HARRY DIAMOND LABS ADELPHI MD BDACS SOFTWARE.(U) NOV 77 J C INGRAM HDL-TR-1831 F/G 9/2 AD-A049 303 MIPR-76628 NL UNCLASSIFIED 142 ADA049 303

AD A O 49303

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER PORT NUMBER HDL-TR-1831 5. TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) Technical Report BDACS Software. PERFORMING ONG. REPORT NUMBER CONTRACT OR GRANT NUMBER(.) AUTHOR(a) MIPR-76628 John C./Ingram PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Director November 1977 Defense Nuclear Agency 19. NUMBER OF PAGES Washington, DC 20305 127 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 1978 FEB 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES HDL Project: E436E2 This research was sponsored by the Defense Nuclear Agency under subtask L37EAXYX910, Work Unit 09, Binary Data Acquisition and Control System (BDACS).

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Binary data acquisition Computer control system software STRACT (Continue on reverse side if necessary and identify by block number) The Binary Data Acquisition and Control System (BDACS) has undergone extensive hardware augmentation to provide additional high-speed and low-speed monitoring. In a parallel effort, the software control package for the BDACS has undergone a similar major modification to provide the necessary control functions for the extended hardware. Moreover, the restructed software DD FORM 1473 UNCLASSIFIED EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

163 050

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

package has incorporated improvements in data acquisition and reduction efficiency and has provided a more detailed on-line printout of the data vector. Last, the new BDACS software package has been organized in a structured program modular format to allow for future expansion without complicated interdependencies among the several program modules.

NTIS	White Section
DDC	Buff Section [
UNANNOUN	ICED [
JUSTIFICAT	10N
DISTRIBUT	ION/AVAILABILITY CODES VAIL. and/or SPECIA
	IAH and for SPELLE

CONTENTS

	Page	
1.	INTRODUCTION AND HISTORICAL BACKGROUND 5	
2.	BDACS CONTROL PROGRAMGENERAL ARCHITECTURE	
3.	BDACS DATA FILES AND TEMPORARY FILES	
4.	BDACS METHOD FILES	
5.	BDACS DATA VECTOR AND ON-LINE PRINTOUT	
	5.1 BDACS Data Vector	
6.	ROOT BINARY SEGMENTMONTR.SR	
	6.1 ZREL Parameters	
7.	OVERLAY MODULEPHAS1.SR	
	7.1 PHAS1.SR Backbone Code	
8.	OVERLAY MODULEPHAS2.SR	
	8.1 PHAS2.SR Multiplexer Controller Setup	
9.	OVERLAY MODULEPHAS3.SR	
	9.1 PHAS3.SR Backbone Code	
10.	OVERLAY MODULEPHAS4.SR	
	10.1 PHAS4.SR Backbone Code	

CONTENTS (Cont'd)

																	P	age
11.	OVER	LAY MOI	DULEPH	AS5.SR														38
	11.2 11.3	PHAS5 PHAS5	.SR Back .SR Subr .SR Name .SR Erro	outine /Text \$	Code String	gs an	d Bu	 ffer	 s .	:	:	. :		:	:	:		45 47
12.	OVER	LAY MOI	DULE ERM	ISG.SR														49
13.	CONTI	ROL PRO	OGRAM SY	STEM PA	ARAME	rers-	-BDA	cs.s	R.									50
14.	RECO	MMENDA'	TIONS FO	R FUTUI	RE SOI	TWAR	E AU	GMEN'	TATI	ON								53
	APPE	NDIX A	ASSEM	IBLY-LAI	NGUAGI	E LIS	ring	FOR	BDA	cs	COI	NTR	OL	PF	ROG	RA	M	57
	DIST	RIBUTI	ON							٠							. 1	23
					F	GURE	5											
	1	Block	diagram	ıs of BI	DACS													6
	2	A typ	ical BDA	CS meth	hod f	ile .												15
	3	BDACS	on-line	printo	out of	f the	PRE	AMBLI	E.DA	ar	nd I	POS	TSO	CRI	PI	.D	A	
		files																40
	4	BDACS	on-line	printo	out of	f the	met	nod :	file									41
	5	BDACS	on-line	printo	out of	the	HSB	ass	ignm	ent	: 1:	ist	ar	nd	da	ta		42
	6	BDACS	on-line	printo	out of	MUX	and	LSB	dat	a 1	ine	es						44
					TA	ABLE												
	I	Prese	nt BDACS	Capab	ilitie	es .												8

1. INTRODUCTION AND HISTORICAL BACKGROUND

The Binary Data Acquisition and Control System (BDACS) is a computer-controlled general-purpose instrumentation system that retrieves and stores binary logic signals generated by a system undergoing some form of testing. Simultaneously, BDACS can transmit binary logic control signals to the test system in order to initiate a specific logic state of the system or to control the sequence of operations through several logic states.

BDACS [originally called the Communications Monitor and Control System (CMCS)] was developed under the Program for Electromagnetic Pulse Testing (PREMPT), jointly sponsored by the Defense Nuclear Agency (DNA) and the Defense Communications Agency (DCA). The primary objectives of PREMPT are:

- (a) to evaluate the vulnerability/survivability of the WWMCCS/DCS Command, Control, and Communications systems (C³) subjected to a high-altitude electromagnetic pulse (HEMP) environment by using a methodology that includes both testing and analysis;
- (b) to provide hardening recommendations/fixes that insure an acceptable level of performance of the WWMCCS/DCS in a HEMP environment;
- (c) to develop the analytical tools required to analyze the WWMCCS/DCS and other critical C^3 systems.

The initial phases of PREMPT included large-scale test programs to be performed on three telephone switch centers that form a part of the continental U.S. Automatic Voice Network (CONUS-AUTOVON). As part of the data requirements for these test programs, the logic states of the switch centers had to be monitored and controlled. The development of BDACS is a result of these requirements.

A block diagram of the BDACS hardware is shown in figure 1 (a to c). The hardware is centered around a Data General Corporation (DGC) Nova-1230 minicomputer processor and peripheral system. The computer includes a 16K core memory, Teletype (TTY) control unit, card-reader input unit, line-printer output unit (to allow real-time hard-copy output of BDACS results), a 9-track magnetic-tape drive (to allow archive storage of BDACS results), and a disk-cartridge drive to store both the background operating software system (supplied by DGC) and the foreground BDACS control software system that was developed concurrently with the hardware. The special-purpose interface board supplied by the original equipment manufacturer (OEM) provides the hardware link between the computer section and the binary signal interface/multiplexer and special-purpose control boards of BDACS. These special-purpose control

BLOCK DIAGRAMS OF BDACS

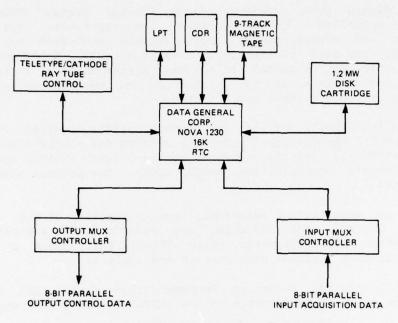


Figure 1(a). Central control and processor.

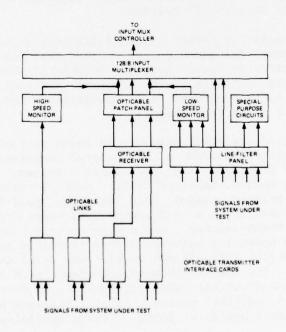


Figure 1(b). Input multiplexer unit.

BLOCK DIAGRAM OF BDACS

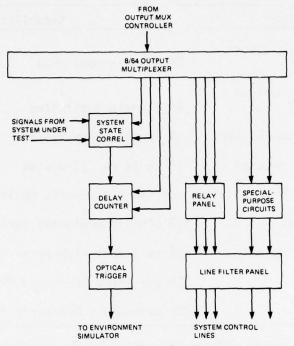


Figure 1(c). Output multiplexer unit.

boards include (1) a state correlator which generates a time-delayed trigger signal when the system under test enters a prescribed logic state (as defined by the parallel coincidence of up to eight logic signals) (2) a high-speed buffer (HSB) that allows very fast monitoring of sixteen binary signals at sample rates of two per microsecond, (3) a low-speed buffer (LSB) that allows a slow monitor and serial transfer of slowly changing logic signals, and (4) audible tone diallers and dial-tone detectors that are specific interface modules for the particular telephone switch centers which were tested under PREMPT. The present capabilities of BDACS are summarized in table I.

The heart of the BDACS consists of a software control program and several ancillary programs that provide the communications links between the BDACS operator and the system hardware. The remainder of this report describes the architecture and functions of several modules that comprise the BDACS software.

The initial BDACS software package was prepared by the OEM during the initial system development and was used during BDACS operations at Polk City, FL. During the BDACS refurbishing period in preparation of operations at Delta, UT, some minor modifications and improvements to

TABLE I. PRESENT BDACS CAPABILITIES

Feature	Capabilities						
Binary signal monitor (input MUX)	128 signals monitored						
Binary signal control (output MUX)	64 signals controlled						
System state correlator	8 signals correlated						
Trigger delay counter	O to 55 μs, simulated						
High-speed buffer	2K (16 bits) words monitored (0.5 μ s)						
Low-speed buffer	128 signals monitored serially (50 μs)						
Sampling resolution	50 μsinput high-speed MUX words (16 bits)						
	350 μsinput low-speed MUX words (112 bits)						
	1000 μs-~output MUX words (64 bits)						

the initial software package were provided by personnel of Harry Diamond Laboratories (HDL). In particular, an option was incorporated to provide the immediate on-line data printout using the TTY control unit in lieu of the line printer.

During these earlier portions of BDACS operations, the basic "background" software operating system was the Real Time Disk Operating System RDOS-REV 1.00 supplied by DGC. Following the Delta test program, an updated and improved operating system, RDOS-REV 3.01, was obtained from DGC and placed on BDACS. However, because the core resident portion of RDOS-REV 3.01 is substantially larger than that of RDOS-REV 1.00, the 16K core capacity of BDACS was insufficient to hold both RDOS-REV 3.01 and the BDACS control program concurrently. In fact, even with the earlier RDOS-REV 1.00, the concurrent loading of this operating system with the BDACS control program filled all but approximately 20 words of BDACS core. Consequently, there was no room for any substantial software additions or improvements to the BDACS control program as required for additional monitoring capability, without drastically reorganizing the control program.

Furthermore, the initial BDACS software package was not able to meet the design objective of a $50-\mu s$ minimum sample cycle time and was very inefficient both in operating time and in data storage requirements during the data reduction phase of the program.

For these reasons, a complete redesign of the control program package was initiated. The package described in the following sections has been implemented as the current BDACS control program. The control program is written in the DGC-supplied RDOS Assembly language and interfaces with the RDOS-REV 3.01 operating system.

2. BDACS CONTROL PROGRAM -- GENERAL ARCHITECTURE

The BDACS control program has been specifically designed in a "structured program" modular format that allows for future expansion or modification without complicated interactions or interdependencies among the different modules. In particular, the overall operation of the control program has been separated into major sequential tasks, with each task programmed as a separate overlay module of the control-program save file. Information exchange among the different overlay modules has been kept to a minimum and is in one of the following forms:

- (a) ZREL parameters (a very limited number)
- (b) NREL tables in the root binary
- (c) data files organized under the RDOS operating systems

Moreover, those system parameters defined within each overlay module which may be subject to change with system augmentation or expansion have been collected into a separate system parameter file, BDACS.SR, organized under RDOS. As described below, this file should be assembled with each program segment when the user constructs the control-program save file.

The BDACS control program is composed of a root binary section and six overlay modules which are common to a single overlay region. The major tasks associated with the root binary and each overlay module are summarized below and are described in detail in the subsequent sections.

Module	Name	Task
Root binary	MONTR.SR	holds ZREL parameters
		holds NREL tables
		provides overlay control
Overlay No. 1	PHAS1.SR	initializes and opens RDOS files
		reads and constructs METHOD file data acquisition and reduction tables

Module	Name	Task
		reads and constructs METHOD file data control tables
		reads and stores PREAMBLE query file
		stores the METHOD and ASSIGN files
Overlay No. 2	PHAS2.SR	controls real-time data acquisition and control sequencing
Overlay No. 3	PHAS3.SR	retrieves and stores HSB data
Overlay No. 4	PHAS4.SR	reduces and stores the MUX and LSB data
Overlay No. 5	PHAS5.SR	reads and stores POSTSCRIPT query file
		produces the on-line data printout
Overlay No. 6	ERMSG.SR	generates error messages
		provides normal or abnormal return to the RDOS-CLI

To produce the working load module (that is, the .SV save file and the .OL overlay file) of the control program, the user should first assemble the root binary and each overlay module using the RDOS-supplied assembler to produce the associated relocatable binary (.RB) file. The RDOS-CLI command strings for these assemblies are

(a) Root binary

ASM BDACS MONTR MONTR.RB/B

(b) Overlay No. 1

ASM BDACS PHAS1 PHAS1.RB/B

(c) Overlay No. 2

ASM BDACS PHAS2 PHAS2.RB/B

(d) Overlay No. 3

ASM BDACS PHAS3 PHAS3.RB/B

(e) Overlay No. 4

ASM BDACS PHAS4 PHAS4.RB/B

(f) Overlay No. 5

ASM BDACS PHAS5 PHAS5.RB/B

(g) Overlay No. 6

ASM BDACS ERMSG ERMSG.RB/B

Following assembly, the relocatable binary files are combined, and relocatable externals are resolved to produce the final save and overlay files. The RDOS-CLI command string for this loading operation is

RLDR MONTR [PHAS1, PHAS2, PHAS3, PHAS4, PHAS5, ERMSG] 10/ C .

The final result is the generation of a save file named MONTR.SV and an associated overlay file named MONTR.OL.

3. BDACS DATA FILES AND TEMPORARY FILES

The BDACS control program uses the RDOS file management routines to create and maintain a number of different data files and temporary files used during BDACS operations. A general description of the content and format of these files follows.

PREAMBLE.DA--An RDOS sequentially organized, permanent, and write-protected file containing alphanumeric text information generated and maintained by the DGC-supplied text editor (EDIT.SV) under the control of the BDACS operator. The file contains a series of alphanumeric "query" or "statement" lines which are presented to the BDACS operator line by line at the beginning of a BDACS test run. A query line requires operator response, and both the query and response are stored for later incorporation in the final data vector. A statement line (which begins with an asterick) does not require a response. It is used to incorporate information into the final data vector which does not change from one test run to the next or it is used for formatting purposes.

POSTSCRIPT.DA--An RDOS sequentially organized, permanent, and write-protected file, similar to the preamble file described above. The postscript file contains a series of query or statement lines which are presented to the BDACS operator following a BDACS test run. Again, the query/response or the statement is incorporated in the final data vector.

ASSIGNA.DA--An RDOS randomly organized, permanent, and write-protected file containing alphanumeric text information generated and maintained by the ASSIGN.SV program which is supplied as part of the BDACS software package. The alphanumeric text is used to describe the signals being monitored by the HSB. In particular, the textual information for each signal is contained in 16 bytes (8 words packed mode 1) null filled. Thus, information for 32 signals is held in a 256-word disk block, and the file contains as many disk blocks as required for the HSB signals.

ASSIGNB.DA--An RDOS randomly organized, permanent, and write-protected file containing alphanumeric text information similar to that described above. For the present file, the text is used to describe the signals being monitored by the BDACS MUX panels. Again, each signal text is packed in 8-word segments, with 32 signal texts per 256-word disk block.

ASSIGNC.DA--An RDOS randomly organized, permanent, and write-protected file containing alphanumeric text information similar to that described above. For this file, the text is used to describe the signals being monitored by the BDACS LSB. Again, each signal text is packed in eight-word segments, with 32 signal texts per 256-word disk block.

BDACS.DA--An RDOS contiguously organized, permanent, write- and attribute-protected file containing the binary data acquired during a BDACS test run. The binary information is written into the file space independent of and external to the RDOS operating system and file maintenance routines. However, during the data reduction phase of the test run, the data are retrieved from the file under control of RDOS routines.

TEMPA.TM--An RDOS sequentially organized temporary file, created by the BDACS control program at the beginning of each BDACS test run. The file provides temporary storage for the query/response lines and the statement lines of the preamble file described earlier. At the end of a BDACS test run, this file is transferred to the final data vector and/or the on-line data printout.

TEMPB.TM--An RDOS randomly organized temporary file, created by the BDACS control program preceding the retrieval of the HSB data. At the of a BDACS test run, this file is transferred to the final data vector and/or the on-line data printout.

TEMPC.TM--An RDOS randomly organized temporary file, created by the BDACS control program preceding the reduction of the MUX and LSB data (provided the magnetic-tape option is not in effect). At the end of a BDACS test run, this file is transferred to the on-line data printout.

TEMPD.TM--An RDOS sequentially organized temporary file, created by the BDACS control program following data reduction. The file provides temporary storage for the query/response lines and the statement lines of the postscript file described earlier. At the end of a BDACS test run, this file is transferred to the final data vector and/or the on-line data printout.

4. BDACS METHOD FILES

The BDACS operator provides information to the BDACS control program on how a test run is to be conducted (or controlled) through a "method" file. The different method files are RDOS sequentially organized files containing alphanumeric text information generated and maintained by the DGC-supplied text editor (EDIT.SV) under the control of the BDACS operator. Each method file should contain the lines of information that follow.

- (1) The <u>identification line</u> does not provide information to the control program but serves to identify the contents of the file.
- (2) The <u>sample rate line</u> should contain a single-precision, decimal integer between 50 and 4095 which represents the sample rate (in microseconds) for the BDACS MUX panels. The integer may be preceded and followed by alphabetic text strings (nonnumeric).
- (3) The test duration line should contain a double-precision, decimal integer which represents the total duration of the test run (in milliseconds). The integer may be preceded and followed by alphabetic text strings (nonnumeric).
- (4) The HSB line should contain a single-precision, decimal integer between 500 and 10000 which represents the sample rate (in nanoseconds) for the BDACS HSB. An asterisk immediately following the integer indicates that the HSB data should be transferred to the on-line data printout file following the data run. Alternatively, an integer of zero in this line indicates that the HSB data-retrieval phase will be bypassed. The integer may be preceded and followed by alphabetic text strings (nonnumeric).
- (5) The LSB line should contain a single-precision, decimal integer between 1 and 16 which represents the MUX input number (on the high-speed word) at which the LSB signal is being serially monitored. Alternatively, an integer of zero in this line indicates that the LSB is not in use. The integer may be preceded and followed by alphabetic text strings (nonnumeric).

- (6) The MUX reported points list consists of two or more lines of information representing those MUX input points which are selected for data reduction and/or inclusion in the on-line data printout following a test run. The list begins with a "header" line that is used for formatting but imparts no information to the control program. Following the header line is a series of data lines that contain one or more single-precision, decimal integers separated by non-digit characters. The integers, ranging from 1 to 128, represent those points on the input MUX panels to be included in the data-reduction phase of the control program. An asterisk immediately following an integer is a flag indicating that the specified point should also be contained in the on-line data printout. The last line of the MUX reported points list should be an alphabetic text string (for example, END OF MUX LIST.), containing no digits, which is used as an end-of-list indicator.
- (7) The LSB reported points list like that described above, consists of two or more lines of information representing those LSB input points that are selected for data reduction and/or inclusion in the on-line data printout. Again, the list consists of a header line, a series of data lines, and an end-of-list indicator line. The integers in the data lines represent those LSB input points to be included in the data-reduction phase of the control program. An asterisk immediately following an integer is a flag indicating that the specified point should be included in the on-line data printout.
- (8) The control point list consists of one or more lines of information representing the control functions to be performed by the control program during a test run. The list begins with a header line that is used for format but imparts no information to the control program. Following the header line is a series of data lines, each of which contains two single-precision, decimal integers followed by a double-precision, decimal integer. The first single-precision integer represents the state which a point on the MUX output panel is to assume, either 0 or 1. The second single-precision integer represents the point number on the MUX output panel, ranging from 257 to 318. However, a special point number of 0 may also be used. This number does not correspond to any point on the MUX output panel; instead, it indicates when the control program should begin data storage during data acquisition. The double-precision integer represents the elapsed time (in milliseconds) from the beginning of a test run at which the selected control point is to assume the indicated state. The series of data lines should be arranged in an ascending sequence with respect to time, and no two adjacent times should differ by more than 32,767 ms. Furthermore, the last time in the list and the test duration time specified earlier should not differ by more than 32,767 ms. If necessary, pseudo-control data lines, which will not affect the current state of a control point, may be placed in the data series to comply with the above limitation. As a second limitation, the total number of lines in the data list should not be greater than 128. Last, an

end-of-list alphabetic text string may optionally be included in the list and as a final line of the method file. An example of a typical method file is shown in figure 2.

IDENTIFICATION: TEST METHOD SAMPLE RATE (IN USEC): 100 DURATION (IN MSEC): 10000 HS BUFFER: 5500+ 16 LS BUFFER: REPORTED POINTS TABLE 1+2+3+4+5+6+7+6+9+10+11+12+13+14+15+16+ 17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+ 33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+ 49+50+51+52+53+54+55+56+57+58+59+60+61+62+63+64+ 65*66*67*68*69*70*71*72*73*74*75*76*77*78*79*80* 81+82+83+84+85+86+87+88+89+90+91+92+93+94+95+96+ 97+98+99+100+101+102+103+104+105+106+107+108+109+110+111+112+ 113+114+115+116+117+118+119+120+121+122+123+124+125+126+127+128+ END OF TABLE LS BUFFER TABLE 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+ 17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+ 33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+ 49+50+51+52+53+54+55+56+57+58+59+60+61+62+63+64+ 65+66+67+68+69+70+71+72+73+74+75+76+77+78+79+80+ 81+82+83+84+85+86+87+38+89+90+91+92+93+94+95+96+ 97+98+99+100+101+102+103+104+105+106+107+108+109+110+111+112+ 113+114+115+116+117+118+119+120+121+122+123+124+125+126+127+128+ END OF TABLE STATE SIGNAL TIME 1 . 257 258 259

Figure 2. Typical BDACS method file (partial).

1 265 0 1 266 0

5. BDACS DATA VECTOR AND ON-LINE PRINTOUT

The results of a BDACS test run may be incorporated in a final data vector written on magnetic tape and/or an immediate on-line data printout produced by the BDACS line-printer or TTY control unit.

5.1 BDACS Data Vector

If the "M" global switch option is in effect, the final data vector on magnetic-tape unit MTO contains eight files described below.

- (a) MTO:0 is the preamble file query/response lines and statement lines transferred line by line from the TEMPA.TM file. This file has the standard RDOS tape format and record length of 514 bytes.
- (b) MTO:l is the method file selected for the particular test run which is transferred line by line. Again, the file has the standard RDOS tape format and record length of 514 bytes.
- (c) MTO:2 is the ASSIGNA.DA file transferred as 256-word blocks. The record length of each block is 512 bytes.
- (d) MTO:3 is the ASSIGNB.DA file transferred as 256-word blocks. The record length of each block is 512 bytes.
- (e) MTO:4 is the ASSIGNC.DA file transferred as 256-word blocks. The record length of each block is 512 bytes.
- (f) MTO:5 is the HSB data transferred as 256-word blocks from TEMPB.TM. The record length of each block is 512 bytes.
- (g) MTO:6 is the MUX input panel data and LSB data generated during data reduction. The file consists of 768-word data blocks with record lengths of 1536 bytes. Each of the 256 data entries in the data blocks has six bytes (or three words). The first byte contains a state bit (either 1 or 0), an error-recovery bit (either 1 or 0) and a select bit (either 1 or 0). The second byte contains the MUX or LSB point number corresponding to the state. The third, fourth, fifth, and sixth bytes contain a double-precision integer representing the time from the beginning of the test run (in ms) at which the selected point changed to the prescribed state.
- (h) MTO:7 is the postscript file query/response lines and statement lines transferred line by line from TEMPD.TM file. This file has the standard RDOS tape format and record length of 514 bytes.

If the "L" global switch option is in effect, the final data vector is transferred to the BDACS line printer. Similarly, if the "T" global switch option is in effect, the final data vector is transferred to the BDACS TTY control unit. For either case, this data vector contains the following entries:

- (a) The preamble file query/response lines and statement lines transferred line by line from TEMPA.TM file.
- (b) The postscript file query/response lines and statement lines transferred line by line from TEMPD.TM file.
- (c) The method file transferred line by line from the method file selected for the test run.
- (d) The HSB data, if the printout option as described in section 4 is in effect. This printout consists of (1) the assignment table for the different HSB input signals derived from ASSIGNA.DA, and (2) a chronological list of the monitored states of the HSB input signals. The time at which each signal was monitored is derived from the HSB sample rate described in section 4.
- (e) The input MUX data and LSB data for those MUX and LSB signal points which were flagged for on-line data printout, as described in section 4. The printout consists of data lines containing (1) the new state (either 1 or 0) which a signal point assumes, (2) the time (in microseconds) at which the state change occurred, (3) the signal point number and select code (either "M" for MUX panel or "L" for LSB), and (4) the signal point mnemonic name for the signal as derived from either the ASSIGNB.DA or the ASSIGNC.DA files.

6. ROOT BINARY SEGMENT--MONTR.SR

The root binary segment is the part of the control program that remains core resident throughout a BDACS test run. For this reason, the root binary segment was designed to require only a small amount of core, while most of the program core requirements are shared among the several overlay modules. The assembly language structure for MONTR.SR is given in appendix A, section A-1. The root binary segment is divided into the following three regions (sect. 6.1, 6.2, and 6.3).

6.1 ZREL Parameters

This region is organized in relocatable page-zero locations and contains those parameters that are common among or global to the several overlay modules. In particular, the following parameters are presently in use.

- (a) OVRTN holds the return address to the root binary from all overlay modules (except when program exit is affected in ERMSG.SR). This parameter is set in subroutine OVLOD as part of the overlay loading procedure.
- (b) RECOV provides several functions: First, it holds the system error code if an RDOS system call error occurs during processing in any of the overlay modules. Second, it holds the root binary return address, previously stored in OVRTN, if a recoverable error occurs in any overlay module.
- (c) ERRTN contains the NREL address to the root binary section labelled ERROR. This allows an abnormal exit from any overlay module to the root binary segment when specific errors occur.
- (d) ERCOD contains an error code which is returned to the root binary segment whenever an abnormal error return is affected. In particular, a code of -l is returned for an RDOS system call error. For other errors, the left-hand byte of ERCOD contains the overlay number in which the error condition occurred, and the right-hand byte of ERCOD contains the error number for that particular overlay module. ERCOD is set within each overlay module and supplies information to the error message overlay ERMSG.SR.
- (e) MAGFG provides two functions: First, it holds the first global switch word supplied from the COM.CM file generated by the RDOS-CLI. Second, it holds a nonzero value as a flag if global switch "M" is optionally set indicating a magnetic tape is required. This parameter is set in overlay module PHAS1.SR and used in PHAS1.SR, PHAS3.SR, PHAS4.SR, and PHAS5.SR.
- (f) PRINT provides two functions: First, it holds the second global switch word supplied from the COM.CM file generated by the RDOS-CLI. Second, it holds nonzero print flags if global switch "L" is set, for line printer required, or global switch "T" is set, for TTY control unit required. Bit 1B15 is set for "L" and 1B0 is set for "T." This parameter is set in PHAS1.SR and used in PHAS5.SR.
- (g) SMPRT holds the MUX panel sample rate as a single-precision binary integer. It is set in overlay module PHAS1.SR and used in PHAS2.SR and PHAS4.SR.
- (h) HSMON holds the HSB sample rate as a single-precision binary integer and the optional HSB on-line data printout flag in 1BO. It is set in overlay module PHAS1.SR and used in PHAS3.SR and PHAS5.SR.
- (i) LSMON holds the LSB signal point on the MUX panel as a single-precision binary integer. It is set in overlay module PHAS1.SR and used in PHAS4.SR during data reduction.

- (j) BLKCT contains the number of remaining track surfaces on the disk in which data from the MUX input panel are stored. The parameter is initially set to a maximum count, currently 200, and decremented during overlay module PHAS2.SR operations. The parameter is also used in PHAS4.SR during data reduction.
- (k) HLDCT contains the number of data blocks acquired but not stored on the disk preceding the onset of data storage. The parameter is initially zero and periodically incremented during data acquisition PHAS2.SR of the control program. The parameter is used in PHAS4.SR during data reduction.

6.2 NREL Input/Output Control Tables

This region of the root binary segment consists of three tables containing input and output control information.

- (a) MSKTB is divided into three parts. The first part contains mask words of those MUX input points which have been designated for data reduction (see sect. 4). The mask words are packed with 16 points per word, each bit from 1B15 to 1B0 being set if the corresponding point is reported. At present, eight such mask words corresponding to 128 input points are in use. The second part contains mask words whose bits correspond to the previous state (either 1 or 0) of the different MUX input points. As above, the words are packed with 16 points per word for a total of eight mask words. Initially, the mask words are all zero, corresponding to an assumed initial 0 or "off" state for the input points. The third part of MSKTB contains mask words of those MUX input points which have been designated for immediate on-line data printout (see sect. 4). Again, the words are packed with 16 points per word for a total of eight mask words. Thus, the total present length for MSKTB is 24 words, plus one spare.
- (b) LSBTB is the LSB equivalent to MSKTB. Again the table is divided into three parts containing mask words which correspond to the reported points, the previous state, and the points enabled for on-line printout.
- (c) CTLTB contains the information required to perform the control operations in overlay module PHAS2.SR. Currently, the table has a capacity for 128 such control functions, with each control function having a corresponding three-word entry in the table. The first word of an entry contains the elapsed time (in milliseconds) from the previous entry at which the present control function is to be activated. The second word of an entry contains a word mask specifying the corresponding bit position in the MUX output-panel buffer word which is to be activated (or altered). The third word of an entry contains both the state to be activated (in bit position 1B15) and the address of the MUX output-panel buffer word (in the remaining bit positions).

6.3 NREL Code

This region of the root binary segment contains the limited amount of instruction code which is required for overlay module initiation and loading and for overlay module entry and exit control.

The control program begins at parameter START and immediately initializes and opens the control program overlay file MONTR.OL on channel No. 7. Next, the overlay modules PHAS1.SR, PHAS2.SR, PHAS3.SR, PHAS4.SR, and PHAS5.SR are sequentially loaded into memory via the overlay load subroutine OVLOD. Following each load a branch instruction is performed into the overlay region to addresses OVST1, OVST2, OVST3, OVST4 and OVST5. Following a normal completion of these overlay module instructions, or if an error condition occurs, the last overlay module ERMSG is loaded and entered. From this overlay module a normal or abnormal return to the RDOS-CLI is performed, or the root binary segment is reentered if a recoverable error is encountered.

7. OVERLAY MODULE -- PHAS1.SR

This overlay module is the part of the control program that receives the control input data from the "method" file and constructs the control tables as described in sections 4 and 6.2. In addition, this module performs the query/response operations associated with the PREAMBLE.DA file and begins construction of the BDACS temporary files and the BDACS data vector described in sections 3 and 5.

PHASEL.SR is composed of instructions interspersed with tables and parameters. Logically, the module is divided into three main regions, the "backbone," the subroutines, and the name/test strings. These regions are described in detail in sections 7.1 to 7.4 and the assembly language listing for PHASL.SR is shown in appendix A, section A-2.

7.1 PHAS1.SR Backbone Code

The backbone code for PHAS1.SR is primarily a set of sequential initialization tasks for the control program. The main tasks performed are to

- (a) reset MUX output buffer, MUX input mask table, and the LSB input mask table.
- (b) disable RDOS spooling on \$LPT and \$TTO; open the output message unit (\$TTO).
- (c) open the RDOS-generated COM.CM file and retrieve the global switches and "method" file name; set data vector and on-line printout option flags (see sect. 6.1(f) and (h)); initialize MTO (if required).

- (d) open the prescribed "method" file and extract program control data as described in section 4; construct MUX input mask table, LSB input mask table, and MUX output control table, as described in section 6.2.
- (e) create TEMPA.TM file; open TEMPA.TM and PREAMBLE.DA files; read preamble query/statement lines and obtain operator response; construct TEMPA.TM.
- (f) transfer TEMPA.TM, the "method" file, ASSIGNA.DA, ASSIGNB.DA, and ASSIGNC.DA to the magnetic-tape data vector (if "M" option is in effect).
 - (g) check for proper sense-switch conditions.

During the process of receiving initialization parameters and data, these quantities are checked for proper value limits. If an out-of-bounds condition arises, control is transferred to an error routine.

7.2 PHAS1.SR Subroutine Code

The subroutines which comprise part of the PHAS1.SR code are accessed from the backbone code one or more times using the assembly language JSR instruction. Typically, access to the subroutine is indirect, with the subroutine starting address stored in an access word near the JSR instruction. Moreover, depending on the subroutine, one or more parameters may follow the JSR instruction. Return is made to the instruction following the last parameter, unless errors or exceptional conditions cause branching to other parts of the code. The following paragraphs briefly describe the subroutines found in PHAS1.SR.

- (a) TABLE reads the contents of the MUX or LSB-reported points list in the "method" file and constructs the MSKTB or LSBTB mask table described in section 6.2(a) and (b). Three parameters are associated with the subroutine: the first contains the beginning address of the mask table, the second contains the maximum size of a valid list entry, and the third contains offset within the table for the beginning of the on-line printout masks. Entries within the list are assumed to begin at a value of one. An exceptional return to the error routine occurs if an entry in the list is out of bounds. Normal return occurs when a line containing no digits is encountered in the list.
- (b) CKNBR checks a binary number for valid bounds. The number is contained in ACO. The lower bound is given as the first parameter and the upper bound is given as the second parameter. An exceptional return to the error routine occurs if an out-of-bounds condition occurs.

- (c) XFERF transfers ASCII data from one file to another. The two parameters that are required contain the byte pointers to the source file name and the destination file name. The files are opened on RDOS channels No. 3 and No. 4, the transfer is made on a line-by-line basis, and the files are then closed on both channels. No exceptional condition is explicitly contained in this subroutine.
- (d) XBLK transfers contents from a disk file to a magnetic-tape file block by block (256 words per block). Similar to XFERF, the files in XBLK are opened on RDOS channels No. 3 and No. 4, the transfer is made, and the files are then closed on both channels.
- (e) MVWUT transfers words to a destination storage area from the utility buffer pointed to by the byte pointer UTBPT. Two parameters are required, the first containing the address of the destination area, and the second containing the number of words to be moved.
- (f) FMMSK forms a mask (in ACl) and displacement value (in ACO) corresponding to an initial binary value in ACO. In effect, the subroutine divides ACO by 16 to form the displacement as the quotient. The remainder is used to set the associated bit position in the mask word contained in ACl (a remainder of 0 sets bit 1B15). All other bits in the mask are reset.
- (g) GTSPN reads an ASCII decimal integer text string and forms the corresponding single-precision unsigned binary integer in ACO. The byte pointer to the beginning of the text string is stored in ACI. The subroutine searches the text string until the first decimal character is encountered. Thereafter, each succeeding decimal character is folded into the binary equivalent of the number. The first non-decimal character terminates the scan, and upon exit from the subroutine AC2 contains the byte pointer to this terminating character. A jump is made to the error routine whenever a binary number overflow occurs (that is, a number greater than 65,383) or whenever no number is found within the text string.
- (h) GTDPN is similar to GTSPN except that a double-precision unsigned binary integer is formed in ACO and AC1. An overflow occurs whenever the number is greater than 4,294,967,295.
- (i) GTSPR is similar to GTSPN except that if no number is found in the text string, then exit from the subroutine is performed via the first parameter.
- (j) GTBYT retrieves a byte from a text string pointed to by a byte pointer in AC2. The byte is returned in ACO (right-hand position), and the byte pointer is left unchanged.

