_ AD-AQO49 303 HARRY DIAMOND LABS ADELPHI MD F/6 9/2
i BDACS SOFTWARE. (U)
NOV 77 J C INGRAM MIPR=76628

UNCLASSIFIED HOL=TR=-1831

B .

(R
)
ap
o
<
—
<<
a
<

{ ——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

¥

{/ HDL-TR-1831 (

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

B et

. TITLE (and Subtitle)

)_ 'BDACS Software ,

e —————————

.

e
/

S. TYPE OF REPORT & PERIOD COYERED

A

Technical Reps}ti,,/’

.

T'NUMBER

g O

-

7. AUTHOR(s) .

Wo 5 U
i\\i% John C./Ingram

—n—-—a-w«*“")

8. CONTRACT OR GRANT NI'MBER(s)

MIPRe== 76628

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

|

. CONT'ROLLING OFFICE NAME AND ADDRESS
Director

Defense Nuclear Agency
Washington, DC 20305

12. REPORT DATE

\‘ui/j November 1977.///

(3. NUMSEROF PAGES
127

. MONITORING AGENCY NAME & AD

different from Controlling Office)

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

Approved for public release; dis

L JAZ7EAXY \'

—
-

trji

DDpC
(A

tion unlimited.

wiitel

!

FEB

2 1978

. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 1{ different from Report)

[l

LML

TRVAL

. SUPPLEMENTARY NOTES

HDL Project: E436E2

Control System (BDACS).

This research was sponsored by the Defense Nuclear Agency under
subtask LL37EAXYX910, Work Unit 09, Binary Data Acquisition and

KEY WORDS (Continue on reverse side if

y and Id

Binary data acquisition
Computer control system software

ty by block b

)

high-speed and low-speed monitoring.

for the extended hardware. Moreover,

20. \gfﬂhc? (Cantinue en reverse side i neceesary and Identify by block number)

The Binary Data Acquisition and Control System (BDACS) has
undergone extensive hardware augmentation to provide additional

In a parallel effort, the

software control package for the BDACS has undergone a similar
major modification to provide the necessary control functions

the restructed software

¥ ORm
DD\ n EOITION OF ! NOV 68 1S OBSOLETE

1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

P package has incorporated improvements in data acquisition and
reduction efficiency and has provided a more detailed on-line
printout of the data vector. Last, the new BDACS software
package has been organized in a ¢'structured program*‘modular
format to allow for future expansion without complicated inter-

dependencies among the several program modules.
’

|

ACCESSION for I
NTIS White Seclicn :

DpDC Buff Sectiva [
UNANNOUNCTD O
JUSTIFICATION _ . __.,_g

}
BY A

DISTRIBUTIONRVAILABILITY CUSES

Dist. AVAIL and,/of SPEiAL

t

UNCLASSIFIED

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entersd)

10.

CONTENTS

INTRODUCTION AND HISTORICAL BACKGROUND

BDACS CONTROL PROGRAM--GENERAL ARCHITECTURE

BDACS DATA FILES AND TEMPORARY FILES .
BDACS METHOD FILEES . . & . ¢ ¢ o o & -

BDACS DATA VECTOR AND ON-LINE PRINTOUT
5.1 BBAECS bPata Vector . « = o i & = s
5.2 BDACS On-Line Printout
ROOT BINARY SEGMENT--MONTR.SR

6.1 2ZREL Parameters . . .
6.2 NREL Input/Output Pontrol Tables

R CE e E e e e e e e

6.3

OVERLAY MODULE-=PHAS1.SR . . « ¢ ¢ « & o « « o o &
7.1 PHAS1.SR Backbone Code . . « & = o .+ & @
7.2 PHAS].SR Subroutine Code . « o« o ¢ & & o
7.3 PHAS1.SR Name/Text Strings and Buffers e
7.4 PHAS1.SR Effor Routine .« « « « « o « & » o i
OVERLAY MODULE==PHAS2.8R . ¢« « o ¢« « o o « s &« o
8.1 PHAS2.SR Multiplexer Controller Setup
8.2 PHAS2.SR Test-Run Initiation and Control Loop
8.3 PHAS2.SR Interrupt Service Routine
8.4 PHAS2.SR Error Routine . . « . « =« o « o &
OVERLAY MODULE-=PHAS3.SR . &+ ¢ ©+ + « o o o o o o =
9.1 PHAS3.SR Backbone €Code . . o« o v s @ & o =
9.2 PHAS3.SR Subroutine Code « . .
9.3 PHAS3.SR Error Routine « « « « + =«
OVERLAY MODULE==PHAS4.SR . . . ¢ ¢ ¢ ¢ « o« o o o =

10.1 PHAS4.SR Backbone Code « « « « « o« .
10.2 PHAS4.SR Subroutine Code . . . e AR U T
10.3 PHAS4.SR Name/Text Strings and Buffers R
10.4 PHAS4.SR Error Routine « .« « ¢« « « .

11

13

16

16
17

1 by

7
1)
20

20

20
21
25
25

26

27
28
29
30

30

3L
32
34

34

35
36
3
38

, -.4
i sddasl

11.

12,

115

14.

CONTENTS (Cont'd)

QVERLAY MOBDULE-=PHASS SR L il o el el e alie il Sl ot alie e o

11.1 PHASS.
11.2 PHASS.
11.3 PHASS.
11.4 PHASS.

SREBackbone Eodel tur s ta i L 0 R el tel el el e el sl e e ie
SR Subroutinercoda™ "o 0 el i o e e el e e s
SR Name/Text Strings and Buffers
SR R EOr RO e e e el e e e e

OVEREAY MODULESERMSGISR o .80 s Soi o e ol s e sl o sl o = s s s e W

CONTROL PROGRAM SYSTEM PARAMETERS--BDACS.SR

RECOMMENDATIONS FOR FUTURE SOFTWARE AUGMENTATION

APPENDIX A.--ASSEMBLY-LANGUAGE LISTING FOR BDACS

CONTROL

B S R B T O T o I R e B CE R e e

Block

BDACS
files

BDACS
BDACS
BDACS

Present BDACS

FIGURES

difacir ams Ko MBI ACS A e i, e e s

A typical BDAECS method fille o & o & & & o v « 5 5 o & & 5 =

on-line printout of the PREAMBLE.DA and POSTSCRIPT.DA

cn~line printout of the method file . & . « ¢ = « =
on-line printout of the HSB assignment list and data.

on-line printout of MUX and LSB data lines
TABLE

Capabilities o o W s i e e e e e

Page

38

38
45
47
48

49
50

53

40
41
42

1. INTRODUCTION AND HISTORICAL BACKGROUND

The Binary Data Acquisition and Control System (BDACS) is a

computer-controlled general-purpose instrumentation system that
retrieves and stores binary logic signals generated by a system
undergoing some form of testing. Simultaneously, BDACS can transmit

binary logic control signals to the test system in order to initiate a
specific logic state of the system or to control the sequence of
operations through several logic states.

BDACS [originally called the Communications Monitor and Control
System (CMCS)] was developed under the Program for Electromagnetic Pulse
Testing (PREMPT), jointly sponsored by the Defense Nuclear Agency (DNA)
and the Defense Communications Agency (DCA). The primary objectives of
PREMPT are:

(a) to evaluate the vulnerability/survivabilitg of the WWMCCS/DCS
Command, Control, and Communications systems (C°) subjected to a
high-altitude electromagnetic pulse (HEMP) environment by using a
methodology that includes both testing and analysis;

(b) to provide hardening recommendations/fixes that insure an
acceptable level of performance of the WWMCCS/DCS in a HEMP environment;

(c) to develop the analytical tools required to analyze the
WWMCCS/DCS and other critical C° systems.

The initial phases of PREMPT included large-scale test programs to
be performed on three telephone switch centers that form a part of the
continental U.S. Automatic Voice Network (CONUS-AUTOVON). As part of
the data requirements for these test programs, the logic states of the
switch centers had to be monitored and controlled. The development of
BDACS is a result of these requirements.

A block diagram of the BDACS hardware is shown in figure 1 (a to c¢).
The hardware is centered around a Data General Corporation (DGC) Nova-
1230 minicomputer processor and peripheral system. The computer
includes a 16K core memory, Teletype (TTY) control unit, card-reader
input wunit, 1line-printer output unit (to allow real~time hard-copy
output of BDACS results), a 9-track magnetic-tape drive (to allow
archive storage of BDACS results), and a disk-cartridge drive to store
both the background operating software system (supplied by DGC) and the
foreground BDACS control software system that was developed concurrently
with the hardware. The special-purpose interface board supplied by the
original equipment manufacturer (OEM) provides the hardware link between
the computer section and the binary signal interface/multiplexer and
special-purpose control boards of BDACS. These special-purpose control

IR SR)

BLOCK DIAGRAMS OF BDACS

e e e

9. TRACK
LPT CDR | [MAGNETIC
TAPE
TELETYPE/CATHODE 4
RAY TUBE 1.2 MW
3 CONTROL DISK
‘ ! CARTRIDGE
DATA GENERAL [
CORP.
—»{ NOVA 1230 |e&
16K
RTC
A 4\
r V Y
4 OUTPUT MUX INPUT MUX
1 CONTROLLER CONTROLLER
L 8-BIT PARALLEL 8-BIT PARALLEL
| OUTPUT CONTROL DATA INPUT ACQUISITION DATA
Figure 1l(a). Central control and processor.

T0

INPUT MUX
CONTROLLER
1288 INPUT
MULTIPLEXER
'Y t [}
| B Sl it 1
1 HIGH OPTICABLE LOW SPECIAL
SPEED PATCH PANEL SPEED PURPOSE
MONITOR MONITOR CIRCUITS
OPTICABLE LINE FILTER
RECEIVER PANEL
OPTICABLE SIGNALS FROM
LINKS SYSTEM UNDER
TEST

OPTICABLE TRANSMITTER
INTERFACE CARDS

SIGNALS FROM SYSTEM UNDER TEST

Figure 1(b). Input multiplexer unit.

.

BLOCK DIAGRAM OF BDACS

FROM
QUTPUT MUX
CONTROLLER

8/64 OUTPUT
MULTIPLEXER

SIGNALS FROM —1 gySTEM
SYSTEM UNDER STATE
TEST ————————p{ CORREL

GELAY RELAY SPECIAL-

PURPOSE
COUNIER FANEE CIRCUITS

\

OPTICAL
TRIGGER LINE FILTER PANEL

l =e

TO ENVIRCNMENT SYSTEM CONTROL
SIMULATOR LINES

Figure l(c). Output multiplexer unit.

boards include (1) a state correlator which generates a time-delayed
trigger signal when the system under test enters a prescribed 1logic
state (as defined by the parallel coincidence of up to eight logic
signals) (2) a high-speed buffer (HSB) that allows very fast monitoring
of sixteen binary signals at sample rates of two per microsecond, (3) a
low-speed buffer (LSB) that allows a slow monitor and serial transfer of
slowly changing 1logic signals, and (4) audible tone diallers and
dial-tone detectors that are specific interface modules for the
particular telephone switch centers which were tested under PREMPT. The
present capabilities of BDACS are summarized in table I.

The heart of the BDACS consists of a software control program and
several ancillary programs that provide the communications links between
the BDACS operator and the system hardware. The remainder of this
report describes the architecture and functions of several modules that
comprise the BDACS software.

The initial BDACS software package was prepared by the OEM during
the initial system development and was used during BDACS operations at
Polk City, FL. During the BDACS refurbishing period in preparation of
operations at Delta, UT, some minor modifications and improvements to

TABLE |. PRESENT BDACS CAPABILITIES

Feature Capabilities

Binary signal monitor

(input MUX) 128 signals monitored
Binary signal control

(output MUX) 64 signals controlled
System state correlator 8 signals correlated
Trigger delay counter 0 to 55 us, simulated
High-speed buffer 2K (16 bits) words monitored (0.5 us)
Low-speed buffer 128 signals monitored serially (50 us)
Sampling resolution 50 us-~input high~speed MUX words (16 bits)

350 us-~input low-speed MUX words (112 bits)

1000 us--output MUX words (64 bits)

the initial software package were provided by personnel of Harry Diamond
Laboratories (HDL). In particular, an option was incorporated to
provide the immediate on-line data printout using the TTY control unit
in lieu of the line printer.

During these earlier portions of BDACS operations, the basic
"background" software operating system was the Real Time Disk Operating
System RDOS-REV 1.00 supplied by DGC. Following the Delta test program,
an updated and improved operating system, RDOS-REV 3.01, was obtained
from DGC and placed on BDACS. However, because the core resident
portion of RDOS-REV 3.01 1is substantially larger than that of
RDOS-REV 1.00, the 16K core capacity of BDACS was insufficient to hold
both RDOS-REV 3.01 and the BDACS control program concurrently. In fact,
even with the earlier RDOS-REV 1.00, the concurrent loading of this
operating system with the BDACS control program filled all but
approximately 20 words of BDACS core. Consequently, there was no room
for any substantial software additions or improvements to the BDACS
control program as required for additional monitoring capability,
without drastically reorganizing the control program.

Furthermore, the initial BDACS software package was not able to meet
the design objective of a 50-us minimum sample cycle time and was very
inefficient both in operating time and in data storage requirements
during the data reduction phase of the program.

