(3in(z +1-4) + tnz + 1+ )
+en(z-1-41i) - en(z -1+ 1)},

where we have taken

(2.5) z2=Xx + iy .

It can easily be verified that the right side of (2.4) satisfies (2.3) along
the entire x-axis and the entire y-axis. Also (2.4) is harmonic except at the
four points z = * 1 * i. To keep the three-quarters circle inside the region
where (2.4) is harmonic, it suffices to take A < /2. We choose such a value
for A, and proceed.

Since u(x,y) and u(S)(x,y) take the same values along BC and CD, we
conclude that along these two segments

(s)

(2.6) u(x.Y) - (XpY)

is zero.

Measure the angle O as usual, counterclockwise around the origin from CD.
On the three-quarters circle, we will have (2.6) a func?é?n of 0 only, since
we have fixed A. Call this f£(8). As u(x,y) and u (x,y) take values
along BC and CD that are differentiable an infinite number of times, it
follows from Lemma 2.2 that f£(0) is infinitely differentiable as 6 approaches
0+ and (3m/2)-. For O < 8 < 3m/2, £(8) is the difference of two harmonic
functions, and hence is infinitely differentiable. So for 0 < 8 < 3m/2, £(8)
has derivatives of all orders.

As (2.6) is 0 on BC and CD, we have £(0) = £(31/2) = 0. So we take
a=0 and b = 37/2 in Lemma 2.1, and conclude that £(8) has a rapidly converg-
ing Fourier series expansion for 0 < 0 < 3m/2; put 6 for x in (2.1).

Because of the rapid conveigence, we see that




s r /3 2m6
(2.7) ) DJ—J sin =
A 3

m=1

is a harmonic function for 0 < r < A anmd 0 < 6 < 3n/2. It equals f(6) for
r=A, and is 0 for 6 =0 or 6 = 3n/2. But (2.6) satisfies these same
conditions. As a harmonic function is uniquely determined in a region by its I's
values around the boundary, we must have (2.6) equal to (2.7) inside and on the
three-quarters circle. Solving for u(x,y), we must have u(x,y) equal to the
sum of (2.4) and (2.7) inside and on the three-quarters circle.

For the particular boundary conditions which we have chosen (see (2.3)) we |
have D, # 0 in (2.7). So if we fix a value of 06, 0 < 6 < 3n/2, and approach
the oriéin along that ray, (2.7) will have an infinite first derivative. As (2.4)
is harmonic inside the entire circle of radius A and center at the origin (we
took A < v2), it has well behaved derivatives of all orders at C. So u(x,y)
must have an infinite derivative as r approaches zero.

Of course, if it had turned out that D1 =p =D,6 = D5 = 0, then u(x,y)
would have had well behaved fourth derivatives. gut ig did " not turn out that
way. In (2] and {3], Wasow and Lehman made a study of the asymptotic behavior
of harmonic functions near reentrant corners. Their studies were quite qgeneral,
covering curved boundaries and a wide variety of conditions. The series they got
were only asymptotic, but series like (2.7) were typical (except that (2.7)
converges). Indeed, we are lucky with our particular problem, in that our

u(s)(x,y) is harmonic in the neighborhood of the corner. More generally, u(s)(x.y)

contributes additional complications, such as terms involving logarithms.

In view of this, one wonders why the authors of [1] managed to get such good
results near the reentrant corner. This came about as follows. In order to be
able to check if their procedure was giving the right answers, they took a problem
in which the answers were known. They chose u(x,y) a function that was well
behaved over a much larger region than that shown in Fig. 1. From it, they read
values around the boundary, and proceeded to solve, getting back u(x,y) of
course. Since they started with a function that was well behaved over a large

region, including the reentrant corner, they insured that D1 = 02 = D4 = D5 =0

in (2.7). So of course they had well behaved fourth derivatives, and (1.2) was
an excellent approximation to (1.1), and their answers agreed closely with the
true values. Very comforting for them, but very misleading for the reader. Had
they used the boundary conditions (2.3), their answers would have been very poor
near C. On the other hand, they probably did not have a way to get the correct
answers for the boundary conditions (2.3), and so would not have known if they
had good answers or not.