- (k) STBYT stores a byte held in ACO (right-hand position) in the text string pointed to by a byte pointer in AC2. Upon return from the subroutine, the byte pointer is incremented by one count.
- (1) CREAT creates a sequentially organized disk file by using the system call .CREAT. The first parameter contains a name pointer to the name of the file to be created. If the file already exists, the old file is deleted and a new file is created; otherwise, all system errors cause a branch to the system error routine.
- (m) DELET deletes a file by using the system call .DELET. The first parameter contains a name pointer to the name of the file to be deleted. If the file does not exist, no error is initiated; otherwise, all system errors cause a branch to the system error routine.
- (n) OPFLE opens a file on an RDOS channel by using the system call .OPEN. The first parameter contains a name pointer to the name of the file to be opened. The second parameter contains the channel number. Default characteristics for the file are assumed when the subroutine is called. All system errors cause a branch to the system error routine.
- (o) CLFLE closes a file on an RDOS channel by using the system call .CLOSE. The first parameter contains the channel number to be closed. All system errors cause a branch to the system error routine.
- (p) INMTA initializes the magnetic tape until MTO by using the system call .INIT. A partial initialization is assumed when the subroutine is called, and the subroutine waits locally until the "device ready" status is achieved. All system errors cause a branch to the system error routine.
- (q) WTLUT writes a line from the utility buffer (pointed to by byte pointer UTBPT) to the file opened on channel No. 3. This subroutine uses the system call .WRL. All system errors cause a branch to the system error routine.
- (r) TYLUT is similar to WTLUT except the channel on which the system console output file (\$TTO) is opened is No. 1.
- (s) TYPMG is similar to WTLUT and TYLUT except the byte pointer is given as the first parameter and points to a message text string.
- (t) RDSUT reads sequentially a number of bytes from the file opened on channel No. 4 to the utility buffer (pointed to by byte pointer UTBPT). The subroutine uses the system call .RDS, and the number of bytes to be read is given as the first parameter. All system errors cause a branch to the system error routine.

- (u) RDLUT reads a line from the file opened on channel No. 4 to the utility buffer (pointed to by byte pointer UTBPT). The subroutine utilizes the system call .RDL, and upon successful return, AC2 contains the byte pointer to the byte following the end of the line. All system errors cause a branch to the system error routine.
- (v) RDLUR is similar to RDLUT except that, upon detecting an end-of-file error condition, the subroutine exits via the first parameter.
- (w) RDLUA is similar to RDLUT except that the byte pointer is located in AC2 and the channel number for the file is given as the first parameter.
- (x) SPLDS disables spooling on a device whose name is pointed to by the byte pointer given in the first parameter. The subroutine uses the system call .SPDA, and all system errors cause a branch to the system error routine.
- (y) OPMTA opens a magnetic tape file for free format I/O on an RDOS channel by using the system call .MTOPD. The first parameter contains a byte pointer to the name of the magnetic-tape file name, and the second parameter contains the channel number on which the file is to be opened. All system errors cause a branch to the system error routine.
- (z) MTAWT performs a magnetic-tape free format "write" operation to the file on channel No. 3 by using the system call .MTDIO. The data to be transferred are located in the buffer pointed to by BUFFR and include a block of 256 words. All system error conditions except "end-of-file" cause a branch to the system error routine.
- (aa) MTASR is similar to MTAWT, except a free format "space reverse" of one record is initiated.
- (bb) MTAEF is similar to MTAWT, except a free format "write end-of-file" is initiated.
- (cc) RDBLK reads a disk block from the file opened on channel No. 4 using the system call .RDB. The first parameter contains the block number within the file which is to be read, and the second parameter contains a branching address for an end-of-file error condition. A single 256-word block is read from the file into the core area pointed to by BUFFR. All system errors except the end-of-file condition cause a branch to the system error routine.

7.3 PHAS1.SR Name/Text Strings and Buffers

The final region of PHAS1. SR is composed of a set of packed ASCII name and text strings pointed to by name or text byte pointers. These pointers are assembly language "equates" that do not generate an object code, but instead provide byte pointer values used in the "backbone" and subroutine regions of PHAS1.SR. The name and text strings are those RDOS file names and BDACS file names or messages used in PHAS1.SR and are generated with assembly packing mode 1, the normal packing mode for RDOS strings. Last, the final part of the name and text string region contains the address pointer UTBPT to a 68-word utility buffer area and the address pointer BUFFR to a 256-word block I/O buffer. These buffers are used for I/O operations for several subroutines described in section 7.2.

7.4 PHAS1.SR Error Routine

Several program error conditions can cause a branch to the PHAS1.SR error routine. This routine determines the point in the PHAS1.SR code where the error occurred and encodes an error code word which is stored in ERCOD within the root binary segment (see sect. 6.1(d)). The error code word contains in the left-hand byte the overlay module number (one in the present case) in which the error occurred and in the right-hand byte the displacement from the beginning of an error table. This error table (pointed to by the symbol ERTBL) contains as entries those addresses which immediately follow a JSR instruction to the error routine. Within the routine, the error table is scanned until a match is found between an error table entry and AC3, the latter containing the return address of that JSR instruction from which the routine was entered. Thus, the error is identified as a displacement from the start of the error table. A corresponding displacement from the start of a message pointer table in the overlay module EMMSG.SR contains a table entry which points to the associated error message. This message is subsequently printed on the system output console (that is, \$TTO).

At present, the 12 program errors detected for PHAS1.SR are

- (a) ERRI--"MONITOR POINT UNDERFLOW"--the entry in the MUX input list or LSB input list is less than unity.
- (b) ERR2--"MONITOR POINT OVERFLOW"--the entry in the MUX input list or LSB input list is greater than maximum value allowed (presently 128 and 128, respectively.
- (c) ERR3--"CONTROL TABLE OVERFLOW"--the number of control table entries exceeded the maximum value allowed (presently 128).

- (d) ERR4--"OUTPUT LIST NOT IN SEQUENTIAL ORDER"--the entries in the control table are not monotonically increasing in time.
- (e) ERR5--"OUTPUT LIST DELTA TIME OVERFLOW"--the time difference between two adjacent control list entries is greater than the maximum value allowed (32,767).
- (f) ERR6--"CONTROL POINT UNDERFLOW"--the MUX output point in a control table entry is less than the minimum value allowed (presently 257).
- (g) ERR7--"CONTROL POINT OVERFLOW"--the MUX output point in a control table entry is greater than the maximum value allowed (presently 318).
- (h) ERR8--"SP-DP OVERFLOW"--the number in a text string exceeded the single precision maximum (65,535) or the double precision maximum (4,294,967,295) in subroutines GTSPN (or GTSPR, GTSPA) and GTDPN, respectively.
- (i) ERR9--"EOL, NO NUMBER FOUND"--no number was found in a text string when subroutines GTSPN, GTSPA, or GTDPN are called.
- (j) ERR10--"SAMPLE RATE OUT OF BOUNDS"--the sample rate for the MUX panels is either less than the minimum allowed value (presently 50) or greater than the maximum allowed value (presently 4095).
- (k) ERR11--"LOW SPEED BUFFER MONITOR POINT OUT OF BOUNDS"--the point on the input MUX panel where the low-speed buffer signal is monitored is less than the minimum value allowed (presently 1) or is greater than the maximum value allowed (presently 16).
- (1) ERR12--"HIGH SPEED BUFFER SAMPLE RATE OUT OF BOUNDS"--the value specified for the HSB sample rate is less than the minimum value allowed (presently 500) or is greater than the maximum value allowed (presently 10,000).

If the error is a result of a system error returned from one of the RDOS system calls described in section 7.2, the error code ERCOD is set to -1 as a system error flag. For either type of error (program or system) return is made to the root binary section via ERRTN, as described in section 6.1(c).

8. OVERLAY MODULE--PHAS2.SR

This overlay module is the portion of the control program that initiates the start of data acquisition and supervises the operations of

the input and output MUX panels (multiplexers). This module has the complicated task of retrieving data from the input MUX and storing the data in a temporary buffer and, when the buffer is full, of transferring the data to the disk. Concurrently, the module is monitoring the real-time clock (RTC) and, at the preselected control times, updating the output MUX buffer data. These data are periodically sent to the output MUX panel to control the various BDACS operations during a test run.

Since the input and output data flow can take place at very fast rates (two input data words and one output data word can be transferred within 50 μs), the response of the standard RDOS interrupt service routine is not adequate. Thus, the main portion of the PHAS2.SR code contains a more streamlined interrupt service routine to handle the multiplexer, disk, and RTC operations. In addition, PHAS2.SR contains the test-run initiation and control loop code and data tables necessary to "set up" the multiplexer I/O controller. These three functions are described in more detail in the following sections, and the assembly language listing for PHAS2.SR is shown in appendix A, section A-3.

8.1 PHAS2.SR Multiplexer Controller Setup

The BDACS multiplexer controller contains the circuitry which provides the interface between the central processing unit (CPU) and the MUX input and output panels. Since this controller operates by direct memory access (DMA) data transfer, it must be preprogrammed with the appropriate core buffer address and word count for DMA. Furthermore, the information which controls the operation of MUX input and output panels must be supplied to the controller. These data are held in a PHAS2.SR data table and are transferred from the CPU to the multiplexer controller with the basic NOVA I/O instruction repertoire, as described below.

- (a) DMUXA holds the input and output MUX panel starting addresses and word counts. A four-bit address and a four-bit word count are associated with each type of panel. The information is supplied to the controller by a DOA instruction.
- (b) DMUXB holds the DMA input starting address for the initial DMA operation. The starting address points to a core buffer region in which the input data are stored. The address is supplied to the controller by a DOB instruction.
- (c) DMUXC holds the highspeed word option bit (1B1) and the sampling rate for the controller (in bits 1B4-1B15). Also, for proper transfer of the data, 1B0 flag bit should be "set." The data are supplied to the controller by a DOC instruction.

- (d) DMUXD contains the (negative) word count for the initial DMA operation. As noted above, this word count in conjunction with the starting address (DMUXB) controls the storing of input data in the core buffer. When the count is decremented to zero, a MUX interrupt occurs. In contrast to (c), a 1BO flag bit should be "reset" for proper transfer of the data by a DOC instruction.
- (e) DMUXE contains the (running) starting address for the remaining DMA operations. It typically contains a core address which is one less than that specified (in DMUXB). It is used to reset the running value of the address register in the controller following a MUX interrupt and overflow. Again, the data are supplied with a DOB instruction.
- (f) DMUXF contains the (running) negative word count for the remaining DMA operations. It typically contains a count one greater (in absolute magnitude) than that specified in DMUXD. It is used to reset the running value of the word-count register in the controller following a MUX interrupt and overflow. Again, the data are supplied with a DOC instruction with 1BO "reset."

Two I/O instruction special functions should also be supplied to the controller following the general reset of the controller. First, the START function may be supplied with any of the instructions given above and causes a reset of the DONE state and a set of the BUSY state in the controller. Second, the PULSE function is supplied to the controller immediately upon receipt of the BDACS operators signal to begin the test run (via the CPU console sense switch 1BO) and causes the controller to commence I/O operations.

8.2 PHAS2.SR Test-Run Initiation and Control Loop

The sequential tasks performed in PHAS2.SR are

- (a) wait for all TTY and disk operations to end; reset the multiplexer controller, disk, and RTC,
- (b) save the RDOS interrupt service routine pointer and enable the BDACS data acquisition interrupt service routine pointer and mask,
- (c) position the disk at the beginning of the BDACS data storage file (see sect. 3.6),
- (d) set up the multiplexer controller as described in section 8.1; set the RTC for 1 ms operation, and

(e) send a "ready" message to the BDACS operation on the TTY control unit; wait for the operator to initiate the test run; then start the RTC and MUX and branch to the control loop.

These tasks are performed within the control loop:

- (a) Check the remaining time count of the current table entry (see sect. 6.2(b)); if the count is zero, update the appropriate MUX output buffer word or set the appropriate special flag (for example, HLDFG is set when the disk storage holdoff time is complete; ENDFG is set when the end of data-acquisition time is complete). Move to the next table entry.
- (b) Check the RTC counter (RTCCT); if the count is nonzero, update the remaining time count for the current control table entry. Loop back to (a).

When data acquisition is ended, the data input buffer currently being filled is completed and transferred to the disk. The final tasks involve a general reset of the multiplexer controller, disk, and RTC and a replacement of the previously saved RDOS interrupt service routine.

8.3 PHAS2.SR Interrupt Service Routine

The special BDACS interrupt service routine for PHAS2.SR processes interrupts generated by either the multiplexer controller, the disk, or the RTC. This routine uses only accumulators ACO, ACl, and CARRY; thus, only these quantities need to be stored when entering the routine. The method by which each type of interrupt is handled is

- (a) RTC interrupt is very simply handled by restarting the clock with the NIOS instruction and incrementing the RTC counter (RTCCT). Return is then made to the interrupted program.
- (b) Disk interrupt first obtains the disk status word and checks for any error condition. The status word also determines which of two possible disk conditions initiated the interrupt. First, if a disk SEEK to a new track has just been completed, the service routine determines if a core buffer is full and the data in the buffer need to be transferred. If so, the transfer (disk WRITE) operation is initiated. disk flag (DKPFG) The is updated (for example, DKPFG=0 "idle," DKPFG=-1 "seeking," DKPFG=+1 "writes deferred," DKPFG=MUXFG "writing"), and return is made to the interrupted program. Second, if a disk WRITE operation has just been completed, the block count BLKCT (see sect. 6.1(j)) is decremented; the end of acquisition flag ENDFG is checked, and final closeout is made if ENDFG has been set.

The interrupt service routine then determines if a new disk track is required. If so, the disk SEEK is initiated, the disk flag described above is updated, and return is made to the interrupted program (or to the delayed WRITE initiating section, if required).

(c) MUX interrupt first obtains the MUX status word and restarts the controller. The status word is stored as the updated MUX flag (MUXFG) and compared to the previous status word for possible errors. Next, the disk storage holdoff flag (HLDFG) is checked. If reset, buffer transfer operations to the disk are inhibited and the holdoff counter (HLDCT, see sect. 6.1(k)) is incremented. If set, the disk flag (DKPFG, described above) is checked for "idle." If the disk is idle, the disk WRITE command is initiated, the disk flag is updated, and return is made to the interrupted program. If the disk is not idle, the disk flag is placed in "write deferred" and return is made to the interrupted program.

8.4 PHAS2.SR Error Routine

The error routine operation for PHAS2.SR is almost identical to that for PHAS1.SR (see sect. 7.4). In the present case, no RDOS system calls (or errors) occur. However, four program errors are monitored at present as described below.

- (a) ERRI--"DISK ERROR"--1B15 of the disk status word was set.
- (b) ERR2--"DISK OVERFLOW"--the maximum block transfer count was reached. Presently, this count is 2400 256-word disk blocks (that is, 100 complete tracks on the disk). This is a recoverable error in which present data acquisition stops, but BDACS control program processing of the data is initiated.
- (c) ERR3--"MULTIPLEXER ERROR"--two consecutive multiplexer status words were identical.
- (d) ERR4-"INPUT BUFFER OVERRUN"--two adjacent "deferred write" requests were attempted.

9. OVERLAY MODULE--PHAS3.SR

This overlay module contains the part of the BDACS control programs that supervises the retrieval and storage of the HSB data gathered during a test run. These data are presented to the high-speed word of the input multiplexer panel on an alternate set of 16 parallel data lines, after first being transmitted serially from the remote HSB storage unit to the HSB receiver unit adjacent to the multiplexer panels. An electronic switch controlled by point No. 319 of the

multiplexer output panel selects this alternate set of input data lines when the point on the output panel is activated or "set." Alternatively, the switch selects the normal set of input data lines when the point on the output panel is deactivated or "reset." Moreover, control of the serial transmission of each HSB data word is provided by point No. 320 of the multiplexer output panel. In particular, a command is initiated to transfer a new data word when the point on the output panel changes from "reset" to "set." Following this command, a delay of 4 ms is required to allow the data to be transferred and recombined at the HSB receiver circuits. Thus, PHAS3.SR must correctly control the states of both multiplexer output points No. 319 and 320.

PHAS3.SR is constructed along the same principles as PHAS2.SR described in section 8. In particular, a special-purpose interrupt service routine is used to control the multiplexer controller operations during the HSB data retrieval and storage. Following data retrieval, the standard RDOS interrupt service routine is reinstated. The stored HSB data are then transferred to the temporary disk data file TEMPB.TM described in section 3.8. Furthermore, if the final data vector is to be written on magnetic tape, the stored HSB data are also transferred to MTO:5, as described in section 5.1(f).

As with its predecessors, PHAS3.SR is composed of three parts, the main (backbone) code, the subroutines (including the interrupt service routine), and the text strings and buffers. The main features of these units are described below, and the assembly language listing for PHAS3.SR is shown in appendix A, section A-4.

9.1 PHAS3.SR Backbone Code

The PHAS3.SR backbone code includes both instructions and tables of data used during the execution of the instructions. Of particular importance are the parameters used to initiate and control the operation of the multiplexer controller.

- (a) DMUXA = 000060 initiates the controller to accept one word from the MUX input panel at MUX address corresponding to the high-speed word. It is this word which has the alternate set of data lines to the HSB receiver. At the same time, the last word on the MUX output panel is activated. This word contains output control points No. 319 and 320 used to control HSB retrieval operations.
- (b) DMUXB = INPUT-1 contains the beginning of a two-word input buffer where HSB data are initially deposited.
- (c) DMUXC = 140144 allows the multiplexer to operate in the LS/HS mode at a 144 $_{\rm g}$ - $\mu {\rm s}$ sample time.

- (d) DMUXD = 077776 contains the (negative) number of input words (-2) received before a multiplexer controller interrupt occurs.
 - (e) DMUXE = INPUT-2 contains the running value of (b).
 - (f) DMUXF = 077775 contains the running value of (d).
- (g) DMUXG = 147777 contains the alternate data to (c). For the present value, a 7777_8 - μs sample time is sufficient for the serial data transmission from the HSB transmitter to the HSB receiver.
- (h) CNTLL = 137777 contains the control word-pattern setting control point No. 319 "on" and point No. 320 "off."
- (i) CNTLH = 037777 contains the alternate control word pattern to (h). The present value allows the setting of both point No. 319 "on" and point No. 320 "on."
- (j) INPUT represents the address of the two-word input buffer area for DMA storage of the incoming HSB data.

The sequential tasks performed by the PHAS3.SR backbone code are summarized below.

- (a) Reset the HSB output buffer pointed to by HSBUF and the MUX output buffer pointed to by MUXOB.
- (b) Wait for all TTY and disk operations to end, save the RDOS interrupt service routine pointer and mask, and install the PHAS3.SR interrupt service routine pointer and mask.
 - (c) Initialize the multiplexer controller.
 - (d) Send an "HS Buffer Retrieval" message to the TTY console.
- (e) Start the multiplexer controller, retrieve the HSB data, and store the data in the output buffer area pointed to by HSBUF. Continue operations until the buffer count (presently 2048 words) reaches zero.
- (f) Transfer the buffer to disk file TEMPB.TM and, if the magnetic-tape option "M" is in effect, transfer the buffer to the tape file MTO:5.

9.2 PHAS3.SR Subroutine Code

Most of the subroutines encountered in PHAS3.SR have essentially the same structure as those subroutines described in section

- 7.2 for PHAS1.SR. In particular, the following subroutines are found in PHAS3.SR.
- (a) CRRFL creates a randomly organized disk file by using the system call .CRAND. The first parameter contains a name pointer to the name of the file to be created. If the file already exists, the old file is deleted and a new file is created; otherwise, all system errors cause a branch to the system error routine.
- (b) DELET deletes a file by using the system call .DELET. It is identical to subroutine DELET found in PHAS1.SR (see sect. 7.2(m)).
- (c) OPFLE opens a file on an RDOS channel by using the system call .OPEN. It is identical to subroutine OPFLE found in PHAS1.SR (see sect. 7.2(n)).
- (d) CLFLE closes a file on an RDOS channel by using the system call .CLOSE. It is identical to subroutine CLFLE found in PHAS1.SR (see sect. 7.2(o)).
- (e) OPMTA opens a magnetic-tape file for free format I/O on an RDOS channel by using the system call .MTOPD. It is identical to OPMTA found in PHAS1.SR (see sect. 7.2(y)).
- (f) MTAWT, MTASR, and MTAEF provide free format magnetic-tape operations using the system call .MTDIO. They are identical to MTAWT, MTASR, and MTAEF found in PHAS1.SR (see sect. 7.2(z), (aa), (bb)).
- (g) RDBLK reads a disk block from a file opened on channel No. 4 using the system call .RDB. It is identical to the subroutine RDBLK found in PHAS1.SR (see sect. 7.2(cc)).
- (h) TMPOT writes a series of disk blocks to a file opened on channel No. 3 using the system call WRB. The beginning of the first block corresponds to the beginning of the HSB output buffer pointed to by HSBUF. The number of blocks to be written is given by BLKCT (presently set to eight blocks for the HSB output buffer, corresponding to 2048 words in the buffer). All system errors cause a branch to the system error routine.
- (i) INTSR contains the interrupt service routine for PHAS3.SR. In this routine, only the multiplexer controller is enabled for interrupts. When a multiplexer interrupt occurs, the controller is immediately restarted (BUSY is "set" and DONE is "cleared"), and the controller status is read and checked. Depending on the status word

flag 180, the data previously stored in the input buffer (INPUT) are valid or invalid. Thus, with 180 set, the data word is invalid and is not stored in the HSB output buffer. On the other hand, with 180 reset, the data word is valid and is stored. In either case, the alternate control data word is updated in the output MUX buffer, and the alternate sample time word is transmitted to the controller. A normal exit is made from the interrupt service routine, except after the storage of last data word of the HSB output buffer.

9.3 PHAS3.SR Error Routine

The error routine for PHAS3.SR is identical to that for PHAS1.SR (see sect. 7.4). For the present case, the error code word generated and stored in ERCOD has overlay module No. 3 coded in the left-hand byte. At present, only a single program error is detected by PHAS3.SR.

ERRI--"MULTIPLEXER ERROR"--two consecutive multiplexer words were identical.

10. OVERLAY MODULE -- PHAS4.SR

This overlay module contains the part of the control program that performs a preliminary data reduction of the MUX and LSB data gathered and stored during the PHAS2.SR operation. These raw data were acquired (sampled) on a regular periodic basis as defined by the sampling rate specified by the BDACS operator (see sect. 4). As a consequence of this periodic sampling, the data signals may have been monitored many times in the same binary state, and much of the sampled data may be redundant. Therefore, the main task in PHAS4.SR is to scan the collected data, searching for changes in state for the monitored signals (i.e., changes from "0" to "1" or from "1" to "0"). When a state change is detected for a signal, the signal point number, the new state, and the time of the state change are all written into the BDACS data vector as a reduced data entry. This data reduction operation is applied only to those signals monitored with the MUX input panels and the LSB unit. Even then, only those signals which were previously specified by the BDACS operator are enabled for data reduction (see sect. 4). The HSB raw data are retrieved and stored in the data vector without any reduction, as described in section 9.

During data reduction, PHAS4.SR also supports an error detection and correction task. This task is performed by default unless the operator specifically disables error detection and correction by setting sense switch 1Bl on the CPU panel of the BDACS central processor unit. Error detection is achieved by a hardware strapping option which codes an address into each word of the input MUX panels. In particular, the

high-speed word of the input panel has 1816 strapped "on" while the remaining low-speed words all have 1816 strapped "off." Furthermore, bits 1813 through 1815 of the seven low-speed words are strapped with a binary number pattern from one to seven. This addressing scheme, although not the most efficient in preserving data positions on the input panels, retains the most data positions for the important high-speed word. When the data words are being reduced, the address of the word is checked for proper monitoring and storage sequence. If incorrect sequencing is detected, an error flag is set, and, if possible, a resequencing correction to the computed sample time is made. However, if the error appears too severe, data reduction is terminated, and a branch to the error routine is made.

As noted above, setting sense switch IBI disables error detection and correction. For this case, all bits of the data words are considered true data and not addresses. Data reduction is performed under the assumption that proper sequencing is maintained.

As with the previous overlay modules, PHAS4.SR may be logically separated into its backbone code, its subroutine code, and its text string and buffer area. Each of these regions is described more fully in the following paragraphs. The assembly language listing for PHAS4.SR is shown in appendix A, section A-5.

10.1 PHAS4.SR Backbone Code

The sequential tasks performed by PHAS4.SR are given in the following list.

- (a) Clear the reduced data output buffer pointed to by the parameter MTABF.
- (b) Open the raw data file BDACS.DA on channel No. 4. If the magnetic-tape "M" option is in effect, open magnetic-tape file MTO:6 on channel No. 3. Otherwise, create a random file TEMPC.TM, and open the file on channel No. 3.
- (c) Determine the initial sequence time at which raw data were stored by using the data storage holdoff count HLDCT (see sect. 6.1(k)) and the sample rate SMPRT (see sect. 6.1(g)). Store the initial time in the buffer pointed to by TIMER.
- (d) Determine the initial value of the previous low-speed word offset on the input MUX panels by using the data storage holdoff count HLDCT. The word offset is stored as PRADD.
- (e) Read the sense switches. Branch to address LO if IBl is "set" (i.e., if error detection and correction are suppressed); otherwise, branch to address LL1.

- (f) Read and reduce the MUX and LSB raw data. Store reduced data entries in the buffer area pointed to by MTABF. When the buffer is full, transfer the buffer to the file opened on channel No. 3 (i.e., either MTO:6 if the magnetic tape is enabled, or TEMPC.TM temporary disk file). Continue until the number of data blocks specified by BLKCT (see sect. 6.1(j)) has been reduced.
- (g) Close the files previously opened on channels No. $3\,$ and 4, and return to the root segment program.

10.2 PHAS4.SR Subroutine Code

Many of the subroutines used in PHAS4.SR--especially those associated with file I/O which use RDOS system calls--are identical to those already described in sections 7 and 9 and will not be repeated here. Other subroutines unique to PHAS4.SR are described below.

- (a) INTMR increments the present value of the sequence time (pointed to by TIMER). The incremental value is given by the sample rate SMPRT. Typically, the subroutine is called from the backbone code or from the subroutine RDBWD following the proper reduction of a high-speed word/low-speed word pair. This conforms to the actual sampling sequence which was performed in the data acquisition. Thus, the contents of TIMER contain the elapsed time from start of data acquisition to the time the datum (currently being reduced) was monitored. In addition, INTMR updates the low-speed buffer point number (LSPNT), the low-speed buffer word mask (LSWMK), and the low-speed buffer word offset (LSOFF). Again, in the actual acquisition, LSB data were serially transmitted with one data bit every sample cycle.
- (b) RDBWD reduces the data word entered in accumulator ACO. Upon entry to the subroutine, accumulator AC2 contains the offset from the start of the MUX reported points mask table associated with the particular word. The mask table, located in the root binary segment, is pointed to by MSKTB and is described in section 6.2(a). positions of the data word are first checked against the corresponding positions in the mask table to determine which points are enabled for data reduction. Those enabled points are then checked against the previous state values to determine if a state change occurred. Only if a state change occurs are the point number, the new state, and the current sequence time (given by the value of TIMER) transferred to the reduced data output buffer MTABF. Reduced data transferred to MTABF consist of three-word entries. The first word contains the point number, the state, the MUX/LSB flag, and the error recovery flag. The point number is in the RH position and the current state "0" or "1" is in bit position 180. If the datum is an LSB signal, bit position 181 is "1"; otherwise, 1B1 is "0" for an input MUX signal. If a sequence error was detected, bit position 1B7 is "1." The second and third words of

the output buffer entry contain the DP binary value of the current sequence time. The output buffer can hold 256 entries (768 words). When the buffer becomes full, the information is transferred to the file opened on channel No. 3 (either MTO:6 or TEMPC.TM), and the buffer is reset.

- (c) LSBRD reduces data associated with the LSB. The subroutine is called from RDBWD whenever the LSB has been enabled for monitoring (LSMON is nonzero, see sect. 6.1(i)), and whenever the high-speed word of the input MUX panel is being reduced. The latter requirement is tested since the LSB data are received only on an input point of the high-speed word. Within the subroutine, the present LSB point number contained in LSPNT is checked against the associated bit position of the LSB mask table. The mask table, located in the root binary segment, is pointed to by LSBTB and is described in section 6.2(b). Those LSB point numbers which are enabled for data reduction are then checked against the previous state value. If a state change has occurred, the new state and the LSB point number (with lBl set to "l") is returned to the calling program (i.e., RDBWD).
- (d) GTBWD controls the retrieval of the raw data from the BDACS.DA file using the system call .RDB. A complete data block of 3072 words is read to the data input buffer pointed to by BUFFR. The individual data words are then returned to the calling program in accumulator ACO and the buffer pointer is updated each time the subroutine is called. When all data have been retrieved (as determined by the data block count BLKCT), a branch is made to address DONE to complete PHAS4.SR operations. As an added option within this subroutine, the sense switches on the CPU panel are read following the retrieval of the current data word. If sense switch 1B15 is "set," the raw data word is printed to the TTY console. Thus, the BDACS operator may selectively monitor the raw data which were acquired during a test run. This option may be useful for tracing possible error conditions.
- (e) DMPWD generates the text string for the printout of the data word just described. The printout text consists of a set of 16 ASCII binary numbers corresponding to the 16 bit positions of the data word. The text string is stored in a buffer pointed to by byte pointer DPMSG.

10.3 PHAS4.SR Name/Text Strings and Buffers

The PHAS4.SR name and text strings are constructed in a manner similar to that described in section 7.3. The buffer areas used by PHAS4.SR are pointed to by the following parameters.

(a) MTABF is 768 words long and is used to hold the reduced data output entries (256 max) before they are transferred to the BDACS data vector.

(b) BUFFR is 3072 words long and is used to hold a raw data block previously written in the BDACS.DA file during data acquisition.

10.4 PHAS4.SR Error Routine

The error routine for PHAS4.SR operates identically to that for PHAS1.SR (see sect. 7.4). At present, four program errors are monitored as described below.

- (a) ERR1--"CURRENT TIME OVERFLOW"--a double-precision overflow occurred for the number held in the current sequence time TIMER during initial timer setup.
- (b) ERR2--"CURRENT TIME OVERFLOW"--a double-precision overflow occurred for the number held in the current sequence time TIMER during sequential updating.
- (c) ERR3--"MAJOR SEQUENCE SLIP OCCURRED"--a noncorrectable sequence error was encountered. An indeterminate number of sequence step omissions occurred.
- (d) ERR4--"MAX SEQUENCE ERROR COUNT EXCEEDED"--the maximum permissible number of sequence errors was exceeded (present errors set at 100).

11. OVERLAY MODULE -- PHASS.SR

This overlay module contains the part of the control program that performs the query/response operations associated with the POSTSCRIPT.DA file and completes construction of the BDACS data vector. In addition, PHAS5.SR provides the on-line data printout, if this printout is required.

As with the preceding overlay modules, PHAS5.SR is logically divided into three main regions: the "backbone" code, the subroutines, and the name/text strings and buffer area. These regions are described in detail in the following paragraphs, and the assembly language listing for PHAS5.SR is shown in appendix A, section A-6.

11.1 PHAS5.SR Backbone Code

The PHAS5.SR backbone code is primarily a set of sequential tasks designed to complete the BDACS data vector and generate the BDACS on-line printout. The main tasks are given in the following list.

(a) Open the console input file (\$TTI) on channel No. 2; create the temporary file TEMPD.TM and open this file on channel No. 3.

- (b) Open the POSTSCRIPT.DA file on channel No. 4; read the postscript query/statement lines and obtain the BDACS operator response; construct TEMPD.TM.
- (c) Transfer TEMPD.TM to the magnetic-tape file MTO:7 (if the "m" option is in effect). Close the files on channels No. 2, 3, and 4.
- (d) Open the on-line printout file on channel No. 2 (\$TTO if "T" option is in effect, or \$LPT if "L" option is in effect).
- (e) Print the BDACS on-line "header" information; print the preamble and postscript information (obtained from TEMPA.TM and TEMPD.TM); print the "method" file which was employed for the current test run. See figures 3 and 4 for an example of these printouts.
- (f) If the HSB unit was enabled, print the HSB assignment list (obtained from ASSIGNA.DA, see sect. 33). Print the HSB data obtained during the current test run (obtained from TEMPB.TM). See figure 5 for an example of these printouts.
- (g) If either or both of the input MUX panels or the LSB unit contain signals which have been enabled for on-line printout, then open the assignment list files ASSIGNB.DA for the MUX signals and ASSIGNC.DA for the LSB signals on channels No. 4 and 5, respectively. Open the reduced data file on channel No. 3 (either MTO:6, if the "M" option is in effect, or TEMPC.TM).
- (h) Read the entries in the reduced data file; construct a printout line consisting of the entry data and the signal mnemonic obtained from the appropriate assignment list file; continue processing the signals enabled for on-line printout until all data entries have been scanned. See figure 6 for an example of these printout lines.
- (i) Close the files on channels No. 1, 2, 3, 4, and 5 and return to the root binary segment.

BDACS ONLINE PRINTOUT

PREAMBLE & POSTSCRIPT FILES

+ PREAMBLE FILE

٠

TEST IDENTIFICATION: SAMPLE RUN

*SITE: PICKENS, MISS.

DATE: 12 JULY 76

TIME: 1435

RDACS STATUS: OK

ESS#1 STATUS: OK

TEMPS STATUS: OK

HSB USED? Y

LSB USED? Y

TRIGGER REQUIRED? Y @ EMT+ZPT11+TP13

TAPE OUTPUT REQUIRED? Y

ONLINE PRINTOUT REQUIPED? Y

ASSIGN FILES UPDATED? Y

COMMENTS: NONE

.....

END

POSTSCRIPT FILE

TEMPS PULSE# 326

TIME 1437

BDACS STATUS: OK

ESS#1 STATUS: UPSET

TEMPS STATUS: OK

COMMENTS: MEMORY ERROR; SWITCH OS FOR 2 MIN.

ENU

Figure 3. BDACS on-line printout of the PREAMBLE.DA and POSTSCRIPT.DA files (partial).

METHOD FILE

IDENTIFICATION: TEST METHOD

SHMPLE RATE (IN USEC): 100

DURATION (IN MSEC): 10000

HS BUFFER: 5500*
LS BUFFER: 16
REPORTED POINTS TABLE

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+

17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+
33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+
49+50+51+52+53+54+55+56+57+58+59+66+61+62+63+64+
65+66+67+66+69+70+71+72+73+74+75+76+77+78+79+80+
81+82+83+84+85+86+87+88+89+90+91+92+93+94+95+96+
97+98+99+100+101+102+103+104+105+106+107+108+109+110+111+112+

113+114+115+116+117+118+119+120+121+122+123+124+125+126+127+128+

END OF TABLE

LS BUFFER TABLE

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+

17+18+19+20+21+22+23+24+25+26+27+28+29+30+31+32+

33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+

49+50+51+52+53+54+55+56+57+58+59+60+61+62+63+64+

65+66+67+66+69+70+71+72+73+74+75+76+77+78+79+80+

81+82+83+84+85+86+67+88+89+90+91+92+93+94+95+96+

97+98+99+100+101+102+103+104+105+106+107+108+109+110+111+112+

113+114+115+116+117+118+119+120+121+122+123+124+125+126+127+128+

END OF THELE

STATE SIGNAL TIME

1 0 6

1 257 6

Figure 4. BDACS on-line printout of the method file.

```
METHOD FILE
        258
        259
        265
        266
        267
               0
        297
               1000
  1
        298
               2000
        299
        300
               4000
       301
               5000
       281
               5000
       302
               6000
       303
               7000
       384
               8868
 1
       305
               9000
END
```

Figure 4. BDACS on-line printout of the method file (Cont'd).

HSB ASSIGNMENT & DATA

MNEMONIC NAME BIT# 1 HSB BIT #1 2 HSB BIT #2 3 HS8 BIT #3 4 HSB BIT #4 5 HSB BIT #5 6 HSB BIT #6 7 HSB BIT #7 8 HSB BIT #8 9 HSB BIT #9 1.0 HSB BIT #10 11 HSB BIT #11 12 HSB BIT #12 13 HSB BIT #13 14 HSB BIT #14 15 HSB BIT #15 16 HSB BIT #16

Figure 5. BDACS on-line printout of the HSB assignment list and data (partial).

HSB ASSIGNMENT & DATA

Figure 5. BDACS on-line printout of the HSB assignment list and data (partial (Cont'd).

REDUCED MUX & LSB DATA

TIME(US)	STATE	SIGNAL	MNEMONIC		
0	1	29M	MUX CHANNEL #2	•	
0	1	1L	LSB CHANNEL #1		
100	1	46M	MUX CHANNEL #4	6	
100	1	2L	LSB CHANNEL #2		
.200	1	56M	MUX CHANNEL #5	6	
200	1	61M	MUX CHANNEL #6	1	
200	1	62M	MUX CHANNEL #6	2	
200	1	3L	LSB CHANNEL #3		
300	1	79M	MUX CHANNEL #7	9	
300	1	4L	LSB CHANNEL #4		
400	1	93M	MUX CHANNEL #9	3	
400	1	95M	MUX CHANNEL #9	5	
400	1	5L	LSB CHANNEL #5		
500	1	110M	MUX CHANNEL #1	10	
500	1	111M	MUX CHANNEL #1	1:	
500	1	6L	LSB CHANNEL #6		
609	1	125M	MUX CHANNEL #1	2	
600	1	126M	MUX CHANNEL #1	2	
600	1	127M	MUX CHANNEL #1	2	
600	1	7L	LSB CHANNEL #7		
700	1	EL	LSB CHANNEL #8		
600	1	9L	LSB CHANNEL #9		
900	1	10L	LSB CHANNEL #1	0	
1000	1	11L	LSB CHANNEL #1	1	
1100	1	12L	LSB CHANNEL #1	2	
1200	1	13L	LSB CHANNEL #1	3	
1300	1	14L	LSB CHANNEL #1	4	
1400	1	15L	LSB CHANNEL #1	5	
1500	1	16L	LSB CHANNEL #1	6	
1600	1	17L	LSB CHANNEL #1		
1700	1	18L	LSB CHANNEL #1	8	
1800	1	19L	LSB CHANNEL #1	9	

Figure 6. BDACS on-line printout of MUX and LSB data lines (partial).