For these reasons, a complete redesign of the control program
package was initiated. The package described in the following sections
has been implemented as the current BDACS control program. The control
program is written in the DGC-supplied RDOS Assembly language and
interfaces with the RDOS-REV 3.0l operating system.

2. BDACS CONTROL PROGRAM--GENERAL ARCHITECTURE

The BDACS control program has been specifically designed in a
"structured program" modular format that allows for future expansion or
modification without complicated interactions or interdependencies among
the different modules. In particular, the overall operation of the
control program has been separated into major sequential tasks, with
each task programmed as a separate overlay module of the control-program
save file. Information exchange among the different overlay modules has
been kept to a minimum and is in one of the following forms:

(a) ZREL parameters (a very limited number)
(b) NREL tables in the root binary
(c) data files organized under the RDOS operating systems

Moreover, those system parameters defined within each overlay module
which may be subject to change with system augmentation or expansion
have been collected into a separate system parameter file, BDACS.SR,
organized under RDOS. As described below, this file should be assembled
with each program segment when the user constructs the control-program
save file.

The BDACS control program is composed of a root binary section and
six overlay modules which are common to a single overlay region. The
major tasks associated with the root binary and each overlay module are
summarized below and are described in detail in the subsequent sections.

Module Name Task
Root binary MONTR.SR holds ZREL parameters

holds NREL tables
provides overlay control
Overlay No. 1 PHAS1.SR initializes and opens RDOS files

reads and constructs METHOD file
data acquisition and reduction tables

Ty

Module Name Task

reads and constructs METHOD file
data control tables

reads and stores PREAMBLE query file

stores the METHOD and ASSIGN files

Overlay No. 2 PHAS2.SR controls real-time data acquisition
and control sequencing

Overlay No. 3 PHAS3.SR retrieves and stores HSB data

Overlay No. 4 PHAS4.SR reduces and stores the MUX and LSB
data

Overlay No. 5 PHASS.SR reads and stores POSTSCRIPT query
file

produces the on-line data printout

Overlay No. 6 ERMSG.SR generates error messages

provides normal or abnormal return to
the RDOS-CLI

To produce the working load module (that is, the .SV save file and
the .0OL overlay file) of the control program, the user should first
assemble the root binary and each overlay module using the RDOS-supplied
assembler to produce the associated relocatable binary (.RB) file. The
RDOS-CLI command strings for these assemblies are

(a) Root binary

ASM BDACS MONTR MONTR.RB/B

(b) Overlay No. 1

ASM BDACS PHAS1 PHAS1.RB/B
(c) Overlay No. 2

ASM BDACS PHAS2 PHAS2.RB/B
(d) Overlay No. 3

ASM BDACS PHAS3 PHAS3.RB/B

10

(e) Overlay No. 4

ASM BDACS PHAS4 PHAS4.RB/B
(f) Overlay No. 5

ASM BDACS PHAS5 PHASS5.RB/B
? (g) Overlay No. 6

ASM BDACS ERMSG ERMSG.RB/B

Following assembly, the relocatable binary files are combined, and
relocatable externals are resolved to produce the final save and overlay
files. The RDOS-CLI command string for this loading operation is

RLDR MONTR [PHAS1,PHAS2,PHAS3,PHAS4,PHASS,ERMSG]10/ C .

The final result is the generation of a save file named MONTR.SV and an
associated overlay file named MONTR.OL.

3. BDACS DATA FILES AND TEMPORARY FILES

The BDACS control program uses the RDOS file management routines to
create and maintain a number of different data files and temporary files
used during BDACS operations. A general description of the content and
format of these files follows.

PREAMBLE.DA--An RDOS sequentially organized, permanent, and write-
protected file containing alphanumeric text information generated and
maintained by the DGC-supplied text editor (EDIT.SV) under the control
of the BDACS operator. The file contains a series of alphanumeric
"query" or ‘"statement” lines which are presented to the BDACS operator
line by 1line at the beginning of a BDACS test run. A query line
requires operator response, and both the query and response are stored
for later incorporation in the final data vector. A statement line
(which begins with an asterick) does not require a response. It is
used to incorporate information into the final data vector which does
not change from one test run to the next or it is used for formatting
purposes.

1 POSTSCRIPT.DA--An RDOS sequentially organized, permanent, and write-
protected file, similar to the preamble file described above. The
postscript file contains a series of query or statement lines which are
presented to the BDACS operator following a BDACS test run. Again, the
query/response or the statement is incorporated in the final data
vector.

Lk

T

A

ASSIGNA.DA--An RDOS randomly organized, permanent, and write-
protected file containing alphanumeric text information generated and
maintained by the ASSIGN.SV program which is supplied as part of the
BDACS software package. The alphanumeric text is used to describe the
signals being monitored by the HSB. In particular, the textual
information for each signal is contained in 16 bytes (8 words packed
mode 1) null filled. Thus, information for 32 signals is held in a
256-word disk block, and the file contains as many disk blocks as
required for the HSB signals.

ASSIGNB.DA--An RDOS randomly organized, permanent, and write-
protected file containing alphanumeric text information similar to that
described above. For the present file, the text is used to describe the
signals being monitored by the BDACS MUX panels. Again, each signal
text is packed in 8-word segments, with 32 signal texts per 256-word
disk block.

ASSIGNC.DA--An RDOS randomly organized, permanent, and write-
protected file containing alphanumeric text information similar to that
described above. For this file, the text is used to describe the
signals being monitored by the BDACS LSB. Again, each signal text is
packed in eight-word segments, with 32 signal texts per 256-word disk
block. ;

BDACS.DA--An RDOS contiguously organized, permanent, write- and
attribute-protected file containing the binary data acquired during a
BDACS test run. The binary information is written into the file space
independent of and external to the RDOS operating system and file
maintenance routines. However, during the data reduction phase of the
test run, the data are retrieved from the file wunder control of RDOS
routines.

TEMPA.TM--An RDOS sequentially organized temporary file, created by
the BDACS control program at the beginning of each BDACS test run. The
file provides temporary storage for the query/response lines and the
statement lines of the preamble file described earlier. At the end of a
BDACS test run, this file is transferred to the final data vector and/or
the on-line data printout.

TEMPB.TM--An RDOS randomly organized temporary file, created by the

BDACS control program preceding the retrieval of the HSB data. At the

“d of a BDACS test run, this file is transferred to the final data
vector and/or the on-line data printout.

TEMPC.TM--An RDOS randomly organized temporary file, created by the
BDACS control program preceding the reduction of the MUX and LSB data
(provided the magnetic-tape option is not in effect). At the end of a
BDACS test run, this file is transferred to the on-line data printout.

TEMPD.TM-~An RDOS sequentially organized temporary file, created by
the BDACS control program following data reduction. The file provides
temporary storage for the query/response lines and the statement lines
of the postscript file described earlier. At the end of a BDACS test
run, this file is transferred to the final data vector and/or the
on-line data printout.

4. BDACS METHOD FILES

The BDACS operator provides information to the BDACS control program
on how a test run is to be conducted (or controlled) through a "method"
file. The different method files are RDOS sequentially organized files
containing alphanumeric text information generated and maintained by the
DGC~supplied text editor (EDIT.SV) under the control of the BDACS
operator. Each method file should contain the lines of information that
follow.

(1) The identification line does not provide information to the
control program but serves to identify the contents of the file.

(2) The sample rate line should contain a single-precision, decimal
integer between 50 and 4095 which represents the sample rate (in
microseconds) for the BDACS MUX panels. The integer may be preceded and
followed by alphabetic text strings (nonnumeric).

(3) The test duration line should contain a double-precision,
decimal integer which represents the total duration of the test run (in
milliseconds). The integer may be preceded and followed by alphabetic
text strings /‘nonnumeric).

(4) The HSB line should contain a single-precision, decimal integer
between 500 and 10000 which represents the sample rate (in nanoseconds)
for the BDACS HSB. An asterisk immediately following the integer
indicates that the HSB data should be transferred to the on-line data
printout file following the data run. Alternatively, an integer of zero
in this line indicates that the HSB data-retrieval phase will be
bypassed. The integer may be preceded and followed by alphabetic text
strings (nonnumeric).

(5) The LSB line should contain a single-precision, decimal integer
between 1 and 16 which represents the MUX input number (on the
high-speed word) at which the LSB signal is being serially monitored.
Alternatively, an integer of zero in this line indicates that the LSB is
not in use. The integer may be preceded and followed by alphabetic text
strings (nonnumeric).

13

— — ; e i

e’ K™

(6) The MUX reported points list consists of two or more lines of
information representing those MUX input points which are selected for
data reduction and/or inclusion in the on-line data printout following a
test run. The list begins with a "header" 1line that is used for
formatting but imparts no information to the control program. Following
the header line is a series of data lines that contain one or more
single-precision, decimal integers separated by non-digit characters.
The integers, ranging from 1 to 128, represent those points on the input
MUX panels to be included in the data-reduction phase of the control
program. An asterisk immediately following an integer is a flag
indicating that the specified point should also be contained in the
on-line data printout. The last line of the MUX reported points list
should be an alphabetic text string (for example, END OF MUX LIST.),
containing no digits, which is used as an end-of-list indicator.

(7) The LSB reported points list like that described above,
consists of two or more lines of information representing those LSB
input points that are selected for data reduction and/or inclusion in
the on-line data printout. Again, the list consists of a header line, a
series of data 1lines, and an end-of-list indicator line. The integers
in the data lines represent those LSB input points to be included in the
data-reduction phase of the control program. An asterisk immediately
following an integer is a flag indicating that the specified point
should be included in the on-line data printout.

(8) The control point list consists of one or more lines of
information representing the control functions to be performed by the
control program during a test run. The list begins with a header 1line
that is used for format but imparts no information to the control
program. Following the header 1line is a series of data lines, each of
which contains two single-precision, decimal integers followed by a
double-precision, decimal integer. The first single-precision integer
represents the state which a point on the MUX output panel is to assume,
either 0 or 1. The second single-precision integer represents the point
number on the MUX output panel, ranging from 257 to 318. However, a
special point number of 0 may also be used. This number does not
correspond to any point on the MUX output panel; instead, it indicates
when the control program should begin data storage during data
acquisition. The double-precision integer represents the elapsed time
(in milliseconds) from the beginning of a test run at which the selected
control point is to assume the indicated state. The series of data
lines should be arranged in an ascending sequence with respect to time,
and no two adjacent times should differ by more than 32,767 ms.
Furthermore, the 1last time in the 1list and the test duration time
specified earlier should not differ by more than 32,767 ms. If
necessary, pseudo-control data lines, which will not affect the current
state of a control point, may be placed in the data series to comply
with the above limitation. As a second limitation, the total number of
lines in the data 1list should not be greater than 128. Last, an

14

end-of-list alphabetic text string may optionally be included in the
list and as a final 1line of the method file. An example of a typical
method file is shown in figure 2.

IDENTIFICARTION: TEST METHOD

SHAMPLE RATE <IN USEC): 100

B

DURATION CIN MSEC): 10000
HS BUFFER: SSoow
LS BUFFER: 1é

REFORTED FOINTS THELE

142wk AASHSHTHEH I L Q1191241341 4415016
A7%16%19420m2L 422+ 234244252642 PH28*29n3 Q31 w3 2w
33ATAATSHAIEHITHICRIIHGONE LR Y 2H G InG I d B4 G ERG 74 S
494TTHSLASZHSI*SASSH SEHSPHSERSIHEOHELNE4EIhE4 ‘
E5HEEHETHESHEIRTORT L7227 3NV 4P SHTER7 P PE 7 I ED ™
BL+E2#BI*EA#ETHBEAETHEGHBIHIURILHI2HIIHIGw IS GEW

97#93+ 99+ 100+101+102+103%104*10S5*106+ 107+ 108+109%110%141%1 412w
113+114%115%116%217%118%119%120%121%122w 12 3%124%125w126#127%1268*
END OF TRELE

LS BUFFER TRELE

FERL LT LN TT oA LR L S L -4 5 S LA ELD L UL]

A7#18H1GHZOPZAwZINZLIH24M 2D 26274 28H2GH30*3 1 w3 2w

3343443B435I7wIBHITHAON 410G 2404 3G I h 4 Shd S0 P B

49+ SO+ SL w524 SN # IS SESTHSSHBIHEOHELHE2+EI G4

| ESHECHETHEBHEINTORTLNP 24T IMT 47 SHTERP 7 TBHTIHEOW
B1#82+B3#EIESHECHB7HIEHEIHIOHILHS2w AT TG IEHIE W
97#92+39+100+101+102+103+104*105+105%107+108+109+110%111+112%
133%114+115+1164117+118+119%120%121%122+123%124%125%126+127+128%
END OF TRELE

STARTE SIGNAL TIME

1 © e
1 257 °
1 258 3
1 239 (-]
1 PEL e
1 266 >}
Lo rer 28T coe B cnsns

Figure 2. Typical BDACS method file (partial).

L5

S —

5. BDACS DATA VECTOR AND ON-LINE PRINTOUT

The results of a BDACS test run may be incorporated in a final data
vector written on magnetic tape and/or an immediate on-line data
printout produced by the BDACS line-printer or TTY control unit.

5.1 BDACS Data Vector

If the "M" global switch option is in effect, the final data
vector on magnetic-tape unit MTO contains eight files described below.