3. The solution inside a rectangle. This brings us to the crucial ques-
tion. How does one get correct answers with boundary conditions like (2.3)?
First we have to have a technique for carrying out a solution inside a rectangle,
which we now explain. Given a rectangle with smooth boundary conditions prescribed
around its perimeter, how does one determine a u(x,y) which is harmonic in the
interior and takes the prescribed values on the perimeter?




(anc*h) (b,c+h)

(a,c) (b,c)

Figure 3

Consider
*
(3.1) u (x,y) = u(x,y) - A ~Bx ~Cy - Dxy .

This is harmonic, and has'snooth boundary conditions. 1t is easy to choose A,
B, C, and D so that u (x,y) takes the value zero at each corner of the

rectangle. Along the top let u (x,y) = f(x), for a < x < b. Our choice of

A, B, C, and D assures that f(a) = £(b) = 0. Also, as we were assuming smooth
boundary conditions, let us say that that assures that f(x) has almost every-
where a second derivative for a < x < b which is of bounded variation. So

f(x) satisfies the conditions of Lemma 2.1. We get its Fourier expansior, (2.1),
with the Dm defined by (2.2). Consider

& e mm(y - c)

i b -a ., mm(x - a)
(3.2) u, (x,y) = ) D, ' . R gl
m=1 sinh B

where h is the height of the rectangle and c¢ is the value of y at the
bottom of the rectangle. Clearly ut(x,y) is harmonic. It is zero along the

left side of the rectangle (x = a), it is zero along the right side of the
rectangle (x = b), it is zero along the bottom of the rectangle (y = c¢), and
it equa}s f(x) along the top of the rectangle; that is, on the top it agrees
with u (x,y). We carry out an analogous construction for each of the other
three sides of the rec}angle, and add together the resulting four series. Since
tge sum agrees with u (x,y) on the entire perimeter, it has to be equal to

u (x,y) throughout the rectangle. Then we determine u(x,y) from (3.1).

Armed with this technique, let us return to the problem of Fig. 1. Values
of wu(x,y) have been prescribed around the boundary (for example, see (2.3)).
We guess values along CF. With the boundary conditions, this gives values

| —




around the perimeter of the rectangle ABFG. As described just above, we get a
harmonic function inside this rectangle which takes the prescribed boundary condi-
tions. It gives us values along HC. With these and the boundary conditions,

we have values around the perimeter of the rectangle HDEG. From these, we get
values in the interior, including along the line CF. This will be an improvement
over our first guess.

We repeat the process. In an actual calculation, with the conditions (2.3),
it took about fifteen iterations for convergence. However, because the Fast
Fourier Transform gets the D_ very quickly, the calculation to convergence did
not take very long. However,mit did not converge to the u(x,y) we were seeking.
Recall that in Lemma 2.1, it was required that f(x) have a second derivative of
bounded variation. But the u(x,y) defined by conditions (2.3) has an infinite
first derivative as one approaches C along CF.

This seems too bad. However, the procedure we just described is not without
value. In fact, it will be the one we will use in the end, but with a slight
modification. Our difficulty (refer to Fig. 1) is that, along the lines BF and
HD, the function u(x,y! that we are trying to determine does not have almost
everywhere a second derivative of bounded variation. If we should try this
procedure on a u(x,y) which does have almost everywhere a second derivative of
bounded variation along the lines BF and HD, we would succeed admirably in
determining that u(x,y), and in terms of rapidly converging Fourier series. All
we need for u(x,y) is to know its values around the boundary, and to be assured
that it is sufficiently smooth along the lines BF and HD.