REDUCED MUX & LSB DATA

1900	1	20L	LSB CHANNEL #20
2000	1	21L	LSB CHANNEL #21
2100	1	22L	LSB CHANNEL #22
2200	1	23L	LSB CHANNEL #23
2300	1	24L	LSB CHANNEL #24
2400	1	25L	LSE CHANNEL #25
2560	1	26L	LSB CHRNNE'L #26
2600	1	27L	LSB CHANNEL #27
2700	1	28L	LSB CHANNEL #28
2699	1	29L	LSB CHANNEL #29
2900	1	30L	LSB CHANNEL #30
3000	1	31L	LSB CHANNEL #31
3100	1	32L	LSB CHANNEL #32
3200	1	33L	LSB CHANNEL #33
33610	1	34L	LSB CHANNEL #34
3400	1	35L	LSB CHANNEL #35
3500	1	36L	LSB CHANNEL #36
3600	1	37L	LSB CHANNEL #37
3700	1	36L	LSB CHANNEL #38

Figure 6. BDACS on-line printout of MUX and LSB data lines (partial) (Cont'd).

11.2 PHAS5.SR Subroutine Code

Many of the subroutines used in PHAS5.SR, especially those associated with file I/O which use RDOS system calls, are identical to those already described in sections 7 and 9 and will not be repeated here. Other subroutines unique to PHAS5.SR are described below.

- (a) GTDAT retrieves the reduced data entries for the MUX or LSB data previously stored during PHAS4.SR operations. Initially, the subroutine reads an entire block of 256 data entries into a buffer area pointed to by BUFFR. As succeeding subroutine calls are made, the current entry pointer is updated until all entries in the buffer have been scanned. The buffer is then refilled with new entries and the scanning is continued. Upon exit from the subroutine accumulator AC2 contains the pointer to the current entry being processed.
- (b) OPEN retrieves an assignment list entry from from one of the assignment files ASSIGNA.DA, ASSIGNB.DA, or ASSIGNC.DA. The first parameter for the subroutine call contains the point number of the

signal whose assignment mnemonic text is required. The second parameter contains the pointer to the buffer containing part of the associated assignment file. In particular, files ASSIGNA.DA, ASSIGNB.DA, and ASSIGNC.DA are read into buffer areas pointed to by BUFRA, BUFRB, and BUFRC, respectively. These buffers are 256 words long and, thus, contain 32 assignment mnemonic text strings, each being 8 words (16 bytes) long. If the required assignment text string is not among the current set of 32 strings presently in the buffer, the subroutine performs a disk-block read operation using system call .RDB to retrieve the required text string from the appropriate assignment file. A normal exit is made from the subroutine with accumulator AC2 containing a byte pointer to the required text string within the assignment file buffer. An abnormal exit is made to the error routine for all system errors.

- (c) PRFLE prints the contents of an ASCII data file on the on-line printout device. The one parameter required for the subroutine is the name pointer to the ASCII data file to be printed. The data file is opened on RDOS channel No. 4; the file is read line by line, and each line is printed using subroutine PRLNE (described next); channel No. 4 is then closed. No exceptional condition is explicitly contained in this subroutine.
- (d) PRINE is the basic code for controlling and directing the on-line printout for BDACS. Two parameters are required for this subroutine. The first parameter contains a byte pointer to the message to be printed. The second parameter contains (in absolute magnitude) the number of lines that the message will require for printing. If the second parameter is a negative number, a top-of-form operation is performed before the printing. A maximum of 30 lines per page may be printed before an automatic top-of-form operation occurs. The subroutine maintains a current line count (LNCNT) and page count (PGCNT), and, when a top-of-form operation is performed, a new page number is printed. The BDACS operator may suppress printing by setting the sense switches on the CPU panel to all "1's." This suppression will continue until either the sense switches are reset (i.e., one or more to "0") or until a programmed top-of-form operation is initiated. The BDACS operator must then reapply the sense switches if suppression of the current phase of the on-line printout is to continue.
- (e) CHKPM determines if the on-line printout mask portion of MUX or LSB mask tables contains on-line printout requests. Two parameters are necessary for this subroutine. The first parameter contains the points to the mask table, either MSKTB or LSBTB for the MUX or LSB, respectively. The second parameter contains the offset count for the different parts of the mask table (see sect. 6.2(a) and (b)). Upon entry to the subroutine, accumulator ACO contains the on-line printout request flag, initially set to zero. If any on-line printout mask word in the mask table is nonzero (indicating that at least one signal requires printing), the accumulator ACO is incremented.

- (f) MVBYT transfers a text string from a source region to a destination region. The one parameter required for this subroutine contains the maximum number of bytes to be transferred. Upon entry to the subroutine, accumulators ACO and AC2 contain the byte pointers to the destination text string and the source text string, respectively. Transfer of bytes continues until either a null byte is detected in the source string or else the maximum number of bytes, as specified by the input parameter, has been transferred. Upon exit from the subroutine, accumulator AC2 contains the byte pointer to the byte following the end of the destination text string.
- (g) FMSPN creates an ASCII decimal integer text string corresponding to the single-precision unsigned binary integer contained in accumulator ACO. Upon entry to the subroutine, accumulator AC2 contains the byte pointer to the start of the text area where the string is created. Leading zeros in the generated text string are suppressed to blanks. Upon exit from the subroutine, accumulator AC2 contains the byte pointer to the byte following the generated text string.
- (h) FMDPN creates an ASCII decimal integer text string corresponding to the double-precision unsigned binary integer contained in accumulators ACO and ACl. The operation is similar to that in FMSPN.
- (i) MTAIN performs a magnetic-tape free format "read" operation from the magnetic-tape file opened on channel No. 3. The single parameter required by the subroutine contains an address to branch to when an "end-of-file" is detected. The data are transferred to the buffer pointed to by BUFFR in blocks of 768 words each. Except for "end-of-file," all system errors cause a branch to the system error routine.
- (j) TMPIN retrieves a block of data from the disk file opened on channel No. 3. The single parameter required by this subroutine contains an address to branch to when an "end-of-file" is detected. The data are transferred to the buffers pointed to by BUFFR in blocks of 768 words each. Except for the "end-of-file," all system errors cause a branch to the system error routine.

11.3 PHAS5.SR Name/Text Strings and Buffers

The PHAS5.SR name and text strings are constructed in a manner similar to that described in section 7.3. Particular strings, unique to PHAS5.SR, are those used for "headers" and standard line formats for the on-line printout. The buffer areas used by PHAS5.SR are pointed to by the following parameters.

(a) UTBPT defines a region of 68 words used for utility byte transfer operations.

- (b) BUFRA is divided into two parts. The first part contains a 256-word data storage area. The second part is a three-word buffer "header," which has a negative offset from BUFRA. The first word of the "header" (at offset -3) contains the starting signal point number for the HSB. The second word of the "header" (at offset -2) contains the RDOS channel number (in the RH part) and the I/O block count (in the LH part) associated with the HSB assignment file (ASSIGNA.DA). The third word of the "header" (at offset -1) initially contains 177777. During PHAS5.SR operation, this word will contain the block number of the current ASSIGNA.DA block contained in the data part of the buffer. This current block number is updated under control of subroutine OPEN (see sect. 11.2(b)).
- (c) BUFRB is similar to BUFRA, except that the present buffer is associated with the MUX assignment file (ASSIGNB.DA).
- (d) BUFRC is similar to BUFRA, except that the present buffer is associated with the LSB assignment file (ASSIGNC.DA).
- (e) BUFFR contains a data area sufficient to hold 256 LSB or MUX reduced data entries (presently 768 words). Entry blocks of this size are read into the buffer either from magnetic-tape file MTO:6 (if the "M" option is in effect) or from disk file TEMPC.TM, under control of subroutines MTAIN or TMPIN, respectively (see sect. 11.2(i) and (j)).

11.4 PHAS5.SR Error Routine

The error routine for PHAS5.SR operates identically to that for PHAS1.SR (see sect. 7.4). At present, four program errors are monitored:

- (a) ERR1--"ASSIGN FILE READ ERROR OCCURRED"--a system error occurred during the "read" operation in subroutine OPEN (see section 11.2(b)).
- (b) ERR2--"ASSIGN FILE SEQUENCE ERROR OCCURRED"--the signal point number for a requested assignment file text string was less than the starting-signal number specified in the "header" of the associated assignment file buffer (see sect. 11.3(b)).
- (c) ERR3--"LINE COUNT ERROR"--the updated line count in subroutine PRLNE is negative.
- (d) ERR4--"MUX OR LSB POINT # OUT OF BOUNDS"--the signal point number contained in a MUX or an LSB reduced data entry is less than the starting-signal point number.

12. OVERLAY MODULE ERMSG.SR

This overlay module contains the part of the control program that performs an orderly closing of BDACS functions and returns control to the RDOS-CLI. The overlay module can be entered from the root binary segment in one of two modes. The "normal" mode is entered when all BDACS control tasks have been successfully performed and a normal exit has been made from the preceding overlay modules. Under these conditions, the error code word (ERCOD, see sect. 6.1(d)) contains zero as a flag to immediately branch to the address NORML in ERMSG.SR. Closeout is then achieved by performing the following tasks.

- (a) Reset all RDOS channels using the system call .RESET.
- (b) Release the magnetic-tape drive using the system call .RLSE. Ignore any system errors, since the magnetic tape may not have been initialized.
 - (c) Return to the CLI by using the system call .RTN.

The "exceptional" mode of entering ERMSG.SR occurs when an error has been detected during the operation of an earlier overlay module. The error code word (ERCOD) contains the error code as described in section 7.4.

Two types of errors are recognized: program and system. For a system error, ERCOD contains 177777 as a flag, and the recovery parameter (RECOV, see sect. 6.1(b)) contains the system-generated error code. Closeout during a system error condition is achieved in a manner similar to that described in (a), (b), and (c) above for "normal" closeout. However, instead of an exit to the CLI by the normal return (i.e., .RTN), for the present situation the system error code from RECOV is retrieved and stored in accumulator AC2, and return is made to the CLI using the system call .ERTN.

When a program error occurs, ERCOD contains the program error code as described in section 7.4. For this case the following tasks are performed within ERMSG.SR.

- (a) Decompose the program error code into the module number and error number; determine the error message byte pointer associated with the error number and the recoverable error bit.
 - (b) Type the module message to the output console:

"ERROR IN PHASE n"

where n is replaced by the overlay module number in which the error occurred.

- (c) Type the error message describing the associated error number. These messages are discussed in the preceding sections describing the different overlay modules.
- (d) Determine if a recoverable error occurred by checking the recoverable error bit processed in (a) above. If the error is recoverable, return to the root-binary segment. Otherwise, close out the BDACS control program in the "normal" mode as described above.

The tables that are used in ERMSG.SR are described below.

- (a) TBLPT contains a list of pointers to the beginning of the message pointer tables. One such message-pointer table is associated with each of the preceding overlay modules (i.e., PHAS1, PHAS2, PHAS3, PHAS4, PHAS5).
- (b) PHAS1 contains a list of error-message pointers for overlay module PHAS1.SR. A one-to-one correspondence exists between these error-message pointers and the error table entries described in section 7.4.
- (c) PHAS2, PHAS3, PHAS4, and PHAS5 are similar to PHAS1 but are associated with overlay modules PHAS2.SR, PHAS3.SR, PHAS4.SR, and PHAS5.SR, respectively. Note: If bit 1B0 is set to "1" for any message pointer, the associated error is considered "recoverable" and is processed as described in (d) above.

The error messages are RDOS ASCII text strings with mode 1 packing. The assembly language listing for ERMSG.SR is shown in appendix A, section A-7.

13. CONTROL PROGRAM SYSTEM PARAMETERS--BDACS.SR

This file contains those BDACS control parameters which may be modified or extended as the BDACS hardware system is changed or augmented to meet future requirements. As mentioned in section 2, BDACS.SR should be assembled along with the appropriate root binary segment or overlay module files to reflect the present value of these system parameters. A brief description of these parameters along with their present value (in octal) is given below, while an assembly language listing for BDACS.SR is given in appendix A, section A-8.

(a) NOP=000401 provides a mnemonic "no operation" instruction (i.e., JMP .+1). This parameter is not expected to change if the system is augmented.

- (b) CLK=054 contains the RTC device interrupt code. Note: this clock interrupt code is not the standard RDOS code.
- (c) MUX=032 contains the multiplexer controller device interrupt code which is hardwire strapped at the controller.
- (d) MUXOB=000300 contains the output multiplexer panel buffer address. This address is hardwire strapped within the multiplexer controller.
 - (e) IMCLK=000004 contains the interrupt mask bit for the RTC.
- (f) IMMUX=001000 contains the interrupt mask bit for the multiplexer controller.
- (g) IMDKP=000400 contains the interrupt mask bit for the moving-head disk controller.
- (h) BDACA=200 contains the number of signal points located on the input MUX panels (128 decimal).
- (i) BDACB=100 contains the number of signal points located on the output MUX panel (64 decimal).
- (j) BDACD=144 contains the starting cylinder (track) number for the BDACS raw data file BDACS.DA (see sect. 3.6).
- (k) BDACE=144 contains the number (100 decimal) of complete cylinders used for file BDACS.DA. Thus, the size of this file is 2400 disk blocks. This size should be reflected in the UFT entry of the RDOS system directory SYS.DR and in the RDOS map directory MAP.DR. If a full initialization of the BDACS disk cartridge is required, the BDACS operator must insure that this file information is properly supplied (e.g., by using the RDOS disk editor DSKED.SV).
- (1) BDACF=1 contains the minimum or starting input MUX panel signal number.
- (m) BDACG=200 contains the maxium or last input MUX panel signal number (128 decimal).
- (n) BDACH=401 contains the minimum or starting output MUX panel signal number (257 decimal).
- (o) BDACI=476 contains the maximum or last output MUX panel signal number (318 decimal). Note: this number does not include the two special-purpose control points No. 319 and 320 used to control HSB data-retrieval operations (see sect. 9).

- (p) BDACJ=200 contains the maximum number of entries in the output control list (128 decimal).
- (q) BDACK=03 contains the number of words per entry in the output control list.
- (r) BDACL=03 contains the number of words per entry in the MUX and LSB reduced data file entry.
- (s) BDACM=6000 contains the number of words per data block used during data acquisition and reduction (3072 decimal).
- (t) BDACN=144 contains the maximum number of sequence errors allowed (100 decimal).
- (u) BDACO=4000 contains the number of words in the HSB unit (2048 decimal).
- (v) BDACP=200 contains the number of signal points located on the LSB unit (128 decimal).
- (w) BDACQ=1 contains the minimum or starting signal number for the LSB.
- (x) BDACR=200 contains the maximum or last signal number for the LSB (128 decimal).
- (y) BDACS=1 contains the minimum or starting bit number for the HSB unit.
- (z) BDACT=20 contains the maximum or last bit number for the HSB unit (16 decimal). Note: the number of bits per word in the HSB cannot be changed from the present value of 20_8 (16 decimal) without major changes in the overlay module responsible for HSB data retrieval.
- (aa) BDACU=60 contains the minimum MUX sample rate (in μs , 50 decimal).
- (bb) BDACV=7777 contains the maximum MUX sample rate (in $\mu \text{s}\text{, 4095}$ decimal).
- (cc) BDACW=764 contains the minimum HSB sample rate (in ns, 500 decimal).
- (dd) BDACX=23420 contains the maximum HSB sample rate (in ns, 10,000 decimal).
- (ee) BDAC1=10 contains the number of 16-bit input MUX words (8 decimal).

- (ff) BDAC2=4 contains the number of 16-bit output MUX words (4 decimal).
 - (qq) BDAC3=10 contains the number of 16-bit LSB words (8 decimal).
- (hh) BDAC5=600 contains the number of words required for the MUX output control list buffer (384 decimal).
- (ii) BDAC6=20 contains the number of words offset between the start of the MUX or LSB mask table and the on-line printout part of the table (16 decimal).
- (jj) BDAC7=7 contains the number of input MUX low-speed words (7 decimal).
- (kk) BDAC8=3000 contains the number of high-speed/low-speed word pairs per raw data block (1536 decimal).
- (11) BDAC9=1400 contains the number of words in the MUX and LSB reduced data block (768 decimal).

14. RECOMMENDATIONS FOR FUTURE SOFTWARE AUGMENTATION

A major shortcoming of the present BDACS control program is the inability of the program to provide a real-time analysis of and response to the incoming data during data acquisition. Presently, the control functions to be provided by the program are prearranged and occur independently of the data being monitored.

It is possible to provide real-time data analysis/response for BDACS. However, several basic adjustments and changes to the BDACS software package would be required. These changes are outlined in the following paragraghs.

- (a) Presently, during PHAS2.SR data acquisition and control, program control switches between the interrupt service routine (when a device interrupt occurs) and the control loop which continually monitors and updates the control output list for the next control point change (see sect. 8.2 and 8.3). If the real-time analysis/response option is to be implemented, then an additional branch must be provided to the program code controlling this analysis/response action.
 - (b) A specific example and possible implementation:

EXAMPLE

- Allow a single low-speed word to be available for analysis. Thus, the individual bits or a pattern of several bits in combination within this word will be recognized as a request for specific control or response actions.
- Let the 1B0 bit for the word be strapped as a "1." Thus, when the word is monitored and stored in the memory buffer, bit 1B0 will be set.
- Provide a circular buffer pointer which will point to the current word to be analyzed and, upon updating, will point to the succeeding word.
- When a current word has been retrieved for analysis, the storage area in memory will be reset.
- With the current word as data, a branch is made to the analysis/response control subroutine for appropriate action. Upon return from this subroutine, a control loop is entered and scanning is continued until the word is again monitored and becomes "set."
- The interrupt service routine would be essentially unchanged, except, upon exit from the RTC service, a special branch to the predefined control operations control loop would be made. The exit would then be from this loop to the control loop specified above.
- (c) In the example, timing considerations must be made to insure proper operation. In particular, the analysis/response subroutine must be efficiently constructed so that the words to be analyzed do not "stack up." This condition may also require the minimum allowable sample rate to be longer than the present minimum (50 μs).
- (d) The particulars of the analysis/response subroutine depend in detail upon the specific real-time control tasks to be performed. These tasks may possibly change from test to test and, if this occurs, either several control programs must be individually assembled and linked or several separate PHAS2.SR types of overlay modules must be assembled and linked in a universal control program. If the latter choice is made, additional provisions must be made in the root-binary segment of the universal control program to choose one of the several PHAS2.SR overlay modules to load in at runtime.
- (e) One final modification to the present control program may be required. Presently, the BDACS control program resides in memory with the RDOS executive program. The controlling factor in the expansion of the BDACS control program is primarily the size of the PHAS2.SR overlay module, since this module contains the twin data blocks—each 6000_8 words in length. If the PHAS2.SR module must be greatly expanded to

include the analysis/response subroutine code, an incompatibility may arise in which the core storage is insufficient to contain both the BDACS control program and RDOS executive program. Since PHAS2.SR does not require any RDOS system calls, if this incompatibility arises, the executive program can be temporarily transferred to disk, and the core storage used by the executive may be made available to the control program. Before an exit from PHAS2.SR, the executive program would, of course, be returned to core storage. If this action is necessary, it is recommended that tracks No. 201, 202, and 203 (decimal) on the disk be reserved in the RDOS MAP.DR for the executive program storage.

APPENDIX A.--ASSEMBLY-LANGUAGE LISTING FOR BDACS CONTROL PROGRAM

This appendix contains the assembly-language listing for the BDACS control program. The control program is composed of a root-binary section, six overlay modules, and a table of system parameters. Each of these parts is presented in the following sections of the appendix.

Section		Page
A-1.	ROOT BINARY SECTIONMONTR.SR	58
A-2.	OVERLAY MODULE NO. 1PHAS1.SR	60
A-3.	OVERLAY MODULE NO. 2PHAS2.SR	76
A-4.	OVERLAY MODULE NO. 3PHAS3.SR	81
A-5.	OVERLAY MODULE NO. 4PHAS4.SR	87
A-6.	OVERLAY MODULE NO. 5PHAS5.SR	98
A-7.	OVERLAY MODULE NO. 6ERMSG.SR	118
A-8.	BDACS SYSTEM PARAMETERS BDACS.SR	122

A-1. Root Binary Section--MONTR.SR NAME BLJCK NAME= MUNIR.SR

TIME BLOCK

.TITL

```
.TXTM
                1
        .ENT
                OVRTN MAGFG SMPRT BLKCT HLDCT
        .ENT
                MSKTB CILTB ERRIN ERCOD HSMON
        .ENT
                LSMON LSBTB PRINT RECOV
        .ENT
                MEWPT MEBPT
        .EXTN
                DVST1 DVST2 DVST3 DVST4 DVST5
        .EXTV
                DVST6
        .ZREL
                         SUVERLAY RETURN ADDRS
UVRTN:
       0
RECUV:
                         ; RECOVERABLE ERROR RETURN
        0
ERRIN:
                         ; ERROR RETURN
        ERROR
ERCOD:
                         ; ERROR CODE
MAGFG:
                         MAG TAPE FLAG
PRINT:
                         PRINT FLAG
                         SAMPLE RATE
SAPRT:
HSMON:
                         ; HS BUFFER FLAG
LSMON:
                         LS BUFFER MONITUR
        0
BLKCT:
        S# 32ACB
                         DATA BLOCK COUNT
HLDCT: 0
                         HOLDOFF COUNT
         VREL
                BOAC1 = 3 ; DATA INPUT MASK BITS
MSKTB:
       .BL <
                BDAC3#3 ;LS BUFFER TABLE
LSBTB: .BLK
CTLTB: .BLK
                BDAC5+3 ; CUNTRUL LIST TABLE
                         JUERLAY JUMP ADDRESS
UVJMP:
                0,0,3
                        ; NODE/REGION
GVLOD:
        LDA
        INC
                3,3
                2,0,3
                        START ADDRS
        LOA
                3,3
        INC
                2, DVJMP ; JUMP ADDRESS
        STA
                3, DVRTN
        STA
        SCA
                         JUNCONDITIONAL LOAD
                1.1
        .SYSTY
                         LOAD IN OVERLAY
        .OVLJO
                ERRIN
        JYP à
                         :ERRUR
        JYP D
                CVJMP
                         ; ENTER OVERLAY
```

MONTR ; JCI 6 FE6 76

```
START: LDA
                 O, DLNAM ; 'MONTR.OL'
         .SYSTM
         NACAC.
                           GPEN OVERLAY FILE
         G AML
                 ERRIN
                           ; ERROR
         JSR
                  DVLDD
                           ; LUAD OL#1
                  UVST1
                           START ADDRS
         JSR
                  DATOD
                           ; LOAD DL#2
                           START ADDRS
                  DVST2
                           ;LOAD DL#3
         JSR
                 UVLJD
                           START ADDRS
                  DVST3
         JSR
                  OVLOD
                           ; LOAD UL#4
                          START ADDRS
                  DVST4
                           ;LDAD DL#5
         JSR
                  DVLDD
                           START ADDRS
                  DVST5
ERROR:
         LDA
                  O, ERCOD ; ERROR CODE
                  0,0,5ZR ;SKIP IF SYSTEM ERROR
         # PES
                  2,0VRTN ;SET UP RECOVERABLE RETURN
2,RECGV ;HOLD RECOVERY ADDRS OR SYSTEM ERROR
         LDA
         STA
                          ; LEAD EL#6
         JSR
                  OVLDD
                         START ADDRS
                  DVST6
         HALT
UL NAM:
         .+1 = 2
         .TXT
                  /MONTR.OL/
MEWPT=
                           *METHOD FILE WORD POINTER
         . 02
                           METHOD FILE NAME POINTER
MEBPT=
         .BLK
                  7
                  START
         CNE.
```

A-2. Overlay Module No. 1--PHAS1.SR NAME BLOCK NAME: PHAS1.SR

TIME BLOCK

```
;JC1
        .TITL
                PHAS1
                                 19 FEB 76
        .TXTM
                 1
                 DVST1
        .ENT
        .EXTD
                 MAGFG SMPRT OVRTN ERRTN ERCOD
        .EXTD
                HSMON LSMON PRINT
        .EXTN
                MSKTB LSBTB CTLTB MEWPT MEBPT
        . VREL
PYTRI:
        MSKTB
                         REPORTED POINTS TABLE POINTER
CVTRI:
        BDAC1 =3
                         ;TABLE SIZE
PATRL:
                         LS BUFFER TABLE POINTER
        LSBTB
CNTRL:
                         ;TABLE SIZE
        BDAC3+3
DYADB:
        MUXJB
                         MUX DUTPUT BUFFER POINTER
        BDAC2
                         BUTPUT BUFFER LENGTH
CVTRB:
SACHD:
        000030
                         DEFAULT SWITCHES LEM
                         ; SWITCH 'L'
SACHL:
        000020
                         ; SWITCH 'M'
SACHM:
        000010
                         ; SWITCH 'T'
SACHT:
        010000
SPLDO:
        SPLDS
                         ;DISABLE SPOOLING
DPFLU:
        OPFLE
                         JUPEN A CHANNEL
CLFLO:
                         CLOSE A CHANNEL
        CLFLE
                         ; INITIALIZE MTO
IVMTO:
        INMTA
ROLUG:
        RDLUT
                         FREAD INTI UTILITY
                         FREAD SEQUENTIALLY FOR WORDS FROM UTILITY
ROSUO:
        RDSUT
MVWUO:
        TUWVM
CKNBO:
        CKNBR
                         CHECK A #
DVST1:
        ADC
                 0,0
                         ;FORCE -1
                 2. DMADB ; DUTPUT BUFFER POINTER
        LDA
                         FRESET OUTPUT BUFFER
        STA
                 0,0,2
                 2,2
        INC
        DSZ
                 CNTRB
                 .-3
        JMP
        SUB
                 0,0
                         CLEAR ACO
                 2.PNTRI ; INPUT DATA MASK TABLE
        LDA
        STA
                 0,0,2
                         CLEAR THE TABLE
        INC
                 2,2
        352
                 CNTRI
        JMP
                 .-3
        LOA
                 2, PNTRL ; LS BUFFER MASK TABLE
        STA
                 0,0,2
                        CLEAR THE TABLE
        INC
                 2,2
```

```
DSZ
        CNTRL
JMP
         .-3
         SPLDO
JSR 2
                 DISABLE SPOOLING
         NAMEF
                 :'STTO'
JSR a
         SPLOO
                 DISABLE SPOOLING
                 ; 'SLPT'
         NAMEG
         OPFLO
JSR 2
        NAMEF
                 OPEN STTO
        01
                 ; ON CH#1
        OPFLO
JSR 2
         NAMEA
                 SOPEN COM.CM
         04
                 : ON CH#4
JSR a
        RDLUO
                 READ 'MONITOR'
JSR a
        RDSUO
                 FREAD GLOBAL SWITCHES
                 ; 4 BYTES
        04
JSR a
        MVWUO
                 MOVE THE SWITCHES
                 TO ROOT BINARY
        MAGEG
         02
                 ; 2 WORDS
JSR a
         RDLUO
                 FREAD METHOD FILENAME
JSR a
         MVWUO
                 MOVE THE FILENAME
                 TO NAME AREA IN ROOT BINARY
         MEWPT
                 ;7 WORDS (MAX)
        07
JSR 2
         CLFLO
         04
                 CLOSE CH#4
         O, MAGFG ;GLOBAL SWITCH #1
LDA
LDA
         1.PRINT ;GLOBAL SWITCH #2
ADD #
         1,0, SNR ; SKIP IF SWITCHES PRESENT
         O, SWCHD ; USE DEFAULT SWITCHES
LDA
LDA
         2, SWCHM ; SWITCH MASK 'M'
                 MASK FOR MAG TAPE
AND
         0,2
STA
         2, MAGFG ; SET MAG TAPE FLAG
         2, SWCHL ; SWITCH MASK 'L'
LDA
         2,0,5NR ;SKIP IF $LPT REQUIRED
AND #
JMP
         .+3
SUBZL
         0,0
                 FORCE 1815
JMP
         .+4
LDA
         O, SWCHT ; SWITCH MASK 'T'
         1,0,5ZR ;SKIP IF NO $TTO REQUIRED
AND
SUBZR
        0,0
                 FORCE 180
STA
         O, PRINT ; SET PRINT FLAG
         C, MAGFG ; MAG TAPE FLAG
LDA
         O.O.SZR SKIP IF NO MAG TAPE
MOV #
JSR a
         INMTO
                 ; INITIALIZE MTO
         OPFLO
JSR a
                 : OPEN
         MEBPT
                  ; METHOD FILE
         04
                  FON CH#4
                 READ IDENTIFICATION READ SAMPLE RATE
JSR 2
         RDLUO
JSR a
         RDLUO
LDA
         2, UTBP1 ; UTILITY BYTE POINTER
JSR a
         GTSP1
                  FORM SP #
                  CKECK SR
JSR 2
         CKNBO
         BDACU
                  LOWER BOUND
                  SUPPER BOUND
         BDACV
STA
         O. SMPRT ; STORE IN ROOT BINARY
                  FREAD DURATION TIME
JSR J
         ROLUI
```