(a) MTO:0 is the preamble file query/response 1lines and
statement lines transferred line by 1line from the TEMPA.TM file. This
file has the standard RDOS tape format and record length of 514 bytes.

(b) MTO:1 is the method file selected for the particular test
run which is transferred line by line. Again, the file has the standard
RDOS tape format and record length of 514 bytes.

(c) MTO:2 1is the ASSIGNA.DA file transferred as 256-word
blocks. The record length of each block is 512 bytes.

(d) MTO:3 is the ASSIGNB.DA file transferred as 256-word
blocks. The record length of each block is 512 bytes.

(e) MTO:4 is the ASSIGNC.DA file transferred as 256-word
blocks. The record length of each block is 512 bytes.

(f) MTO:5 is the HSB data transferred as 256-word blocks from
TEMPB,.TM. The record length of each block is 512 bytes.

(g) MTO:6 is the MUX input panel data and LSB data generated
during data reduction. The file consists of 768-word data blocks with
record lengths of 1536 bytes. Each of the 256 data entries in the data
blocks has six bytes (or three words). The first byte contains a state
bit (either 1 or 0), an error-recovery bit (either 1 or O0) and a select
bit (either 1 or 0). The second byte contains the MUX or LSB point
number corresponding to the state. The third, fourth, fifth, and sixth
bytes contain a double-precision integer representing the time from the
beginning of the test run (in ms) at which the selected point changed to
the prescribed state.

(h) MTO:7 is the postscript file query/response lines and
statement lines transferred 1line by line from TEMPD.TM file. This file
has the standard RDOS tape format and record length of 514 bytes.

16

If the "L" global switch option is in effect, the final data
vector is transferred to the BDACS line printer. Similarly, if the "T"
global switch option is in effect, the final data vector is transferred
to the BDACS TTY control unit. For either case, this data vector
contains the following entries:

(a) The preamble file query/response lines and statement lines
transferred line by line from TEMPA.TM file.

(b) The postscript file query/response lines and statement
lines transferred line by line from TEMPD.T file.

(c) The method file transferred 1line by 1line from the method
file selected for the test run.

(d) The HSB data, if the printout option as described in
section 4 is in effect. This printout consists of (1) the assignment
table for the different HSB input signals derived from ASSIGNA.DA, and
(2) a chronological 1list of the monitored states of the HSB input
signals. The time at which each signal was monitored is derived from
the HSB sample rate described in section 4.

(e) The input MUX data and ILSB data for those MUX and LSB
signal points which were flagged for on-line data printout, as described
in section 4. The printout consists of data 1lines containing (1) the
new state (either 1 or 0) which a signal point assumes, (2) the time (in
microseconds) at which the state change occurred, (3) the signal point
number and select code (either "M" for MUX panel or "L" for LSB), and (4)
the signal point mnemonic name for the signal as derived from either the
ASSIGNB.DA or the ASSIGNC.DA files.

6. ROOT BINARY SEGMENT--MONTR.SR

The root binary segment is the part of the control program that
remains core resident throughout a BDACS test run. For this reason, the
root binary segment was designed to require only a small amount of core,
while most of the program core requirements are shared among the several
overlay modules. The assembly language structure for MONTR.SR is given
in appendix A, section A-1. The root binary segment is divided into the
following three regions (sect. 6.1, 6.2, and 6.3).

6.1 2ZREL Parameters

This region is organized in relocatable page-zero locations and
contains those parameters that are common among or global to the several
overlay modules. In particular, the following parameters are presently
in use.

17

e " . -

(a) OVRTN holds the return address to the root binary from all
overlay modules (except when program exit is affected in ERMSG.SR).
This parameter is set in subroutine OVLOD as part of the overlay loading
procedure.

(b) RECOV provides several functions: First, it holds the
system error code if an RDOS system call error occurs during processing
in any of the overlay modules. Second, it holds the root binary return
address, previously stored in OVRTN, if a recoverable error occurs in
any overlay module.

(c) ERRTN contains the NREL address to the root binary section
labelled ERROR. This allows an abnormal exit from any overlay module to
the root binary segment when specific errors occur.

(d) ERCOD contains an error code which is returned to the root
binary segment whenever an abnormal error return is affected. In
particular, a code of -1 is returned for an RDOS system call error. For
other errors, the left-hand byte of ERCOD contains the overlay number in
which the error condition occurred, and the right-hand byte of ERCOD
contains the error number for that particular overlay module. ERCOD is
set within each overlay module and supplies information to the error
message overlay ERMSG.SR.

(e) MAGFG provides two functions: First, it holds the first
global switch word supplisd from the COM.CM file generated by the
RDOS-CLI. Second, it holds a nonzero value as a flag if global switch
"M" is optionally set indicating a magnetic tape 1is required. This
parameter is set in overlay module PHAS1.SR and wused in PHAS1.SR,
PHAS3.SR, PHAS4.SR, and PHASS.SR.

(f) PRINT provides two functions: First, it holds the second
global switch word supplied from the COM.CM file generated by the
RDOS-CLI. Second, it holds nonzero print flags if global switch "L" is
set, for 1line printer required, or global switch "T" is set, for TTY
control unit required. Bit 1B15 is set for "L" and 1BO is set for "T."
This parameter is set in PHAS1.SR and used in PHASS5.SR.

(g) SMPRT holds the MUX panel sample rate as a single-precision
binary integer. It is set in overlay module PHAS1.SR and used in
PHAS2.SR and PHAS4.SR.

(h) HSMON holds the HSB sample rate as a single-precision
binary integer and the optional HSB on-line data printout flag in 1BO.
It is set in overlay module PHAS1.SR and used in PHAS3.SR and PHAS5.SR.

(i) LSMON holds the LSB signal point on the MUX panel as a
single-precision binary integer. It is set in overlay module PHAS1.SR
and used in PHAS4.SR during data reduction.

18

(3) BLKCT contains the number of remaining track surfaces on ’.
the disk in which data from the MUX input panel are stored. The
parameter is initially set to a maximum count, currently 200, and
decremented during overlay module PHAS2.SR operations. The parameter is
also used in PHAS4.SR during data reduction.

(k) HLDCT contains the number of data blocks acquired but not
stored on the disk preceding the onset of data storage. The parameter
is initially zero and periodically incremented during data acquisition

. PHAS2.SR of the control program. The parameter is wused in PHAS4.SR
during data reduction.

6.2 NREL Input/Output Control Tables

This region of the root binary segment consists of three tables
containing input and output control information.

(a) MSKTB is divided into three parts. The first part contains
mask words of those MUX input points which have been designated for data
reduction (see sect. 4). The mask words are packed with 16 points per
word, each bit from 1B1l5 to 1BO being set if the corresponding point is
reported. At present, eight such mask words corresponding to 128 input
points are in use. The second part contains mask words whose bits X
correspond to the previous state (either 1 or 0) of the different MUX
input points. As above, the words are packed with 16 points per word
for a total of eight mask words. Initially, the mask words are all
zero, corresponding to an assumed initial O or "off" state for the input
points. The third part of MSKTB contains mask words of those MUX
input points which have been designated for immediate on-line data
printout (see sect. 4). Again, the words are packed with 16 points per
word for a total of eight mask words. Thus, the total present length
for MSKTB is 24 words, plus one spare.

(b) LSBTB is the LSB equivalent to MSKTB. Again the table is

divided into three parts containing mask words which correspond to the '
reported points, the previous state, and the points enabled for on-line
printout.

(c) CTLTB contains the information required to perform the
control operations in overlay module PHAS2.SR. Currently, the table has
a capacity for 128 such control functions, with each control function
having a corresponding three-word entry in the table. The first word of
an entry contains the elapsed time (in milliseconds) from the previous
entry at which the present control function 1is to be activated. The
second word of an entry contains a word mask specifying the
corresponding bit position in the MUX output-panel buffer word which is
to be activated (or altered). The third word of an entry contains both
the state to be activated (in bit position 1B15) and the address of the
MUX output-panel buffer word (in the remaining bit positions).

19

6.3 NREL Code

This region of the root binary segment contains the limited
amount of instruction code which is required for overlay module
initiation and loading and for overlay module entry and exit control.

The control program begins at parameter START and immediately
initializes and opens the control program overlay file MONTR.OL on
channel No. 7. Next, the overlay modules PHAS1.SR, PHAS2.SR, PHAS3.SR,
PHAS4.SR, and PHAS5.SR are sequentially loaded into memory via the
overlay load subroutine OVLOD. Following each load a branch instruction
is performed into the overlay region to addresses OVST1l, OVST2, OVST3,
OVST4 and OVSTS5. Following a normal completion of these overlay module
instructions, or if an error condition occurs, the last overlay module
ERMSG 1is 1loaded and entered. From this overlay module a normal or
abnormal return to the RDOS-CLI is performed, or the root binary segment
is reentered if a recoverable error is encountered.

7. OVERLAY MODULE--PHAS1.SR

This overlay module is the part of the control program that receives
the control input data from the "method" file and constructs the control
tables as described in sections 4 and 6.2. 1In addition, this module
performs the query/response operations associated with the PREAMBLE.DA
file and begins construction of the BDACS temporary files and the BDACS
data vector described in sections 3 and 5.

PHASE1.SR 1is composed of instructions interspersed with tables and
parameters. Logically, the module is divided into three main regions,
the "backbone," the subroutines, and the name/test strings. These
regions are described in detail in sections 7.1 to 7.4 and the assembly
language listing for PHAS1.SR is shown in appendix A, section A-2.

7.1 PHAS1.SR Backbone Code

The backbone code for PHAS1.SR is primarily a set of sequential
initialization tasks for the control program. The main tasks performed
are to

(a) reset MUX output buffer, MUX input mask table, and the LSB
input mask table.

(b) disable RDOS spooling on SLPT and $TTO; open the output
message unit ($TTO).

(c) open the RDOS-generated COM.CM file and retrieve the global
switches and "method" file name; set data vector and on-line printout
option flags (see sect. 6.1(f) and (h)); initialize MTO (if required).

20

(d) open the prescribed "method" file and extract program
control data as described in section 4; construct MUX input mask table,
LSB input mask table, and MUX output control table, as described in
section 6.2.

(e) create TEMPA.TM file; open TEMPA.TM and PREAMBLE.DA files;
read preamble gquery/statement 1lines and obtain operator response;
construct TEMPA.TM.

(f) transfer TEMPA.TM, the "method" file, ASSIGNA.DA,
ASSIGNB.DA, and ASSIGNC.DA to the magnetic-tape data vector (if "M"
option is in effect).

(g) check for proper sense-switch conditions.

During the process of receiving initialization parameters and
data, these quantities are checked for proper value limits. If an
out-of-bounds condition arises, control is transferred to an error
routine.

7.2 PHAS1.SR Subroutine Code

The subroutines which comprise part of the PHAS1.SR code are
accessed from the backbone code one or more times using the assembly
language JSR instruction. Typically, access to the subroutine is
indirect, with the subroutine starting address stored in an access word
near the JSR instruction. Moreover, depending on the subroutine, one or
more parameters may follow the JSR instruction. Return is made to the
instruction following the last parameter, unless errors or exceptional
conditions cause branching to other parts of the code. The following
paragraphs briefly describe the subroutines found in PHAS1.SR.

(a) TABLE reads the contents of the MUX or LSB-reported points
list in the "method"” file and constructs the MSKTB or LSBTB mask table
described in section 6.2(a) and (b). Three parameters are associated
with the subroutine: the first contains the beginning address of the
mask table, the second contains the maximum size of a valid list entry,
and the third contains offset within the table for the beginning of the
on-line printout masks. Entries within the list are assumed to begin at
a value of one. An exceptional return to the error routine occurs if an
entry in the list is out of bounds. Normal return occurs when a line
containing no digits is encountered in the 1list.

(b) CKNBR checks a binary number for valid bounds. The number
is contained in ACO. The lower bound is given as the first parameter
and the upper bound is given as the second parameter. An exceptional
return to the error routine occurs if an out-of-bounds condition occurs.

21

(c) XFERF transfers ASCII data from one file to another. The
two parameters that are required contain the byte pointers to the source
file name and the destination file name. The files are opened on RDOS
channels No. 3 and No. 4, the transfer is made on a line-by-line basis,
and the files are then <closed on both channels. No exceptional
condition is explicitly contained in this subroutine.

(d) XBLK transfers contents from a disk file to a magnetic-tape
file block by block (256 words per block). Similar to XFERF, the files
in XBLK are opened on RDOS channels No. 3 and No. 4, the transfer is
made, and the files are then closed on both channels.

(e) MVWUT transfers words to a destination storage area from
the utility buffer pointed to by the byte pointer UTBPT. Two parameters
are required, the first containing the address of the destination area,
and the second containing the number of words to be moved.

(f) FMMSK forms a mask (in ACl) and displacement value (in ACO)
corresponding to an initial binary value in ACO. In effect, the
subroutine divides ACO by 16 to form the displacement as the quotient.
The remainder is used to set the associated bit position in the mask
word contained in ACl (a remainder of O sets bit 1B15). All other bits
in the mask are reset.