4. A slight modification. Recall that the ul(x,y) we are seeking to
determine equals (2.4) plus (2.7) inside and on the three-quarters circle, and
that (2.4) is very smooth along the lines BF and HD. Because of this, we
will show that

2 4
3 3
A O s) iy =
(4.1) u(x,y) DI(A) sin 3 Dz(A sin 3

has a second derivative of bounded variation along both the lines BF and HD.
Along BC and CD, (4.1) equals the right side of (2.3), which is very smooth.
Inside and on the three-quarters circle, (4.1) equals (2.4) plus the remainder
of the series (2.7), which is smooth enough. And from the three-guarters circle
out to F or H, (4.1) is the sum of three harmonic functions out to a straight
line border along which their boundary values are infinitely differentiable; by
Lemma 2.2, all derivatives exist continuously out to the border.

If we could somehow determine the values of D1 and Dz. we could determine

(4.1) by the procedure of the previous section. We certainly can determine the
values of (4.1) around the boundary; we had had to choose a value of A before

the values of D1 and 02 could be defined (in fact, we had chosen A =1 for

our calculation), and the values of u(x,y) are given by (2.3). Also, as we
have just carefully ascertained, (4.1) has a second derivative of bounded
variation along the lines BF and HD. Being given the values of Dl and Dz.
we could then calculate ul(x,y) from (4.1).
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So we are faced with the problem of determining D, and D,. t

We remind the reader that a computer operates linearly. To calculate (4.1) 4
by the procedure of the previous section, we would get the same numerical answers '
by either of the two following procedures.

(1) Apply the procedure to the total function (4.1).

(2) Apply the procedure first to ul(x,y), getting some Fourier expansions 3
S”, then apply the procedure to

winN

r ... 26 |
(4.2) (A) sin 3

- 5 1 ‘
getting some Fourier expansions S I, then apply the procedure to |4

(RIFN

= 460
(4.3) (K) sin =,

] II - : s
getting some Fourier expansions S I, and finally combine the various Fourier

expansions into

(4.4) S -D.S =:D.5 .

Although SI will be a poor representation of ul(x,y), as we observed in

the previous section, and sII and SIII will be poor representations of (4.2)

and (4.3), for similar reasons, the combination (4.4) will be an excellent repre-
sentation of (4.1), since the linearity of the computer assures that it comprises
the same numbers that one would get by applying the procedure of the previous
section to the entirety of (4.1).

2 g I I1 i 8
With no more ado, let us proceed to determine S, S, and S . Consid-

ering D1 and 02 as two (as yet) unknown parameters, we can take (4.4) as

representing (4.1). Subtracting (2.4) from (4.4), we will have a representation
of

2 4
(s) £y 20 P 48
(4.5) u(x,y) - u (x,y) -~ DI(K) sin == - DZ(K) sin-;— .

That is, using (4.4) minus (2.4), we can actually calculate values of (4.5) at
any points of the L-shaped region of Fig. 2, except that the values will come
out as linear combinations of D1 and D2.
Observe that (4.5) is zero on both the lines BC and CD, since (2.6) was.
So, by the same method that we used to get the expansion (2.7) for (2.6) inside
and on the three-quarters circle, we can get an expansion like (2.7) for (4.5).
Obviously, this expansion has to consist of (2.7) with the first two terms s

deleted. So, when we take m =1 and 2 in (2.2) to get D1 and Dz. we must




get the value zero. But, as the values of f(x) 1in (2.2) are taken from (4.4)
minus (2.4), the numerical quadratures to determine (2.2) must yield linear
combinations of D and D_,. Putting these linear combinations equal to zero

1 2
for m=1 and m =2 gives us two simultaneous linear equations for D1 and
D,. We solve these. Putting the solutions into (4.4) gives Fourier expansions

2

<

for (4.1). But now we know Dl and 02, and so can calculate ulx,y) from (4.1).
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