ERRIO:

```
2. UTBP1 ;UTILITY BYTE POINTER
        LDA
                 GTDP1 ;FORM DP #
O,DURAT ;HOLD THE #
        JSR a
                 GTDP1
        STA
                 1,DURAT+1
        STA
                         READ HS BUFFER FLAG
        JSR 2
                 ROLUI
                 2, UTBP1 ; UTILITY BYTE POINTER
        LDA
                          FORM SP #
        JSR 2
                 GISP1
                 0,0,5NR ;SKIP IF NOT 0
        WOV #
        JMP
                 JP9
        JSR à
                 CKNBO
                          CHECK HSB SR
                          LOWER BOUND
ERR12:
                 BDACW
                          SUPPER BOUND
                 BOACX
                 U, HSMUN ; STORE IN ROOT BINARY
        STA
        JSR a
                 GTBY1
                          GET NEXT BYTE
        LDA
                 1,ASCAK ; <*>
                 2,2
        SJB
                          CLEAR ACZ
                 O,1,SNR ;SKIP IF NOT <=>
        SUBZ
                          ; SET 180
        MOVR
                 2,2
                 O, HSMUN ; HS BUFFER FLAG
        LUA
                 2,0
                          FADD IN PRINT FLAG
        ADD
        STA
                 O, HSMON
JP9:
        JSR D
                 RDLUI
                          FREAD LS BUFFER FLAG
        LDA
                 2, UTBP1 ; UTILITY BYTE POINTER
                          FURM SP #
                 GTSP1
        JSR a
        JSR 2
                 CKNB1
                          ; CHECK THE
ERR11:
                 BDACE
                          FLUNER BUUND
                 BDACF+17; UPPER BOUND
                 O, LSMON ; STORE IN ROOT BINARY
        STA
        JSR
                          CONSTRUCT MONITOR POINT TABLE
                 TABLE
                 MSKTB
                          TABLE PUINTER
                 BDACA
                          LIST SIZE
                 BDAC1 #2 ; DFF SET SIZE
        JSR
                 TABLE
                          CONSTRUCT LS BUFFER TABLE
                 LSBTB
                          TABLE POINTER
                          ;LIST SIZE
                 BDACP
                 BDAC3*2 ; OFFSET SIZE
        JMP
                 JPO
                          ; CONTINUE
TBRTN:
                          RETURN ADDRS
T3PNT:
                          TABLE PDINTER
TBLSZ:
        0
                          ;TABLE LIST SIZE
TBOFF:
        0
                          TABLE OFFSET SIZE
                          ; PUINTER
TABLE:
        LDA
                 0,0,0
        STA
                 O, TBPNT
                 0,1,3
                          FLIST SIZE
        LOA
        STA
                 O, TBLSZ
                          ;OFFSET
        LOA
                 0,2,3
        STA
                 C. TBOFF
        STA
                 3, TBRIN ; RETURN ADDRS
        JSR 2
                 RDLU1
                          FREAD REPORTED POINTS HEADER
        JSR D
L21:
                          READ A LINE OF REPORTED POINTS
                 RDLU1
        LOA
                 2,UTBP1 ;UTILITY BYTE POINTER
        JSR &
                 GTSP2
                          FURM SP #
```

```
TBEND
                         IND & FOUND, END OF TABLE
        NE G
                         ; DECREMENT # BY -1
L'e:
                 0,0
        CIM
                 0,0
                 0,0,SZC :SKIP IF # POSITIVE
        MJVL #
        J5 R 2
                 ERROI
                         ; ERROR . GUT OF BOUNDS
ERRI:
                 1, TBLSZ ;# DF INPUT POINTS
        LDA
                 1,0,52C ;SKIP IF # <= MAX
        SJ82 #
                         FERROR CUT OF BOUNDS
        J5R 2
                 ERRUI
        JSR a
                 FMMSI
ERR2:
                         FORM MASK AND DISP.
        LDA
                 3, TEPNT ; START OF INPUT DATA MASKS
        ALL
                 0,3
                         FADD IN WORD OFFSET
        STA
                 1, TEMP1 ; HCLD THE MASK BIT
        STA
                 3, TEMP2 ; HOLD THE POINTER
                 0,0,3
                         MASK WURD
        LOA
        AND #
                 1,0,5NR ;SKIP IF ALREADY PRESENT
                         FADD IN NEW BIT
        ADD
                 1,0
        STA
                         RESTORE THE WORD
                 0,0,3
                 GTBY1
        JSR 2
                         GET BYTE FOLLOWING THE #
        LDA
                 I,ASCCR ; < CR>
                 0,1,5NR ;SKIP IF NOT EOL
        SJE #
        JMP
                 LP1
                 1.ASCAK ; < =>
        LDA
                 O,1,5ZR ; SKIP IF LPT FLAG
        SJB #
        JMP
                 LP3
                         GET NEXT #
                 1, TEMP1 ; RETRIEVE MASK BIT
        LDA
                 3. TEMP2 ; RETRIEVE POINTER
        LOA
                 O, TBOFF ; TABLE OFFSET
        LDA
                         GEFSET THE POINTER
        ADD
                 0,3
        LDA
                 0,0,3
                         MASK WERD
                 1,0, SNR ; SKIP IF ALREADY PRESENT
        AND #
        ADD
                 1,0
                         ; ADD IN NEW BIT
        STA
                 0,0,3
                          FRESTORE THE MASK WORD
L73:
        JSR J
                 GTSP2
                          FORM SP #
                 LP1
                         ;NO # FOUND, READ NEXT LINE
        JMP
                 LP2
                          ; LOOP BACK
                 3, TBRIN ; RETURN ADDRS
T3FAD:
        LDA
         JMP
                 3,3
                         ; RETURN
:MITCH
        0
                          TIME STORAGE
        0
DURAT:
                          DURATION TIME
        C
                          SUTILITY BUFFER POINTER
UTBP1:
        UTBPT
                          MOVE WORDS FROM UTILITY
MVWU1:
        MVWUT
                          FORM A MASK AND DISP.
FYMS1:
        FMMSK
                          FREAD SEQUENTIALLY INTO UTILITY
ROSU1:
        ROSUT
RDLU1:
                          FREAD A LINE INTO UTILITY
        ROLUT
                          FREAD A LINE, EXIT ON EOF
ROLU2:
        RDLUR
                          CKECK A NUMBER
CKNB1:
        CKNBR
                          FORM A SP #
GTSP1:
        GTSPN
                          FORM A SP #, EXIT IF NONE
GTSP2:
        GTSPR
        GTOPN
                          FORM A DP #
GTDP1:
GTBY1:
        GTBYT
                          GET A BYTE
OPFL1:
        OPFLE
                          DPEN A CHANNEL
CLFL1:
        CLFLE
                          CLOSE A CHANNEL
ERRD1:
        ERROR
                          FERROR ROUTINE
```

```
TEMP1:
                          ; TEMPORARY
        0
TEMP2:
        0
ASCCR:
        015
                          ; (CR>
ASCAK:
        052
                          ; < +>
ASCBK:
                          ; < >
        040
ASCCN:
        136
                          :<->
JP 2:
        ADC
                 0,0
                          FORCE A -1
                 O, TEMP2 ; SET END OF LIST FLAG
        STA
        LDA
                 O, DURAT ; RETRIEVE DURATION TIME
        LDA
                 1, DURAT+1
                          STORE DURATION AS FINAL ENTRY
        JMP
                 JP3
        JSR 2
                 RDLU1
JP 0:
                          FREAD CONTROL TABLE HEADER
         JSR a
                 RDLU2
                          READ CONTROL LINE
                 JP2
                          ; EOF
        LDA
                 2, UTBP1 ;UTILITY BYTE POINTER
         JSR a
                 GTSP2
                          FORM SP #
                 JP2
                          ;NO # FOUND
                          SKIP IF DUTPUT TABLE FULL
        DSZ
                 CNTRO
        JMP
                 .+2
         JSR 2
                 ERROI
                          FERROR ROUTINE
                 O,TEMP1 ;HOLD THE STATE
GTSP1 ;FORM SP #
ERR3:
        STA
         JSR a
                 U, TEMP2 ; HOLD THE SIGNAL #
        STA
         JSR 2
                 GTDP1
                          FORM DP #
JP 3:
        LDA
                 2, HDTIM ; PREVIOUS TIME
                 3,HDTIM+1
        LDA
         STA
                 O, HOTIM ; STORE PRESENT TIME
         STA
                 1,HDTIM+1
         SUBZ
                 3,1,SZC ;DELTA TIME
         SUBZ
                 2,0,5KP
         ADC
                 2.0
        MOV #
                 O,O,SNC ;SKIP IF OLD<=NEW TIME
         JSR 2
                 ERRDI
                          FERROR ROUTINE
ERR4:
        MOV #
                 O,O,SZR ;SKIP IF NO OVERFLOW
                          FERROR ROUTINE
         JSR 2
                 ERRO1
ERR5:
         STA 2
                 1, PNTRO ; STORE DELTA TIME
         15Z
                 PNTRO
                          ; INC THE POINTER
                 O, TEMP2 ; RETRIEVE SIGNAL #
        LDA
         ADC
                          FORCE MASK TO -1
                 1,1
         MOV #
                 O,O,SNR ;SKIP IF NOT ACQUISITION HOLDOFF
         JMP
                  JP1
                 O,O,SNR ;SKIP IF NOT END OF LIST
        COM #
         JMP
                 JP1
        LDA
                 1,CTLOF ;CONTROL # DFFSET (257)
         SUBZ
                 1,0, SNC FREMOVE OFFSET, SKIP IF IN BOUNDS
                          FERROR ROUTINE
         JSR à
                 ERRD1
ERR6:
         LDA
                 1,CTLMX ;# CF CONTROL POINTS
                 1,0,52C ; SKIP IF IN BOUNDS
         SUBZ #
         JSR 2
                 ERRO1
                          ; ERROR ROUTINE
         JSR D
                 FMMS1
                          FORM MASK AND DISP.
ERR7:
        COM
                 1,1
                          COMPLEMENT THE MASK
                 O.O. SNR ; SKIP IF NOT O DISP.
        VCM
        LDA
                 O, BUFOF
                          FELSE FORCE MAX DISP.
                 2, PNTRB ; GUTPUT BUFFER POINTER
        LDA
        ADD
                 0,2
                          SADU IN DISP.
                 O, TEMP1 ; RETRIEVE STATE
         LDA
```

```
SHIFT LS BIT TO CARRY
        MOVZR
                 0.0
         MOVL
                 2,0
                          SET STATE BIT IN POINTER
JP1:
         STA 2
                 1, PNTRO ; STORE MASK
         ISZ
                 PNTRO
                          ; INC THE POINTER
                 O, PNTRO ; STORE STATE BIT AND POINTER
         STA a
         ISZ
                 PNTRO
                          ; INC POINTER
                 O,O,SZR ;SKIP IF END DF LIST
         COM #
         JMP
                  JP0+1
                          $LOOP BACK
         JSR a
                 CLFL1
                          CLOSE CH#4
                 04
         JSR a
                 OPFL1
                          ; OPEN
                 NAMEE
                          ;$TTI
                          ; DN CH #2
                 02
JP 10:
         JSR a
                 CREA1
                          CREATE A FILE
                  NAMED
                           : TEMPA.TM
         JSR a
                 OPFLI
                          OPEN PREAM.DA FILE
                 NAMEC
                  04
                          ; ON CH#4
                 OPFL1
         JSR 2
                  NAMED
                          ; OPEN TEMPA.TM FILE
                           ; DN CH#3
                 03
                          FREAD A QUERY LINE
         JSR a
LP4:
                 RDLUZ
                  JP6
                          ; EOF
                  2, TEMP1 ; HOLD THE BYTE POINTER
         STA
         LDA
                  2, UTBP1 ;UTILITY BYTE POINTER
                  GTBY1
                           GET A BYTE
         JSR 2
         LDA
                  1,ASCAK ; <>>
                  2, TEMP1 ; RETRIEVE THE POINTER
         LDA
        SUB
                          SET FLAG TO O IF (+)
                 0,1
        STA
                 1. TEMP1 ; HOLD THE FLAG
        MOV #
                 1,1,SNR ;SKIP IF NOT <>>
         JMP
                 JP4
                          ;DECREMENT BY -1
        NEG
                 2,2
        COM
                 2,2
        STA
                 2, TEMP2 ; HOLD THE POINTER
        SUB
                 0,0
                          CLEAR ACO TO NUL
                          ; REPLACE (CR) WITH (NUL)
        JSR 2
                 STBYI
JP4:
        JSR a
                 TYLUI
                          ; ECHO THE LINE
        LDA
                 1, TEMP1 ; RETRIEVE THE FLAG
                 1,1,5NR ;SKIP IF RESPONSE REQUIRED JP5 ;HOLD THE LINE
        MOV #
        JMP
        LDA
                 2. TEMP2 ; RETRIEVE THE POINTER
                          FREAD INTO UTILITY
LP5:
         JSR 2
                 RDLU3
                 02
                          FORCE A -2
        ADCZL
                 0.0
         ADD
                 0,2
                          BACK UP
        STA
                 O, TEMPI ; STORE -2 AS FLAG
                 GTBY1 ;GET A BYTE
         JSR 2
        LDA
        SUB #
                 O,1,SZR ;SKIP IF <->
         JMP
                 JP5
        LDA
                 O, ASCCR (CR)
        JSR 2
                 STBY1
                          FREPLACE <-> WITH <CR>
         ISZ
                 TEMP1
                          SINC THE FLAG
```

```
JP5:
                 WTLU1
                         *WRITE THE LINE
        JSR a
        LDA
                 2, UTBP1 ; UTILITY BYTE POINTER
        ISZ
                 TEMP1
                         ;INC THE FLAG, SKIP IF <->
        JMP
                 LP4
                         FREAD NEXT QUERY
        JMP
                LP5
                         CONTINUE QUERY RESPONSE
PYTRB:
        MUXDB-1
                         POINTER TO DMA DUTPUT BUFFER
PNTRO:
        CTLTB
                         POINTER TO CONTROL LIST
CNTRO:
                         SMAX SIZE OF LIST
        BDAC 5
CTLOF:
        BDACH
                         THE MING CONTROL POINT #
        BDACT
                         * UF CONTROL POINTS
CTLMX:
                         MUX OUTPUT BUFFER SIZE
BJFOF:
        BDACZ
CREA1:
        CREAT
                         CREATE A FILE
XFER1:
        XFERF
                         TRANSFER ASCII FILES
X3 LK1:
        XBLK
                         TRANSFER FILES BY BLOCKS
WTLU1:
                         WRITE A LINE FROM UTILITY BUFFER
        WILUT
TYLU1:
        TYLUT
                         TYPE A LINE FROM UTILITY BUFFER
STBY1:
        STBYT
                         STORE A BYTE
CLFL2:
        CLFLE
                         CLOSE A CHANNEL
TYPM1:
        TYPMG
                         TYPE A MESSAGE
UTBP2:
        UTBPT
                 ;UTILITY BYTE POINTER
RDLU3:
        RDLUA
                         FREAD A LINE
GTBY2:
        GTBYT
                         GET A BYTE
ASCIN:
        116
                         ; < N>
ASCIY:
        131
                         ; < Y>
JP6:
        JSR 2
                CLFL2
                         CLOSE CH#4
                 04
        JSR a
                 CLFL2
                 03
                         CLOSE CH#3
        JSR a
                 TYPM1
                         TYPE A MESSAGE
JP11:
                 MSG02
                         MESSAGE #2
        LDA
                 2,UTBP2 ;UTILITY
        JSR 2
                 RDLU3
                         :READ A LINE
                         FRCM CH #2
                02
                2,UTBP2 ;UTILITY
        LDA
                         GET A BYTE
        JSR a
                GTBY2
        LDA
                1,ASCIN ;<N>
                O,1, SNR ; SKIP IF NOT <N>
        SJB #
        JYP
                 JP10
        LDA
                1,ASCIY ; <Y>
        SUB #
                O,1,5ZR ;SKIP IF <Y>
        JYP
                JP 11
        JSR a
                CLFL2
                02
                         CLUSE CH#2
        LDA
                O, MAGEG ; MAG TAPE FLAG
        MOV #
                0,0,SNR ;SKIP IF MAG TAPE
        JMP
                 JP7
        JSR a
                         ;TRANSFER
                XFER1
                NAMED
                         ;TEMPA.TM TO
                         ;MT0:0
                NAMEH
        JSR D
                 XFER1
                         ; TRANSFER
                MEBPT
                         METHOD FILE TO
                NAMEI
                         ;MTG:1
```

```
TRANSFER BLOCK
        JSR a
                 XBLK1
                 NAMEM
                         ; 'ASSIGNA.DA'
                         ; 'MT0:2'
                 NAMEJ
        JSR 2
                 XBLK1
                         TRANSFER BLOCK
                         ; INPUT MUX ASSIGN FILE TO
                 NAMEN
                 NAMEK
                         ;MT0:3
        JSR à
                 XBLK1
                         TRANSFER BLOCKS
                 NAMED
                         LOW SPEED BUFFER ASSIGN FILE TO
                         ; 'MTO:4'
                 NAMEL
JP 7:
        READS
                          ; READ SWITCHES
        MOV #
                 O,O,SNR ;SKIP IF NOT ALL DOWN
        JYP
                 JP8
        JSR à
                 TYPMI
                          TYPE A MESSAGE
                 MSG01
                         CLEAR ACD
        SUB
                 0,0
        INC
                 O,O,SZR ;DELAY
        JMP
                 . - 1
        READS
                          FREAD SWITCHES AGAIN
                 0,0,5ZR ;SKIP WHEN ALL DOWN
        MOV #
        JMP
                          LOOP BACK
                 . -5
JP8:
        JMP 2
                 DVRTN
                          RETURN TO ROOT BINARY
PHICD:
        400
                         PHASE 1 ERROR CODE
ERTBL:
        .+1
                          FERROR TABLE POINTER
        ERR1
        ERR2
        ERR3
        ERR4
        ERR5
        ERR6
        ERR7
        ERR8
        ERR9
        ERRIO
        ERR11
        ERR12
        -1
                          ;END OF TABLE
ERROR: LDA
                 O, PHICD ; PHASE 1 ERRUR CODE
        LDA 2
                 2, ERTBL ; ERROR TABLE
                 ERTBL
                          FINC TABLE POINTER
        ISZ
                 0.0
                         : INC COUNT
        INC
                 2.2. SNR ; SKIP IF NOT EDT
        COM #
        JYP
                 .+3
                 2,3,5ZR ;SKIP IF ERROR FOUND
        SUB #
                         LUCP BACK
        JMP
                 .-6
        JMP
                 .+2
SYSER:
        ADC
                 0,0
                         SYSTEM ERROR FLAG
                 O, ERCOD ; STORE IN ROOT BINARY
        STA
        JMP J
                 ERRTN
                         FERROR RETURN TO ROOT BINARY
CKNBR:
                 1,0,3
        LDA
                          LOWER BOUND
                1,0,SNC ;SKIP IF DK
        SUBZ #
        JMP
                 ERROR
        LDA
                 1,1,3
                          SUPPER BOUND
                O.1. SNC SKIP IF DK
        SUBZ #
        JMP
                 ERROR
                          NORMAL RETURN
        JYP
                 2,3
```

```
C11:
C12:
        12
CRRTN:
        0
                          FRETURN ADDRESS
                 0,0,3
CREAT:
        LDA
                          NAME POINTER
         INC
                 3,3
         STA
                 3, CRRTN ; STORE RETURN
CREAA:
         .SYSTM
         .CREA
                          CREATE SEQ. FILE
         JMP
                 .+2
                          ; ERROR
         JMP
                 CRRTN
                          RETURN
        LDA
                 1,011
        SUB #
                 1,2,SZR ;SKIP IF FILE EXISTS
         JMP
                 SYSEI
                          ; ERROR
        JSR
                 DELEA
                          DELETE THE FILE
         JMP
                 CREAA
                          TRY AGAIN
                 0,0,3
        LDA
DELET:
                          ; NAME POINTER
        INC
                 3,3
                 3,USP
DELEA:
        STA
                          STORE RETURN
         .SYSTM
        .DELET
                          DELETE THE FILE
        JMP
                 .+2
         JM P
                 0,3
                          ; NORMAL RETURN
        LDA
                 1,012
        SUB #
                 1,2,SIR ;SKIP IF NO FILE
        JMP
                 SYSEI
                          FERROR
        JMP
                 0,3
                          ; NORMAL RETURN
XFRTN:
        0
                          RETURN ADDRESS
                 0,0,3
XFERF:
        LDA
                          SOURCE FILE
                          DESTINATION FILE
        LDA
                 1,1,3
                 O, XFSFL
        STA
        STA
                 1,XFDFL
                 3.XFRTN ;STORE RETURN
        STA
         JSR
                 OPFLE
                          FOPEN SOURCE FILE
XF 5FL:
                          *POINTER
                 04
                          ; DN CH#4
        JSR
                 OPFLE
                          OPEN DESTINATION FILE
XFDFL:
                 0
                          ; POINTER
                 03
                          ; ON CH#3
        JSR
                 RDLUR
                          FREAD A LINE
                 .+3
                          RETURN ON EOF
        JSR
                 WTLUT
                          WRITE A LINE
        JMP
                 .-3
                          LOOP BACK
        JSR
                 CLFLE
                          ;CLOSE
                 04
                          ;CH#4
                 CLFLE
        JSR
                          ;CLOSE
                          ;CH#3
                 03
        LDA
                 3, XFRTN ; RETURN ADDRESS
        JMP
                 2,3
                          *RETURN
OPFLE:
        LOA
                 0,0,3
                          ; NAME POINTER
        LDA
                 2,1,3
                          ;CH #
        SUB
                          SUSE DEFAULT CHARACTERISTICS
                 1,1
                 3,USP
                          STORE RETURN
        STA
        .SYSTM
                 77
        .DPEN
                          DPEN THE CHANNEL
```

200

```
JMP 2
                          ; ERROR
                 SYSE1
         JMP
                 2,3
                          ; NORMAL RETURN
CLFLE:
        LDA
                 2,0,3
                          ;CH #
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
         .CLOS
                 77
                           CLOSE THE CHANNEL
                 SYSE1
         JMP 2
                          ; ERROR
         JMP
                           ; NORMAL RETURN
                 1,3
         .+1+2
MTANM:
         .TXT
                 /MTO/
                 O, MTANM ; NAME POINTER
INMTA:
        LDA
                          ; PARTIAL
        SUB
                 1,1
                 3,USP
                          STORE RETURN
        STA
        .SYSTM
                           ; INITIAL DIRECTORY
         .INIT
                           ; ERROR
         JSR 2
                 SYSE1
                 O,MTA
        AIG
                           STATUS
                 0,0,SNC ;SKIP WHEN READY
        MOVR #
         JMP
                  .-2
                          WAIT FOR PREWIND
         JMP
                 0,3
                          INDRMAL RETURN
                 0,0,3
                          MSG POINTER
TYPMG:
        LDA
        INC
                 3,3
                          FORCE A +1 FOR CH#
        SUBZL
                 2,2
         JMP
                  .+5
        SUBZL
                 2,2
TYLUT:
                          FORCE A +1 FOR CH#
        JMP
                  .+2
                 2,CO3 ;CH #3, BY DEFAULT
O,UTBPO ;UTILITY BYTE POINTER
WT LUT:
        LDA
        LDA
                 3,USP
                          STORE RETURN
        STA
        .SYSTM
         .WRL
                 77
                          WRITE A LINE
        JMP 2
                 SYSE1
                          ; ERROR
         JMP
                          FNORMAL RETURN
                 0,3
                 1,0,3
ROSUT:
        LDA
                          BYTE COUNT
        LDA
                 O, UTBPO ; UTILITY BYTE POINTER
                 2,004
        LDA
                          ;CH #4
                 3.USP
        STA
                          STORE RETURN
         .SYSTM
         .RDS
                           FREAD SEQUENTIAL BYTES
                 77
         JSR a
                 SYSE1
                           ; ERROR
         JMP
                           INDRMAL RETURN
                 1,3
SYSE1:
        SYSER
                           SYSTEM ERROR
                           SUTILITY BYTE POINTER
UTBPO:
        UTBPT
C03:
        03
        04
C)4:
C36:
         06
C1 77:
         177
RDRTN:
                           FRETURN FLAG -1
         ADC
                  1,1
ROLUAS
                           ;BYTE POINTER
         MOV
                  2,0
                  2,0,3
                           ;CH #
         LDA
```

```
INC
                 3,3
         JMP
                 .+7
RDLUR:
        LDA
                 1,0,3
                          FRETURN ADDRESS
                 3,3
        INC
         JMP
                 .+2
ROLUT:
        ADC
                          ;RETURN FLAG -1
                 1,1
                 O, UTBPO SUTILITY BYTE POINTER
        LDA
        LDA
                 2,C04
                          ;CH #4
                 I, RORTN ; STORE RETURN
        STA
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
         .RDL
                 77
                          FREAD A LINE
        JMP
                 .+4
                          CHECK FOR EDF
        MOV
                 0,2
                          MOVE THE BYTE POINTER
        ADD
                 1,2
                          OFFSET THE POINTER
                 0,3
                          NORMAL RETURN
        JMP
                 0,006
        LDA
                          ; EOF CODE
                 0,2,SZR ;SKIP IF EDF
        SUB #
         JYP
                 SYSE1
                          ; ERROR
                 O, RDRTN ; RETURN
        LDA
                 O,O,SZR ;SKIP IF NO EOF RETURN
        COM
        JMP
                 RDRTN
                         ; EDF RETURN
            9
        JMP
            a
                 SYSE1
                          ; ERROR
SPLDS:
        LDA
                 0,0,3
                          DEVICE BYTE POINTER
                          STORE RETURN
        STA
                 3.USP
        .SYSTM
        .SPDA
                          DISABLE SPOOLING
        JSR 2
                 SYSE1
                          ; ERROR
        JMP
                 1,3
                          NORMAL RETURN
MVRTN:
        0
MVWUT:
        LDA
                 2,0,3
                         DESTINATION POINTER
        LDA
                 1,1,3
                          : COUNT
        STA
                 3, MVRTN ; STORE RETURN
                 3,UTBPO
        LDA
                         SUTILITY BYTE POINTER
        MOVZR
                 3,3
                          FORM ADDRESS
                         NEG THE COUNT
        NEG
                 1,1
        LDA
                 0,0,3
                          STORE WORD
        STA
                 0,0,2
        INC
                 3,3
        INC
                 2,2
                 1,1,52R ;SKIP WHEN DONE
        INC
        JYP
        LDA
                 3, MVRTN ; RETURN ADDRESS
        JMP
                 2,3
                          RETURN
                          OPEN A FILE
DPFL3:
        OPFLE
CLFL3:
        CLFLE
                          CLOSE A CHANNEL
DPMT3:
        GPMTA
                          DPEN MAG TAPE FOR FF
ROBL3:
        RDBLK
                         FREAD A DISK BLOCK
MTAW3:
        MTAWT
                         WRITE BLOCK TO MTA
MTAS3:
        MTASR
                          SPACE REVERSE MTA
MTAE3:
        MTAEF
                         WRITE EDF ON MTA
XBRTN:
        C
                          RETURN ADDRS
X3LK:
        LOA
                 0,0,3
                          SOURCE FILE
                          DESTINATION FILE
        LOA
                 1,1,3
```

```
STA
                 O, XBLKS ; SOURCE
        STA
                 1, XBLKD ; DESTINATION
         STA
                 3, XBRTN ; RETURN ADDRS
         JSR 2
                 OPFL3
                          ; DPEN
XBLKS:
                 0
                          ;DISK SOURCE
                 04
                          ; ON CH #4
        JSR a
                 OPMT3
                          OPEN MTA
XBLKD:
                 0
                          ; DESTINATION
                 03
                          ; ON CH #3
        SUB
                 0,0
                          CLEAR ACO
        STA
                 O, XBLKN ; BLOCK #
         JSR a
                 RDBL3
                          FREAD DISK BLOCK
                          ;BLOCK #
XBLKN:
                 0
                 XBEND
                          ;EOF RETURN
        JSR 2
                 MTAW3
                          WRITE BLOCK TO MTA
        ISZ
                 XBLKN
                          ; INC BLOCK #
                 .-5
         JMP
X3 END:
        JSR 2
                 MTAE3
                          ; WRITE EOF TO MTA
                          SPACE REVERSE MTA
        JSR a
                 MTAS3
         JSR 2
                 CLFL3
                          ; CLOSE
                 03
                          ;CH #3
         JSR 2
                 CLFL3
                          :CLDSE
                 04
                          ;CH #4
        LDA
                 3, XBRTN ; RETURN ADDRS
         JMP
                 2,3
                          ; RETURN
OPMTA:
        LDA
                 0,0,3
                          ; NAME POINTER
                          ;CH #
        IDA
                 2,1,3
                          DEFAULT CHARACTERISTICS
        SUB
                 1,1
                 3,USP
                          STORE RETURN
        STA
        .SYSTM
                 77
                          POPEN MTA FOR FF
         .MTOPD
        JSR 2
                 SYSE3
                          SYSTEM ERROR
         JMP
                          ; NORMAL RETURN
                 2,3
ROBAK:
                          RETURN ADDRS
        0
                          ;BLUCK #
ROBLK:
        LDA
                 1,0,3
                          FEDF RETURN ADDRS
        LDA
                 0,1,3
        STA
                 O, RDBAK ; STORE ADDRS
        LDA
                 O, BLKPT ; BLOCK BUFFER POINTER
                 2, BLKCT ; COUNT OF 1
        LDA
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
        .RDB
                 04
                          FREAD A BLOCK
        JMP
                 .+2
                          ; ERRUR
        JMP
                 2,3
                          NORMAL RETURN
                 1,EDFCD ;EDF CDDE
        LDA
                 1,2,SZR ;SKIP IF EDF
        SUB #
                          SYSTEM ERROR
        JSR a
                 SYSE3
        JMP a
                          ;EDF RETURN
                 RDBAK
        BUFFR
                          BLOCK BUFFER POINTER
BLKPT:
BLKCT:
        000400
                          BLOCK COUNT
EGFCD:
                          FEOF ERROR CODE
        06
                          SYSTEM ERROR
SYSE3:
        SYSER
SR CMD:
        040001
                          SPACE REVERSE COMMAND
EFCMD:
        060000
                          FEDF COMMAND
WTCMD:
        050400
                          WRITE BLOCK COMMAND
EDFMK:
                          FEDF MASK
        000400
```

```
MTASR:
        LDA
                 1, SRCMD ; SPACE REVERSE COMMAND
         JMP
                 .+2
MT AEF:
                 1, EFCMD ; WRITE EDF COMMAND
        LDA
        JMP
                 .+3
STWATM:
        LDA
                 1, WTCMD ; WRITE COMMAND
        LDA
                 O, BLKPT ; BLOCK BUFFER POINTER
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
         .MTDIO
                 03
                          MTA FF
        JMP
                          :ERROR
                 .+2
        JMP
                 0,3
                          ; NORMAL RETURN
        LDA
                 1, EOFMK ; EOF MASK
        AND #
                 1,2,5NR ;SKIP IF EDF
        JSR a
                 SYSE3
                          SYSTEM ERROR
        JMP
                 0,3
                          NORMAL RETURN
FMMSK:
       SUBZL
                 1,1
                          SET BIT TO +1
        MOVZR
                 O,O,SZC ;SKIP IF NOT 2**0
        MOVZL
                          SHIFT 1 PLACE LEFT
                 1,1
        MOVZR
                 0,0,52C ;SKIP IF NOT 2**1
        ADDZL
                 1.1
                          SHIFT 2 PLACE LEFT
        MOVZR
                 O,O,SNC ;SKIP IF
                                        2002
        JMP
                 .+3
        ADDZL
                 1,1
                          $SHIFT 4 PLACE LEFT
        ADDZL
                 1,1
        MOVZR
                 0,0,52C ;SKIP IF NOT 2003
                          SHIFT 8 PLACE LEFT
        MOVS
                 1,1
        JMP
                          RETURN
                 0,3
GTDPN:
        ADC
                 0,0
                          DP FLAG
        MOV
                          FERROR ON NO # FLAG
                 0,1
        JMP
                 .+6
GT SPR:
        LDA
                 1,0,3
                          EXIT POINTER IF NO #
        INC
                 3,3
         JMP
                 .+2
GT SPN:
        ADC
                 1,1
                          FERROR ON NO # FLAG
        SUBZL
                 0,0
                          SP FLAG
                 O,GTFGO ;SP/DP FLAG
        STA
        SUB
                 0,0
                          CLEAR ACO
                 O,GTFG1 ## FDUND FLAG
        STA
        STA
                 O,GTOVF ; OVERFLOW FLAG
        STA
                 O.GTSTR ## STORAGE
        STA
                 O,GTSTR+1
        STA
                 1. GTERT ; ERROR EXIT FLAG
                 2, GTBPT ; BYTE POINTER
        STA
        STA
                 3,GTRTN ;NORMAL RETURN
         JMP
                 .+2
GTLP1:
        ISZ
                 GTBPT
                          FINC BYTE POINTER
        LDA
                 2, GTBPT ; GET THE POINTER
        JSR
                          GET THE BYTE
                 GTBYT
        LDA
                 1,ASCIC ; <CR>
                 O,1, SNR ; SKIP IF NOT (CR>
        SUB
        JMP
                 GTLP2
                          DONE
        LDA
                 1,ASC19 ;<9>
                 1,0,5ZC ;SKIP IF AC1>=AC0
        ADCZ #
        JMP
                 GTLP2
                         ; NOT A DIGIT
                 1,ASC10 ;<0>
        LDA
```

```
ADCZ #
                 0,1,5ZC ;SKIP IF ACO>=AC1
                          INDT A DIGIT
         JMP
                 GTLP2
         ISZ
                 GTFG1
                          ; INC # FOUND FLAG
         SUB
                 1,0
                          FORM BINARY
        STA
                 O,GTUTL ;HOLD THE #
                 O,GTSTR ;GET PREVIOUS VALUE
        LDA
        LDA
                 1,GTSTR+1
        MOVZL
                 1,1
                          ;N=2
                 O,O,SZC ;SKIP IF NO OVERFLOW GTOVF ;INC FLAG
        MOVL
         ISZ
        MOVZL
                 1,3
                          ; N +4
                 0,2,5ZC ;SKIP IF NO OVERFLOW
        MOVL
                 GTOVF
                          ; INC FLAG
        152
        MOVZL
                          ;N+8
                 3,3
        MOVL
                 2,2,52C ;SKIP IF NO OVERFLOW
                         ; INC FLAG
         ISZ
                 GTOVF
        ADDZ
                 1,3,52C ;N+10
                 0,0
         INC
                 0,2,52C ;SKIP IF NO OVERFLOW
        ADDZ
                          ; INC FLAG
         ISZ
                 GTOVF
         LDA
                 1,GTUTL ; RETRIEVE THE BINARY
                 1,3,SNC ;ADD TO PREVIOUS #
         ADDZ
         JMP
                 .+3
                 2,2,52C ;SKIP IF NO OVERFLOW
         INCZ
         ISZ
                 GTDVF
                          ; INC FLAG
                 2,GTSTR ;HOLD UPDATED #
         STA
         STA
                 3,GTSTR+1
                         GET NEXT BYTE
         JMP
                 GTLPI
GTLP2:
        LDA
                 3,GTFG1 ;# FOUND FLAG
        MDV #
                 3,3,SNR ;SKIP IF # FOUND
         JM P
                 GTLP3
         LDA
                 O,GTSTR FRETRIEVE THE #
                 1,GTSTR+1
         LDA
         LDA
                 2, GTBPT ; RETRIEVE THE BYTE POINTER
         LDA
                 3,GTOVF ; OVERFLOW FLAG
         DSZ
                 GTFG0
                          SKIP IF SP #
         JMP
                  .+4
         VOM
                 O,O,SZR ;SKIP IF NOT SP OVERFLOW
                 3,3,SKP FINC FLAG
         INC
         MOV
                 1,0
                          MOVE SP #
                 3,3,SZR ;SKIP IF NO OVERFLOW
         MOV #
                 GTERR
                          FERROR ROUTINE
         JSR a
                          ; NORMAL RETURN
ERR8:
         JMP a
                 GTRTN
                 1,1,5ZR ;SKIP IF EOL
GTLP1 ;GET NEXT BYTE
GTLP3:
        VOM
         JMP
         LDA
                 1,GTERT
                          FERROR RETURN FLAG
         COM #
                 1,1,SNR ;SKIP IF ADDRESS SPECIFIED
                 GTERR
                          ERROR ROUTINE
         JSR 2
ERR9:
         JMP 2
                 GTERT
                          FEDL RETURN, NO # FOUND
GTERR:
        ERROR
                          FERROR ROUTINE
                          FRETURN ADDRESS
GTRTN:
         0
GTERT:
         0
                          FEDL RETURN FLAG
GTBPT:
                          BYPE POINTER STORAGE
         0
GTSTR:
                          # STORAGE
         0
         0
GTFGO:
        0
                          DP/SP FLAG
```

```
GTFG1:
                            # FOUND FLAG
         0
GTOVF:
                            OVERFLOW FLAG
         0
GTUTL:
         0
                            ;UTILITY
                            ; <CR>
ASCIC:
         015
ASCI9:
         071
                            ; <9>
         060
ASC 10:
                            ;<0>
                  1.BTMSK ;BYTE MASK
GTBYT:
         LDA
                  2,2,5NC ;FORM WORD ADDRESS. SKIP IF RHS
1,1 ;SWAP THE MASK
         MOVZR
         MOVS
                            GET WORD
         LDA
                  0,0,2
                  1,0, SNC ; MASK THE WORD, SKIP IF RHS
         AND
         MOVS
                  0,0
                            SWAP THE WORD
                            RESTORE BYTE POINTER
         MUVL
                  2,2
         JMP
                  0,3
                            ; RETURN
BTMSK: 377
                            BYTE MASK
STRTN:
         0
STBYT:
         LDA
                  1, BTMSK ; BYTE MASK
                           MASK THE WORD
         AND
                  1,0
                  2,2,5NC ;FORM WORD ADDRESS, SKIP IF RHS 0,0,5ZC ;SWAP WORD, SKIP IF LHS
         MOVZR
         NOVS
         MOVS
                            SWAP MASK
                  1,1
         STA
                  3, STRTN ; STORE RETURN
         LDA
                            GET WORD
                  3,0,2
         AND
                  1,3
                            MASK THE WORD
         ADD
                            FADD IN NEW BYTE
                  0,3
                  3,0,2
                            RESTORE THE WORD
         STA
         MOVL
                            RESTORE BYTE POINTER
                  2,2
         INC
                  2,2
                            ; INC POINTER
         JMP a
                  STRTN
                            RETURN
         .TXTM
                  1
NAMEA =
         . # 2
         .TXT
                  /COM.CM/
NAMEC =
         . # 2
         .TXT
                  /PREAMBLE . DA/
NAMED=
         . 2
                  /TEMPA.TM/
         .TXT
NAMEE =
         . = 2
         .TXT
                  /STTI/
         . = 2
NAMEF =
         .TXT
                  /$TTO/
         . . 2
NAMEG =
                  /$LPT/
         .TXT
NAMEH=
         . . 2
         .TXT
                  /C:OTM\
```

SAN THE REAL PROPERTY.