(g) GTSPN reads an ASCII decimal integer text string and forms
the corresponding single-precision unsigned binary integer in ACO. The
byte pointer to the beginning of the text string is stored in ACl. The
subroutine searches the text string until the first decimal character is
encountered. Thereafter, each succeeding decimal character is folded
into the binary equivalent of the number. The first non-decimal
character terminates the scan, and upon exit from the subroutine AC2
contains the byte pointer to this terminating character. A jump is made
to the error routine whenever a binary number overflow occurs (that is,
a number greater than 65,383) or whenever no number is found within the
text string.

(h) GTDPN is similar to GTSPN except that a double-precision
unsigned binary integer is formed in ACO and ACl. An overflow occurs
whenever the number is greater than 4,294,967,295.

(i) GTSPR is similar to GTSPN except that if no number is found
in the text string, then exit from the subroutine is performed via the
first parameter.

(j) GTBYT retrieves a byte from a text string pointed to by a
byte pointer in AC2. The byte is returned in ACO (right-hand position),
and the byte pointer is left unchanged.

|8}

)

-

(k) STBYT stores a byte held in ACO (right-hand position) in
the text string pointed to by a byte pointer in AC2. Upon return from
the subroutine, the byte pointer is incremented by one count.

(1) CREAT creates a sequentially organized disk file by using
the system call .CREAT. The first parameter contains a name pointer to
the name of the file to be created. If the file already exists, the old
file is deleted and a new file is created; otherwise, all system errors
cause a branch to the system error routine.

(m) DELET deletes a file by usina the system call .DELET. The
first parameter contains a name pointer to the name of the file to be
deleted. If the file does not exist, no error is initiated; otherwise,
all system erxrrors cause a branch to the system error routine.

(n) OPFLE opens a file on an RDOS channel by using the system
call .OPEN. The first parameter contains a name pointer to the name of
the file to be opened. The second parameter contains the channel
number. Default characteristics for the file are assumed when the
subroutine is called. All system errors cause a branch to the system
error routine.

(o) CLFLE closes a file on an RDOS channel by using the system
call .CLOSE. The first parameter contains the channel number to be
closed. All system errors cause a branch to the system error routine.

(p) INMTA initializes the magnetic tape until MTO by using the
system call ,INIT. A partial initialization is assumed when the
subroutine is called, and the subroutine waits locally until the "device
ready" status 1is achieved. All system errors cause a branch to the
system error routine.

(@) WTLUT writes a line from the utility buffer (pointed to by
byte pointer UTBPT) to the file opened on channel No. 3. This
subroutine uses the system call .WRL. All system errors cause a branch
to the system error routine.

(r) TYLUT is similar to WTLUT except the channel on which the
system console output file ($TTO) is opened is No. 1.

(s) TYPMG is similar to WTLUT and TYLUT except the byte pointer
is given as the first parameter and points to a message text string.

(t) RDSUT reads sequentially a number of bytes from the file
opened on channel No. 4 to the utility buffer (pointed to by byte
pointer UTRBPT). The subroutine uses the system call .RDS, and the
number of bytes to be read is given as the first parameter. All system
errors cause a branch to the system error routine.

23

(u) RDIUT reads a line from the file opened on channel No. 4 to
the utility buffer (pointed to by byte pointer UTBPT). The subroutine
utilizes the system call .RDL, and upon successful return, AC2 contains
the byte pointer to the byte following the end of the line. All system
errors cause a branch to the system error routine.

(v) RDLUR is similar to RDLUT except that, wupon detecting an
end-of-file error condition, the subroutine exits via the first
parameter.

(w) RDLUA is similar to RDLUT except that the byte pointer is
located in AC2 and the channel number for the file is given as the first
parameter.

(x) SPLDS disables spooling on a device whose name is pointed
to by the byte pointer given in the first parameter. The subroutine
uses the system call .SPDA, and all system errors cause a branch to the
system error routine.

(y) OPMTA opens a magnetic tape file for free format I/O on an
RDOS channel by using the system call .MTOPD. The first parameter
contains a byte pointer to the name of the magnetic-tape file name, and
the second parameter contains the channel number on which the file is to
be opened. All system errors cause a branch to the system error
routine.

(z) MTAWT performs a magnetic-tape free format "write"
operation to the file on channel No. 3 by using the system call .MTDIO.
The data to be transferred are located in the buffer pointed to by BUFFR
and include a block of 256 words. All system error conditions except
"end-of-file" cause a branch to the system error routine.

(aa) MTASR is similar to MTAWT, except a free format "space
reverse" of one record is initiated.

(bb) MTAEF is similar to MTAWT, except a free format "write
end-of-file" is initiated.

(cc) RDBLK reads a disk block from the file opened on channel
No. 4 using the system call .RDB. The first parameter contains the
block number within the file which is to be read, and the second
parameter contains a branching address for an end-of-file error
condition. A single 256-word block is read from the file into the core
area pointed to by BUFFR. All system errors except the end-of-file
condition cause a branch to the system error routine.

24

o

7.3 PHAS1.SR Name/Text Strings and Buffers

The final region of PHASl. SR is composed of a set of packed
ASCII name and text strings pointed to by name or text byte pointers.
These pointers are assembly language "equates" that do not generate an
object code, but instead provide byte pointer values used in the
"backbone” and subroutine regions of PHAS1.SR. The name and text
strings are those RDOS file names and BDACS file names or messages used
in PHAS1.SR and are generated with assembly packing mode 1, the normal
packing mode for RDOS strings. Last, the final part of the name and
text string region ccntains the address pointer UTBPT to a 68-word
utility buffer area and the address pointer BUFFR to a 256-word block
I/0 buffer. These buffers are used for I/0 operations for several
subroutines described in section 7.2.

7.4 PHAS1.SR Error Routine

Several program error conditions can cause a branch to the
PHAS1.SR error routine. This routine determines the point in the
PHAS1.SR code where the error occurred and encodes an error code word
which 1is stored in ERCOD within the root binary segment (see
sect. 6.1(d)). The error code word contains in the left-hand byte the
overlay module number (one in the present case) in which the error
occurred and in the right-hand byte the displacement from the beginning
of an error table. This error table (pointed to by the symbol ERTBL)
contains as entries those addresses which immediately follow a JSR
instruction to the error routine. Within the routine, the error table
is scanned until a match is found between an error table entry and AC3,
the latter containing the return address of that JSR instruction from
which the routine was entered. Thus, the error is identified as a
displacement from the start of the error table. A corresponding
displacement from the start of a message pointer table in the overlay
module EMMSG.SR contains a table entry which points to the associated
error message. This message is subsequently printed on the system
output console (that is, $TTO).

At present, the 12 program errors detected for PHAS1.SR are

(a) ERR1--"MONITOR POINT UNDERFLOW"--the entry in the MUX input
list or LSB input list is less than unity.

(b) ERR2--"MONITOR POINT OVERFLOW"--the entry in the MUX input
list or LSB input list is greater than maximum value allowed (presently
128 and 128, respectively.

(c) ERR3~-"CONTROL TABLE OVERFLOW"--the number of control table
entries exceeded the maximum value allowed (presently 128).

25

(d) ERR4--"OUTPUT LIST NOT IN SEQUENTIAL ORDER"~--the entries in
| the control table are not monotonically increasing in time.

(e) ERR5--"OUTPUT LIST DELTA TIME OVERFLOW" --the time
difference between two adjacent control list entries is greater than the
maximum value allowed (32,767).

(f) ERR6--"CONTROL POINT UNDERFLOW"--the MUX output point in a
control table entry is less than the minimum value allowed (presently
s 257).

(g) ERR7--"CONTROL POINT OVERFLOW"--the MUX output point in a
control table entry is greater than the maximum value allowed (presently
318).

(h) ERR8--"SP-DP OVERFLOW"--the number in a text string
exceeded the single precision maximum (65,535) or the double precision
maximum (4,294,967,295) in subroutines GTSPN (or GTSPR, GTSPA) and GTDPN,
respectively.

(i) ERR9--"EOL, NO NUMBER FOUND"--no number was found in a text
string when subroutines GTSPN, GTSPA, or GTDPN are called. ’8

(j) ERR10--"SAMPLE RATE OUT OF BOUNDS"--the sample rate for the
MUX panels is either less than the minimum allowed value (presently 50)
or greater than the maximum allowed value (presently 4095).

(k) ERR11--"LOW SPEED BUFFER MONITOR POINT OUT OF BOUNDS"--the
point on the input MUX panel where the low-speed buffer signal is
monitored is 1less than the minimum value allowed (presently 1) or is
greater than the maximum value allowed (presently 16).

(1) ERR12--"HIGH SPEED BUFFER SAMPLE RATE OUT OF BOUNDS"=--the
value specified for the HSB sample rate is less than the minimum value
allowed (presently 500) or is greater than the maximum value allowed
(presently 10,000).

If the error is a result of a system error returned from one of the
RDOS system calls described in section 7.2, the error code ERCOD is set
to -1 as a system error flag. For either type of error (program or
system) return is made to the root binary section wvia ERRTN, as
described in section 6.1(c).

8. OVERLAY MODULE--PHAS2.SR

This overlay module is the portion of the control program that
initiates the start of data acquisition and supervises the operations of

the input and output MUX panels (multiplexers). This module has the
complicated task of retrieving data from the input MUX and storing the
data in a temporary buffer and, when the buffer is full, of transferring
the data to the disk. Concurrently, the module is monitoring the
real-time clock (RTC) and, at the preselected control times, updating
the output MUX buffer data. These data are periodically sent to the
output MUX panel to control the various BDACS operations during a test

run.

Since the input and output data flow can take place at very fast
rates (two input data words and one output data word can be transferred
within 50 us), the response of the standard RDOS interrupt service
routine 1is not adequate. Thus, the main portion of the PHAS2.SR code
contains a more streamlined interrupt service routine to handle the
multiplexer, disk, and RTC operations. 1In addition, PHAS2.SR contains
the test-run initiation and control loop code and data tables necessary
to "set up" the multiplexer I/0 controller. These three functions are
described in more detail in the following sections, and the assembly
language listing for PHAS2.SR is shown in appendix A, section A-3.

8.1 PHAS2.SR Multiplexer Controller Setup

The BDACS multiplexer controller contains the circuitry which
provides the interface between the central processing unit (CPU) and the
MUX input and output panels. Since this controller operates by direct
memory access (DMA) data transfer, it must be preprogrammed with the
appropriate core buffer address and word count for DMA. Furthermore,
the information which controls the operation of MUX input and output
panels must be supplied to the controller. These data are held in a
PHAS2.SR data table and are transferred from the CPU to the multiplexer
controller with the basic NOVA I/0 instruction repertoire, as described
below.

(a) DMUXA holds the input and output MUX panel starting
addresses and word counts. A four-bit address and a four-bit word count
are associated with each type of panel. The information is supplied to
the controller by a DOA instruction.

(b) DMUXB holds the DMA input starting address for the initial
DMA operation. The starting address points to a core buffer region in
which the input data are stored. The address is supplied to the
controller by a DOB instruction.

(c) DMUXC holds the highspeed word option bit (1Bl) and the
sampling rate for the controller (in bits 1B4-1Bl15). Also, for proper
transfer of the data, 1BO flag bit should be "set." The data are
supplied to the controller by a DOC instruction.

(d) DMUXD contains the (negative) word count for the initial
DMA operation. As noted above, this word count in conjunction with the
starting address (DMUXB) controls the storing of input data in the core
buffer. When the count is decremented to zero, a MUX interrupt occurs.
In contrast to (c), a 1BO flag bit should be "reset" for proper transfer
of the data by a DOC instruction.

(e) DMUXE contains the (running) starting address for the
remaining DMA operations. It typically contains a core address which is
one 1less than that specified (in DMUXB). It is wused to reset the
running value of the address register in the controller following a
MUX interrupt and overflow. Again, the data are supplied with a DOB
instruction.

(f) DMUXF contains the (running) negative word count for the
remaining DMA operations. It typically contains a count one greater (in
absolute magnitude) than that specified in DMUXD. It is used to reset
the running value of the word-count register in the controller following
a MUX interrupt and overflow. Again, the data are supplied with a DOC
instruction with 1BO "reset."

Two I/0 instruction special functions should also be supplied
to the controller following the general reset of the controller. First,
the START function may be supplied with any of the instructions given
above and causes a reset of the DONE state and a set of the BUSY state
in the controller. Second, the PULSE function is supplied to the
controller immediately upon receipt of the BDACS operators signal to
begin the test run (via the CPU console sense switch 1B0) and causes the
controller to commence I/0O operations.

8.2 PHAS2.SR Test-Run Initiation and Control Loop

The sequential tasks performed in PHAS2.SR are

(a) wait for all TTY and disk operations to end; reset the
multiplexer controller, disk, and RTC,

(b) save the RDOS interrupt service routine pointer and enable
the BDACS data acquisition interrupt service routine pointer and mask,

(c) position the disk at the beginning of the BDACS data
storage file (see sect. 3.6),

(d) set up the multiplexer controller as described in
section 8.1; set the RTC for 1 ms operation, and

B e o

(e) send a "ready" message to the BDACS operation on the TTY
control unit; wait for the operator to initiate the test run; then start
the RTC and MUX and branch to the control loop.