NAME I =		/MTO:1/
NAMEJ=		/MT0:2/
NAMEK=		/MT0:3/
NAMEL =		/MT0:4/
NAMEM=	.TXT	/ASSIGNA.DA/
NAMEN=	-	/ASSIGNB.DA/
NAMEO=		/ASSIGNC.DA/
MSG01=		/<12>ALL SWITCHES DOWN<12><15>/
MS GO 2=	.*2 .TXT	/<12>PREAMBLE FILE OK? (Y,N) /
UTBPT=	-	110
BJFFR=	BLK 0	\$BLOCK BUFFER 400
	.E ND	

A-3. Overlay Module No. 2--PHAS2.SR NAME BLOCK NAME= PHAS2.SR

TIME BLOCK

```
.TITL
                 PHAS2
                         ;JCI
                                  23 FEB 76
        .TXTM
                 0
        .ENT
                 GVST2
        .EXTD
                 OVRTN BLKCT SMPRT ERCOD HLDCT CTLTB
        .EXTD
                 ERRTN
        .NREL
                         WAIT FOR TTO IDLE
DV ST2:
        SKPBZ
                 TTO
        JMP
                 .-1
        NDP
        NOP
        SKPBZ
                 TTO
        JMP
                 .-5
        SKPDZ
                 TTO
        JMP
                 .-7
        LDA
                 1, SEEKG ; DISK SEEKING MASK
        DIA
                 O.DKP
                         DISK STATUS
        AND #
                 O.1.SZR ;SKIP IF NOT SEEKING
        JMP
                 .-2
        SKPBZ
                 DKP
                         WAIT FOR DISK IDLE
        JMP
                 .-1
        NOP
        NOP
        SKPBZ
                 DKP
        JMP
                 .-5
        SKPDZ
                 DKP
        JMP
                 .-7
                         ;DISABLE INTERRUPTS
        INTOS
        LDA
                 0,1
                         RDDS INT VECTOR
        LDA
                 1, INTSV ; BDACS INT VECTOR
        STA
                 O, INTSV ; SAVE ROOS VECTOR
        STA
                         FENABLE BDACS INT SYSTEM
                 1,1
        LDA
                 O, INTHK ; BDACS INT MASK
        MSKO
                         MASK DUT
        LDA a
                 O, SEEK1 ; SEEK COMMAND
        DUAP
                 O, DKP
                         SOUTPUT THE COMMAND
        LDA
                 1, SEEKD ; SEEK DONE MASK
        DIA
                 O, DKP
                         GET DKP STATUS
                 O,1, SNR ; SKIP WHEN SEEK FINISHED
        AND #
        JMP
                 .-2
        NIDC
                 DKP
                         CLEAR DISK
        NIDC
                 MUX
                         RESET THE MUX
        LDA
                 O,DMUXA ;DMUX I/O START ADDR. AND COUNT
```

```
DUA
                 O,MUX
                 O, DMUXB TOCH INPUT START ADDR.
        LDA
        DDB
                 D.MUX
                 O, DMUXC ; HIGH SPEED WORD MASK
        LDA
                 1, SMPRT ; SAMPLE RATE
        LDA
        ADD
                 1,0
                          FADD IN SAMPLE RATE
        DOC
                 O,MUX
                 O, DMUXD ; DCH INPUT WORD COUNT
        LDA
        DOCS
                 O,MUX
                          ; SET BUSY, RESET DONE
                 2,TTYPT ;MSG POINTER
        LDA
T1:
        LDA
                 0,0,2
                          MESSAGE WORD
                          FINC THE POINTER
        INCO
                 2,2
12:
         LDA
                 1.BTMSK ;BYTE MASK
                 0,1,SNR ; MASK THE WORD, SKIP IF NUL
        AND
         JMP
                 JUMP1
                          ; DUTPUT A CHARACTER
        DOAS
                 1,110
         SKPDN
                 TTO
                          SKIP WHEN DONE
         JMP
                 .-1
                 O,O,SZC ;SWAP THE WORD, SKIP IF VALID
T1 ;GET NEXT WORD
        MOVCS
        JMP
         JMP
                          SOUTPUT NEXT CHARACTER
BTMSK:
                          BYTE MASK
        377
        013003
                          MUX START ADDRESS & COUNT
DMUXA:
        BUFS1+1
                          : INPUT DMA BUFFER
DMUXB:
DYUXC:
        140000
                          HIGH SPEED WORD MASK
                          ;-WORD COUNT, AND O IN IBO
;INPUT DMA BUFFER (RUNNING)
: GXUPG
        100000-BDACM
DYUXE:
        BUFS1
DYUXF:
        100000-BDACM-1
                          :-WORD COUNT (RUNNING)
CLKCD:
        03
                          IMS RTC CODE
SEEKG:
        002000
                          DKP SEEK IN PROGRESS MASK
                          DKP SEEK DONE MASK
SEEKD:
        040000
SEEK1:
                          INITIAL SEEK COMMAND
        SEEKC
INTMK:
        -I-IMCLK-IMMUX-IMDKP
                                  BDACS INTERRUPT MASK
INTSV:
        INTSR
                          $BDACS INTERRUPT SERVICE ROUTINE
TTYPT:
        .+1
                          POINTER TO TEXT
         TXT.
                 /<15><12>READY<12><15><12>/
JJMP1:
        NIDC
                 TIO
                          CLEAR TTO
        LDA
                 O, CLKCD : I MS CODE FOR CLOCK
                 1, DMUXE ; DCH INPUT START ADDR. (RUNNING)
        IDA
        LDA
                 2, DMUXF ; DCH INPUT WORD COUNT (RUNNING)
        READS
                          FREAD SENSE SWITCHES
        MOVZL
                 3,3,SNC ;SKIP WHEN SSO UP
        JMP
                 .-2
        LDA
                 3, PNTRO ; OUTPUT TABLE POINTER
        DOAS
                 O,CLK
                          START THE RTC
        NIOP
                 KUM
                          DUTPUT RUNNING VALUES
        DOB
                 1,MUX
        DOC
                 2,MUX
        INTEN
                          ENABLE INTERRUPTS
1.0:
        LDA
                 0,0,3
                          DELTA TIME
                 O,O,SNR ;SKIP IF NOT O
        MOV #
         JMP
                          FELSE DUTPUT IMMEDIATELY
                 LI
```

```
1,RTCCT ;RTC COUNT
        LDA
        MOV #
                 1,1,SNR ;SKIP IF POSITIVE COUNT
        JMP
                 LO
                         ; LOOP BACK
        DSZ
                 RTCCT
                         DEC THE COUNT
        NOP
                         SKIP IF DUTPUT REQUIRED
        DSZ
                 0,3
        JMP
                          LOCP BACK
                 LO
L1:
                          DUTPUT MASK
        LDA
                 1,1,3
        LDA
                 2,2,3
                         STATE AND BUFFER POINTER
        COM #
                 2,2, SNR ; SKIP IF NOT END
        JMP
                 L2
        MOV #
                 2,2,5NR ;SKIP IF NOT END OF HOLDOFF
        JMP
                 6
        MOVZR
                 2,2
                         SET STATE IN CARRY
        LDA
                 0,0,2
        AND
                 1,0
                          MASK THE WORD
        MUV #
                 0,0, SNC ; SKIP IF +1 STATE
                 1,0
        ADC
                          FRESET THE STATE
        STA
                 0,0,2
                         FRESTORE THE BUFFER WORD
                 O,CTLOF ;CONTROL TABLE OFFSET
L3:
        LDA
        ADD
                 0,3
                          OFFSET THE POINTER
                          LOUP BACK
        JMP
                 LO
                 HLDFG
                          HOLDOFF FLAG
        ISZ
L6:
        JMP
                 L3
        152
                 ENDFG
                          ; END OF ACQUISITION/CONTROL FLAG
L2:
        JMP
                         WAIT FOR LAST DATA BLOCK
        JMP
                 .-1
L4:
        SUB
                 1,1,SKP ;SET FLAG O
ERROR:
                 1,1,SKP ;SET FLAG -1
        ADC
        JMP
                 L5
                 O,PH2CD ;PHASE 2 ERROR CODES
        LDA
        LDA a
                 2, ERTBL ; ERROR TABLE
                         FINC THE PRINTER
        152
                 ERTBL
        INC
                 0,0
                 2,2, SNR ; SKIP IF NOT EDT
        COM #
        JMP
                 .+3
        SUB #
                 2,3,5ZR ;SKIP IF ERROR FOUND
        JMP
                         SLOOP BACK
                 .-6
        JMP
                 .+2
SYSER:
        ADC
                 0.0
                         SET FLAG -1
                 O, ERCOD ; HOLD ERROR COUNT
        STA
L5 :
        NIOC
                 MUX
                                  RESET MUX
                          RESET CLOCK
        NIDC
                 CLK
        NIOC
                         RESET DISK PACK
                 DKP
        INTDS
                          DISABLE INTERRUPTS
        SUB
                 0,0
                         CLEAR ACO
        MSKO
                 0
                         CLEAR ALL INTERRUPT MASKS
        LDA
                 O, INTSV ; RETRIEVE ROOS INTERRUPT VECTOR
        STA
                 0.1
        INTEN
                         ; ENABLE INTERRUPTS
                 1,1,SZR ;SKIP IF ERROR
        COM #
        JMP 2
                 OVRTN
                         NORMAL RETURN TO ROUT BINARY
        JMP a
                         FERROR RETURN
                 ERRTN
       1000
PH2CD:
                         PHASE 2 ERROR CODE
ERTEL:
        .+1
                         FERROR TABLE POINTER
```

```
ERR1
                          DISK ERROR
        ERR2
                          ; OVERFLUW ERROR
        ERR3
                          MUX ERROR
        ERR4
                          OVERRUN ERROR
                          ; END OF TABLE
PYTRO:
        CTLTB
                          DUTPUT LIST POINTER
CTLOF:
        BDACK
                         CONTROL LIST ENTRY SIZE
RTCCT:
        0
                          FRTC COUNT
SAVE:
                         INTERRUPT SAVE AREA
        0
ENDFG:
        0
                         ; END OF ACQUISITION/CONTROL FLAG
MJXFG:
        0
                         MUX FLAG
DKPFG:
        0
                         DISK FLAG
HLDFG:
        0
                         HOLDOFF FLAG
INTSR:
        SKPON
                 CLK
                          SKIP IF RTC INTERRUPT
        JMP
                 .+5
CLK
                          RESTART RTC
        NIDS
        152
                 RTCCT
                          ; INC COUNT
        INTEN
         JMP a
                 0
                          RETURN TO INTERRUPTED PROGRAM
                 O, SAVE
        STA
                         ;HOLD ACO, ACI
         STA
                 1.SAVE+1
                          SHIFT CARRY AND HOLD
        MOVL
                 0.0
        STA
                 O,SAVE+2
INTBK:
        SKPDZ
                 MUX
                          SKIP IF NOT MUX INTERRUPT
         JMP
                 MUXIN
                 O.DKP
        DIAC
                          DKP STATUS, CLEAR FLAGS
                 O,O,SZC ;SKIP IF NO DKP ERROR
        MOVR
         JSR 2
                 ERRO1
                          FORCE -1
ERR1:
         ADC
                 1,1
                 O, O, SNC ; SKIP IF WRITE INTERRUPT
        MOVL
         JMP
                 SKINT
         DSZ
                 BLKCT
                          DEC DATA BLOCK COUNT
         JMP
                 .+1
        LDA
                 O, ENDFG ; END OF ACQUISITION/CONTROL FLAG
                 O,O,SZR ;SKIP IF NOT DONE
        MOV #
         JMP
                 L4
         LDA
                 O, BLKCT ; DATA BLOCK COUNT
                 0,0, SNC ; SKIP IF EVEN SURFACE COMPLETE
         MOVR #
         JMP
                          SEEK NEW CYLINDER
                 DSKSK
SKINT:
         INC
                          FORCE O
                 1,1
                 O, DKPFG ;DISK PACK FLAG
         LUA
         STA
                 1. DKPFG ; UPDATE FLAG
         MOVZR # 0,0,52R ;SKIP IF DEFERRED WRITE REQUIRED
                          RELEASE THE INTERRUPT
         JMP
                 INTRL
        LDA
                 O, MUXFG ; MUX FLAG
         JMP
                 WRITE
         # VCM
                 0,0,5NR ;SKIP IF NO OVERFLOW
DSKSK:
         JSR &
                 ERRO1
ERR2:
         STA
                 1. DKPFG ; UPDATE FLAG
         ISZ
                 SEEKC
                          ; INC CYL # IN SEEK COMMAND
                          FINC CYL # IN WRITE COMMAND
                 WRITC
         ISZ
         LOA
                 O, SEEKC
                          ; DUTPUT THE SEEK COMMAND
         DEAP
                 C.DKP
```

```
JMP
                 INTRL
                          FRELEASE THE INTERRUPT
MJXHF:
        ISZ
                 HLDCT
                          FINC THE HOLDOFF COUNT
                          :INTERRUPT ACK.
INTRL:
        INTA
                 O,O,SZR ;SKIP IF NO INTERRUPTS PENDING
        MOV #
         JM P
        LDA
                 O, SAVE+2
                         RETRIEVE CARRY
        MOVR
                 0,0
                 1, SAVE+1
        LDA
        LDA
                 O, SAVE FRETRIEVE ACI AND ACO
        INTEN
                 0
                          FRETURN TO INTERRUPTED PROGRAM
         JMP 2
        SKPDZ
                          SKIP IF NO CLOCK INTERRUPT
                 CLK
         JMP
                  .-7
         JMP
                 INTBK
                          LOOP BACK
                 O,MUX
                          FRESTART MUX, GET STATUS
: NIXLM
        DIAS
        LDA
                 1, MUXFG ; OLD STATUS
                 O, MUXFG SUPDATE STUTUS
         STA
                 O,1, SNR ; SKIP IF NO MUX ERROR
        SUB #
         JSR a
                 ERRO1
ERR3:
         LDA
                 1, HLDFG ; HOLDOFF FLAG
        MOV #
                 1,1, SNR ; SKIP IF NO HOLDOFF IN EFFECT
         JMP
                 MUXHE
         LDA
                 1, DKPFG ; DISK FLAG
         MDV #
                 1,1,52R ;SKIP IF DISK IDLE
                 WRTDF
         JMP
                          DEFER WRITING
WRITE:
                 O, DKPFG ; SET DISK FLAG
        STA
        LDA
                 1, BUFS1 ;1ST BUFFER POINTER
                 O,O,SNC $SKIP IF 1ST BUFFER REQUIRED 1,BUFS2 $ELSE GET 2ND BUFFER POINTER
         MOVL #
         LDA
                 1,DKP
        DOB
                          CUTPUT THE POINTER
        LDA
                 1, SURFE ; EVEN SURFACE
                 0,0,SNC ;SKIP IF EVEN SURFACE REQUIRES
         MOVL #
        LDA
                 1, SURFO ; ELSE GET ODD SURFACE
                 1.DKP
        DOC
                 1, WRITC ; WRITE COMMAND
        LDA
        DOAS
                 1.DKP
                          FOUTPUT COMMAND, START WRITE
                          RELEASE THE INTERRUPT
                 INTRL
WRTDF:
        MOVZR # 1,1,5ZR ; SKIP IF DEFER IN EFFECT
                 O,1, SNR ; SKIP IF NO OVERRUN
        SUB #
                 ERRO1
         JSR 2
ERR4:
                          ; SET FLAG +1 (WRITE PENDING)
        SUBZL
                 1,1
                 1, DKPFG ; DISK FLAG
        STA
                          RELEASE THE INTERRUPT
         JMP
                 INTRL
ERRO1:
        ERROR
                          :ERROR ROUTINE
SEEKC:
        175000+BDACD
                          ; INITIAL SEEK COMMAND
WRITC:
        174400+BDACD
                          ; INITIAL WRITE COMMAND
SURFE:
        000004
                          EVEN SURFACE
SJRFU:
        000404
                          DDD SURFACE
BJ#52:
        .+2+BDACM
                          ; 2ND BUFFER POINTER
BJF51:
                          FIST BUFFER POINTER
        .+1
                 BDACH#2 ;START OF DATA BUFFERS
         .BLK
        0
```

A-4. Overlay Module No. 3--PHAS3.SR NAME BLOCK NAME= PHAS3.SR

TIME BLOCK

```
; JCI 24 MAR 76
        .TITL
                PHAS3
        .TXTM
                0
        .ENT
                DVST3
                OVRTN MAGFG ERCOD ERRTN HSMON
        .EXTD
        .NREL
                        HS BUFFER POINTER
PNTRO:
        HSBUF
CNTRO:
       BDACO
                        HS BUFFER SIZE
DM ADB:
        MUXOB
                        MUX DUTPUT BUFFER POINTER
        BDAC2
                        DUTPUT BUFFER SIZE
CNTRB:
NONE1:
      NONE
                        IND HS BUFFER REQUIRED
                0,0
DVST3:
        SUB
                        FORCE O
        STA 2
                O, PNTRO ; RESET HS OUTPUT BUFFER
        15Z
                PNTRO
        DSZ
                CNTRO
                .-3
        JMP
        ADC
                0,0
                        FORCE -1
                O, DMADB FRESET MUX DUTPUT BUFFER
        STA 2
        ISZ
                DMADB
        DSZ
                CNTRB
        JMP
                .-3
                1, HSMON ; HS MONITOR FLAG
        LDA
        MOV #
                1,1,SNR ;SKIP IF ACTIVE
        JMP a
                NONEL ; WRAPUP
        SKPBZ
                        SWAIT FOR TTO IDLE
                OTT
        JMP
                .-1
        NOP
        NOP
        SKPBZ
                TTO
        JM P
                .-5
        SKPDZ
                TTO
        JMP
                .-7
                1, SEEKG ;DISK SEEKING MASK
O, DKP ;DISK STATUS
        LDA
        DIA
                O,1,SZR ;SKIP IF NOT SEEKING
        AND #
        JMP
                .-2
        SKPBZ
                DKP
                        WAIT FOR DISK IDLE
        JMP
                .-1
        NOP
        NOP
        SKPBZ
                DKP
        JMP
                .-5
        SKPDZ
                DKP
```

```
JMP
                 .-7
                         ;DISABLE INTERRUPTS
        INTOS
                         RDGS INT VECTOR
        LDA
                 0.1
                 1, INTSV ; BDACS INT VECTOR
        LDA
                 O, INTSV ; SAVE ROOS VECTOR
        STA
        STA
                         FENABLE BDACS INT SYSTEM
                 1,1
                 O, INTMK ; BDACS INT MASK
        LDA
                         MASK DUT
        MSKO
                 O, DMUXA ; DMUX I/D START ADDR. AND COUNT
        LDA
        ADG
                 O, MUX
        LDA
                 O, DMUXB ; DCH INPUT START ADDR.
                 O, MUX
        DUB
        LDA
                 O, DMUXC ; HIGH SPEED WORD MASK
        DOC
                 O,MUX
        LOA
                 O, DMUXD ; DCH INPUT WORD COUNT
        DOCS
                 O.MUX
                         SET BUSY, RESET DONE
        LDA
                 2, TTYPT ; MSG PDINTER
        LDA
                         MESSAGE WORD
11:
                 0,0,2
                         :INC POINTER
        INCO
                 2,2
                 1,BTMSK ;BYTE MASK
12:
        LDA
        AND
                 0,1,SNR ; MASK THE BYTE, SKIP IF NOT NUL
        JMP
                 JUMP 1
        DOAS
                 1,110
                         ; DUTPUT A CHARACTER
        SKPDN
                 TTO
                         SKIP WHEN DONE
        JMP
                 .-1
                 0,0,5ZC ; SWAP THE BYTES, SKIP IF VALID
        MOVCS
                         GET NEXT MORD
        JMP
                 T1
        JMP
                 12
                         ;DUTPUT NEXT CHARACTER
TIMER:
        04
                         DELAY COUNT
BTMSK:
        377
                         BYTE MASK
DMUXA:
        000060
                         MUX START ADDRESS & COUNT
DYUXB:
        INPUT-1
                         ; INPUT DMA BUFFER
DAUXC:
       140144
                         HIGH RATE WORD
DYUXD:
        077776
                         ;-WORD COUNT, AND O IN 1BO
                         ; INPUT DMA BUFFER (RUNNING)
SAUXE:
        INPUT-2
        077715
                         ;-WORD COUNT (RUNNING)
DAUXF:
DYUXG:
        147777
                         LOW RATE WORD
SEEKG:
        002000
                         OKP SEEK IN PROGRESS MASK
INTMK:
        -1-1 MMUX
                         ; BUACS INTERRUPT MASK
                         GOACS INTERRUPT SERVICE ROUTINE
INTSV:
        INTSR
TTYPT:
        .+1
                         POINTER TO TEXT
        .TXT
                 /<15><12>HS BUFFER RETRIEVAL<12><15><12>/
        NIDC
                         CLEAR TTD
JUMP1:
                 TTO
        LDA
                 U, CNTLH
        STA 2
                 O.CNTLP
                 O, DMUXE ; OCH INPUT START ADDR. (RUNNING)
        LDA
                 1, DMUXF ; DCH INPUT WORD COUNT (RUNNING)
        AGI
        NIOP
                 MUX
                         START THE MULTIPLEXER
                 C.MUX
                         FOUTPUT RUNNING VALUES
        DJB
        DUC
                 1,MUX
INTRL:
        INTEN
                         ; ENABLE INTERRUPTS
                         LOOP HERE TILL DONE
        JMP
        JUP
                 .-1
```

```
MJXFG:
                          MUX STATUS FLAG
                          ; CONTROL WORD (LGW)
CNILL:
        137777
CNTLH:
        037777
                          ; CUNTRUL WORD (HIGH)
                          CONTROL WORD POINTER
CVTLP:
        MUXDB+BDAC2-1
ERRO1:
        ERROK
                          FERRUR ROUTINE
         0
         U
INPUT:
         0
                          MUX INPUT BUFFER
         11
                 XUM, C
INTSR:
         DIAS
                          MUX STATUS
                 1, MUXFG ; PREVIOUS STATUS
         LDA
                  O, MUXFG SUPDATE THE STATUS
         STA
                  G. 1. SNR ; SKIP IF NG ERROR
         SUB #
         JSR 2
                          ; ERROR ROUTINE
                  ERRO1
                 1,CNTLL ;CONTROL WORD MASK (LOW SIGNAL)
U,O,SNC ;SKIP IF LOW REQUIRED
ERR1:
         LUA
         MOVL #
                  1, CNTLH ; CONTROL WORD MASK (HIGH SIGNAL)
         LDA
         STA 2
                  1, CNTLP ; CONTROL WORD POINTER
                  1,DMUXG ;LOW RATE WORD
         LDA
         MOVL #
                 0,0, SNC ; SKIP IF LOW RATE REQUIRED
                  1. DMUXC ;HIGH RATE WORD
         LDA
         DUC
                  1,MUX
                  0,0,52C ;SKIP IF VALID DATA
         MUVL #
         JMP
                  INTRL
         LDA
                  I, INPUT ;DATA WORD
         ZVCM
                          SWAP THE BYTES
                  1,1
                  1, BFRPT ; STURE THE WORD
         STA a
         ISZ
                  BFRPT
                          ; INC THE POINTER ; DEC THE COUNT, SKIP WHEN DONE
         DSZ
                  BFRCT
                  INTRL
                          RELEASE THE INTERRUPT
         JMP
         SUB
                  1,1,5KP ;SET FLAG O
ERROR:
         ADC
                  I.1.SKP SET FLAG -1
         JMP
                  DUNE
         LOA
                  O. PH3CD ; PHASE 3 ERRUR CUDE
                  2. ERTBL ; ERROR TABLE
         LDA a
                          FINC THE POINTER
                  ERTBL
         152
         INC
                  0,0
                  2.2. SNR ; SKIP IF NOT EDT
         COM #
                  .+3
         JYP
         SUB #
                  2,3,5ZR ;SKIP IF ERROR FOUND
         JMP
                  .-6
                          LUGP BACK
         JAP
                  .+2
         ADC
                           SYSTEM ERROR CODE
SYSER:
                  0,0
         STA
                  O, ERCOD ; HOLD ERROR COUNT
DONE:
         NIGC
                  MUX
                           FRESET MUX
         INTOS
                           DISABLE INTERRUPTS
         SUB
                  0.0
                           CLEAR ACO
         MSKO
                           CLEARMALL INTERRUPT MASKS
                  O.INTSV RETRIEVE RODS INTERRUPT VECTOR
         LOA
         STA
                  0.1
         INTEN
                           ; ENABLE INTERRUPTS
                  1,1,5NR ;SKIP IF NG ERROR
         CUM #
N NE 1
         JMP 3
                  ERRIN
         J58 2
                  CRRFI
                           CREATE
```

```
; 'TEMPB.TM'
; DPEN
: 'TEMPB.TM'
; JN CH #3
; DUTPUT HS BUFFER
                                                                                                    NAMEB
                                                    JSR a
                                                                                                    GPFL1
                                                                                                    NAMEB
                                                                                                    33
                                                   JSR à
                                                                                                     TMP21
                                                                                                    CLFL1
                                                                                                                                                       ;CH #3
                                                                                                     03
                                                                                                     1, MAGEG ; MAG TAPE FLAG
                                                   LDA
                                                                                                    1,1,SNR SKIP IF MAG TAPE
                                                   MIV #
                                                                                                                                                     RETURN TO ROOT BINARY
                                                                                              OPFLI ; SPEN
NAMEB ; 'TEMPB.TM'
O4 ; UN CH #4
OPMTI ; OPEN MAG TAPE FUR FF
NAMFA : 'MTO:5'
O3 ; UN CH #3
O,O ; CLEAR ACO
O,BLKNO ; BLOCK #
ROBLI ; READ A DISK BLOCK
O ; BLOCK #
-+4 ; EDF RETURN
MTAWI ; WRITE BLOCK TO MTA
BLKNO ; INC BLOCK #
--5
MTAE1 ; WRITE EOF
MTAS1 ; SPACE REVERSE
                                                   JMP a
                                                                                                    OVRTN
                                                   JSR D
                                                   JSR a
                                                  SUB
                                                  STA
                                                   JSR 2
BLKND:
                                                   JSR 2
                                                   15Z
                                                   JMP
                                                                                                                                                   ;WRITE EDF
;SPACE REVERSE
;CLOSE
;CH #3
;CLOSE
;CH #4
;RETURN TO ROOT BINARY
;START OF HS BUFFER
                                                   JSR a
                                                   JSR 2
                                                                                                    MTAS1
                                                   JSR a
                                                                                                    CLFL1
                                                                                                    03
                                                                                                    CLFLI
                                                   JSR a
                                                                                                    04
                                                   JMP 2
                                                                                                   OVRTN
BFRST: HSBUF+1
BFRPT: HSBUF
BFRCT: BDACD+1
                                                                                                                                            ; START OF 115 SET
; BUFFER PDINTER
; BUFFER COUNT
; # BLOCKS IN HS BUFFER
 BLKCT: BDACJ/400
                                                                                                                                                     CREATE RANDOM FILE
                                                                                                                                                CREATE RANDOM FILE
CROSE A CHANNEL
CLOSE A CHANNEL
CLOSE A CHANNEL
CLOSE A CHANNEL
CROSE A CHANNEL
COMPONITION OF THE COMPONITI
 CRRF1: CRRFL
 OPFLI: OPFLE
 CLFL1: CLFLE
GPMT1: CPMTA
ROBL1: ROBLK
                                             TMPDT
  TMPD1:
 MTAE1: MTAEF
MTAS1: MTAER
                                            MTANT
  PH3CD: 1400
                                                                                                        ; ERROR TABLE POINTER
; MUX ERROR
; END OF TABLE
                                                    .+1
   ERTBL:
                                                     ERR1
                                                     -1
   C11:
                                                    11
                                                    12
   (12:
                                                                                                                                                       RETURN ADDRS
   CRRTN:
                                                                                                                                                       ; NAME POINTER F 31 91421 MAZZELI A MEZZELI A 
                                                    LDA
                                                                                                     0,0,3
   CRRFL:
                                                                                                      3,3
                                                     INC
```

```
3, CRRTN ;STORE RETURN
        STA
                       STORE RETURN
CRRFA:
       STA
               3,USP
       .SYSTM
                       CREATE RANDOM FILE
        .CRAND
        JMP
               .+2
                       NORMAL RETURN THE MANAGEMENT
        JMP
               0,3
        LDA
               1,011
               1,2,5ZR ASKIP IF FILE EXISTS
SYSE1 ;ERROR
DELEA ;DELETE THE FILE
        SUB #
        JSR 2
        JSR
               CRRFA
        JSR
                       FIRY AGAIN
                       RETURN

SNAME POINTER
       JAP 9
               CRRTN
DELET:
       LDA
               0,0,3
        INC
               3,3
               3.USP
DELFA:
       STA
        .SYSTM
                       DELETE THE FILE MADE AND
        .DELET
                       ;NDRMAL RETURN SPATES STATES
        JMP
               .+2
        JMP
               0,3
       LDA
               1,C12
1,2,SZR ;SKIP IF NO FILE EXISTS
SYSE1 ;ERROR
0,3 ;NORMAL RETURN
       SUB #
        JSR a
        JMP
               1,1,5KP ;SET FLAG -I
1,1 ;SET FLAG O
0,0,3 ;NAME POINTER
OPMTA:
       ADC
OPFLE:
       SUB
       LDA
                      CHANNEL #
       LDA
               2,1,3
               3,USP
       STA
               1,1,52R ;SKIP IF REGULAR DPEN
       # VEM
        JMP
        .SYSTM
                       DPEN THE CHANNEL
               77
        . OPEN
                       FERROR
        JSR 2
               SYSE1
        JMP
               2,3
                       ; NORMAL RETURN
                       DEFAULT CHARACTERISTICS
        INC
               1,1
        .SYSTM
                       OPEN MAG TAPE FOR FF
        .MTDPD
               77
        JMP a
               SYSE1
                       : ERROR
                       NORMAL RETURN
        JMP
               2,3
                       SYSTEM ERROR
SYSE1
       :SYSER
EDFMK:
       000400
                       FEOF ERROR MASK
                       SPACE REVERSE COMMAND
SR CMD:
       040001
                       SEDF WRITE COMMAND
EFCMD:
       060000
       050400
WT CMD:
                       WRITE COMMAND
              1. SRCMD SPACE REVERSE COMMAND
MTASR:
       LDA
        JMP
               .+2
               1, EFCMD ; EDF WRITE COMMAND
MTAEF:
        LDA
        JMP
               .+3
               O, BFRST ; START OF HS BUFFER
MTAWT:
        LDA
               1, WTCMD ; WRITE COMMAND
        1DA
               3,USP
                     ;HOLD RETURN
        STA
        .SYSTM
        DICTM.
               03
                       MAG TAPE FF 1/0
```

```
JMP
                  .+2
                           INGRMAL RETURN
         JMP
                  0,3
         LDA
                  1, EOFMK ; EOF ERROR MASK
                  1,2,SNR ;SKIP IF EDF
         AND #
         JSR a
                  SYSE1
                           ; ERROR
         JMP
                           ; NORMAL RETURN
                  0,3
TAPET:
                  O, BFRST ; START DF HS BUFFER
        LDA
                           FRELATIVE BLOCK ADDRS O
         SUB
                  1.1
                  2, BLKCT ;# BLOCKS
         LDA
         MOVS
                  2,2
                           STORE RETURN
         STA
                  3,USP
         .SYSTY
                           WRITE THE HS BUFFER TO DISK
         .WRB
                  03
                           ; ERROR
         JSR a
                  SYSE1
         JM P
                           ; NORMAL RETURN
                  0,3
ROBAK:
                           RETURN ADDRS
         0
                          ;BLUCK #
ROBLK:
        LLA
                  1,0,3
         LDA
                           FEDF RETURN ADDRS
                  0,1,3
                  O,RDBAK ;STORE ADDRS
O,BLKPT ;BLOCK BUFFER POINTER
         STA
         LDA
                  2, BLKSZ ; BLOCK SIZE
         LUA
                          STORE RETURN
         STA
                  3, USP
         .SYSTM
         .RDB
                  04
                           ; READ A DISK BLOCK
                           FERROR
         JMP
                  .+2
         JMP
                  2,3
                           INDRMAL RETURN
         LDA
                  1.EUFCD ;EUF CODE
         SUB #
                  1,2,5ZR ;SKIP IF EDF
                           SYSTEM ERROR
         JSR W
                  SYSEI
         JMP 2
                  RDBAK
                           ;EGF RETURN
BLKPT:
         HSBUF
                           BLOCK BUFFER FOINTER
                           BLOCK COUNT 1
B_KSZ:
         000400
E3FCD:
                           ;EDF ERROR CODE
C_FLE:
         LDA
                  2,0,3
                           CH #
                           HOLD RETURN
         STA
                  3, USP
         .SYSTM
                  77
                           CLUSE THE CHANNEL
         .CLJS
         JMP 2
                  SYSEI
         JM P
                           INCRMAL RETURN
                  1,3
         .TXTM
                 , 1
NAMEA =
         . # 2
         .TXT
                  /MT0:5/
         . . 2
NAMEB =
         .TXT
                  /TEMPB.TM/
HSEUF =
                  BUACE+1 :HS GUTPUT BUFFER
         .BLK
         0
         .END
```

A-5. Overlay Module No. 4--PHAS4.SR

PHAS4

; JCI

10 MAR .76

NAME BLOCK NAME = PHAS4.SR

.TITL

TIME BLJCK

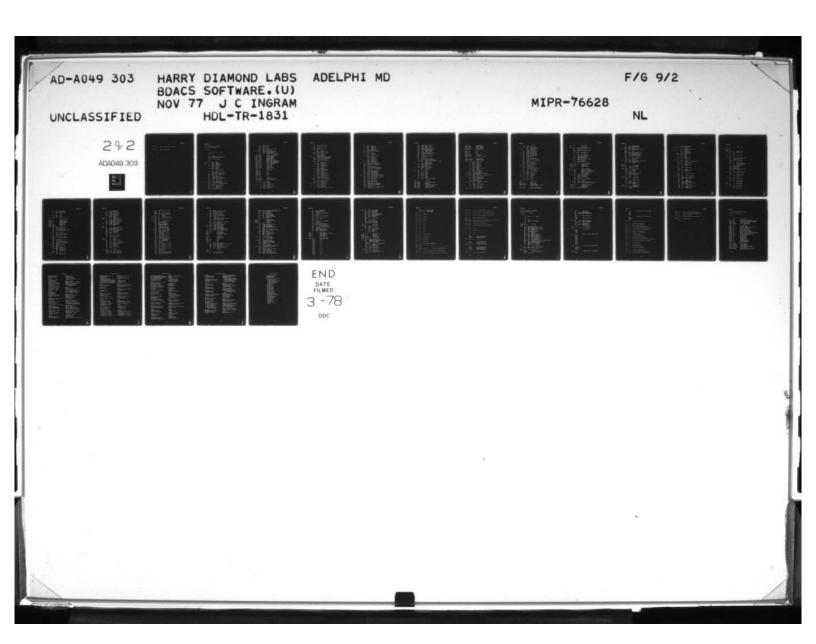
```
. FXTM
                  1
         .ENT
                 UVST4
                  OVRTN ERRTN ERCOD MAGFG SMPRT
         .EXTD
         .EXTD
                  BLKCT HLDCT LSMON
         .EXTN
                  MSKTB LSBTB
         .NREL
BJF5Z:
                          FREDUCED DATA BUFFER SIZE
        BDAC9
BJFPT:
        MTABF
                           BUFFER POINTER
CRRF1:
        CRRFL
                           CREATE RANDOM FILE
                          GOPEN A FILE (NORMAL)
GOPEN FF MAG TAPE FILE
DPFL1:
         OPFLE
UPMT1:
        OPMTA
DONE 1:
         DONE
                           : WRAPUP
DVST4:
         SUB
                  0,0 ;CLEAR ACO
O,BUFPT ;RESET REDUCED DATA BUFFER
         STA a
                  BUFPT
         ISZ
                  BUFSZ
         DSZ
         JMP
                  .-3
         JSR 2
                  UPFL1
                           ; OPEN
                           ; 'BDACS.DA'
                  NAMEC
                  04
                          10N CH #4
                  1, MAGFG : MAG TAPE FLAG
         LDA
                  1,1,5ZR ;SKIP IF NO MAG TAPE
         MOV #
         JMP
                  .+7
                  CRRF1
                           CREATE A RANDOM FILE
         JSR 2
                  NAMEB
                           ; 'TEMPC.TM'
                  OPFL1
                          OPEN
         JSR 2
                  NAMEB
                           ; 'TEMPC.TM'
                           ; DN CH#3
                  03
         JMP
                  .+4
                           FF DPEN
         JSR 2
                  DPMT1
                  NAMEA
                           : 'MTO:3'
                  03
                           ON CH#3
         LOA
                  1. BLKST ;DATA BLUCK START COUNT
         LDA
                  O, BLKCT ; CURRENT COUNT
         SUB
                  1,0
                           FORM NEG DIFF
                  O.O. SNR ; SKIP IF DATA STORED
         MOV #
         JMP a
                  DONE 1
         STA
                  G.BLKCT ; SET COUNT
         LDA
                  1, SMPRT ; SAMPLE RATE
         SUB
                  0,0
                          CLEAR ACO, ACZ, AC3
         MOV
                  0.2
```

```
MOV
                  0,3
         ADD7
                  1,3,52C ;DETERMINE HOLDOFF TIME PER FILL
         INC
                  2,2
        DSZ
                  CNTRO
                           SKIP WHEN DONE
        JMP
                  .-3
                  1, HLDCT ; HDLDDFF COUNT
        LDA
                  1,1,SNR ;SKIP IF HOLDOFF
        MOV #
         JMP
                  LLO
                  1, CNTRO ;HOLD COUNT
         STA
                  0,1 ;CLEAR AC1
         MOV
                  3,1,SZC ;DETERMINE TOTAL HOLDOFF TIME
0,0,SNC ;SKIP IF OVERFLOW
2-0.SZC :SKIP IF NO OVERFLOW
         ADDZ
         INCZ
         ADDZ
                  2,0,SZC ;SKIP IF NO OVERFLOW
                  ERRO1 ; ERROR ROUTINE
         JSR a
         DSZ
ERR1:
                  CNTRO
                          SKIP WHEN DONE
         JMP
                  .-5
         STA
                  O, TIMER ; STORE THE TIME
         STA
                  1,TIMER+1
         LDA
                  O, HLDCT ;GET HOLDOFF COUNT
         STA
                  O, CNTRO ; RESET THE COUNT
         SUB
                          CLEAR ACO
                  0,0
                  1, HLDOV ; ROUND ROBIN OVERFLOW PER FILL 2, RRCNT ; ROUND ROBIN COUNT
         LDA
         LDA
                  1,0 ;ADD DVERFLOW
2,0,SZC ;SKIP IF AC2>ACO
         ADD
         SUBZ #
                  2,0 ; ELSE RESET THE OVERFLOW
         SUB
         DSZ
                  CNTRO
                          SKIP WHEN DONE
         JMP
                  .-4
                  O,O,SZR ;SKIP IF NO NET DFFSET
         # VCM
                  O, PRADD SUPDATE PREVIOUS ADDRESS
         STA
LLO:
         LDA
                  2, LSMON ; LS BUFFER MONITOR POINT
                  0,0 ;FDRCE -1,CLEAR CARRY
2,2,SZR ;SKIP IF NO LS
         ADCZ
         NEG
         MOVL
                  0,0,SKP ;FDRM THE LS MASK
         JMP
         INC
                  2,2,5ZR ;SKIP WHEN DONE
         JMP
         STA
                  O, LSBMK ;STORE THE MASK
         READS
                  O FREAD SWITCHES
         ADDZL # 0,0, SNC ; SKIP IF NO ERROR RECOVERY
         JMP
                  LL1
                  GTBW1 ;GET A LS WORD
2,PRADD ;GET PREVIOUS LS OFFSET
         JSR a
LJ:
         LDA
                  I, RRCNT ; MAX COUNT
                  2,1, SNC ;SKIP IF ACZ<AC1
         LDA
         ADCZ #
                           RESET THE OFFSET
         SUB
                  1,2
         INC
                  2,2
                  2. PRADD RESTORE THE CURRENT DEFSET
         STA
                  ROBWI ; REDUCE LS WORD
GTBWI ; GET A HS WORD
2,2 ; O DFFSET
ROBWI ; REDUCE HS WORD
INTMR ; INC THE TIMER
LO ; LODP BACK
         JSR 2
         JSR a
         SJB
         JSR 2
         JSR
         JM P
```

```
HLDOV:
        BDAC7+BDAC8/BDAC7*BDAC7-BDAC8
PRADD:
        BDAC 7
                          PREVIOUS LS ADDRS
RR CNT:
        BDAC7
                          # DF LS WORDS
BLKST:
        BDACE #2
                          ; MAX DATA BLOCK COUNT
                          # DF HS/LS PAIRS PER BUFFER
CNTRO:
        BDAC8
LSMSK:
        160000
                          LS ADDRS MASK
WDSTR:
        0
                          ; DATA WORD STORAGE
HSPNT:
        MSKTB
                          FREPORTED POINTS MASK TABLE
GTBW1:
        GTBWD
                          GET A BUFFER WORD
RDBW1:
        RDBWD
                          REDUCE A BUFFER WORD
ERRO1:
        ERROR
                          :ERROR ROUTINE
TIMER:
        0
                          CURRENT TIME
                 O, SMPRT ; SAMPLE RATE
IVIMR:
        LDA
        LDA
                 I, TIMER ; CURRENT TIME
        LDA
                 2.TIMER+1
                 0,2,SZC ;UPDATE THE TIMER
        ADDZ
                 1,1,SNC ;SKIP IF OVERFLOW
        INCZ
        JMP
                 .+2
        JSR a
                 ERROI
                          FERROR ROUTINE
ERR2:
        STA
                 1, TIMER ; RESTORE TIMER
                 2, TIMER+1
        STA
        LDA
                 O, LSMON ; LS BUFFER MONITOR POINT #
        MDV #
                 O,O,SNR ;SKIP IF BUFFER IN USE
        JMP
                          FRETURN
                 0,3
        ISZ
                 LSPNT
                          FINC LS POINT COUNT
                 O, LSWMK ; LS WORD MASK
        LDA
        MOVZL
                 O,O,SZR ;SHIFT, SKIP IF OVERFLOW
        JMP
                 .+3
                          ; INC OFFSET COUNT
        ISZ
                 LSOFF
        SUBZL
                 0,0
                          RESET MASK
                 O, LSWMK ; RESTORE THE MASK
        STA
                 O, LSDFF ;GET DFFSET
1, LSMAX ;MAX DFFSET
        LDA
        LDA
                 O,1,SZC ;SKIP IF ACO>ACI
        SUBZ #
         JMP
                 .+5
        SUB
                 0,0
                          CLEAR ACO
                 O, LSOFF ; RESET THE DFFSET
        STA
                 O, LSFST ;1ST LS POINT
        LDA
        STA
                 O, LSPNT ; RESET THE POINT COUNT
         JMP
                          *RETURN
                 0,3
                          ;+1 INITIAL HS COUNT
        SUBZL
                 0,0
LL1:
        STA
                 O, CNTRO ; HS COUNT
L1:
        SUB
                 0,0
                          CLEAR ACO
                 O, SEQFG ; RESET ERROR FLAG
        STA
         JSR a
                 GTBWI
                          GET A BUFFER WORD
        MOVL
                 O,O,SNC ;SKIP IF HS WORD
         JMP
                 L2
        MOVZR
                 0,0
                          RESET HS BIT
        SUB
                          ;O DFFSET
                 2,2
                          REDUCE HS WORD
         JSR 2
                 RDB W1
                          INC HS COUNT
        15 Z
                 CNTRO
                 INTMR
         JSR
                          ;INC TIMER
```

```
JMP
                 LI
                          ; LUCP BACK
15:
                 1, LSMSK ; LS MASK
        LDA
        AND
                          MASK THE ADDRS BITS
                 0,1
        SJE
                          FURM DATA WORD
                 1,0
        MIVZR
                 0,0
        S-A
                 O, WOSTR ; STERE THE DATA
        ADDZL
                 1,1
                          ;SHIFT ADDRS BITS
        MUVL
                 1,1
        MUVL
                 1,1
        LDA
                 2, PRADD ; PREVIOUS LS ALDES
        STA
                 1. PRADD : STORE CURRENT LS ADDRS
        LDA
                 O, RRCNT ; REUND RUBIN COUNT
        ADCZ #
                 2.1, SNC ; SKIP IF ACZKACI
        ADD
                          FADE MODULUS
                 3,1
                          FCRM ADURS DIFF
        516
                 2,1
        ALC
                          ;FORCE -1
                 2,2
        LDA
                 C, CNIRC ; HS COUNT
        ALD #
                 2,1,5NR ;5KIP IF DIFF NOT +1
                  .O.SZR ;SKIP IF HS COUNT +1
        ADD #
         JMF
                 14
         INC
                 2,2
                          CLEAR ACZ
        STA
                 2, CNTRO ; RESET HS COUNT
L3:
        ACL
                 O, WOSTR ; RETRIEVE THE DATA
                 2. PRADD ; LS OFFSET
        ACL
        JSR 2
                 RDBW1
                          REDUCE LS WORD
         JMP
                 LI
                          LOCP BACK
        SUBZ
                 O,1, SNC ; FORM DIFF, SKIP IF ACC <= AC1
         JSR 2
                          FERROR ROUTINE
                 ERRO1
ERR3:
        STA
                 1, CNTRO ; FORCE COUNT TO DIFF
                          FINC ERROR COUNT
         152
                 SEGER
                 SEQFE
                          SET ERRUR FLAG
         152
                 O, SEGER ; ERROR COUNT
        LOA
                 2, SEQMX ; MAX COUNT
        ACL
                 2.0, SZC ; SKIP IF AC2>ACO
         SJ82 #
         JSR a
                 ERRO1
                          FERROR ROUTINE
                 1,1, SNR ; SKIP IF NONZERO COUNT
ERR4:
        MOV
         JMP
                 L3
                 INTMR
         JSR
                          ; INC TIMER
         DSZ
                 CNTRO
                          SKIP WHEN DONE
         JMP
                 .-2
         JMF
                 L3
SEQMX:
                          ; MAX # SEQUENCE ERRORS
        BOACN
SEGER:
                          SEQUENCE ERRORS
        0
                          SEQUENCE ERROR MASK
SEWMK:
        000400
SEGFG:
                          ILS BUFFER MASK
LSBMK:
        177777
L. WMK:
        000001
                          ILS WORD MASK
LSFST:
        0+0000+BDAC0
                          FIRST LS POINT #
LIFNT:
        C40000+BDACQ
                          CURRENT LS POINT #
LIMAX:
        BDAC3-1
                          MAX LS OFFSET
LSGFF:
                          CURRENT LS DEFSET
        0
LSTPT:
        LSBTB
                          START OF LS MASK TABLE
                          RETURN ADDRS
LSRTN:
        0
```

```
3. LSRIN ; STORE RETURN
LUBRO:
        STA
                 3, LSTPT ; START LF TABLE
        LDA
                 O.LSOFF ; OFFSET
        LDA
        ADD
                         THE POINTER
                 0,3
                        REPORTED POINTS MASK
                 1,0,3
        LDA
        LDA
                 C. LSWMK ; WURD MASK
        AND #
                 O,1, SNR ; SKIP IF REPORTED
        JMP
                 LS1
                                 PREVIOUS VALUE
        LDA
                 1.BDAC3,3
                         MOV CURRENT STATE TO CARRY
        MJVL
                 2,2
                 1,2,52C ; MGV PREV. VALUE, SKIP IF O CURRENT STATE
        MUV
        COM
                 2.2
                         COM PREVIOUS VALUE
                 0.2. SNR ; SKIP IF CHANGE DCCURRED
        AND #
        JYP
                 LS1
        CIM
                         FCOM WORD MASK
                 0,0
                 0,1,52C ;TURN OFF BIT, SKIP IF TO TURN OFF
        AND
        DCA
                 0,1
                         TURN DN
                 1,BDAC3,3
                                RESTORE UPDATED MASK
        SIA
                 1, LSPNT ; LS BUFFER POINT #
        LDA
                 2,2,5KP ; RETRIEVE CURRENT STATE BIT
        SUBCR
                         SET FLAG O
L51:
        SJB
                 1.1
                 LSRTN
                         ; RETURN
        JYP D
        STA
                 3, RDRTN ; RETURN ADDRS
ROBWD:
        LDA
                 3. HSPNT ; MASK TABLE POINTER
        CCA
                 2,3
                         FADD IN OFFSET
                 1,0,3
                         FREPDRIED POINTS MASK
        LDA
        AND
                 1,0
                         MASK THE WORD
        LDA
                 1,BDAC1,3
                                 PREVIOUS VALUE
        STA
                 O,BDAC1,3
                                 SUPDATE PREVIOUS VALUE
        ADDZL
                         FORM POINT # (MULT BY 16)
                 2,2
        ADDZL
                 2,2
        STA
                 2, STNBR ; HOLD THE POINT #
        634
                 0,2
                         CCM PRESENT VALUES
        COM
                 1,3
                         CUM PAST VALUES
        AND
                         FORM SAME O'S MASK
                 2,3
        AND
                 0,1
                         FORM SAME 1'S MASK
        ADD
                         MASK OF NON CHANGED POINTS
                 3,1
        LTA
                 3, LSMON ; LS BUFFER MONITOR POINT
        LUA
                 2, STNBR ; PRESENT #
        MOV #
                 3,3,5ZR ; SKIP IF NO MONITOR BUFFER
        MOV #
                 2,2,5ZR ;SKIP IF HS WORD
        JMP
                 .+3
        LDA
                 2, LSBMK ; LS BUFFER MASK
                         SET THE LS BIT
        AND
                 2,1
        MCO
                         FORM CHANGES MASK
                 1,1
        M: V #
L= 1:
                 1.1. SNR ; SKIP IF MURE CHANGES
        JMP
                 RDRTN
                         ; RETURN
        15 Z
                 STNBR
                          ; INC POINT #
        MOVR
                 0.0
                         MEV PRESENT VALUE TO CARRY
        SUBCR
                 2,2
                         MEV VALUE TO 150
        MCVZR
                 1,1,5NC ;SKIP IF CHANGE
        JMP
                 LP1
        STA
                 O. HLDPR ; HOLD THE REMAINING VALUES
        STA
                 1, HLDDF ; HOLD THE DIFF MASK
        LDA
                 1.STNBR ;RETRIEVE PUINT #
        LDA
                 U.LSMON ; LS BUFFER MUNITUR POINT
```


```
SUB #
                 O.1. SNR ; SKIP IF NOT LS POINT
        JSR
                LSBRD
                         REDUCE THE LS POINT
                 1,1, SNR ; SKIP IF STORAGE REQUIRED
        MOV #
        JMP
                 LP2
        ADD
                1,2
                         ;ADD IN POINT #
        SUB
                 1,1
                         CLEAR AC2
        LDA
                 3, SEQFG ; SEQUENCE ERROR FLAG
        MOV #
                 3,3,SZR ;SKIP IF NO ERROR
        LDA
                 1, SEQMK ; SEQUENCE ERROR MASK
        ADD
                 1,2
                         ;ADD IN ERROR MASK
                 2, MTABP ; STORE STATE, POINT #, AND ERROR FLAG
        STA 2
        ISZ
                MTABP
                         FINC THE POINTER
        LDA
                         ;TIME POINTER
                 2, TIME
        LDA
                1,0,2
                         MS TIME
        STA 2
                 1,MTABP
        152
                MTABP
        LDA
                1,1,2
                         ;LS TIME
                1,MTABP
        STA a
                 MTABP
        ISZ
        DSZ
                MTACT
                         SKIP WHEN BUFFER FULL
        JMP
                LP2
        LDA
                1, MAGEG ; MAG TAPE FLAG
        MOV #
                1.1.SZR ;SKIP IF NO MAG TAPE
        JMP
                 .+3
                TMP01
        JSR a
                         ; WRITE BUFFER TO DISK FILE
        JMP
                 .+2
        JSR a
                MTA01
                         WRITE BUFFER TO MAG TAPE
        LDA
                1, MTAST ; RESET INITIAL BUFFER POINTER
        STA
                1,MTABF
        LDA
                1, MTASZ ; RESET BUFFER COUNT
                 1,MTACT
        STA
                 O, HLDPR ; RETRIEVE PRESENT VALUES
LP2:
        LDA
                 1, HLDDF ; RETRIEVE DIFF MASK
        LDA
                         ; LOOP BACK
        JMP
                 LP1
                          RETURN ADDRS
RDRTN:
        0
                         ;POINT #
STNBR:
        0
                          PRESENT VALUES STORAGE
HL DPR:
HLDDF:
                         DIFF MASK STORAGE
        0
                          MAG TAPE BUFFER START
MTAST:
        MTABF
        MTABF
                          BUFFER POINTER
MTABP:
                          REDUCED DATA BUFFER SIZE
MTASZ:
        400
                          BUFFER COUNT
MTACT:
        400
                          CURRENT TIME POINTER
TIME:
        TIMER
                          SIZE OF REDUCED DATA BUFFER ENTRY (NEG)
C403:
        -BDACL
C20:
        20
                          BIT COUNT
CVTR1:
        0
                          PEN A CHANNEL
DOFL2:
        OPFLE
                          CLOSE A CHANNEL
CLFL1:
        CLFLE
                          ;DISK DUTPUT ROUTINE
        TMPOT
TMP01:
                          MAG TAPE DUTPUT ROUTINE
MTAD1:
        TOATM
                          WRITE MAG TAPE EOF
MTAE1:
        MTAFW
MTAS1:
                          SPACE REVERSE I RECORD
        MTASK
                 0,0
                          CLEAR ACO
        SUB
DINE:
                          ; ITEM ENTRY SIZE
                 2,CM03
        LDA
```

```
VDM
                 2,1
                         FNULL FILL REMAINING BUFFER SPACE
        STA 2
                 O.MTABP
                          INC POINTER
                 MTABP
        152
                 1,1,52R ;ENTRY COMPLETE
        INC
        JMP
                 .-3
        DSZ
                 MTACT
                          SKIP WHEN DANE
        JMP
                 .-6
        LDA
                 I, MAGEG ; MAG TAPE FLAG
                 1,1,SZR ;SKIP IF NO MAG TAPE
        VOM
        JMP
                 .+3
                          WRITE BUFFER TO DISK FILE
        JSR 2
                 TMP01
        JMP
                 .+4
                 MTAD1
        JSR 2
                          WRITE BUFFER TO MAG TAPE
        JSR a
                 MTAE1
                          WRITE EOF
        JSR
            9
                 MTASI
                          SPACE REVERSE I RECORD
        JSR a
                 CLFL1
                          :CLOSE
                 03
                          ;CH #3
        JSR 2
                 CLFL1
                          ;CLOSE
                 04
                          CH #4
        JMP 2
                 OVRTN
                          RETURN TO ROOT BINARY
SYSCD:
                          SYSTEM ERROR CODE
        0
PH4CD:
        2000
                          PHASE 4 ERROR CODE
ERTBL:
        .+1
                          FERROR TABLE POINTER
        ERR1
        ERR2
        ERR3
        ERR4
                          ; END OF TABLE
        -1
ERROR:
        INTEN
                          FENABLE INTERRUPTS
        LDA
                 O, PH4CD ; PHASE 4 ERROR CODE
                 2, ERTBL ; ERROR TABLE ENTRY
        LDA a
        ISZ
                 ERTBL
                          FINC TABLE POINTER
                 0,0 INC COUNT
2,2,5NR SKIP IF NOT EOT
        INC
        JMP
                 .+3
                 2,3,SZR ;SKIP IF ERROR FOUND
        SUB #
        JMP
                 .-6
                          ;CLDSE
        JSR a
                 CLFL1
                 03
                          ;CH #3
                          ;CLDSE
        JSR a
                 CLFLI
                 04
                          ;CH #4
        JMP
                 .+2
SYSER:
        ADC
                 0,0
                          SYSTEM ERROR FLAG
        STA
                 O, ERCOD ; STORE IN ROOT BINARY
        JMP a
                 ERRTN
                          FERROR RETURN
GIBWD:
        STA
                 3, GTRTN ; STORE RETURN ADDRS
        DSZ
                 BFRCT
                          DEC COUNT, SKIP WHEN EMPTY
        JMP
                 GTBUF
                 O, BLKCT ; DATA BLOCK COUNT
        LDA
                 O,O, SNR ; SKIP IF NOT DONE
        MOV
         JMP
                 DUNES
        INC
                 0,0
                          ; INC THE COUNT
                 O. BLKCT FRESTORE THE COUNT
         STA
        LOA
                 1. BLOCK : CURRENT DATA BLOCK
```

```
O, BLKOF ; BLOCK OFFSET
        LDA
        RVS
                 0,2
                          SET BLOCK COUNT
                          SUPPORTE CURRENT BLOCK
        ADD
                 1.0
        STA
                 U, BLOCK
        LDA
                 U. 3FRST ; START OF DATA BUFFER
        STA
                 O.BFRPT FRESET THE BUFFER POINTER
        .SYSTM
         . P. DB
                 04
                          FREAD THE DATA BLOCK INTO BUFFER
        JMP
                 SYSEL
                          SYSTEM ERROR
                 U, BFRSZ ; BUFFER SIZE
        LOA
        STA
                 O, BFRCT FRESET THE COUNT
CTBUF:
        LDA a
                 O, BFRPT ;GET WURD FROM BUFFER
                         SWAP THE BYTES
        MOVS
                 0,0
        152
                 BFRPT
                          ; INC THE POINTER
                          READ SWITCHES
        READS
        MIVR #
                 1,1,5NC ; SKIP IF 1815
        JAD 9
                 GTRTN
                          ; RETURN
        JSR
                 DWPWD
                          ; DUMP THE WORD
        JMP à
                 GTRIN
                          ; RETURN
        BUFFR
BERST:
                          START OF BUFFER
BERP:
        BJFFR
                          BUFFER PJINTER
B=RSZ:
        BDACM
                          ;BUFFER SIZE
BERCT:
                          BUFFER COUNT
        CI
B_CCK:
        0
                          CURRENT DATA BLOCK
BLKSF:
        14
                          BLOCK PEFSET (14 SECTORS)
TYPM .:
       TYPMG
                          TYPE A MESSAGE
SYSE1:
                          SYSTEM ERROR ROLTINE
        SYSER
L: NE2:
                          : WRAPUP
        DUNE
GIRTN:
                          FRETURN ADDRS STERAGE
OPRIN:
        C
                          FRETURN ADDRS STURAGE
DOSTR:
                          LATA STURAGE
        DP453/2
DOBET:
                          INCRO PEINTER
C410:
        -10
                          FACED COUNT
(56:
        60
                          :<0>
PITRO:
        0
                          SUTILITY POINTER
                 O, DESTR :HOLD DATA WORD
3, DEKIN ; STORE RETURN ADDRS
DAFWD:
        STA
         STA
        LDA
                 3,CY10
                          SET WERD COUNT
                 1,09881
        LOA
                          BUFFER POINTER
                 1,PNTRO
        STA
KI:
        LDA
                 1,060
                          ; <0>
        MOV
                 1,2
        MOVE
                 0.0.SZC :SKIP IF BIT 0
        INC
                          ;<1>
                 1,1
                          SHAP THE BYTE
         MOVS
                 1,1
        MIVL
                 0,0,52C :SKIP IF BIT 0
         1 ". C
                 2,2
                          :(1)
        AUD
                 2,1
                          FADD RH BYTE
        STA 2
                 1, PNTRO : STERE THE BYTES
        152
                          FINC THE POINTER
                 PNTRC
                 3,3,SER FINC COUNT, SKIP WHEN DONE
        ilc
        JMP
                          FLEDP BACK
                 Ki
                          : TYPE THE MESSAGE
        J. R 2
                 TYPM1
```

```
SHURD DUMP
                 UPMSG
                 O, DPSTR ; RETRIEVE DATA WORD
        ALJA
        JUP W
                          FRETURN
                 DPRIN
                          ;CH #
CLFLE:
       LDA
                 2,0,3
        STA
                 3,USP
                          STORE RETURN
        .SYSTM
        .CLJS
                 77
                          CLOSE THE CHANNEL
        JAP 3
                          FERROR
                 SYSEI
        JMP
                 1,3
                          INDRMAL RETURN
DPMTA:
        ADC
                 1,1,5KP ; SET FLAG +1
                          SET FLAG O
CPFLE:
        SUB
                 1,1
        LDA
                 0,0,3
                          ; NAME PEINTER
        LUA
                 2,1,3
                          ; (HH
        STA
                 3,USP
                          STORE RETURN
                 1,1,52R ;SKIP IF REGULAR DPEN
        M V #
        JMP
                 . +5
        .SYSTY
                          CHEN THE CHANNEL
         . SPEN
                 77
        JMP a
                 SYSE1
                          ; ERRUR
        JAP
                          NORMAL RETURN
                 2,3
        INC
                          DEFAULT CHARACTERISTICS
                 1,1
        .SYSTM
                          FUPEN THE CHANNEL
        CACIF.
                 77
        JAP a
                          ; ERRUR
                 SYSE1
         JMP
                          ; NORMAL RETURN
                 2,3
C11:
        11
C12:
        12
CRRTN:
                          RETURN ADDRS
        G
CRRFL:
        LDA
                 0,0,3
                          ; NAME POINTER
        INC
                 3,3
         STA
                 3, CRRTN ; STORE RETURN
CRRFA:
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
                          CREATE RENDUM FILE
         CRAND.
        JMP
                 .+2
         JMP
                 0,3
                          ; NORMAL RETURN
        LDA
                 1,011
        SUB
                 1,2,5ZR ;SKIP IF FILE EXISTS
                 SYSEL
         JMP
         JSR
                 DELEA
                          DELETE THE FILE
                 CRRFA
         JSR
                          TRY AGAIN
         JMP
                 CRRTN
                          ; RETURN
DELET:
        LDA
                 0,0,3
                          ; NAME POINTER
         INC
                 3,3
DELEA:
        STA
                 3.USP
                          STORE RETURN
         .SYSTY
         .DELET
                          DELETE THE FILE
                 .+2
         JMP
        JMP
                 0,3
                          ; NORMAL RETURN
         LOA
                 1,012
        5UB #
                 1,2,5ZR ;SKIP IF NO FILE EXISTS
                          ; ERROR
         JMP
                 SYSE1
        JYP
                 0,3
                          NORMAL RETURN
```

```
0,0,3
                          BYTE POINTER
TYPMG:
        LDA
        SUBZL
                 2,2
                          FORCE CH #1
        STA
                 3,USP
                          STORE RETURN
        .SYSTM
         .WRL
                 77
                          WRITE A LINE
         JMP a
                 SYSEI
                          ; ERROR
         JMP
                 1,3
                          INDRMAL RETURN
MTASR:
        LDA
                 1, MTASC ; SPACE REVERSE COMMAND
         JMP
MTAEW:
        LDA
                 1, MTAEC ; EOF WRITE COMMAND
        JMP
                  .+3
MTADT:
        LDA
                 O, MTABI ; REDUCED DATA DUTPUT BUFFER
                 1,MTACM ;WRITE FF COMMAND
        LDA
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
        CICTM.
                 03
                          COUTPUT BUFFER TO MAG TAPE
         JMP
                 .+2
         JMP
                 0,3
                          ; NORMAL RETURN
        LDA
                 1.MTEOF ; EDF ERROR MASK
        AND #
                 1,2,SNR ;SKIP IF EDF
        JSR a
                 SYSEI
                          FERROR
                          ; NORMAL RETURN
        JMP
                 0,3
                 O,MTAB1 ;REDUCED DATA DUTPUT BUFFER 1,TMPBK ;CURRENT BLOCK #
TMPOT:
        LDA
        LDA
                 3,USP
        STA
                          STORE RETURN
        MOV
                 1,3
                          ;HOLD THE BLOCK #
        LDA
                 2, TMPCT ;# WORDS IN BUFFER ENTRY
        ADD
                 2,3
                          SUPDATE BLOCK #
        STA
                 3,TMPBK
        MDVS
                          SWAP BLOCK COUNT
                 2,2
        .SYSTM
        .WRB
                 03
                          DUTPUT THE BUFFER
         JSR a
                 SYSE1
                          SYSTEM ERROR
         JMP
                 0,3
                          NORMAL RETURN
MTAB1:
        MTABE
                          REDUCED DATA BUTPUT BUFFER
MTASC:
        040001
                          SPACE REVERSE COMMAND
MTAEC:
        060000
                          ; EUF WRITE COMMAND
MTEDF:
        000400
                          FEDF ERROR MASK
MTACM:
        050000+BDAC9
                          FF WRITE COMMAND
TMPCT:
        BDACL
                          SIZE OF REDUCED DATA BUFFER ENTRY
                          CURRENT TEMP.TM BLOCK #
TMPBK:
NAMEA =
        . . 2
        .TXT
                 /MT0:6/
NAMEB=
                 /TEMPC.TM/
         .TXT
NAMEC =
         . = 2
                  /BDACS.DA/
         .TXT
         . . 2
DPMSG=
                          ;20 BYTES
                  10
         .BLK
                  006400 ; (CR)
```