These tasks are performed within the control loop:

(a) Check the remaining time count of the current table entry
(see sect. 6.2(b)); if the count is 2zero, update the appropriate MUX
output buffer word or set the appropriate special flag (for example,
HLDFG is set when the disk storage holdoff time is complete; ENDFG is
set when the end of data-acquisition time is complete). Move to the
next table entry.

(b) Check the RTC counter (RTCCT); if the count is nonzero,
update the remaining time count for the current control table entry.
Loop back to (a).

When data acquisition is ended, the data input buffer currently
being filled is completed and transferred to the disk. The final tasks
involve a general reset of the multiplexer controller, disk, and RTC and
a replacement of the previously saved RDOS interrupt service routine.

8.3 PHAS2.SR Interrupt Service Routine

The special BDACS interrupt service routine for PHAS2.SR
processes interrupts generated by either the multiplexer controller, the
disk, or the RTC. This routine uses only accumulators ACO, ACl, and
CARRY; thus, only these quantities need to be stored when entering the
routine. The method by which each type of interrupt is handled is

(a) RTC interrupt is very simply handled by restarting the
clock with the NIOS instruction and incrementing the RTC counter
(RTCCT) . Return is then made to the interrupted program.

(b) Disk interrupt first obtains the disk status word and
checks for any error condition. The status word also determines which
of two possible disk conditions initiated the interrupt. FPirst, if a
disk SEEK to a new track has just been completed, the service routine
determines if a core buffer is full and the data in the buffer need to
be transferred. If so, the transfer (disk WRITE) operation is
initiated. The disk flag (DKPFG) is updated (for example,
DKPFG=0 "idle," DKPFG=-1 "seeking," DKPFG=+1 "writes deferred,"
DKPFG=MUXFG "writing"”), and return is made to the interrupted program.
Second, if a disk WRITE operation has just been completed, the block
count BLKCT (see sect. 6.1(j)) is decremented; the end of acquisition
flag ENDFG is checked, and final closeout is made if ENDFG has been set.

S

The interrupt service routine then determines if a new disk track is
required. If so, the disk SEEK is initiated, the disk flag described
above 1is wupdated, and return is made to the interrupted program (or to
the delayed WRITE initiating section, if required).

(c) MUX interrupt first obtains the MUX status word and
restarts the controller. The status word is stored as the updated MUX
flag (MUXFG) and compared to the previous status word for possible
errors. Next, the disk storage holdoff flag (HLDFG) is checked. 1If
reset, buffer transfer operations to the disk are inhibited and the
holdoff counter (HLDCT, see sect. 6.1(k)) is incremented. If set, the
disk flag (DKPFG, described above) is checked for "idle." 1If the disk
is idle, the disk WRITE command is initiated, the disk flag is updated,
and return is made to the interrupted program. If the disk is not idle,
the disk flag is placed in "write deferred" and return is made to the
interrupted program.

8.4 PHAS2.SR Error Routine

The error routine operation for PHAS2.SR is almost identical to
that for PHAS1.SR (see sect. 7.4). In the present case, no RDOS system
calls (or errors) occur. However, four program errors are monitored at
present as described below.

(a) ERR1--"DISK ERROR"--1B15 of the disk status word was set.

(b) ERR2--"DISK OVERFLOW"--the maximum block transfer count was
reached. Presently, this count is 2400 256-word disk blocks (that is,
100 complete tracks on the disk). This is a recoverable error in which
present data acquisition stops, but BDACS control program processing of
the data is initiated.

(c) ERR3--"MULTTIPLEXER ERROR"--two consecutive multiplexer
status words were identical.

(d) ERR4-"INPUT BUFFER OVERRUN"--two adjacent "deferred write"
requests were attempted.

9. OVERLAY MODULE--PHAS3.SR

This overlay module contains the part of the BDACS control programs
that supervises the retrieval and storage of the HSB data gathered
during a test run. These data are presented to the high-speed word of
the input multiplexer panel on an alternate set of 16 parallel data
lines, after first being transmitted serially from the remote HSB
storage unit to the HSB receiver unit adjacent to the multiplexer
panels. An electronic switch controlled by point No. 319 of the

30

multiplexer output panel selects this alternate set of input data lines
when the point on the output panel is activated or "set." Alternatively,
the switch selects the normal set of input data lines when the point on
the output panel is deactivated or "reset." Moreover, control of the
serial transmission of each HSB data word is provided by point No. 320
of the multiplexer output panel. In particular, a command is initiated
to transfer a new data word when the point on the output panel changes
from "reset" to ‘"set." Following this command, a delay of 4 ms is
required to allow the data to be transferred and recombined at the HSB
receiver circuits. Thus, PHAS3.SR must correctly control the states of
both multiplexer output points No. 319 and 320.

PHAS3.SR is constructed along the same principles as PHAS2.SR
described in section 8. 1In particular, a special-purpose interrupt
service routine is used to control the multiplexer controller operations
during the HSB data retrieval and storage. Following data retrieval,
the standard RDOS interrupt service routine is reinstated. The stored
HSB data are then transferred to the temporary disk data file TEMPB.TM
described in section 3.8. Furthermore, if the final data vector is to
be written on magnetic tape, the stored HSB data are also transferred to
MTO:5, as described in section 5.1 (f).

As with its predecessors, PHAS3.SR is composed of three parts, the
main (backbone) code, the subroutines (including the interrupt service
routine), and the text strings and buffers. The main features of these
units are described below, and the assembly language listing for
PHAS3.SR is shown in appendix A, section A-4.

9.1 PHAS3.SR Backbone Code

The PHAS3.SR backbone code includes both instructions and
tables of data used during the execution of the instructions, of
particular importance are the parameters used to initiate and control
the operation of the multiplexer controller.

(a) DMUXA = 000060 initiates the controller to accept one word
from the MUX input panel at MUX address corresponding to the high-speed
word. It is this word which has the alternate set of data lines to the
HSB receiver. At the same time, the last word on the MUX output panel
is activated. This word contains output control points No. 319 and 320
used to control HSB retrieval operations.

(b) DMUXB = INPUT-1 contains the beginning of a two-word input
buffer where HSB data are initially deposited.

(c) DMUXC = 140144 allows the multiplexer to operate in the
LS/HS mode at a 1448-us sample time.

31

(d) DMUXD = 077776 contains the (negative) number of input
words (-2) received before a multiplexer controller interrupt occurs.

(e) DMUXE = INPUT-2 contains the running value of (b).
(f) DMUXF = 077775 contains the running value of (d).

(g) DMUXG = 147777 contains the alternate data to (c). For the
present value, a 7777_-us sample time is sufficient for the serial data
transmission from the ESB transmitter to the HSB receiver.

(h) CNTLL = 137777 contains the control word~pattern setting
control point No. 319 "on" and point No. 320 "off."

(i) CNTLH = 037777 contains the alternate control word pattern
to (h). The present value allows the setting of both point No. 319 "on"
and point No. 320 "on."

(j) INPUT represents the address of the two-word input buffer
area for DMA storage of the incoming HSB data.

The sequential tasks performed by the PHAS3.SR backbone code
are summarized below.

(a) Reset the HSB output buffer pointed to by HSBUF and the MUX
output buffer pointed to by MUXOB.

(b) wait for all TTY and disk operations to end, save the RDOS
interrupt service routine pointer and mask, and install the PHAS3.SR
interrupt service routine pointer and mask.

(c) Initialize the multiplexer controller.

(d) Ssend an "HS Buffer Retrieval" message to the TTY console.

(e) Start the multiplexer controller, retrieve the HSB data,
and store the data in the output buffer area pointed to by HSBUF.
Continue operations until the buffer count (presently 2048 words)
reaches zero.

(f) Transfer the buffer to disk file TEMPB.T™ and, if the
magnetic-tape option "M" is in effect, transfer the buffer to the tape
file MTO:S5.

9.2 PHAS3.SR Subroutine Code

Most of the subroutines encountered in PHAS3.SR have
essentially the same structure as those subroutines described in section

32

v

[SERa

7.2 for PHAS1.SR. In particular, the following subroutines are found in
PHAS3.SR.

(a) CRRFL creates a randomly organized disk file by using the
system call .CRAND. The first parameter contains a name pointer to the
name of the file to be created. 1If the file already exists, the old
file is deleted and a new file is created; otherwise, all system errors
cause a branch to the system error routine.

(b) DELET deletes a file by using the system call .DELET. It
is identical to subroutine DELET found in PHAS1.SR (see sect. 7.2(m)).

(c) OPFLE opens a file on an RDOS channel by using the system
call .OPEN. It is identical to subroutine OPFLE found in PHAS1.SR (see
sect. 7.2(n)).

(d) CLFLE closes a file on an RDOS channel by using the system
call .CLOSE. It is identical to subroutine CLFLE found in PHAS1.SR (see
sect. 7.2(0)).

(e) OPMTA opens a magnetic-tape file for free format I/0 on an
RDOS channel by using the system call .MTOPD. It is identical to OPMTA
found in PHAS1.SR (see sect. 7.2(y)).

(f) MTAWT, MTASR, and MTAEF provide free format magnetic-tape
operations using the system call .MTDIO. They are identical to MTAWT,
MTASR, and MTAEF found in PHAS1.SR (see sect. 7.2(z), (aa), (bb)).

(g) RDBLK reads a disk block from a file opened on channel
No. 4 using the system call .RDB. It is identical to the subroutine
RDBLK found in PHAS1.SR (see sect. 7.2(cc)).

(h) TMPOT writes a series of disk blocks to a file opened on
channel No. 3 using the system call WRB. The beginning of the first
block corresponds to the beginning of the HSB output buffer pointed to
by HSBUF. The number of blocks to be written is given by BLKCT
(presently set to eight blocks for the HSB output buffer, corresponding
to 2048 words in the buffer). All system errors cause a branch to the
system error routine.

(i) INTSR contains the interrupt service routine for PHAS3.SR.
In this routine, only the multiplexer controller is enabled for
interrupts. When a multiplexer interrupt occurs, the controller is
immediately restarted (BUSY is '"set" and DONE is "cleared"), and the
controller status is read and checked. Depending on the status word

33

flag 1BO, the data previously stored in the input buffer (INPUT) are

~valid or invalid. Thus, with 1BO set, the data word is invalid and is

not stored in the HSB output buffer. On the other hand, with 1BO reset,
the data word is valid and is stored. 1In either case, the alternate
control data word is updated in the output MUX buffer, and the alternate
sample time word is transmitted to the controller. A normal exit is
made from the interrupt service routine, except after the storage of
last data word of the HSB output buffer.

9.3 PHAS3.SR Error Routine

The error routine for PHAS3.SR 1is identical to that for

PHAS1.SR (see sect. 7.4). For the present case, the error code word
generated and stored in ERCOD has overlay module No. 3 coded in the
left-hand byte. At present, only a single program error is detected by
PHAS3.SR.

ERR1--"MULTIPLEXER ERROR"--two consecutive multiplexer words
were identical.

10. OVERLAY MODULE--PHAS4.SR

This overlay module contains the part of the control program that
performs a preliminary data reduction of the MUX and LSB data gathered
and stored during the PHAS2.SR operation. These raw data were acquired
(sampled) on a regular periodic basis as defined by the sampling rate
specified by the BDACS operator (see sect. 4). As a consequence of this
periodic sampling, the data signals may have been monitored many times
in the same binary state, and much of the sampled data may be redundant.
Therefore, the main task in PHAS4.SR 1is to scan the collected data,
searching for changes in state for the monitored signals (i.e., changes
from "0" to "1" or from "1" to "0"). When a state change is detected
for a signal, the signal point number, the new state, and the time of
the state change are all written into the BDACS data vector as a reduced
data entry. This data reduction operation is applied only to those
signals monitored with the MUX input panels and the LSB unit. Even
then, only those signals which were previously specified by the BDACS
operator are enabled for data reduction (see sect. 4). The HSB raw data
are retrieved and stored in the data vector without any reduction, as
described in section 9.

During ata reduction, PHAS4.SR also supports an error detection and
correction task. This task is performed by default unless the operator
specifically disables error detection and correction by setting sense
switch 1B1 on the CPU panel of the BDACS central processor unit. Error
detection is achieved by a hardware strapping option which codes an
address into each word of the input MUX panels. 1In particular, the

34

=

high~speed word of the input panel has 1Bl6 strapped "on" while the
remaining low-speed words all have 1B16 strapped "off." Furthermore,
bits 1B13 through 1B15 of the seven low-~speed words are strapped with a
binary number pattern from one to seven. This addressing scheme,
although not the most efficient in preserving data positions on the
input panels, retains the most data positions for the important
high-speed word. When the data words are being reduced, the address of

the word is checked for proper monitoring and storage seguence. TE
incorrect sequencing is detected, an error flag is set, and, if
possible, a resequencing correction to the computed sample t: is made.
However, if the error appears too severe, data reduction is t¢ minated,

and a branch to the error routine is made.

As noted above, setting sense switch 1Bl disables error detection
and correction. For this <case, all bits of the data words are
considered true data and not addresses. Data reduction 1is performed
under the assumption that proper sequencing is maintained.

As with the previous overlay modules, PHAS4.SR may be logically
separated into its backbone code, its subroutine code, and its text
string and buffer area. Each of these regions is described more fully
in the following paragraphs. The assembly language listing for PHAS4.SR
is shown in appendix A, section A-5.