MTABF= .
.3LK BDAC9 ;REDUCED DATA LUTPUT BUFFER

G

BUFFR=.
.8LK BDACM ;BUFFER AREA
0

.END

A-6. Overlay Module No. 5--PHAS5.SR
NAME BLOCK NAME: PHAS5.3%

TIME BLOCK

```
.TITL
                 PHAS5
                          ;JCI
                                   19 MAR 76
         .TXTM
                 1
                 DVST5
         .ENT
                 OVRTN ERRTN ERCOD MAGFG PRINT
         .EXTD
         .EXTD
                 HSMON LSMON HLDCT SMPRT
         .EXTN
                 MSKTB LSBTB MEBPT
         .NREL
        JSR a
                 OPFL1
DVST5:
                          ; OPEN
                           ;'STTI'
                 NAMEG
                 02
                           ; ON CH #2
JPO:
        JSR 2
                 CREA1
                          CREATE A FILE
                           ; 'TEMPD.TM'
                 NAMED
         JSR 2
                 OPFL1
                           ; DPEN
                 NAMED
                           ; 'TEMPD.TM'
                 03
                          ; ON CH #3
                 OPFL1
         JSR 2
                          ; OPEN
                 NAMEJ
                          ; 'PDSTSCRIPT.DA'
                          ; DN CH #4
                 04
                 RDLU2
LP1:
                           FREAD A QUERY LINE
         JSR 2
                  JP1
                           ; EOF
         STA
                  2, TEMP1 ;HCLD THE BYTE POINTER
        DSZ
                 TEMP1
                           DEC THE POINTER
                 2, UTBP1 ; UTILITY BYTE POINTER
         LUA
                          GET A BYTE
         JSR 2
                 GTBY1
        LDA
                 1,ASCAK ;<*>
         SUB
                 0,1
                          :FLAG O IF <=>
                 1, TEMP2 ; HOLD THE FLAG
         STA
                 2,TEMP1 ;RETRIEVE THE POINTER 1,1,SNR ;SKIP IF NOT <*>
        LDA
        MOV #
         JMP
                  JP2
         5U8
                  0,0
                           CLEAR ACO
                          FREPLACE (CR) WITH (NUL)
         JSR a
                 STBY1
J > 2:
         JSR a
                  TYLUI
                           FECHO THE LINE
                 1, TEMP2 ; RETRIEVE FLAG
        LDA
                 1,1,5NR ;SKIP IF RESPONSE REQUIRED
        MOV #
         JMP
                  JP3
        LDA
                 2, TEMP1 ; RETRIEVE POINTER
LP 2:
                           FREAD INTO UTILITY
         JSR a
                 RDLU3
                           FROM CH #2
                 02
        ADCZL
                 0,0
                           FORCE -2
        ADD
                 0,2
                           BACK UP 2 BYTES
         STA
                 O, TEMP2 ; HOLD FLAG
```

```
JSR 2
                GTBY1 GET A BYTE
                 1,ASCCN (<->
        LDA
                 0,1,52R ;5KIP IF <->
        SUB #
        JMP
                 JP3
                 O.ASCCR ; CCR>
        LDA
                         ;REPLACE <-> WITH <CR>
        JSR 2
                 STBY1
                         ;INC FLAG
        ISZ
                 TEMP2
JP3:
        JSR 2
                 WTLU1
                         WRITE THE LINE
                 2, UTBP1 ;UTILITY BYTE POINTER
        LDA
                          ; INC FLAG, SKIP IF <->
        152
                 TEMP2
                          FREAD NEXT QUERY
        JMP
                 LP1
        JMP
                 LP2
                         CONTINUE QUERY RESPONSE
UTBP1:
        UTBPT
                         POINTER TO UTILITY BUFFER
        CREAT
                          CREATE A SEQ. FILE
CREA1:
DPMT1:
        DPMTA
                          OPEM MAG TAPE FOR FF
DoFL1:
        UPFLE
                          SOPEN A CHANNEL
CLFL1:
        CLFLE
                          CLOSE A CHANNEL
                          TRANSFER ASCII FILES
XFERI:
        XFERF
PRLN1:
        PRLNE
                          PRINT A LINE
                          FREAD A LINE TO UTILITY
ROLU1:
        RDLUT
                         FREAD A LINE, RETURN ON EOF
RDLU2:
        RDLJR
RDLU3:
        RDLJA
                         FREAD A LINE, PUINTER IN ACZ
                          WRITE A LINE FROM UTILITY
WTLU1:
        WTLUT
TYLU1:
                          TYPE A LINE FROM UTILITY
        TYLUT
TYPM1:
                          TYPE A MESSAGE
        TYPMG
GT SP1:
        GTSPN
                         GET A SP #
GTBY1:
        GTBYT
                          GET A BYTE
                          STORE A BYTE
STBY1:
        STBYT
ERRO3:
        ERROR
                          FERROR ROUTINE
                          PRINT THE FILE
PRFL1:
        PRFLE
TEMP1:
                         :TEMPORARY
        0
TEMP2:
        0
ASCCR:
                         ; <CR>
        015
ASCBK:
        040
                         ; < >
                         ; <+>
        052
ASCAK:
ASCOO:
        060
                          ; <0>
ASCIN:
                         ; < N>
        116
ASCIY:
        131
                         ; <Y>
ASCCN:
                          ; <->
        136
DEV1:
                         ;'$TTO'
        NAMEH
        NAMEI
                         ; 'SLPT'
D: V2:
DSETB:
        EDACF
                          MUX INPUT MIN PUINT #
DSETC:
        BDACQ
                          FLSB MIN POINT #
                         ;CLOSE
JP1:
        JSR &
                 CLFL1
                 04
                         ;CH #4
        JSR 2
                 CLFLI
                          ;CLDSE
                 03
                          ;CH #3
                 TYPMI
J27:
        JSR 2
                          TYPE A MESSAGE
                 MSG01
                          MESSAGE #1
        LDA
                 2,UTBP1 ;UTILITY
                         FREAD INTO UTILITY
        JSR 2
                 RDLU3
                 02
        LDA
                 2.UTBP1 :UTILITY
```

```
JSR 2
                 GTBY1
                         GLT A BYTE
                 1,ASCIN ; <N>
        LDA
                 O,1, SNR ; SKIP IF NOT <N>
        SUB #
        JMP
                 JP 0
        LDA
                 1,ASCIY ; <Y>
                 O,1,SZR ;SKIP IF <Y>
        SUB #
        JMP
                 JP7
                         ;CLOSE
        JSR 2
                 CLFL1
                 02
                         ;CH #2
                 O, MAGEG ; MAG TAPE FLAG
        LDA
        MOV #
                 O,O,SNR ;SKIP IF MAG TAPE
        JMP
                 JP4
        JSR a
                 XFER1
                         ;TRANSFER
                 NAMED
                          ; 'TEMPD.TM'
                          :'M10:7'
                 NAMEF
J04:
        LDA
                 O, PRINT ; PRINT FLAG
        MOV #
                 0,0,5NR ;SKIP IF PRINT REQUIRED
                         RETURN TO ROOT BINARY
        JMP
                 OVRTN
                         $$TTO NAME POINTER
        LDA
                 1,DEV1
        MOVR #
                 0,0,52C ; SKIP IF TTY
        LDA
                 1,DEV2
                         SLPT NAME POINTER
        STA
                 1,.+2
        JSR 2
                 DPFL1
                          ; OPEN
                 0
                         DEVICE NAME
                 02
                          ; DN CH #2
                         PRINT A LINE
        JOR 2
                 PRLN1
                 HEAD1
                         ;HEADER #1
                 -2
                         ; <FF> AND 2 LINES
                 PRLN1
        JSR 2
                         PRINT A LINE
                 HEAD2
                         HEADER #2
                 02
                         ; 2 LINES
                 PRFL1
                         PRINT FILE
        JSR 2
                 NAMEA
                         FREAMBLE FILE
                          PRINT A LINE
                 PRLN1
        JSR a
                 BKLN2
                         $2 BLANK LINES
                 02
                         ;2 LINES
        JSR 2
                 PRFLI
                          PRINT FILE
                 NAMED
                         ; PUSTSCRIPT FILE
        JSR a
                 PRLN1
                          PRINT A LINE
                         HEADER #3
                 HEAD8
                 -2
                          $ < FF> AND 2 LINES
        JSR a
                 PRFL1
                         PRINT THE FILE
                 MEBPT
                         ; METHOD FILE
                 O. HSMON SHSB MONITOR FLAG
        LDA
                 0,0,5NC :SKIP IF HSB PRINTOUT
        MOVL
        JMP
                 .+4
        MOVZR
                 0,0
                         RESET PRINT BIT
        STA
                 O, HSMON ; HOLD SAMPLE RATE
        JSR J
                 PRHS1
                         PRINT THE HSB
        SUB
                 0.0
                         CLEAR ACO
                 CHKP1
        JSR a
                         CHECK MUX BUFFER
PRTB1:
                 MSKTB
                         MUX TABLE
                 BDACA/20;# MUX WORDS
        JSR a
                 CHKP1
                         CHECK LSB
PRTB2:
                 LSBTE
                         LSE TABLE
                 BOACP/20;# LSB WORDS
        MOV #
                 C,O, SNR ; SKIP IF PRINTOUT REQUIRED
```

```
JMP
                  JP5
                  DPFL1
                           ; OPEN
         JSR 2
                           ; 'ASSIGNB.DA'
                  NAMEL
                  04
                           ; ON CH #4
                  OPFL1
         JSR a
                           ; OPEN
                  NAMEM
                           ; 'ASSIGNC . DA'
                           ON CH #5
                  05
                  O, MAGEG : MAG TAPE FLAG
         LDA
                  O.O.SZR ;SKIP IF NO MAG TAPE
         MOV #
         JMP
                  . +5
                  OPFL1
                           ; OPEN
         JSR a
                  NAMEC
                           ; 'TEMPC . TM'
                  03
                           ; DN CH #3
         JMP
                  LPO
         JSR a
                  DPMT1
                           SUPEN MTA FOR FF
                  NAMEE
                           ; 'MTO:6'
                           ; ON CH #3
                  03
                  PRLN2
                           PRINT A LINE
         JSR J
LPO:
                  HEAD3
                           HEADER #3
                           CFF> 2 LINES
         JSR a
                  PRLN2
                           PRINT A LINE
                  HEAD4
                           ;HEADER #4
                  02
                           ; DN CH #2
                           GET DATA POINTER
LP3:
         JSR 2
                  GTDAI
         STA
                  2, TEMP3 ; HOLD POINTER
         LDA a
                  O, TEMP3 ; STATE & SIGNAL WORD
                  O,O,SNR ;SKIP IF NOT END
         MOV #
         JMP
                  JP6
         IDA
                  1,LSBMK ;LSB MASK
         LDA
                  2, PRTB1 ; MUX PRINTOUT TABLE
                  3, OSETB ; MUX INPUT MIN POINT #
         LDA
         AND #
                  C,1, SNR ; SKIP IF LSB DATA WORD
         JMP
                  .+3
                  2,PRTB2 ;LSB PRINTOUT TABLE 3,OSETC ;LSB MIN POINT #
         LDA
         LDA
                  1, SIGMK ; SIGNAL # MASK
         LDA
         AND
                  1,0
                           GET SIGNAL #
                  3,0,SNC ;SKIP IF AC3=<ACO
         SJBZ
         JSR 2
                  ERRO3
                           FERROR ROUTINE
         JSR a
ERR4:
                  FMMS1
                           FORM MASK AND DISPLACEMENT
         ACO
                  0,2
                           FADD DISPLACEMENT TO POINTER
                  0,0,2
                           GET TABLE WORD
         LDA
         AND #
                  1,0, SNR ; SKIP IF PRINTOUT REQUIRED
                           LOUP BACK
         J4P
                  LP3
                  2, TEMP3 ;DATA POINTER
         LDA
                           MS TIME
         LDA
                  0,1,2
         LDA
                  1,2,2
                           LINE POINTER
         LDA
                  2, LINE
         JSR 2
                  FMDP1
                           FORM THE DP #
                  O, ASCBK ; < >
         LDA
         LDA à
                  3, TEMP3 ; STATE & SIGNAL WORD
                  1, SEGMK ; SEQUENCE ERROR MASK
         LDA
         AND #
                  3,1,52R ; SKIP IF NO ERROR
         LDA
                  O,ASCIK ; <+>
                           STORE THE ERROR FLAG BYTE
         JSR a
                  STBY2
                  O,ASCCO ; CO>
         LOA
         LOA
                  2. STPNT ; STATE BYTE POINTER
```

```
LDA 2
                 1, TEMP3 ; STATE & SIGNAL #
                 1,1,52C ;SKIP IF STATE O
        MOVL #
        INC
                 0,0
                         FORCE (1)
                          STORE THE STATE
                 STBY2
        JSR 2
        LDA a
                 O, TEMP3 ; STATE & SIGNAL WORD
        LDA
                 1, SIGMK ; SIGNAL MASK
        LDA
                 2. SIGPT ; SIGNAL BYTE POINTER
                          MASK THE SIGNAL
        AND
                 1,0
        STA
                 0,ST1
                          HOLD THE SIGNAL
                 FMSP1
                         FORM THE SP #
        JSR 2
        LDA a
                 O. TEMP3 ; STATE & SIGNAL WORD
        LDA
                 1, LSBMK FASSIGN MASK
                 O.1.SZR ;SKIP IF ASSIGNB.DA
        AND #
        JMP
                 .+4
        LDA
                 O, ASCIM ; <M>
                 1.BPNTR ;B BUFFER POINTER
        LDA
        JMP
        LDA
                 O, ASCIL ; <L>
        LDA
                 1. CPNTR ; C BUFFER POINTER
                 1, ST1+1 ;STORE BUFFER POINTER
        STA
                          STORE ASSIGNMENT BYTE
        JSR 2
                 STBY2
        JSR 2
                 OPENI
                          GET ASSIGN FILE ASSIGNMENT POINTER
                          POINT #
ST1:
                 0
                          BUFFER POINTER
                 0
                 O, MNMPT ; MNEMONIC POINTER
        LDA
        JSR à
                 MVBYI
                         MOVE THE BYTES
                 20
                          ;20 BYTES MAX
        LDA
                 O, ASCIR ; <CR>
                          STORE THE CR
        JSR a
                 STBY2
                          PRINT THE LINE
                 PRLN2
        JSR 2
LINE:
                 LNEBF
                         LINE BUFFER
                 01
                          ;1 LINE
                         LOOP BACK
        JM P
                 LP3
        JSR 2
JP6:
                 CLFL2
                          ;CLOSE
                 05
                          ;CH #5
        JSR a
                 CLFL2
                          :CLDSE
                 04
                          ;CH #4
                 CLFLZ
        JSR a
                          ;CLOSE
                 03
                          ;CH 33
                          ;CLOSE
JP5:
        JSR 2
                 CLFL2
                 20
                          ;CH #2
        JSR a
                 CLFL2
                          ;CLOSE
                 01
                          ;CH #1
        JMP a
                 OVRTN
                          FRETURN TO ROOT BINARY
TEMP3:
                         *TEMPORARY
        0
                          PRINT A LINE
        PRLNE
PRLN2:
                          GET DATA WORD POINTER
GTDA1:
        GTDAT
F4SP1:
        FMSPN
                          FORM SP #
FMDP1:
                          FORM DP #
        FMDPN
FYMS1:
        FMMSK
                          FORM MASK AND DISPLACEMENT
                          MOVE A BYTE STRING
MVBY1:
        MVBYT
                         CHECK PRINT MASKS
CHKF1:
        CHKPM
UPEN1:
        OPEN
                          FREAD ASSIGNMENT FILE
PRHS1:
        PRHSB
                          PRINT HSB
```

```
STBY2:
        STBYT
                          STORE A BYTE
MVBY2:
        MVBYT
                          ; MOVE BYTE STRING
DPFL2:
        OPFLE
                          OPEN A CHANNEL
                          CLOSE A CHANNEL
CLFL2:
        CLFLE
                          B BUFFER POINTER
BPNTR:
        BUFRB
CPNTR:
        BUFRC
                          C BUFFER POINTER
ASCIR:
        015
                          ; (CR>
        052
                          ; ( +>
ASCIK:
ASCCO:
        060
                          ;<0>
ASCIL:
                          ; <L>
        114
ASCIM:
        115
                          ; < M>
SIGMK:
        000377
                          SIGNAL MASK
LSBMK:
        040000
                          LSB MASK
                          SEQUENCE ERROR MASK
SEQMK:
        000400
:050
STPNT:
        LNEBF+17
                          STATE POINTER
                          SIGNAL POINTER
SIGPT:
        LNEBF+24
MNMPT:
        LNEBF+35
                          *MNMEMONIC POINTER
PRHSB:
        STA
                 3, HSRTN ; RETURN ADDRS
         JSR 2
                 OPFLZ
                          ; OPEN
                          :'TEMPB.TM'
                 NAMEB
                 04
                          ; DN CH #4
                 OPFL2
                          ; DPEN
         JSR a
                 NAMEK
                          ; 'ASSIGNA.DA'
                          CN CH #5
                 05
                 PRLN2
         JSR a
                 HEAD5
                          HEADER #5
                          CFF> AND 2 LINES
                 -2
                 PRLN2
         JSR 2
                          PRINT
                          HEADER #6
                 HEAD6
                 02
                          ;2 LINES
        LDA
                 0,020
                          HSB WORD SIZE
         STA
                 O, HSCNT
                         SET COUNT
                          CURRENT BIT #
HS BAA:
        LDA
                 O, ASCNT
        LDA
                 2,ASNPT
                          ;ASSIGNMENT LINE POINTER
         JSR a
                 FMSP1
                          FORM SP #
                 OPEN1
                          GET ASSIGN FILE ASSIGNMENT POINTER
         JSR a
                          ;BIT #
ASCNT:
                 BDACS
                          BUFFER POINTER
                 BUFRA
         LDA
                 U, ASMNP
                         MNEMONIC POINTER
         JSR 2
                 MVBY2
                          MOV BYTE STRING
                          $20 BYTES MAX
                 20
         LDA
                 O, ASCIR ; < CR>
                          ;STORE <CR>;PRINT A LINE
         JSR 2
                 STBY2
         JSR a
                 PRLN2
ASNPT:
                 ASGBF
                          ; ASSIGNMENT LINE POINTER
                 01
                          ;1 LINE
                 ASCNT
                          ; INC BIT #
         15Z
                          SKIP WHEN DONE
         DSZ
                 HSCNT
         JMP
                 HSBAA
         JSR 2
                 PRLNZ
                          PRINT A LINE
                          HEADER #7
                 HEAD 7
                 -5
                          $ < FF> AND 2 LINES
                 2, HSBPT ; HSB POINTER
HSBJO:
        LDA
```

```
DSZ
                          HSE COUNT
                 HSBCT
        JMP
                 HSBJ1
         JSR a
                 RDBL1
                          FREAD A BLOCK
                          BUFFER POINTER
BJFPT:
                 BUFRB
                          CURRENT BLOCK #
                          SIZE & CH #
                 404
                 HSBJ3
                          FOF ADDRS
                 2, HSBSZ ; HSB BUFFER SIZE
        LDA
         STA
                 2, HSBCT
                          RESET COUNT
                 2,BUFPT
                          BUFFER POINTER
         LDA
                         HSB POINTER
        STA
                 2, HSBPT
                 HSBPT
                          FINC THE POINTER
H5BJ1:
        ISZ
        LDA
                 0,0,2
                          GET BUFFER WORD
                 O, TEMP3 ;HOLD THE WORD
        STA
                 O, HSTIM ; HS TIME
        LOA
                 1,HSTIM+1
        LDA
        MOV
                 0,2
                         MOV MS TIME
                 3, HSMON ; HSB SAMPLE RATE
        LDA
                 1,3,5ZC ;ADD IN SAMPLE RATE
        ADDZ
        INC
                 2,2
        STA
                 2, HSTIM FRESTORE UPDATED TIME
        STA
                 3, HSTIM+1
        LDA
                          LINE POINTER
                 2, HSB
         JSR 2
                 FMDP1
                          FORM DP #
        LDA
                          HSB WORD SIZE
                 0,020
        STA
                 O, HSCNT
                         STORE COUNT
        LDA
HSBJ2:
                 U, ASCCO
                          ; <0>
        LDA
                 1. TEMP3 ; HSB WORD
        MOVZR
                 1,1,52C ;SKIP IF O BIT
         INC
                 O,O ;FERCE <1>
1,TEMP3 ;HOLD SHIFTED WORD
         STA
         INC
                 2,2
                          INC PUINTER
                 2.2
         INC
                          STORE THE BYTE
         JSR 2
                 STBY2
         DSZ
                 HSCNT
                          SKIP WHEN DONE
         JMP
                 HSBJ2
         JSR 2
                 PRLN2
                          PRINT A LINE
HSB:
                 HSBBF
                          ; HSB LINE
                 01
                          :1 LINE
         JMP
                 HSBJ0
                          LUCP BACK
                 CLFLZ
                          CLOSE
HSBJ3:
         JSR 2
                 04
                          ;CH #4
         JSR 2
                 CLFL2
                          :CLDSE
                 05
                          $CH #5
         JMP a
                 HSRTN
                          ; RETURN
HSTIM:
        C
                          CURRENT TIME
HSCNT:
         0
                          COUNTER
HSBCT:
                          BUFFER COUNT
         01
HSBSZ:
         400
                          BUFFER SIZE
HSBPT:
         BJFRB+400
                          BUFFER POINTER
                          ASSIGNMENT MNEMONIC POINTER
ASMNP:
         ASGBF+7
HSRTN:
                          FETURN ADDRS
[MPI1:
        TMPIN
                          FREDUCED DATA FROM DISK
                          REDUCED DATA FROM MAG TAPE
         MTAIN
MTAI1:
```

```
RDBL1:
        RDBLK
                          FREAD A BLOCK
GTDRT:
         0
                           RETURN ADDRS
                 3,GTDRT ;STORE RETURN
         STA
GTDAT:
                          SKIP IF BUFFER COUNT O
         USZ
                 MTACT
         JM P
                  GTDJI
                 1, MAGFG ; MAG TAPE FLAG
1,1,5ZR ; SKIP IF NO MAG TAPE
         LDA
         MDV #
         JMP
                  .+4
                          DISK INPUT
                  TMPI1
         JSR 2
                  JP6
                          FECF CONDITION
         JMP
                  .+3
                  MTAIL
                          MAG TAPE INPUT
         JSR 2
                          FEDF CONDITION
                  JP6
                 1, MTAST ; START OF INPUT BUFFER
         LDA
                 1.MTAPT RESET POINTER
1.MTASZ BUFFER COUNT
         STA
         LUA
         STA
                  1, MTACT ; RESET COUNT
                  2.MTAPT ;GET CURRENT POINTER
GTDJ1:
         LDA
         ACL
                  O.MTADF ; OFFSET
                           ADD OFFSET
         ADD
                  2,0
                  D, MTAPT ; UPDATE POINTER
         STA
         JYP 2
                  GTDRT
                          RETURN
                           ; INPUT BUFFER POINTER
MTAST:
        BUFFR
                           CURRENT POINTER
MTAPT:
        BUFFR+BDAC9
MTASZ: 400
                           BUFFER SIZE
        01
                           CURRENT COUNT
MTACT:
MTADF:
         BDACL
                          ; DATA ENTRY SIZE
                          PHASE 5 ERROR CODE
P45CD:
         2400
                          ERROR TABLE POINTER
ERTBL:
         .+1
                           ASSIGN FILE READ ERROR
         ERR1
                           ASSIGN FILE SEQUENCE ERROR
         ERRZ
         ERR3
                           ;LINE CUUNT ERROR
         ERR4
                           ; MUX OR LSB POINT # OFB
                           END OF TABLE
         -1
                 O, PHSCO ; PHASE 5 ERROR CODE
ERROR:
        LDA
         LDA a
                 2, ERTBL ; TABLE ENTRY
                          ; INC ERROR COUNT
; INC POINTER
                 0,0
         INC
         ISZ
                 ERTBL
                 2,2,5NR ;SKIP IF NOT EDT
         COM #
         JMP
                  .+3
                  2,3,5ZR ;SKIP IF ERROR FOUND
         SJB #
                          :LOOP BACK
         JMP
                  .-6
         JMP
                  .+2
SYSER:
        ADC
                 0.0
                          FORCE -1
                 O, ERCOD ; STORE IN ROOT BINARY
         STA
         JMP a
                 ERRTN
                          SERROR RETURN TO ROOT BINARY
ERRO1:
        ERROR
                          SERROR ROUTINE
                           # MNEMUNICS PER BLOCK
OPSIZ:
         40
DP DFF:
                          POINTER OFFSET
         0
OPRIN:
        O
                          RETURN ADDRS
DPEN:
         STA
                 3, OPRTN ; RETURN ADDRS
                 1,0,3
                          PUINT #
         LOA
```

```
BUFFER POINTER
        LDA
                 3,1,3
                 0,-3,3
        LDA
                         ; INITIAL POINT #
                 O,1,SNC ;SKIP IF ACO=<AC1
        SUBZ
                 ERROI
                          ; ERROR
        JSR 2
                          CLEAR ACO
ERR2:
        SUB
                 0,0
        LDA
                 2. OPSIZ :# OF MNEMONICS PER BLOCK
        VIO
        ADDZL
                 0,0
                          ; =4
                         ; +2
                 0,0
        MOVZL
                 O, OPOFF ; STORE POINTER OFFSET
        STA
                          CURRENT BLOCK #
                 2,-1,3
        LDA
                 1,-1,3
        STA
                        STORE NEW BLOCK #
                 3,0
                          MOV BUFFER POINTER
        VCM
        SUB #
                 2,1, SNR ; SKIP IF NOT SAME
        JMP
                 .+5
        LDA
                 2,-2,3 ;GET CH # AND COUNT
         .SYSTM
         . R DB
                 77
                          READ A BLOCK
                 ERRO1
                          FERROR
        JSR 2
                 2. DPDFF ;GET DFFSET
ERR1:
        LDA
                          ; ADD IN BASE, FORM BYTE POINTER
        ADDZL
                 0,2
                 3. OPRTN ; RETURN ADDRS
        LDA
                          ; RETURN
        JMP
                 2,3
C11:
        11
C12:
        12
                          RETURN ADDRESS
CRRTN:
        0
                 0,0,3
                          SNAME POINTER
CREAT:
        LDA
        INC
                 3,3
                 3, CRRTN ; STORE RETURN
        STA
CREAA:
        .SYSTM
        .CREA
                          CREATE SEQ. FILE
         JM P
                 .+2
                          FERROR
                 CRRTN
        G AML
                          RETURN
        LDA
                 1,011
                 1,2,SZR ;SKIP IF FILE EXISTS
        SUB #
        JYP D
                 SYSE1
                          ; ERROR
        JSR
                          DELETE THE FILE
                 DELEA
        JMP
                 CREAA
                          TRY AGAIN
        LOA
                 0,0,3
                          ; NAME POINTER
DELET:
                 3,3
         INC
DELEA:
        STA
                 3,USP
                          STORE RETURN
         .SYSIM
        .DELET
                          DELETE THE FILE
        JMP
                 .+2
        JMP
                 0,3
                          INDRMAL RETURN
                 1,012
        LDA
        SUB #
                 1,2,SZR ;SKIP IF NO FILE
                          ;ERROR
        G AML
                 SYSEI
        JMP
                 0,3
                          ; NORMAL RETURN
XFRTN:
        0
                          FRETURN ADDRESS
XFERF:
        LDA
                 0,0,3
                          SOURCE FILE
        LDA
                 1,1,3
                          DESTINATION FILE
                 O, XFSFL
        STA
        STA
                 1,XFDFL
```

```
STA
                 3, XFRIN ; STORE RETURN
                          OPEN SOURCE FILE
         JSR
                 OPFLE
XFSFL:
                 0
                           ; POINTER
                 04
                          ; ON CH#4
         JSR
                 OPFLE
                          OPEN DESTINATION FILE
XFDFL:
                           POINTER
                 0
                 03
                          ; ON CH#3
         JSR
                 RDLUR
                           FREAD A LINE
                          RETURN ON EOF
                  .+3
         JSR
                 WTLUT
                           WRITE A LINE
                           LOOP BACK
         JMP
                  .-3
                 CLFLE
         JSR
                           ;CLDSE
                          $CH#4
                 04
         JSR
                 CLFLE
                          ;CLOSE
                 03
                          ;CH#3
         LDA
                 3, XFRTN ; RETURN ADDRESS
         JMP
                           ; RETURN
                 2,3
                           NAME POINTER
OPFLE: LOA
                 0,0,3
         LDA
                           ;CH #
                 2,1,3
         SUB
                 1,1
                           JUSE DEFAULT CHARACTERISTICS
                 3,USP
         STA
                           STORE RETURN
         .SYSTM
         .UPEN
                 77
                           DPEN THE CHANNEL
         JMP a
                 SYSEL
                           ; ERROR
         JMP
                 2,3
                           INDRMAL RETURN
                 2,0,3
CLFLE: LDA
                           ;CH #
         STA
                           STORE RETURN
                 3,USP
         .SYSTM
         .CLDS
                 77
                           CLOSE THE CHANNEL
         JMP a
                 SYSE1
                           FERROR
         JMP
                           NORMAL RETURN
                 1,3
TYPMG:
        LDA
                           MSG POINTER
                 0,0,3
         INC
                 3,3
                           FORCE A +1 FOR CH#
         SUBZL
                  2.2
         JMP
                  .+5
TYLUT:
         SUBZL
                  2,2
                           FORCE A +1 FOR CH#
         JMP
                  .+2
                 2,CO3 ;CH #3, BY DEFAULT
O,UTBPO ;UTILITY BYTE POINTER
WTLUT:
        LDA
        LDA
         STA
                 3,USP
                           STORE RETURN
         .SYSTM
         .WRL
                 77
                           WRITE A LINE
                  SYSE1
         JMP a
                           ; ERROR
         JMP
                           :NORMAL RETURN
                  0.3
                  1,0,3
                           BYTE COUNT
RDSUT:
         LDA
                  O, UTBPO ; UTILITY BYTE POINTER
         LDA
                  2,004
         LDA
                           ;CH #4
                           STORE RETURN
         STA
                  3.USP
         .SYSTM
         .RDS
                  77
                           FREAD SEQUENTIAL BYTES
                           ;ERROR
                  SYSE1
         JSR 2
         JMP
                  1,3
                           NORMAL RETURN
```

```
SYSE1:
       SYSER
                         SYSTEM ERROR
C03:
        03
C34:
        04
:00
        06
RORTN:
        C
                          ;RETURN FLAG -1
ROLUA:
        ADC
                 1,1
        MOV
                 2,0
                          BYTE POINTER
                 2,0,3
        LDA
                          ;CH #
        INC
                 3,3
                 .+7
        JMP
                 1,0,3
RDLUR:
        LDA
                          FRETURN ADDRESS
        INC
                 3,3
         JMP
                 .+2
RDLUT:
        ADC
                 1,1
                          FRETURN FLAG -1
                 O, UTBPO ; UTILITY BYTE POINTER
        LDA
        LDA
                 2,004
                          ;CH #4
                 1, RDRTN ; STORE RETURN
        STA
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
         -RDL
                 77
                          READ A LINE
         JMP
                 .+4
                          CHECK FOR EDF
        MOV
                 0,2
                          MOVE THE BYTE POINTER
                          OFFSET THE POINTER
        ADD
                 1,2
        JMP
                 0,3
                          NORMAL RETURN
                 0,006
        LDA
                          ; EOF CODE
        SUB #
                 0,2,5ZR ;SKIP IF EDF
         JMP 2
                 SYSEI
                          FERRUR
        LDA
                 O, RDRIN ; RETURN
        COM #
                 O,O,SZR ;SKIP IF NO EDF RETURN
         JMP a
                 RDRTN
                          ; EOF RETURN
         JMP a
                          ; ERROR
                 SYSEI
                 0,0,3
SPLDS:
        LDA
                          DEVICE BYTE PUINTER
                 3.USP
                          STURE RETURN
        STA
         .SYSTM
         .SPDA
                          ; DISABLE SPOOLING
         JSR 2
                          ; ERROR
                 SYSEI
         JMP
                          ; NORMAL RETURN
                 1,3
WILNE:
                 0,0,3
                          ; NAME POINTER
        LDA
        LDA
                 2,1,3
                          ;Ch #
        STA
                 3,USP
                          STORE RETURN
         .SYST4
         .WRL
                 77
                          WRITE A LINE
                 SYSE1
                          SYSTEM ERROR
         JSR 3
         JMP
                 2,3
                          NORMAL RETURN
PRFRT:
        0
                          RETURN ADDRS
                 0,0,3
PRFLE:
        LDA
                          NAME POINTER
        INC
                 3,3
                 3, PRFRT
        STA
                          STORE RETURN
        STA
                 0,.+2
                          STORE POINTER
                          ; OPEN
                 OPFLE
        J5R
                          ; NAME POINTER
                 0
                          ;UN CH #4
                 04
```

```
JSR
                 RDLUR
                           FREAD A LINE
                  .+5
                           ; EUF RETURN
         JSR
                 PRLNE
                           PRINT THE LINE
                 UTBPT
                           ;UTILITY
                           ;1 LINE
                 01
         JMP
                  .-5
                          ;CLOSE
         JSR
                 CLFLE
                 04
                          ;CH #4
        JMP a
                 PRFRT
                          FRETURN
UTBPO:
        UTBPT
                          SUTILITY BYTE POINTER
SKFLG:
                           ; LINE SKIP FLAG
        -1
LNMAX:
        036
                           MAX LINE COUNT
LNCNT:
        20
                           CURRENT LINE COUNT
PGCNT:
        0
                           CURRENT PAGE COUNT
PRSTR:
        0
                           LINES STORAGE
PRRTN:
                           RETURN ADDRS
        0
ERRO2:
        ERROR
                           ; ERROR ROUTINE
F4SP2:
        FMSPN
                           FORM SP #
PGOFF:
        PAGE1+13
                 0,0,3
                           MESSAGE POINTER
PRLNE:
        LDA
                 1,1,3
                          # LINES
        LDA
         STA
                 3, PRRTN ; RETURN ADDRS
                 1, PRSTR ; STORE LINES
        STA
                 O.PRMSG ;STORE MESSAGE POINTER
1,1,5NC ;SKIP IF NEG
         STA
        MOVL
         JMP
                  .+6
                 0.0 ;FORCE -1
0.SKFLG ;RESET 5KIP FLAG
        ADC
         STA
                           FORM POSITIVE
        NEG
                 1,1
         STA
                 1, PRSTR ;STORE POS LINE COUNT
                 PRLNC
         JMP
        LDA
                 O, SKFLG ; SKIP LINE FLAF
         READS
                          FREAD SWITCHES
                 O,O, SNR ; SKIP IF FLAG SET
        COM #
         JMP
                  .+3
        COM #
                 2,2,5NR ;SKIP IF NOT ALL UP
                          ; RETURN
         JM P
                 2,3
        COM #
                  2,2,5ZR ;SKIP IF ALL UP
                  2, SKFLG ; SET SKIP FLAG
        STA
         LDA
                 O, LNCAT ; CURRENT LINE COUNT
        SUBZ #
                 1,0,52C ;SKIP IF ACI>ACO
         JMP
                  PRLNA
        LDA
PRLNC:
                  O, PRINT ; PRINT FLAG
         NUVR
                  U,O,SZC ;SKIP IF $TTD
                 PRLNB
         JM P
         ISZ
                 LNCNT
                           ; INC LINE COUNT
         ISZ
                 LNCNT
                           FAGAIN
                 WTLNE
                           WRITE A LINE
         JSR
                  BKLN1
                           $1 BLANK LINE
                  02
                           ; ON CH #2
         DSZ
                  LNCNT
                           SKIP WHEN DONE
         JMP
                  .-4
         JMP
                  .+4
PRLNB:
        JSR
                  WILNE
                           WRITE A LINE
                           TOP OF FORM
                  TOF
```

```
02
                           ; DN CH #2
        LDA
                 O, LNMAX ; MAX COUNT
                  O, LNCNT ; RESET COUNT
         STA
                           FINC PAGE COUNT
         ISZ
                  PGCNT
                  O, PGCNT ; GET PAGE #
         LDA
                  2,PGDFF ;PAGE # OFFSET
FMSP2 ;FDRM SP #
         LDA
                  FMSP2
         JSR a
         JSR
                  WTLNE
                           WRITE A LINE
                           ; PAGE #
                  PAGEI
                  02
                           ; IN CH #2
PRLNA:
         JSR
                  WTLNE
                           WRITE A LINE
PRMSG:
                           MESSAGE POINTER
                  0
                  02
                           ; DN CH #2
         LDA
                  1.PRSTR ;LINE COUNT STORAGE
         LDA
                  O, LNCNT ; CURRENT COUNT
                  1,0,SNC ;SKIP IF AC1=<AC0
         SUBZ
         JSR 2
                  ERRO2
                           FERROR ROUTINE
                  O, LNCNT ; UPDATE COUNT
ERR3:
         STA
         LDA
                  3, PRRTN ; RETURN ADDRS
                           ; RETURN
         JM P
                  2,3
MVRTN:
         0
         LDA
                  2,0,3
                           DESTINATION POINTER
MV WUT:
         LDA
                  1,1,3
                           ; COUNT
                  3.MVRTN ;STORE RETURN
         STA
                  3, UTBPO ; UTILITY BYTE POINTER
         LDA
                           FORM ADDRESS
         MOVZR
                  3,3
                           ; NEG THE COUNT
; GET WORD
         NEG
                  1,1
         LDA
                  0,0,3
         STA
                  0,0,2
                           STORE WORD
         INC
                  3,3
         INC
                  2,2
         INC
                  1,1,5ZR ;SKIP WHEN DONE
         JMP
                  .-5
         LDA
                  3, MVRTN FRETURN ADDRESS
         JMP
                  2,3
                           ; RETURN
CHKCT:
         0
                           ; COUNTER
         LDA
CHKPM:
                  2,0,3
                           TABLE POINTER
         LDA
                  1,1,3
                           COUNT.
         ADD
                           SUFFSET THE POINTER
                  1,2
         ADD
                  1,2
                           SUPDATE THE TABLE POINTER
         STA
                  2,0,3
         STA
                  1, CHKCT ; STORE THE COUNT
         LDA
                  1,0,2
                           GET A WORD
                           INC POINTER
         INC
                  2,2
         MOV #
                  1,1,5ZR ;SKIP IF O
         INC
                  0,0
                           SET FLAG
                           SKIP WHEN DONE
         DSZ
                  CHKCT
         JYP
                  .-5
         JMP
                  2,3
                           ; RETURN
                           ; SET BIT TO +1
FYMSK:
         SUBZL
                  1,1
                  O,O,SZC ;SKIP IF NOT 200
         MOVZR
         MOVZL
                  1,1
                           SHIFT 1 PLACE LEFT
         MOVZR
                  U.O.SZC ; SKIP IF NOT 2**1
         ADDZL
                           SHIFT 2 PLACE LEFT
```

```
MOVZR
                  0,0,SNC ;SKIP IF
                                          2 * * 2
         JMP
                  .+3
                           SHIFT 4 PLACE LEFT
         ADDZL
                  1,1
         ADDZL
                  1,1
                  0,0,5ZC ;SKIP IF NOT 2**3
         MUVZR
         MOVS
                           SHIFT & PLACE LEFT
                  1,1
         JMP
                  0,3
                           RETURN
                           OP FLAG
         ADC
                  0,0
GTDPN:
         MOV
                  0.1
                           FERROR ON NO # FLAG
         JMP
                  .+6
GTSPR:
         LDA
                  1,0,3
                           ;EXIT POINTER IF NO #
         INC
                  3,3
         JMP
                  .+2
GT SPN:
         ADC
                  1,1
                           FERROR ON NO # FLAG
                           SP FLAG
         SUBZL
                  0,0
         STA
                  O,GTFGO ;SP/DP FLAG
                           CLEAR ACO
         SUB
                  0,0
         STA
                  O, GTFGI ;# FOUND FLAG
                  O,GTOVF ; OVERFLOW FLAG
         STA
                  O,GTSTR ;# STORAGE
         STA
         STA
                  O,GTSTR+1
                  1, GTERT ; ERROR EXIT FLAG
2, GTBPT ; BYTE POINTER
         STA
         STA
                  3, GTRTN ; NORMAL RETURN
         STA
         JMP
                  .+2
                  GTBPT ; INC BYTE POINTER 2, GTBPT ; GET THE POINTER
GTLP1:
         152
         LDA
                           GET THE BYTE
         JSR
                  GTBYT
         LDA
                  1,ASCIC ; <CR>
         SUB
                  O,1, SNR ; SKIP IF NOT <CR>
         JMP
                  GTLP2
                           ; DONE
                  1,ASC19 ;<9>
         LDA
                  1,0,52C ;SKIP IF AC1>=ACO
         ADCZ #
                           ; NOT A DIGIT
         JMP
                  GTLP2
         LDA
                  1,ASC10 ;<0>
                  0,1,52C ;SKIP IF ACO>=AC1
         ADCZ #
                           ; NOT A DIGIT
         JMP
                  GTLP2
         ISZ
                  GTFG1
                           ; INC # FOUND FLAG
                  1,0
                           FORM BINARY
         SUB
                  O,GTUTL ;HOLD THE #
O,GTSTR ;GET PREVIOUS VALUE
         STA
         LDA
         LDA
                  1,GTSTR+1
                           ;N=2
         MOVZL
                  1,1
                  O.O.SZC ;SKIP IF NO DVERFLOW
         MUVL
                           FINC FLAG
                  GTOVE
         1 S Z
         MOVZL
                           :N=4
                  1,3
                  0,2,SZC ;SKIP IF NO OVERFLOW
         MOVL
                  GTOVF
                           ; INC FLAG
         15Z
         MOVZL
                  3,3
                           $N ≈8
         MOVL
                  2,2,5ZC ;SKIP IF NO OVERFLOW
                           FINC FLAG
         ISZ
                  GTOVE
         ADDZ
                  1,3,52C ;N#10
         INC
                  0,0
                  0,2,52C ;SKIP IF NO OVERFLOW
         ADDZ
                           FINC FLAG
         1 S Z
                  GTOVF
         LDA
                  1,GTUTL ;RETRIEVE THE BINARY
         ADDZ
                  1,3,5NC ;ADD TO PREVIOUS #
```

```
JAP
                 .+3
                 2,2,52C ;SKIP IF NO OVERFLOW
         INCZ
                         ; INC FLAG
                 GTOVE
        ISZ
                 2,GTSTR ;HOLD UPDATED #
        STA
        STA
                 3.GTSTR+1
         JM P
                 GTLP1 ;GET NEXT BYTE
                 3,GTFG1 ;# FUUND FLAG
GTLP2:
        LDA
        MOV #
                 3,3, SNR ; SKIP IF # FOUND
         JYP
                 GTLP3
        LDA
                 O,GTSTR ; RETRIEVE THE #
         LDA
                 1.GTSTR+1
         LDA
                 2, GTBPT ; RETRIEVE THE BYTE POINTER
        LDA
                 3, GTOVF ; OVERFLOW FLAG
         DSZ
                 GTFGO
                         SKIP IF SP #
         JMP
        MOV #
                 O,O,SZR ;SKIP IF NOT SP OVERFLOW
                 3,3,SKP ;INC FLAG
         INC
                 1,0 ; MDVE SP #
3,3,52R ; SKIP IF NO DVERFLOW
        VEM
        MOV #
         JSR a
                 GTERR
                         FERROR ROUTINE
ERR8:
         JMP a
                 GTRTN
                          NORMAL RETURN
GTLP3:
        MOV #
                 1,1,5ZR ;SKIP IF EOL
                          GET NEXT BYTE
         JMP
                 GTLP1
                 1, GTERT ; ERROR RETURN FLAG
         LDA
         COM #
                 1,1, SNR ; SKIP IF ADDRESS SPECIFIED
                          FERROR ROUTINE
         JSR à
                 GTERR
ERR9:
         JMP a
                 GTERT
                          ; EOL RETURN, NO # FOUND
GTERR:
        ERROR
                          ; ERROR ROUTINE
GTRTN:
                          FRETURN ADDRESS
        0
GTERT:
                          FEDL RETURN FLAG
GTBPT:
        0
                          BYPE POINTER STURAGE
GTSTR:
                          # STORAGE
        0
GTFGO:
        C
                          DP/SP FLAG
GTFG1:
        0
                          ;# FOUND FLAG
GT DVF:
        0
                          ; OVERFLOW FLAG
GTUTL:
                          ;UTILITY
ASCIC:
        015
                          ; <CR>
ASCIB:
        040
                          ; < >
ASCI9:
        C71
                          ; <9>
ASCIO:
        060
                          ; <0>
GTBYT:
        LDA
                 1.BTMSK ;BYTE MASK
        MOVZR
                 2,2,SNC FFORM WORD ADDRESS, SKIP IF RHS
         NOVS
                          SWAP THE MASK
                 1,1
        LDA
                 0,0,2
                          GET WORD
         AND
                 1,0, SNC ; MASK THE WORD, SKIP IF RHS
                          SWAP THE WORD
        RVCM
                 0,0
         MOVL
                 2,2
                          FRESTORE BYTE POINTER
         JMP
                 0,3
                          :RETURN
BTMSK:
        377
                          BYTE MASK
STRTN:
        0
S'BYT:
        LDA
                 1.BTMSK ; BYTE MASK
                 1,0
         AND
                         MASK THE WORD
```

```
MOVZR
                 2,2,5NC ; FORM WORD ADDRESS, SKIP IF RHS
         MOVS
                  0,0,5ZC ;SWAP WORD, SKIP IF LHS
                           SWAP MASK
         MDVS
                  1,1
         STA
                  3, STRIN ; STORE RETURN
                  3,0,2
         LDA
                           GET WORD
         AND
                 1,3
                           MASK THE WORD
         ADD
                  0,3
                           FADD IN NEW BYTE
                 3,0,2
                           RESTORE THE WORD
         STA
                           RESTORE BYTE POINTER
         MOVL
                  2,2
                  2,2
         INC
                           INC POINTER
         JMP 2
                  STRTN
                           ; RETURN
MVSPT:
                           SOURCE POINTER
MVDPT:
        C
                           DESTINATION POINTER
MV CNT:
                           COUNTER
MVBRT:
                           RETURN ADDRS
         C
         LOA
                           :MAX BYTES
MVBYT:
                  1,0,3
         INC
                  3,3
                  O, MVDPT ; DESTINATION POINTER
         STA
         STA
                  1.MVCNT ;MAX COUNT
         STA
                  2, MVSPT ; SOURCE POINTER
         STA
                  3, MVBRT ; RETURN ADDRS
                  2, MVSPT ;GET SOURCE POINTER
MVBYA:
        LDA
         152
                  MVSPT
                           GET THE BYTE
         JSR
                  GTBYT
                  2, MVDPT ;GET DESTINATION POINTER
         LDA
         ISZ
                  MVDPT
                  0.0. SNR ; SKIP IF NOT NUL
         MOV #
         JMP a
                  MVBRT
                           ; RETURN
         JSR
                  STBYT
                           STORE THE BYTE
         DSZ
                  MVCNT
                           SKIP IF MAX COUNT
         JMP
                  MVBYA
                           LOOP BACK
                           FRETURN
         G AML
                  MVBRT
FYSPN:
         STA
                  3, FMRTN ; STORE RETURN
                  3, FMSPP ; SP TABLE POINTER
         LDA
         VEM
                  0,1
                           ; MOV LS WORD
                           CLEAR MS WORD
         SUB
                  0,0
         JMP
                  .+3
FYDPN:
         STA
                  3, FMRTN ; STORE RETURN
                 3, FMDPP ;DP TABLE POINTER 3, FMTBP ;HGLD THE POINTER
         LDA
         STA
         STA
                  2, FMBPT ; HOLD BYTE POINTER
         STA
                  1,FMSTR+1
         STA
                  O.FMSTR ;HOLD DP #
         SUB
                  0,0
                           CLEAR ACO
                  O, FMSUP ; RESET ZERO SUPPRESSION FLAG
         STA
FYJPO:
         LOA a
                  2, FMTBP ; POWER TABLE ENTRY
         MED
                  2,2,5ZR ;SKIP IF EDT
                  .+3
         JMP
                  2, FMBPT ; RETRIEVE BYTE POINTER
         LDA
         JMP
                  FMRTN
                           ; RETURN
         15 Z
                  FMTBP
                           INC POINTER
         LDA
                  3, FMTBP
                          POWER TABLE ENTRY
         152
                  FMTBP
                           ; INC POINTER
         MIVR #
                  3,3,5NR ;SKIP IF NOT LAST ENTRY
                           SET SUPPRESSION FLAG
                  FMSUP
         15 Z
```

```
O,O ;CLEAR ACO
O,FMCNT ;RESET COUNT
        SUB
        STA
                 O, FMSTR ; RETRIEVE DP #
        LDA
        LDA
                  1,FMSTR+1
                 3,1, SNC ; PERFORM DP SUBTRACT
        SUBZ
        ADC
                  2,0,5KP
                  2,0
         SUB
         MOVL #
                 0,0,5ZC ;SKIP IF NO OVERFLOW
         JYP
                  .+3
         ISZ
                  FMCNT
                          INC DIGIT COUNT
         JMP
                  .-6
                  3,1,52C ;POSITIVE
        ADDZ
         INC
                 0,0
        ADD
                 2,0
                 O, FMSTR ;HOLD THE REMAINDER
         STA
                 1,FMSTR+1
        STA
        LDA
                 0,ASC10 ;<0>
        LDA
                 1, FMCNT ; DIGIT COUNT
        MOV #
                 1,1,52R ;SKIP IF NO COUNT
                          SET SUPPRESSION FLAG
        15Z
                 FMSUP
        ADD
                 1,0
                          ADD COUNT TO BASE
                 1, FMSUP ; SUPPRESSION FLAG
        LDA
        MOV #
                 1,1, SNR ; SKIP IF NO SUPPRESSION
                 O,ASCIB ;< >
        LDA
                 2, FMBPT ; BYTE POINTER
        LDA
                          INC THE POINTER
                 FMBPT
         ISZ
                          STORE THE BYTE
         JSR.
                 STBYT
         JMP
                 FMJPO
                          ; LOOP BACK
                           RETURN ADDRS
FMRTN:
        0
                           POWER OF TEN TABLE POINTER
FYTBP:
        0
                           BYTE POINTER
FYBPT:
        0
                           SUPPRESSION FLAG
FYSUP:
        0
FMCNT:
                           ;DIGIT COUNT
                           DP # STORAGE
F4STR:
        0
         0
                          START OF SP TABLE
FYSPP:
         .+14
                           START OF DP TABLE
FYDPP:
         .+1
         035632
                           ;10 ==9
         145000
        002765
                          ;10 = = 8
         150400
         000230
                           ;10 = = 7
         113200
         030017
                           :10 == 6
         041100
         000001
                           ;10 **5
         103240
         000000
                           :10 = =4
         023420
         000000
                           ;10:03
         001750
         000000
                           :10002
         000144
         000000
                           ;10001
         000012
         000000
                           :10 ==0
         000001
         177777
                           ; EDT
```

```
ROBLK:
        STA
                 3,USP
                          STORE RETURN
                 O, BLKMK ; BLOCK MASK
        LDA
        LDA
                 1,1,3
                          CURRENT BLOCK
                          ;SIZE & CH #
        LDA
                 2,2,3
        ANDS
                 2,0
                          GET SIZE
        ADD
                 1,0
                          ; ADD TO CURRENT BLOCK
        STA
                 0,1,3
                          SUPDATE CURRENT BLOCK
                          BUFFER POINTER
                 0,0,3
        LDA
        LDA
                 3,3,3
                          ; EOF ADDRS
                 3, EFRIN ; EDF RETURN
        STA
         .SYSTM
         .RDB
                 77
                          FREAD THE BLOCK
         JMP
                 .+2
         JMP
                 4,3
                          ; RETURN
        LDA
                 1,EOFCD ;EOF CODE
                 1,2,SZR ;SKIP IF EOF
        SUB #
        JSR 2
                 SYSE2
                          SYSTEM ERROR
         JMP a
                 EFRIN
                          ; EDF RETURN
TYPRT:
                          RETURN ADDRS
        0
                 0,0,3
        LDA
                          ; EDF RETURN
TMPIN:
        INC
                 3,3
                 3, TMPRT ; RETURN ADDRS
        STA
        STA
                 0,.+5
         JSR
                 RDBLK
                          FREAD A BLOCK
                          BUFFER POINTER
MTAB1:
                 BUFFR
                          ;BLOCK #
                 BDACL #400+03
                          FUF RETURN
        JMP 2
                 TMPRT
        177400
BLKMK:
                          BLOCK SIZE MASK
EJFCD:
        06
                          ; EDF CDDE
EFRTN:
        0
                          ; EDF RETURN
EJFMK:
        000400
                          EDF MASK
SY SE 2:
        SYSER
                          SYSTEM ERROR
        000000+BDAC9
ROCMD:
                          FF READ COMMAND
MTAIN:
        LDA
                 0,0,3
                          BEDF RETURN
        STA
                 O, EFRIN ; STORE THE RETURN
        LDA
                 O, MTABL ; INPUT DATA BUFFER POINTER
        LDA
                 1, RDCMD ; READ COMMAND
        STA
                 3,USP
                          STORE RETURN
         .SYSTM
         DIOTM.
                 03
                          ; INPUT BUFFER FORM MAG TAPE
         JMP
                          ; ERROR
                 .+2
         JMP
                 1,3
                          :NORMAL RETURN
                 I, EOFMK ; ECF MASK
        LOA
        AND #
                 1,2,SNR ;SKIP IF EDF
         JSR 2
                 SYSE2
                          SYSTEM ERROR
         JMP
                 EFRTN
                          FOF RETURN
D'MTA:
        LOA
                 0,0,3
                          :NAME POINTER
                          ;CH #
         LDA
                 2,1,3
        SUB
                          DEFAULT CHARACTERISTICS
                 1.1
                          STORE RETURN
                 3,USP
         STA
         .SYSTM
```

```
.MTOPD
                 77
                          DPEN THE CHANNEL
         JSR 2
                  SYSE2
                          SYSTEM ERROR
         JMP
                 2,3
                          NORMAL RETURN
NAMEA=
         . # 2
         .TXT
                  /TEMPA.TM/
         . . 2
NAMEB =
         .TXT
                 /TEMPB.TM/
NAMEC =
         . . 2
         .TXT
                 /TEMPC.TM/
NAMED =
         . . 2
         .TXT
                 /TEMPD.TM/
NAMEE =
         . . 2
                 /MT0:6/
         .TXT
         . 0 2
NAMEF=
                 /MTQ:7/
         .TXT
         . 02
NAMEG =
         .TXT
                 /STT1/
NAMEH=
         . . 2
         .TXT
                  /STTD/
NAME I =
         . . 2
         .TXT
                 /SLPT/
        . 0 2
NAMEJ=
         .TXT
                 /POSTSCRIPT.DA/
NAMEK=
         . 02
         .TXT
                 /ASSIGNA.DA/
NAMEL =
         . 2
         .TXT
                 /ASSIGNB.DA/
        .72
NAMEM =
                 /ASSIGNC . DA/
         .TXT
ASGBF=
         . . 2
         .TXT
                 /01234 ABCDEFGHIJKLMNDP ** <15>/
HSBBF=
         . . 2
                                   0 1 0 1 0 1 0 1 0 1 0 (15)/
.TXT/0123456789 1 0 1 0 1
LVEBF =
         . . 2
                 /0123456789*
                                        12345
                                                ABCDEFGHIJKLMNDP ** <15>/
         .TXT
         . 02
nEAD1=
         .TXT
                 /<16><11><11><11>BDACS ONLINE PRINTOUT<12><15>/
HEAD2=
         . . 2
                 /<16><11><11><11>PREAMBLE & POSTSCRIPT FILES<12><15>/
         .TXT
```

```
HE AD 3=
        . 2
                /<16><11><11><11>REDUCED MUX & LSB DATA<12><15>/
        .TXT
        . . 2
HEAD4=
                                       SIGNAL MNEMONIC<12><15>/
                               STATE
        .TXT
                / TIME(US)
        . 02
HEAD5 =
        .TXT
                /<16><11><11><11>HSB ASSIGNMENT & DATA<12><15>/
HE AD6=
        . + 2
        .TXT
                / BIT#
                          MNEMONIC NAME<12><15>/
HEAD7=
        . 2
.TXT/ TIME (NS)
                01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16<12><15>/
        . . 2
HEAD8=
        .TXT
                /<16><11><11><11>METHOD FILE<12><15>/
        . . 2
M5601=
                /<12>POSTSCRIPT FILE DK? (Y,N) /
        .TXT
        . . 2
PAGE1 =
        .TXT
                . + 2
BKLN1=
        .TXT
                /<15>/
BKLN2=
        . . 2
        .TXT
                 /<11><12><15>/
        . 22
TOF=
        .TXT
                /<14>/
UIBPT=
        . = 2
        .BLK
                110
        BDACS
                         ; INITIAL HSB BIT #
        000405
                         CH # AND BLOCK COUNT
        177777
                         CURRENT BLOCK #
BJFRA=
        .BLK
                 400
        0
        BDACF
                         ; INITIAL MUX POINT #
        000404
                         CH # AND BLOCK COUNT
        177777
                         CURRENT BLOCK #
BUFRB=
                         BUFFER FOR ASSIGNB.DA
        .BLK
                400
        0
        BDACO
                         FINITIAL LSB POINT #
                         CH # AND BLOCK COUNT
        000405
        177777
                         CURRENT BLOCK #
                         BUFFER FOR ASSIGNC . DA
BUFRC =
        .BLK
                 400
        0
BJFFR=
                         ; INPUT DATA BUFFER
        .BLK
                 BDAC9
        0
        .E ND
```