10.1 PHAS4.SR Backbone Code

The sequential tasks performed by PHAS4.SR are given in the
following list.

(a) Clear the reduced data output buffer pointed to by the
parameter MTABF.

(b) Open the raw data file BDACS.DA on channel No. 4. If the
magnetic-tape "M" option is in effect, open magnetic-tape file MTO:6 on
channel No. 3. Otherwise, create a random file TEMPC.TM, and open the
file on channel No. 3.

(c) Determine the initial sequence time at which raw data were
stored by using the data storage holdoff count HLDCT (see sect. 6.1 (k))
and the sample rate SMPRT (see sect. 6.1(g)). Store the initial time in
the buffer pointed to by TIMER.

(d) Determine the initial value of the previous low-speed word
offset on the input MUX panels by using the data storage holdoff count
HLDCT. The word offset is stored as PRADD.

(e) Read the sense switches. Branch to address LO if 1Bl is
"set" (i.e., if error detection and correction are suppressed);
otherwise, branch to address LL1.

{
|

(f) Read and reduce the MUX and LSB raw data. Store reduced
data entries in the buffer area pointed to by MTABF. When the buffer is
full, transfer the buffer to the file opened on channel No. 3 (i.e.,
either MTO:6 if the magnetic tape is enabled, or TEMPC.TM temporary disk
file). Continue until the number of data blocks specified by BLKCT (see
sect. 6.1(j)) has been reduced.

(g) Close the files previously opened on channels No. 3 and 4,
and return to the root segment program.

10.2 PHAS4.SR Subroutine Code

Many of the subroutines used in PHAS4.SR--especially those
associated with file I/O which wuse RDOS system calls--are identical to
those already described in sections 7 and 9 and will not be repeated
here. Other subroutines unique to PHAS4.SR are described below.

(a) INTMR increments the present value of the sequence time
(pointed to by TIMER). The incremental value is given by the sample
rate SMPRT. Typically, the subroutine is called from the backbone code
or from the subroutine RDBWD following the proper reduction of a
high-speed word/low-speed word pair. This conforms to the actual
sampling sequence which was performed in the data acquisition. Thus,
the contents of TIMER contain the elapsed time from start of data
acquisition to the time the datum (currently being reduced) was
monitored. In addition, INTMR updates the low-speed buffer point number
(LSPNT), the low-speed buffer word mask (LSWMK), and the low-speed
buffer word offset (LSOFF). Again, in the actual acquisition, LSB data
were serially transmitted with one data bit every sample cycle.

(b) RDBWD reduces the data word entered in accumulator ACO.
Upon entry to the subroutine, accumulator AC2 contains the offset from
the start of the MUX reported points mask table associated with the
particular word. The mask table, located in the root binary segment, is
pointed to by MSKTB and is described in section 6.2(a). The bit
positions of the data word are first checked against the corresponding
positions in the mask table to determine which points are enabled for
data reduction. Those enabled points are then checked against the
previous state values to determine if a state change occurred. Only if
a state change occurs are the point number, the new state, and the
current sequence time (given by the value of TIMER) transferred to the
reduced data output buffer MTABF. Reduced data transferred to MTABF
consist of three-word entries. The first word contains the point
number, the state, the MUX/LSB flag, and the error recovery flag. The
point number is in the RH position and the current state "0" or "1" |is
in bit position 1BO. If the datum is an LSB signal, bit position 1Bl is
"1l"; otherwise, 1Bl is "O" for an input MUX signal. If a sequence error
was detected, bit position 1B7 is "1." The second and third words of

the output buffer entry contain the DP binary value of the current
sequence time. The output buffer can hold 256 entries (768 words).
When the buffer becomes full, the information is transferred to the file
opened on channel No. 3 (either MTO:6 or TEMPC.TM), and the buffer is
reset.

(c) LSBRD reduces data associated with the LSB. The subroutine
is called from RDBWD whenever the LSB has bheen enabled for monitoring
(LSMON is nonzero, see sect. 6.1(i)), and whenever the high-speed word
of the input MUX panel is being reduced. The latter requirement is
tested since the LSB data are received only on an input point of the
high-speed word. Within the subroutine, the present LSB point number
contained in LSPNT is checked against the associated bit position of the
LSB mask table. The mask table, located in the root binary segment, is
pointed to by LSBTB and is described in section 6.2(b). Those LSB point
numbers which are enabled for data reduction are then checked against
the previous state value. If a state change has occurred, the new state
and the LSB point number (with 1Bl set to "1") is returned to the
calling program (i.e., RDBWD).

(d) GTBWD controls the retrieval of the raw data from the
BDACS.DA file using the system call .RDB. A complete data block of 3072
words is read to the data input buffer pointed to by BUFFR. The
individual data words are then returned to the calling program in
accumulator ACO and the buffer pointer is updated each time the
subroutine is called. When all data have been retrieved (as determined
by the data block count BLKCT), a branch is made to address DONE to
complete PHAS4.SR operations. As an added option within this
subroutine, the sense switches on the CPU panel are read following the
retrieval of the current data word. 1If sense switch 1Bl5 is "set," the
raw data word is printed to the TTY console. Thus, the BDACS operator
may selectively monitor the raw data which were acquired during a test
run. This option may be useful for tracing possible error conditions.

(e) DMPWD generates the text string for the printout of the
data word just described. The printout text consists of a set of 16
ASCII binary numbers corresponding to the 16 bit positions of the data
word. The text string is stored in a buffer pointed to by byte pointer
DPMsG.

10.3 PHAS4.SR Name/Text Strings and Buffers

The PHAS4.SR name and text strings are constructed in a manner
similar to that described in section 7.3. The buffer areas used by
PHAS4.SR are pointed to by the following parameters.

(a) MTABF is 768 words long and is wused to hold the reduced
data output entries (256 max) before they are transferred to the BDACS
data vector.

37

e

(b) BUFFR is 3072 words 1long and is used to hold a raw data
block previously written in the BDACS.DA file during data acquisition.

10.4 PHAS4.SR Error Routine

The error routine for PHAS4.SR operates identically to that for
PHAS1.SR (see sect. 7.4). At present, four program errors are monitored
as described below.

(a) ERR1--"CURRENT TIME OVERFLOW"--a double-precision overflow
occurred for the number held in the current sequence time TIMER during
initial timer setup.

—

(b) ERR2--"CURRENT TIME OVERFLOW"--a double-precision overflow
' occurred for the number held in the current sequence time TIMER during
sequential updating.

1 (c) ERR3--"MAJOR SEQUENCE SLIP OCCURRED"--a noncorrectable
' sequence error was encountered. An indeterminate number of seguence
step omissions occurred.

(d) ERR4--"MAX SEQUENCE ERROR COUNT EXCEEDED"--the maximum
permissible number of sequence errors was exceeded (present errors set
at 100).

11. OVERLAY MODULE--PHAS5.SR

This overlay module contains the part of the control program that
j performs the query/response operations associated with the POSTSCRIPT.DA
file and completes construction of the BDACS data vector. In addition,
PHAS5.SR provides the on-line data printout, if this printout is
required.

As with the preceding overlay modules, PHASS.SR is logically divided
into three main regions: the "backbone" code, the subroutines, and the
name/text strings and buffer area. These regions are described in
detail in the following paragraphs, and the assembly language 1listing
for PHASS5.SR is shown in appendix A, section A-6.

11.1 PHASS.SR Backbone Code

The PHAS5.SR backbone code is primarily a set of sequential
tasks designed to complete the BDACS data vector and generate the BDACS .
on-line printout. The main tasks are given in the following list.

(a) Open the console input file ($TTI) on channel No. 2; create
the temporary file TEMPD.TM and open this file on channel No. 3.

|

(b) Open the POSTSCRIPT.DA file on channel No. 4; read the ’I
postscript query/statement lines and obtain the BDACS operator response;
constxruct TEMPD.TM.

(c) Transfer TEMPD.TM to the magnetic-tape file MTO:7 (if the
"m" option is in effect). Close the files on channels No. 2, 3, and 4.

e

(d) Open the on-line printout file on channel No. 2 (STTO if
"T" option is in effect, or SLPT if "L" option is in effect).

(e) Print the BDACS on-line "header" information; print the
preamble and postscript information (obtained from TEMPA.TM and
TEMPD.TM) ; print the "method" file which was employed for the current
* test run. See figures 3 and 4 for an example of these printouts.

(f) If the HSB unit was enabled, print the HSB assignment list
(obtained from ASSIGNA.DA, see sect. 33). Print the HSB data obtained
during the current test run (obtained from TEMPB.TM). See figure 5 for
an example of these printouts.

(g) If either or both of the input MUX panels or the LSB unit
contain signals which have been enabled for on-line printout, then open

‘ the assignment list files ASSIGNB.DA for the MUX signals and ASSIGNC.DA

| 5 for the LSB signals on channels No. 4 and 5, respectively. Open the
reduced data file on channel No. 3 (either MT0:6, if the "M" option is

in effect, or TEMPC.TM).

(h) Read the entries in the reduced data file; construct a
] printout 1line consisting of the entry data and the signal mnemonic
] obtained from the appropriate assignment list file; continue processing

the signals enabled for on-line printout until all data entries have
been scanned. See figure 6 for an example of these printout lines.

(1) Close the files on channels No. '1l, 2, 3, 4, and 5 and
return to the root binary segment.

BDACS ONLINE PRINTOUT ’

PREAMBLE & POSTSCRIPT FILES

- PREAMBLE FILE

- |

TEST IDENTIFICATION: SAMPLE RUN

r »SITE: PICKENS, MISS.
DATE: 12 JULY 76

E | TIME: 1435

BDACS STATUS: OK
ESSWL STATUS: OK
TFMPS STRTUS: OK
HSB USED? ¥ ' ¥
1.SB USED? V¥

TRIGGER REGUIRED? V¥ @ EMT#2PTAA«TPA3
TAFE OUTPUT REQUIRED? Y

ONLIME PRINTOUT REQUIRED? ¥

ASSIGN FILES UPDRTED? V¥

COMMENTS: NONE
-

- END

- POSTSCRIPT FILE
L
TEMPS PULSEW 326
TIME 1437
BOACS STATUS: OK
ESS#L STATUS: UPSET ;

TEMPS STATUS: OK
COMMENTS: MEMORY ERROR; SWITCH 0S FOR 2 MIN

L] END

Figure 3. BDACS on-~line printout of the PREAMBLE.DA and
POSTSCRIPT.DA files (partial).

METHOD FILE ’
IDENTIFICATION: TEST METHOD
SHMPLE RATE CIN USEC): 100

| DURATION CIN MSEC): 10000
|
f HS BUFFER: 5500%

- LS BUFFER: 16

KEFORTED POINTS TARBLE
1024 duSaEn 7B O 10011 w12% 1341 4415w1 6w

L7% 18w 19H20*2L 2223424226427 428429 IOWT L3I 2%
I343443BHIEHI7HIERIIwAORA 1 #4244 3G Shd GG T G

j 49+S0+S51#52+ 534 54uSSuTES 7 S8+ STIHEANELwE24E 3w S4n
ESHEARETHEGREIHTORTANT2W IR 70T ST ER 7 74T ERTIHEI® '
B14E2+EI#BI+EIHBEHE7wSEHBIIO*ITL#I24GI T4 GTHIEw
97%984 29+ 100+ 101+102+103+104# 105+ 106+ 107+10E+109%110%111%112%
113%124%115%116%117+11E+119%120+121%122%1 2312412341 264127+126%
END OF THRBLE
LS BUFFER TRELE r
A#243HG#SHER7wEHIw1ON1L w1211 41T w164
A7 LERLIH2O* LN 2N 242 THR2ENTH2BH2IMIOHIL#32%w
334435436 w374IBHIGRA0*GL*IZwd 3HAGH4SHGEHG TG B
49+SO*SLS245I4SGHESHTEHS 7 SERSIHEIRELHE2HEINE4w
ESH+EENRS/HEBHESHPERTLNTZHTINT 4T SHTERT 7P ERTIHEDW
BLHEZHGI#EI*BEHEEHTT7HECHBIHIOwTLnIZNIIHI 4w GG
97 +IE+9FH10G+101%102+103+104+105*106+107*108%109+110+111+112%
113%214# 1154126+ 117%216%219%120% 121 #2221 23w 124#125w126+127%120%
END OF THELE
STHTE SIGNAL TIME

1] e
i 257 (]

Figure 4. BDACS on-line printout of the method file.

41

1 258 a i
<59 Q
- 263 Q
| . 2
L p
- LI
{ 1 5 o
p! 259 i
3 Q8 4088
3 i 391 -
: i 281 Sk
E | b 302 &l ’
L So3 7ecp
i 1 3064 EJG
i 3es Sooe
END
A e
] HSEB RASSI T AT
BITe MNEMONIC NAME
L HSB BIT #1
2 HSEB BIT w2
3 BIT #3
4 HSB BIT #4
S HEB BIT #3
6 HSEE BIT %5
7 HSB EBIT «7
8 HSB BIT #8
9 H:EB BIY #9

3 18 HSE BIT %310

13 HSp BIT #13
i4 HSB BIT 414
15 HSe BIT #19
16 HSB BIT #is

Figure 5. BDACS on-~line printout f he HSRB a ignmen

4 list and data (partial).

{3
HSB ASSIGNMENT & .DRTA
TIMECNS) ©1 02 03 04 05 ©6 @7 09 09 10 11 12 13 14 1S5 16 '
‘ ¢ 3% 9% 8 9 @ & 1.8 0 B 2. 4.4
5582 1 ¢ . 1+ 2 o .9 8 1 9.9 8. . © 0 1 3
11686 1 @8 © 1 ©0 6 @ @& 1 2 © © e ©o 1 i
26hen 4 &8 1A @ 8.6 @6 T 88 e g &1 -
weoge 1@ -8 4 0 © B B 1 6. 8 B . 8 8 1 1
3 27500 4 8 © 4 € © © @& 1 © € © 6 °o 3
- T 2 49 @ 1 9 8.8 B 12 0 9. 8 B 12
35560, £ . 8 0 4 9 @ 0 & 14 & 0 2. & 3 1
1 € @ 1) 8 8 @ 1 8 O © 8 © 1 1
48% 1 90 @ 1 0 e e & 2 8 ./ 0. a6 & 1 i
| 1 3 4 8 9.0 8 4 6 @ 6 @ B 1 % ’
£0%¢ $r ® 8 2 ¢ & 62 8 a9 0 B8 I I
E 66600 4 B © 1 6 @ W® @ 1 ¢ 0 6 @ o 1 i1
] aS8Y 14-86 8 £ 9 @ € B 4 ¢ 6 08 8 1 1
7re i ¢ ' 4 & 8 .9 & T 06 ° 8 0 ¢ 1 3
82560 41 @ © 1 © @ © 8 41 @ © O B ¢ 1 'y
£ £ 1 @ @ 4 9 @ ©®& 9 1 © © ¢
9 i B2 I B 8 31 9 6 @ 5] }
9 F % 6,8 1 e-@g°'@6& @ 2 @ € £ i 1 I
|
104% T & £ 4 g &8 @ I 0 b 4 & e 1 1 |
] r |
i p & & (5[5 1. ¢ 9 % v .6 ¥ e 1 e 0.8 e 414 1
t WIS 2 & @ T 8 @ 0 D 1 0. % e 8 & 1
12100 1 8 9 & @ 0 6 & 31 9o ¢ (&} !
12<5¢ i € € SO (R - S - S a i @ 9 i pl
43¢ ¥ 1 e 8 31 & 9 @8 3 £ £ « i
£ X © @ £ © - S - R S - < & € b3 b
(14300k i & o 412 © 0 @ 1 © © ¢ £ e 4 i

o &0 &6 &5 ©

<
o
»

Q
)
o
o
e
)

g
&
N
(]
©
e
® 6 8 © ® ® & 0 ©
o
Q
-
Lo
v

1815¢0 4 @ © 1 e @ 1 e 0 ¢ @ & 1 1
167060 41 © € 1 ¢ 9 0 4 6 & @ © © 1
192502 1 © © 14 @ @ 0 2 0 6 @ @ @ 41 1
! 166003 1 @ © 12 @0 © © P 1 © © @ ®© € 1 1
Figure 5. BDACS on-line printout f the HSB assignment

list and data (partial (Cont

et e et

TIMECUS)

1600
1700

1209

STATE

»

»
L e S T T N S T N TN T T T ST TSN ~ S S S S T * S T Y T I N

Figure 6.

SIGNAL

25M
i
46M
2L
SEM
61M
ézm
3L
7oM
4L
93M
9SM
SL
110M

111M

sL
1oL
11L
2L
i3L
14l
isSe
i6L
1i7L
isL
isL

MNEMONIC

MUX
LS8
MUX
LsB
MUX
MUX
MUX
Lee
MUX
LS8
MUX
MUX
Ls8
MUX
MUX
Lss
MUX
MUX
MUX
LS8
Ls8
LS8
Ls8
LsB
LsB
LsB
Lse
Lss
Lse
LsB
Lse
Lse

CHANNEL
CHAMNNEL
CHANNEL
CHANNEL
CHANMEL
CHAMNMNEL
CHANMEL
CHRMNNEL
CHANMNEL
CHANMEL
CHANNEL
CHANMEL
CHANNEL
CHANNEL
CHANMEL
CHAMNNEL
CHAMNNEL
CHAMNMNEL
CHANMEL
CHANMEL
CHANMEL
CHANMEL
CHANMEL
CHANNEL
CHANMNEL
CHANMEL
CHANNEL
CHANNEL
CHANNEL
CHAMNMEL
CHANNEL

CHANNEL

REDUCED MUX & LSB DATA

#29

(7%

w46

"2

#s6

w61

2

"3

s ‘ '
#a

#93
#sS
*s
#110
#1114
w6
125
#126
w127
"7
“s
"9
#10
w11
w12
w13
w14
s
w16
(784
w1
#19

BDACS on-line printout of MUX and LSB data lines
(partial).

44

REDUCED MUX & LSB DARATA

1500 i 20L LEB CHANNEL #20Q
2000 1 21l LSB CHRNNEL %21
2100 1 22L LSB CHANNEL #22
2200 1 230 LSB CHANMNEL #23
2369 i 24L LSE CHANNEL #24
2400 1 a5 LSE CHANNEL %23
2500 1 26L LSB CHARNMEL #26
2600 1 27L LSB CHANNEL #27
2700 i ‘28L LSE CHRNMEL %28
2649 1 asL LSB CHANNEL #29
2900 1 3oL LSB CHANNEL #3090
3000 1 31L LSB CHANNEL #31
3100 1 32L LSB CHANNEL #32
32640 i 330 LSB CHRANMEL #33
33¢0 1 34L LSB CHANNEL #34
3400 i 35L LSB CHANMNEL #3S
3560 1 36L LSB CHANNEL #36
3€00 i 37L LSB CHANNEL #3?7
3700 s 38L LSE CHANNEL #3R

Figure 6. BDACS on-line printout of MUX and LSB data lines
(partial) (Cont'd).

11.2 PHASS5.SR Subroutine Code

Many of the subroutines used in PHAS5.SR, especially those
associated with file I/O which use RDOS system calls, are identical to
those already described in sections 7 and 9 and will not be repeated
here. Other subroutines unique to PHASS5.SR are described below.

(a) GTDAT retrieves the reduced data entries for the MUX or LSB
data previously stored during PHAS4.SR operations. Initially, the
subroutine reads an entire block of 256 data entries into a buffer area
pointed to by BUFFR. As succeeding subroutine calls are made, the
current entry pointer is updated until all entries in the buffer have
been scanned. The buffer is then refilled with new entries and the
scanning is continued. Upon exit from the subroutine accumulator AC2
contains the pointer to the current entry being processed.

(b) OPEN retrieves an assignment list entry from from one of
the assignment files ASSIGNA.DA, ASSIGNB.DA, or ASSIGNC.DA. The first
parameter for the subroutine call contains the point number of the

14 ! o Lgnme T mne text 1S X¢€ ne € C) 6
pointer t buffer cor part of t
t 1le 1 articular file A,]
re nt buffer are pol { by ¥ T . a3
V ese bulrrey 1Y€ rds lor ana, =
S I I t X bei word 1

¢ sk~b 1 X
+ v v ¥ L vy
3 - '
Y
% b Bha 1 y
- A 14 ﬁ‘ﬂ\
1r
L Ty i ce
e pointer
RIN(P
- - : "l".l kx 5
a +] 2 oYX
) < ¥ ¢
..... sUYC lne
) PRI
2 v i+ 't
~1i printout
e "
Ul acine., 111€
+ PR
‘ rinted.

quire for printin

scond parameter top-of-form o
performed before 30 lines per

rinted be fore an operatior

e (LNCNT) and

maintains a
i when a
)rinted. The

th ns yitches on the CPU panel to all "1's." This sup
continue until either the sense switches are reset (i.e., ©
"0") or until a programmed top-of-form operation is ini
BDACS operator must then reapply the sense switches if suppressic
the current phase of the on-line printout is to continue.

operation is performed,

BDACS operator may suppress printing

-

(e) CHKPM determines if the on-line printout mask portion of

MUX or LSB mask tables contains on-line printout requests. Two
parameters are necessary for this subroutine. The first paramete:
contains the points to the mask table, either MSKTB or LSBETB X U

=
or LSB, respectively. The second parameter contains the offse
for the different parts of the mask table (see sect. 6.2(a
Upon entry to the subroutine, accumulator ACO contains th

printout request flag, initially set to zero. If any on-line printout
mask word in the mask table is nonzero (indicating that at least one
signal requires printing), the accumulator ACO is incremented.

e e sy

3 f) tra text tring fron 1rce re t 1
o) o ne parameter required foz thic subrout ine ’
C the num number N bytes to Pf transferred. Upon entry t
the €, ulat ‘::—f AC2 contain the byte pointers t
t stination text string and the source text string, respectively.
fer of byte until either a null byte is detected in the
S YCe o o | ox maximum number of bytes, as specified by the
inpt arameter, r } trancferred. Upon exit from the subroutine,
‘:V mulator AC2 contains the byte pointer to the byte following the end
of lestination text string.
(g) FMSPN an ASCII decimal integer text string
sponding t E ision unsigned binary integer contained
mulator entry tc the subroutine, accumulator AC2
contains the byte t the start of the text area where the string {
ed. Leadil in the generated text string are suppressed ‘
to . pon m the subroutine, accumulator AC2 contains the
byte pointer to the lowing the generated text string.
(h) FMDPN creates an ASCII decimal integer text string

corresponding to the double-precision unsigned binary integer contained
in accumulators ACO and ACl. The operation is similar to that in FMSPN.

(i) MTAIN performs a magnetic-tape free format "read" operation
k from the magnetic-tape file opened on channel No. 3. The single
| parameter required by the subroutine contains an address to branch to
when an "end-of-file" is detected. The data are transferred to the
buffer pointed to by BUFFR in blocks of 768 words each. Except for
"

end-of-file," all system errors cause a branch to the system error
routine.

(j) TMPIN retrieves a block of data from the disk file opened
on channel No. 3. The single parameter required by this subrcutine
] contains an address to branch to when an "end-of-file" is detected. The
data are transferred to the buffers pointed to by BUFFR in blocks of 768
words each. Except for the "end-of-file," all system errors cause a
branch to the system error routine.

11.3 PHASS5.SR Name/Text Strings and Buffers

The PHAS5.SR name and text strings are constructed in a manner
similar to that described in section 7.3. Particular strings, unigue to
PHAS5.SR, are those used for "headers" and standard line formats for the
on-line printout. The buffer areas used by PHAS5.SR are pointed to by
the following parameters.

(a) UTBPT defines a region of 68 words used for utility byte
transfer operations.

(b) BUFRA is divided into two parts. The first part contains a
256-word data storage area. The second part is a three-word buffer
"header," which has a negative offset from BUFRA. The first word of the
"header" (at offset -3) contains the starting signal point number for
the HSB. The second word of the "header" (at offset -2) contains the
RDOS channel number (in the RH part) and the I/O block count (in the LH
part) associated with the HSB assignment file (ASSIGNA.DA). The third
word of the "header" (at offset -1) initially contains 177777. During
PHAS5.SR operation, this word will contain the block number of the
current ASSIGNA.DA block contained in the data part of the buffer. This
current block number is updated under control of subroutine OPEN (see
sect. 11.2(b)).

(c) BUFRB is similar to BUFRA, except that the present buffer
is associated with the MUX assignment file (ASSIGNB.DA).

(d) BUFRC is similar to BUFRA, except that the present buffer
is associated with the LSB assignment file (ASSIGNC.DA).

(e) BUFFR contains a data area sufficient to hold 256 LSB or
MUX reduced data entries (presently 768 words). Entry blocks of this
size are read into the buffer either from magnetic~tape file MTO:6 (if
the "M" option is in effect) or from disk file TEMPC.TM, under control
of subroutines MTAIN or TMPIN, respectively (see sect. 11.2(i) and (j)).

11.4 PHASS5.SR Error Routine

The error routine for PHAS5.SR operates identically to that for
PHAS1.SR (see sect. 7.4). At present, four program errors are
monitored:

(a) ERR1--"ASSIGN FILE READ ERROR OCCURRED"-~-a system error
occurred during the "read" operation in subroutine OPEN (see
section 11.2(b)).

(b) ERR2--"ASSIGN FILE SEQUENCE ERROR OCCURRED"--the signal
point number for a requested assignment file text string was less than
the starting-signal number specified in the "header" of the associated
assignment file buffer (see sect. 11.3(b)).

(c) ERR3~-"LINE COUNT ERROR"--the updated line count in
subroutine PRLNE is negative.

(d) ERR4--"MUX OR LSB POINT # OUT OF BOUNDS"-~the signal point

number contained in a MUX or an LSB reduced data entry is less than the
starting-signal point number.

48

12. OVERLAY MODULE ERMSG.SR

This overlay module contains the part of the control program that
performs an orderly closing of BDACS functions and returns control to
the RDOS-CLI. The overlay module can be entered from the root binary
segment in one of two modes. The "normal" mode is entered when all
BDACS control tasks have been successfully performed and a normal exit
has been made from the preceding overlay modules. Under these
conditions, the error code word (ERCOD, see sect. 6.1(d)) contains zero
as a flag to immediately branch to the address NORML in ERMSG.SR.
Closeout is then achieved by performing the following tasks.