A-7. Overlay Module No. 6--ERMSG.SR NAME BLOCK NAME= ERMSG.SR

ERMSG

;JCI

10 MAR 76

TIME BLOCK

.TITL

```
.TXTM
         .ENT
                 DVST6
                 OVRTN RECOV ERRTN ERCOD
         .EXTD
         .NREL
BTMSK:
        377
                          BYTE MASK
        MS G00+10
PH SNO:
                 O, ERCOD ; ERROR CODE
DVST6:
        LDA
        MOV #
                 O,O,SNR ;SKIP IF ERROR CONDITION
                 NORML
                          ; NORMAL EXIT
        JMP
        COM #
                 O,O,SNR ;SKIP IF NOT SYSTEM ERROR
                          SABNORMAL EXIT
        JMP
                 SYSTM
SMSG:
        ADC
                          FORCE A -1
                 1,1
                 1, ERCOD FRESET THE CODE
        STA
        LDA
                 1.BTMSK ;BYTE MASK
        AND
                 0,1
                          ; ERROR #
        SUBS
                 1,0
                          PHASE #
        LDA 2
                 2, PHSNO ; WORD IN PHASE MASSAGE
        ADD
                 0,2
                          ; ADD IN OFFSET
                 2. PHSNO ; RESTORE THE WORD
        STA 2
        LDA
                 2, TBLPT ; TABLE OF POINTERS
                          ;ADD IN PHASE # OFFSET ;GET THE POINTER
        ADD
                 0,2
        LDA
                 2,0,2
                          SADD IN ERROR # OFFSET
        ADD
                 1,2
        LDA
                 2,0,2
                          *MESSAGE POINTER
                          MOVE REC. BIT TO CARRY, FORM BYTE POINTER
        MOVZL
                 2,2
        SUBCL
                          MOV CARRY TO 1815
                 1,1
                 1, ERCOD ; HOLD RECOVERABLE ERROR CODE
        STA
        STA
                 2,MSG
                          STORE THE POINTER
                          TYPE THE MESSAGE
                 TYPMG
         JSR
                 MSG00+2
        JSR
                          TYPE THE MESSAGE
                 TYPMG
MSG:
        DSZ
                 ERCOD
                          SKIP IF RECOVERABLE ERROR
        JMP
                 .+2
        JMP a
                 RECOV
                          FRETURN TO ROOT BINARY
NIRML:
        SUB
                 1,1,SKP ;SET FLAG O
SYSTM:
        ADC
                          SET FLAG -1
                 1,1
        .SYSTM
                          FRESET ALL I/O CHANNELS
         .RESET
        HALT
        LDA
                 O,MTANM ;'MTO'
```

```
.SYSTM
                          RELEASE MTO
        .RLSE
                 .+1
                          IGNORE ERRORS
        JMP
                 2, RECOV ; RETRIEVE ERROR CODE
        LOA
                 1,1,5ZR ;SKIP IF NORMAL EXIT
        MOV #
        JMP
                 .+4
        .SYSTM
        .RTN
                          INDRMAL RETURN TO CLI
        HALT
        .SYSTM
                          FERROR RETURN TO CLI
         .ERTN
        HALT
TYPMG:
        LDA
                 0,0,3
                          GET BYTE POINTER FORCE +1 FOR CH#
        SUBZL
                 2,2
                 3,USP
                          STORE RETURN ADDRESS
        STA
         .SYSTM
         .WRL
                          WRITE A LINE FERROR RETURN
                 77
                 ERRTN
         JMP a
         JMP
                 1,3
                          ; NORMAL RETURN
                          MTO NAME POINTER
MTANM:
         .+1=2
         TXT.
                 /MTO/
TBLPT:
                          START OF POINTERS
        PHAS1
        PHAS2
        PHAS3
        PHAS4
        PHAS5
                          POINTER TO START OF PHASE ERRORS
PHAS1:
        MSG11
        MSG12
        MSG13
        MSG14
        MSG15
        MSG16
        MSG17
        MSG18
        MS G19
        MSH10
        MSH11
        MSH12
        M5699
PHAS2:
                          POINTER TO START OF PHASE ERRORS
        MS G21
        MSG22+1B0
         MSG23
        MSG24
        MS 699
PHAS3:
                          POINTER TO START OF PHASE ERRORS
        MSG23
        MSG99
```

```
PHAS4:
                          POINTER TO START OF PHASE ERRORS
        MS G41
        MSG41
        MS G42
        MS G43
        MS 699
PHAS5:
                          POINTER TO START OF PHASS ERRORS
        MS G51
        MSG52
        MSG53+1B0
        MS 654
        MS G99
M5 G00=
        .TXT
                 /<12>ERRUR IN PHASE 0<15>/
M5G11=
                 /MONITOR POINT UNDERFLOW<15>/
        .TXT
MS G12=
        .TXT
                 /MONITOR POINT OVERFLOW<15>/
MSG13=
        .TXT
                 /OUTPUT CONTROL TABLE OVERFLOW<15>/
MSG14=
                 /DUTPUT LIST NOT IN SEQUENTIAL ORDER<15>/
        .TXT
MS G15=
        .TXT
                 /OUTPUT LIST DELTA TIME OVERFLOW<15>/
M5G16=
        .TXT
                 /CONTROL POINT UNDERFLOW<15>/
MSG17=
         .TXT
                 /CONTROL LIST OVERFLOW<15>/
MSG18=
        .TXT
                 /SP-DP OVERFLOW<15>/
M5 G19=
        .TXT
                 /EDL, NO NUMBER FOUND(15>/
MSH10=
                 /SAMPLE RATE OUT OF BOUNDS<15>/
        .TXT
MS+11=
         .TXT
                 /LOW SPEED BUFFER MONITOR POINT OUT OF BOUNDS<15>/
M5H12=
        .TXT
                 /HS BUFFER SAMPLE RATE DUT DF BDUNDS<15>/
M5G21=
                 /DISK ERROR<15>/
         .TXT
M3622=
         .TXT
                 /DISK OVERFLOW<15>/
M5 G23=
                 /MULTIPLEXER ERROR<15>/
        .TXT
M5 G24=
         . TXT
                 /INPUT BUFFER DVERRUN<15>/
M5641=
         .TXT
                 /CURRENT TIME OVERFLOW<15>/
M5 G42=
                 /MAJOR SEQUENCE SLIP OCCURRED<15>/
         .TXT
M5643=
                 /MAX SEQUENCE ERROR COUNT EXCEEDED<15>/
         .TXT
```

MSG51=			
	.TXT	/ASSIGN FILE READ ERROR OCCURRED<15>/	
MSG52=			
	.TXT	/ASSIGN FILE SEQUENCE ERROR OCCURRED<15>/	
MSG53=			
	.TXT	/LINE COUNT ERROR<15>/	
MSG54=			
	.TXT	/MUX OR LSB POINT # OUT OF BOUNDS<15>/	
MSG99=			
	.TXT /UNKNOWN ERROR<15>/		
	.E ND		

A-8. BDACS System Parameters--BDACS.SR

NAME BLOCK NAME = BDACS.SR

TIME BLOCK

	.TITL BDACS	;JC1 19 FEB 76
N3P= CLK= MUX= MJXOB= IMCLK= IMMUX= IMDKP=	000401 054 032 300 000004 001000 000400	;NOOP (JMP .+1) ;RTC DEVICE CODE (HARDWARE) ;MUX INTERFACE DEVICE CODE (HARDWARE) ;MUX OUTPUT BUFFER ADDRESS (HARDWARE) ;CLK INTERRUPT MASK BIT ;MUX INTERRUPT MASK BIT ;DKP INTERRUPT MASK BIT
A STATE OF THE STA	200 100 144 144 1 200 401 476	;MUX INPUT SIZE ;MUX DUTPUT SIZE ;STARTING CYLINDER # FOR RAW DATA STORE ;MAX # OF CYLINDERS USED ;MIN MUX INPUT POINT # ;MAX MUX INPUT POINT # ;MIN MUX OUTPUT POINT # ;MAX MUX OUTPUT POINT #
BDACJ= BDACK= BDACK= BDACM= BDACM= BDACQ= BDACQ= BDACQ= BDACS=	200 03 03 6000 144 4000 200 1 200	; MAX # DUTPUT POINT CHANGES ; LENGTH OF ENTRY IN DUTPUT CONTROL LIST ; LENGTH OF ENTRY IN REDUCED DATA BUFFER ; LENGTH OF MUX DATA BLOCK ; MAX ALLOWABLE SEQUENCE ERRORS ; HS BUFFER SIZE ; LS BUFFER SIZE ; MIN LSB POINT # ; MAX LSB POINT # ; MAX LSB POINT # ; MIN HSB BIT #
BDACT= BDACU= BDACV= BDACW= BDACX=	20 60 7777 764 23420	#MAX HSB BIT # #MIN MUX SAMPLE RATE #MAX MUX SAMPLE RATE #MIN HSB SAMPLE RATE #MAX HSB SAMPLE RATE
BOAC1= BOAC2= BOAC3= BOAC5= BOAC6= BOAC7= BOAC8= BOAC9=	BDACA/20 BDACB/20 BDACP/20 BDACJ * BDACL BDAC1+BDAC1 BDAC1-1 BDACM/2 BDACL*400	;# INPUT WORDS ;# OUTPUT WORDS ;# LS BUFFER WORDS ;LENGTH OF OUTPUT LIST BUFFER ;DISPLACEMENT FOR LPT MASKS ;# OF LS WORDS ;# OF HS/LS PAIRS PER MUX BUFFER ;REDUCED DATA BUFFER SIZE

END BLOCK

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA (12 COPIES)

COMMANDER

US ARMY MATERIEL DEVELOPMENT & READINESS COMMAND 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333 ATTN DRXAM-TL, HQ TECH LIBRARY ATTN DRCPP/MG C. M. MCKEEN, JR. ATTN DRCPP-M/COL R. W. SPECKER ATTN DRCDE-D/MR. HUNT ATTN DRCDE-D/COL J. F. BLEECKER ATTN DRCDE, DIR FOR DEV & ENGR ATTN DRCDE-DE/H. DARRACOTT ATTN DRCMS-I/DR. R. P. UHLIG ATTN DRCMS-I/MR. E. O'DONNEL ATTN DRCDM-ST/N. L. KLEIN

COMMANDER

US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61201
ATTN DRSAR-ASF, FUZE & MUNITION DIV
ATTN DRSAR-PDM/J. A. BRINKMAN
ATTN DRCPM-VFF

COMMANDER

USA MISSILE & MUNITIONS CENTER & SCHOOL REDSTONE ARSENAL, AL 35809 ATTN ATSK-CTD-F

COMMANDING OFFICER
NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FL 32813
ATTN TECHNICAL LIBRARY

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD
ARLINGTON, VA 22209
ATTN TECH INFORMATION OFFICE
ATTN DIR, STRATEGIC TECHNOLOGY
ATTN DIR, TACTICAL TECHNOLOGY

DIRECTOR
DEFENSE COMMUNICATION ENG CENTER
1860 WIEHLE AVENUE
RESTON, VA 22090
ATTN R104, M. J. RAFFENSPERGER
ATTN R800, R. E. LYONS
ATTN R320, A. IZZO

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
ATTN DI-2, WEAPONS & SYSTEMS DIV

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN PETER HAAS, DEP DIR,
SCIENTIFIC TECHNOLOGY
ATTN RAEV, MAJ S. O. KENNEDY, SR.
ATTN VLIS, LTC ADAMS

DEPARTMENT OF DEFENSE
DIRECTOR OF DEFENSE RESEARCH & ENGINEERING
WASHINGTON, DC 20301
ATTN DEP DIR (TACTICAL WARFARE PROGRAMS)
ATTN DEP DIR (TEST & EVALUATION)
ATTN DEFENSE SCIENCE BOARD
ATTN ASST DIR SALT SUPPORT GP/
MR. J. BLAYLOCK

CHAIRMAN

JOINT CHIEFS OF STAFF
WASHINGTON, DC 20301
ATTN J-3, NUCLEAR WEAPONS BR
ATTN J-3, EXER PLANS & ANALYSIS DIV
ATTN J-5, NUCLEAR DIR NUCLEAR POLICY BR
ATTN J-5, REQUIREMENT & DEV BR
ATTN J-6, COMMUNICATIONS-ELECTRONICS

DEPARTMENT OF DEFENSE
JOINT CHIEFS OF STAFF
STUDIES ANALYSIS & GAMING AGENCY
WASHINGTON, DC 20301
ATTN STRATEGIC FORCES DIV
ATTN GEN PURPOSE FORCES DIV
ATTN TAC NUC BR
ATTN SYS SUPPORT BR

ASSISTANT SECRETARY OF DEFENSE
PROGRAM ANALYSIS AND EVALUATION
WASHINGTON, DC 20301
ATTN DEP ASST SECY (GEN PURPOSE PROG)
ATTN DEP ASST SECY (REGIONAL PROGRAMS)
ATTN DEP ASST SECY (RESOURCE ANALYSIS)

DEPARTMENT OF THE ARMY
OFFICE, SECRETARY OF THE ARMY
WASHINGTON, DC 20301
ATTN ASST SECRETARY OF THE ARMY (I&L)
ATTN DEP FOR MATERIEL ACQUISITION
ATTN ASST SECRETARY OF THE ARMY (R&D)

DEPARTMENT OF THE ARMY
ASSISTANT CHIEF OF STAFF FOR INTELLIGENCE
WASHINGTON, DC 20301
ATTN DAMI-OC/COL J. A. DODDS
ATTN DAMI-TA/COL F. M. GILBERT

US ARMY SECURITY AGENCY
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212
ATTN DEP CH OF STAFF RESEARCH & DEVELOPMENT

DEPARTMENT OF THE ARMY
US ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE
BETHESDA, MD 20014
ATTN COMPUTER SUPPORT DIV
ATTN WAR GAMING DIRECTORATE
ATTN METHODOLOGY AND RESOURCES DIRECTORATE
ATTN SYS INTEGRATION ANALYSIS DIRECTORATE
ATTN JOINT AND STRATEGIC FORCES DIRECTORATE
ATTN FORCE CONCEPTS AND DESIGN DIRECTORATE
ATTN OPERATIONAL TEST AND EVALUATION AGENCY

DIRECTOR
NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MD 20755

COMMANDER-IN-CHIEF EUROPEAN COMMAND APO NEW YORK, NY 09128

HEADQUARTERS
US EUROPEAN COMMAND
APO NEW YORK, NY 09055

DIRECTOR
WEAPONS SYSTEMS EVALUATION GROUP
OFFICE, SECRETARY OF DEFENSE
400 ARMY-NAVY DRIVE
WASHINGTON, DC 20305
ATTN DIR, LT GEN GLENN A. KENT

DEPARTMENT OF THE ARMY
DEPUTY CHIEF OF STAFF FOR OPERATIONS & PLANS
WASHINGTON, DC 20301
ATTN DAMO-RQD/COL E. W. SHARP
ATTN DAMO-SSP/COL D. K. LYON
ATTN DAMO-SSN/LTC R. E. LEARD
ATTN DAMO-SSN/LTC B. C. ROBINSON
ATTN DAMO-RQZ/COL G. A. POLLIN, JR.
ATTN DAMO-TCZ/MG T. M. RIENZI
ATTN DAMO-ZD/A. GOLUB
ATTN DAMO-ZD/A. GOLUB
ATTN DAMO-RQA/COL M. T. SPEIR

DEPARTMENT OF THE ARMY
CHIEF OF RESEARCH DEVELOPMENT
AND ACQUISITION OFFICE
WASHINGTON, DC 20301
ATTN DAMA-RAZ-A/R. J. TRAINOR
ATTN DAMA-CSM-N/LTC OGDEN
ATTN DAMA-WSA/COL W. E. CROUCH, JR.
ATTN DAMA-WSW/COL L. R. BAUMANN
ATTN DAMA-CSC/COL H. C. JELINEK
ATTN DAMA-CSM/COL H. R. BAILEY
ATTN DAMA-CSM/COL H. R. BAILEY
ATTN DAMA-WSZ-A/MG D. R. KEITH
ATTN DAMA-WSM/COL J. B. OBLINGER, JR.
ATTN DAMA-PPR/COL D. E. KENNEY

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS
P.O. BOX 1500
HUNTSVILLE, AL 35807
ATTN BMDSC-TEN/MR. JOHN VEFNEMAN

COMMANDER
US ARMY FOREIGN SCIENCE
AND TECHNOLOGY CENTER
220 SEVENTH ST., NE
CHARLOTTESVILLE, VA 22901

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSES ACTIVITY
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXSY-C/DON R. BARTHEL
ATTN DRXSY-T/P. REID

COMMANDER
US ARMY SATELLITE COMMUNICATIONS AGENCY
FT. MONMOUTH, NJ 07703
ATTN LTC HOSMER

DIRECTOR
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR-XA/MR. J. MESZAROS

COMMANDER
US ARMY AVIATION SYSTEMS COMMAND
12TH AND SPRUCE STREETS
ST. LOUIS, MO 63160
ATTN DRCPM-AAH/ROBERT HUBBARD

DIRECTOR
EUSTIS DIRECTORATE
US ARMY AIR MOBILITY R&D LABORATORY
FORT EUSTIS, VA 23604
ATTN SAVDL-EU-MOS/MR. S. POCILUYKO
ATTN SAVDL-EU-TAS (TETRACORE)

COMMANDER
2D BDE, 101ST ABN DIV (AASLT)
FORT CAMPBELL, KY 42223
ATTN AFZB-KB-SO
ATTN DIV SIGNAL OFFICER,
AFBZ-SO/MAJ MASON

COMMANDER
US ARMY ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703
ATTN PM, ATACS/DRCPM-ATC/LTC DOBBINS
ATTN DRCPM-ATC-TM
ATTN PM, ARTADS/DRCPM-TDS/BG A. CRAWFORD
ATTN DRCPM-TDS-TF/COL D. EMERSON
ATTN DRCPM-TDS-TO
ATTN DRCPM-TDS-FB/LTC A. KIRKPATRICK

US ARMY ELECTRONICS COMMAND (Cont'd)
ATTN PM, MALOR/DRCPM-MALR/COL W. HARRISON
ATTN PM, NAVCOM/DRCPM-NC/COL C. MCDOWELL, JR.
ATTN PM, REMBASS/DRCPM-RBS/COL R. COTTEY, SR.
ATTN DRSEL-TL-IR/MR. R. FREIBERG
ATTN DRSEL-SA/NORMAN MILLSTEIN
ATTN DRSEL-MA-C/J. REAVIS
ATTN DRSEL-CE-ES/J. A. ALLEN

COMMANDER

US ARMY MISSILE MATERIEL READINESS COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DRSMI-FRR/DR. F. GIPSON
ATTN DRCPM-HA/COL P. RODDY
ATTN DRCPM-LCCX/L. B. SEGGEL (LANCE)
ATTN DRCPM-MD/GENE ASHLEY (PATRIOT)
ATTN DRCPM-MP
ATTN DRCPM-PE/COL SKEMP (PERSHING)
ATTN DRCPM-SHO
ATTN DRCPM-TO
ATTN DRSMI-R, RDE & MSL DIRECTORATE

COMMANDER

US ARMY ARMAMENT RESEARCH & DEVELOPMENT COMMAND DOVER NJ 07801 ATTN DRDAR-ND-V/DANIEL WAXLER

COMMANDER

US ARMY TANK/AUTOMOTIVE MATERIEL READINESS COMMAND WARREN, MI 48090 ATTN DRSI-RHT/MR. P. HASEK ATTN DRCPM(XM-L)/MR. L. WOOLCOT ATTN DRCPM-GCM-SW/MR. R. SLAUGHTER

PRESIDENT

DA, HA, US ARMY ARMOR AND ENGINEER BOARD FORT KNOX, KY 40121 ATTN STEBB-MO/MAJ SANZOTERRA

COMMANDER

WHITE SANDS MISSILE RANGE
WHITE SANDS MISSILE RANGE, NM 88002
ATTN STEWS-TE-NT/MARVIN SQUIRES

COMMANDER
TRASANA
SYSTEM ANALYSIS ACTIVITY
WHITE SANDS, NM 88002

COMMANDER
197TH INFANTRY BRIGADE
FORT BENNING, GA 31905
ATTN COL WASIAK

ATTN ATAA-TDO/DR. D. COLLIER

COMMANDER

US ARMY COMMUNICATIONS COMMAND
FORT HUACHUCA, AZ 85613
ATTN ACC-AD-C/H. LASITTER (EMP STUDY GP)

COMMANDER

USA COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FT. LEAVENWORTH, KS 66027 ATTN ATCAC ATTN ATCACO-SD/LTC L. PACHA

ATTN ATCA/COC/COL HUBBERT
ATTN ATCA-CCM-F/LTC BECKER
ATTN ATSW-TD-3 NUCLEAR STUDY
TEAM/LT D. WILKINS

PROJECT MANAGER
MOBILE ELECTRIC POWER
7500 BACKLICK ROAD
SPRINGFIELD, VA 22150
ATTN DRCPM-MEP

DEPUTY COMMANDER
US ARMY NUCLEAR AGENCY
7500 BACKLICK RD
BUILDING 2073
SPRINGFIELD, VA 22150
ATTN MONA-WE/COL A. DEVERILL

COMMANDER

US ARMY SIGNAL SCHOOL
FT. GORDON, GA 30905
ATTN AISO-CID/BILL MANNELL
ATTN ATST-CTD-CS/CAPT G. ALEXANDER
(INTACS)
ATTN ATSO-CID-CS/MR. TAYLOR
ATTN ATSN-CD-OR/MAJ CARR

DIRECTOR
JOINT TACTICAL COMMUNICATIONS OFFICE
FT. MONMOUTH, NJ 97703
ATTN TRI-TAC/NORM BECHTOLD

COMMANDER
US ARMY COMMAND AND GENERAL STAFF COLLEGE
FORT LEAVENWORTH, KS 66027

COMMANDER
US ARMY COMBAT DEVELOPMENTS EXPERIMENTATION
COMMAND
FORT ORD, CA 93941

COMMANDER HQ MASSTER FORT HOOD, TX 76544

COMMANDER
US ARMY AIR DEFENSE SCHOOL
FORT BLISS, TX 79916
ATTN ATSA-CD

COMMANDER
US ARMY ARMOR SCHOOL
FORT KNOX, KY 40121
ATTN ATSB-CTD (2 COPIES)

COMMANDER
US ARMY AVIATION CENTER
FORT RUCKER, AL 36360
ATTN ATST-D-MS (2 COPIES)

COMMANDER
US ARMY ORDNANCE CENTER AND SCHOOL
ABERDEEN PROVING GROUND, MD 21005
ATTN USAOC&S
ATTN ATSL-CTD

COMMANDER
US ARMY SIGNAL SCHOOL
FORT GORDON, GA 30905
ATTN ATSS-CTD (2 COPIES)

COMMANDER
US ARMY ENGINEER SCHOOL
FORT BELVOIR, VA 22060
ATTN ATSE-CTD (2 COPIES)

COMMANDER
US ARMY INFANTRY SCHOOL
FORT BENNING, GA 31905
ATTN ATSH-CTD (2 COPIES)

COMMANDER
US ARMY INTELLIGENCE CENTER AND SCHOOL
FORT HUACHUCA, AZ 85613
ATTN ATSI-CTD (2 COPIES)

COMMANDER
US ARMY FIELD ARTILLERY SCHOOL
FORT SILL, OK 73503
ATTN ATSF-CTD (2 COPIES)

CHIEF OF NAVAL OPERATIONS

NAVY DEPARTMENT

WASHINGTON, DC 20350

ATTN NOP-932, SYS EFFECTIVENESS DIV

CAPT E. V. LANEY

ATTN NOP-9860, COMMUNICATIONS BR

COR L. LAYMAN

ATTN NOP-351, SURFACE WEAPONS BR

CAPT G. A. MITCHELL

ATTN NOP-622C, ASST FOR NUCLEAR

VULNERABILITY, R. PIACESI

COMMANDER
NAVAL ELECTRONICS SYSTEMS COMMAND, HQ
2511 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20360
ATTN PME-117-21, SANGUINE DIV

HEADQUARTERS, NAVAL MATERIEL COMMAND
STRATEGIC SYSTEMS PROJECTS OFFICE
1931 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20390
ATTN NSP2201, LAUNCHING & HANDLING
BRANCH, BR ENGINEER, P. R. FAUROT
ATTN NSP-230, FIRE CONTROL & GUIDANCE
BRANCH, BR ENGINEER, D. GOLD
ATTN NSP-2701, MISSILE BRANCH,
BR ENGINEER, J. W. PITSENBERGER

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN CODE 222, ELECTRONICS & ELECTROMAGNETICS DIV
ATTN CODE 431, ADVANCED ENGR DIV

US AIR FORCE, HEADQUARTERS
DCS, RESEARCH & DEVELOPMENT
WASHINGTON, DC 20330
ATTN DIR OF OPERATIONAL REQUIREMENTS
AND DEVELOPMENT PLANS, S/V &
LTC P. T. DUESBERRY

COMMANDER
AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
ATTN ES, ELECTRONICS DIVISION
ATTN EL, J. DARRAH
ATTN TECHNICAL LIBARY
ATTN D. I. LAWRY

COMMANDER
AERONAUTICAL SYSTEMS DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN ASD/YH, DEPUTY FOR B-1

COMMANDER
HQ SPACE AND MISSILE SYSTEMS ORGANIZATION
P.O. 96960 WORLDWAYS POSTAL CENTER
LOS ANGELES, CA 90009
ATTN S7H, DEFENSE SYSTEMS APL SPO
ATTN XRT, STRATEGIC SYSTEMS DIV
ATTN SYS, SURVIVABILITY OFC

SPACE AND MISSILE SYSTEMS ORGANIZATION NORTON AFB, CA 92409
ATTN MMH, HARD ROCK SILO DEVELOPMENT

COMMANDER
AF SPECIAL WEAPONS CENTER, AFSC
KIRTLAND AFB, NM 87117

ASSISTANT CHIEF OF STAFF FOR COMMUNICATIONS ELECTRONICS XVIII AIRBORNE CORPS FORT BRAGG, NC 28307 ATTN AFZA-CE/LTC K. KILLINGSTEAD

HARRY DIAMOND LABORATORIES ATTN RAMSDEN, JOHN J., COL, COMMANDER/ FLYER, I.N./LANDIS, P.E./ SOMMER, H./OSWALD, R. B. ATTN CARTER, W.W., DR., TECHNICAL DIRECTOR/MARCUS, S.M. ATTN KIMMEL, S., PAO ATTN CHIEF, 0021 ATTN CHIEF, 0022 ATTN CHIEF, LAB 100 ATTN CHIEF, LAB 200 ATTN CHIEF, LAB 300 ATTN CHIEF, LAB 400 ATTN CHIEF, LAB 500 ATTN CHIEF, LAB 600 ATTN CHIEF, DIV 700 ATTN CHIEF, DIV 800 ATTN CHIEF, LAB 900 ATTN CHIEF, LAB 1000 ATTN RECORD COPY, BR 041 ATTN HDL LIBRARY (5 COPIES) ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN CHIEF, 047 ATTN TECH REPORTS, 013 ATTN PATENT LAW BRANCH, 071 ATTN GIDEP OFFICE, 741 ATTN LANHAM, C., 0021 ATTN CHIEF, 0024 ATTN CHIEF, 1010 ATTN CHIEF, 1020 (20 COPIES) ATTN CHIEF, 1030 ATTN CHIEF, 1040 ATTN CHIEF, 1050

ATTN NOON, T. V., 1020