(a) Reset all RDOS channels using the system call .RESET.

(b) Release the magnetic-tape drive using the system call .RLSE.
Ignore any system errors, since the magnetic tape may not have been
initialized.

(c) Return to the CLI by using the system call .RTN.

The "exceptional" mode of entering ERMSG.SR occurs when an error has
been detected during the operation of an earlier overlay module. The
error code word (ERCOD) contains the error code as described in
section 7.4.

Two types of errors are recognized: program and system. For a
system error, ERCOD contains 177777 as a flag, and the recovery
parameter (RECOV, see sect. 6.1(b)) contains the system-generated error
code. Closeout during a system error condition is achieved in a manner
similar to that described in (a), (b), and (c) above for "normal"
closeout. However, instead of an exit to the CLI by the normal return
(i.e., .RTN), for the present situation the system error code from RECOV
is retrieved and stored in accumulator AC2, and return is made to the
CLI using the system call .ERTN.

When a program error occurs, ERCOD contains the program error code
as described in section 7.4. For this case the following tasks are
performed within ERMSG.SR.

(a) Decompose the program error code into the module number and
error number; determine the error message byte pointer associated with
the error number and the recoverable error bit.

(b) Type the module message to the output console:

"ERROR IN PHASE n"

49

where n 1is replaced by the overlay module number in which the error
occurred.

(c) Type the error message describing the associated error number.
These messages are discussed in the preceding sections describing the
different overlay modules.

(d) Determine if a recoverable error occurred by checking the
recoverable error bit processed in (a) above. If the error is
recoverable, return to the root-binary segment. Otherwise, close out
the BDACS control program in the "normal" mode as described above.

The tables that are used in ERMSG.SR are described below.

(a) TBLPT contains a 1list of pointers to the beginning of the
message pointer tables. One such message-pointer table is associated
with each of the preceding overlay modules (i.e., PHAS1l, PHAS2, PHAS3,
PHAS4, PHASS).

(b) PHAS1 contains a list of error-message pointers for overlay
module PHAS1.SR. A one-to-one correspondence exists between these
error-message pointers and the error table entries described in
section 7.4.

(c) PHAS2, PHAS3, PHAS4, and PHASS are similar to PHAS1 but are
associated with overlay modules PHAS2.SR, PHAS3.SR, PHAS4.SR, and
PHAS5.SR, respectively. Note: If bit 1BO is set to "1" for any message
pointer, the associated error is considered '"recoverable" and is
processed as described in (d) above.

The error messages are RDOS ASCII text strings with mode 1 packing.
The assembly language listing for ERMSG.SR 1is shown in appendix A,
section A-7.

13. CONTROL PROGRAM SYSTEM PARAMETERS--BDACS.SR

This file contains those BDACS control parameters which may be
modified or extended as the BDACS hardware system is changed or
augmented to meet future requirements. As mentioned in section 2,
BDACS.SR should be assembled along with the appropriate root binary
segment or overlay module files to reflect the present value of these
system parameters. A brief description of these parameters along with
their present value (in octal) is given below, while an assembly
language listing for BDACS.SR is given in appendix A, section A-8,

(a) NOP=000401 provides a mnemonic "no operation" instruction
(i.e., JMP .+1). This parameter is not expected to change if the system
is augmented.

Y A

(b) CLK=054 contains the RTC device interrupt code. Note: this
clock interrupt code is not the standard RDOS code.

(c) MUX=032 contains the multiplexer controller device interrupt
code which is hardwire strapped at the controller.

(d) MUXOB=000300 contains the output multiplexer panel buffer
address. This address 1is hardwire strapped within the multiplexer
controller.

(e) IMCLK=000004 contains the interrupt mask bit for the RTC.

(f) IMMUX=001000 contains the interrupt mask bit for 'the
multiplexer controller.

(g) IMDKP=000400 contains the interrupt mask bit for the
moving~head disk controller.

(h) BDACA=200 contains the number of signal points located on the
input MUX panels (128 decimal).

(i) BDACB=100 contains the number of signal points located on the
output MUX panel (64 decimal).

(j) BDACD=144 contains the starting cylinder (track) number for the
BDACS raw data file BDACS.DA (see sect. 3.6).

(k) BDACE=144 contains the number (100 decimal) of complete
cylinders used for file BDACS.DA. Thus, the size of this file is 2400
disk blocks. This size should be reflected in the UFT entry of the RDOS
system directory SYS.DR and in the RDOS map directory MAP.DR. If a full
initialization of the BDACS disk cartridge is required, the BDACS
operator must insure that this file information is properly supplied
(e.g., by using the RDOS disk editor DSKED.SV).

(1) BDACF=1 contains the minimum or starting input MUX panel signal
number.

(m) BDACG=200 contains the maxium or last input MUX panel signal
number (128 decimal).

(n) BDACH=40l1 contains the minimum or starting output MUX panel
signal number (257 decimal).

(o) BDACI=476 contains the maximum or last output MUX panel signal
number (318 decimal). Note: this number does not include the twc
special-purpose control points No. 319 and 2320 used to control HSE
data-retrieval operations (see sect. 9).

51

T ——

(p) BDACJ=200 contains the maximum number of entries in the output
control list (128 decimal).

(@) BDACK=03 contains the number of words per entry in the output
control list.

(r) BDACL=03 contains the number of words per entry in the MUX and
LSB reduced data file entry.

(s) BDACM=6000 contains the number of words per data block used
during data acquisition and reduction (3072 decimal).

(t) BDACN=144 contains the maximum number of sequence errors
allowed (100 decimal).

(u) BDACO=4000 contains the number of words in the HSB unit (2048
decimal).

(v) BDACP=200 contains the number of signal points located on the
LSB unit (128 decimal).

(w) BDACQ=1 contains the minimum or starting signal number for the
LSB.

(x) BDACR=200 contains the maximum or last signal number for the
LSB (128 decimal).

(y) BDACS=1 contains the minimum or starting bit number for the HSB
unit.

(z) BDACT=20 contains the maximum or last bit number for the HSB
unit (16 decimal). Note: the number of bits per word in the HSB cannot
be changed from the present value of 20, (16 decimal) without major
changes in the overlay module responsible for HSB data retrieval.

(aa) BDACU=60 contains the minimum MUX sample rate (in us, 50
decimal) .

(bb) BDACV=7777 contains the maximum MUX sample rate (in us, 4095
decimal) .

(cc) BDACW=764 contains the minimum HSB sample rate (in ns, 500
decimal).

(dd) BDACX=23420 contains the maximum HSB sample rate (in ns, 10,000
decimal).

(ee) BDAC1=10 contains the number of 16-bit input MUX words (8
decimal).

o2

NEARREIER

oy

(ff) BDAC2=4 contains the number of 16-bit output MUX words (4
decimal).

(gg) BDAC3=10 contains the number of 16-bit LSB words (8 decimal).

(hh) BDAC5=600 contains the number of words required for the MUX
output control list buffer (384 decimal).

(ii) BDAC6=20 contains the number of words offset between the start
of the MUX or LSB mask table and the on-line printout part of the table
(16 decimal).

(33) BDAC7=7 contains the number of input MUX low-speed words (7
decimal).

(kk) BDAC8=3000 contains the number of high-speed/low-speed word
pairs per raw data block (1536 decimal).

(11) BDAC9=1400 contains the number of words in the MUX and LSB
reduced data block (768 decimal).

14. RECOMMENDATIONS FOR FUTURE SOFTWARE AUGMENTATION

A major shortcoming of the present BDACS control program is the
inability of the program to provide a real-time analysis of and response
to the incoming data during data acquisition. Presently, the control
functions to be provided by the program are prearranged and occur
independently of the data being monitored.

It is possible to provide real-time data analysis/response for
BDACS. However, several basic adjustments and changes to the BDACS
software package would be required. These changes are outlined in the
following paragraghs.

(a) Presently, during PHAS2.SR data acquisition and control,
program control switches between the interrupt service routine (when a
device interrupt occurs) and the control loop which continually monitors
and updates the control output @ list for the next control point change
(see sect. 8.2 and 8.3). If the real-time analysis/response option is
to be implemented, then an additional branch must be provided to the
program code controlling this analysis/response action.

(b) A specific example and possible implementation:

EXAMPLE

o3

N

@®Allow a single low-speed word to be available for analysis.
Thus, the individual bits or a pattern of several bits in combination
within this word will be recognized as a request for specific control or
response actions.

® let the 1BO bit for the word be strapped as a "1l." Thus,
when the word is monitored and stored in the memory buffer, bit 1BO will
be set.

@ Provide a circular buffer pointer which will point to the
current word to be analyzed and, upon wupdating, will point to the
succeeding word.

@® When a current word has been retrieved for analysis, the
storage area in memory will be reset.

@ With the current word as data, a branch is made to the
analysis/response control subroutine for appropriate action. Upon
return from this subroutine, a control loop is entered and scanning is
continued until the word is again monitored and becomes '"set."

® The interrupt service routine would be essentially unchanged,
except, upon exit from the RTC service, a special branch to the
predefined control operations control loop would be made. The exit
would then be from this loop to the control loop specified above.

(c) In the example, timing considerations must be made to insure
proper operation. In particular, the analysis/response subroutine must
be efficiently constructed so that the words to be analyzed do not
"stack wup." This condition may also require the minimum allowable
sample rate to be longer than the present minimum (50 us).

(d) The particulars of the analysis/response subroutine depend in
detail upon the specific real-time control tasks to be performed. These
tasks may possibly change from test to test and, if this occurs, either
several control programs must be individually assembled and 1linked or
several separate PHAS2.SR types of overlay modules must be assembled and
linked in a universal control program. If the latter choice is made,
additional provisions must be made in the root-binary segment of the
universal control program to choose one of the several PHAS2.SR overlay
modules to load in at runtime.

(e) One final modification to the present control program may be
required. Presently, the BDACS control program resides in memory with
the RDOS executive program. The controlling factor in the expansion of
the BDACS control program is primarily the size of the PHAS2.SR overlay
module, since this module contains the twin data blocks--each 60004
words in length. If the PHAS2.SR module must be greatly expanded to

include the analysis/response subroutine code, an incompatibility may
arise in which the core storage is insufficient to contain both the
BDACS control program and RDOS executive program. Since PHAS2.SR does
not require any RDOS system calls, if this incompatibility arises, the
executive program can be temporarily transferred to disk, and the core
storage used by the executive may be made available to the control
program. Before an exit from PHAS2.SR, the executive program would, of
course, be returned to core storage. If this action is necessary, it is
recommended that tracks No. 201, 202, and 203 (decimal) on the disk be
reserved in the RDOS MAP.DR for the executive program storage.

wn
L

~

APPENDIX A.--ASSEMBLY-LANGUAGE LISTING FOR BDACS CONTROL PROGRAM ’

This appendix contains the
control program. The control program

Section

A-1l.
A-2,
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.

assembly-language
is

listing for the BDACS

composed of a root-binary
section, six overlay mcdules, and a table of system parameters. Each of
these parts is presented in the following sections of the appendix.

ROOT BINARY SECTION--MONTR.SR

OVERLAY MODULE NO.
OVERLAY MODULE NO.
OVERLAY MODULE NO.
OVERLAY MODULE NO.
OVERLAY MODULE NO.
OVERLAY MODULE NO.

BDACS SYSTEM PARAMETERS-- BDACS.SR

57 58

1--PHAS1.SR
2--PHAS2.SR
3--PHAS3.SR
4--PHAS4.SR
5-=PHASS.SR
6--ERMSG. SR

Page

58
60
76
81
87
98
118
122

P———

APPENDIX A

A-l1. Root Binary Section-- MONTR.SR

NAME BLICK NAME=

BEME BLTEK
T b
LTXTM
«ENT
CENT
LENT
JENT
JEXTN
£ XTY
+LREL
CVRTN: O
gR=CLve O
EXKTNS E<RIR
EXCO2D: ©
MAGFG: O
PRENTSE €
S4PRT 0
HSMCON: C
LSMONS O
BLKCTE: BOACE=
HLDCT:
VREL

L3BTB: +BLK

CTLTB: .BLK

Jv JHP e 0
uvLlDs LUA

LSYSTY
LOvLJD
JUP 3
JuP)

MINTR

1

MONTR . SR

S 6 FEB 76

UVRTN MAGFG SMPRT BLKCT HLOCT
MSKTB CTLTB ERRTN ERCOD HSMON
LSMON LSBETBE PRINT RECQOV

MEWPT MEBPT

JVST1 GVST2 CVST3 COVST& GVSTS

gvsTe

BOACL =3

)

BOAC3%3

BOACS+3

$UVERLAY RETURN ALDRS
yRECUVERABLE ERRCR RETURN
sERRCR KETURN

s ERKOR CODE

sMAG TAPE FLAG

sPRINT FLAG

FSAMPLE RATE

+14S BUFFER FLAG

sLS BUFFER MONITLR
sUATA BLOCK COUNT
sHCLODOFF COUNT

$0ATA INPUT MASK BITS
$LS BUFFER TABLE
$COUNTROL LIST TABLE

3 JVERLAY JUMP ADORESS
sNCCOE/REGION

s START AUDRS

sJUMP ADDRESS

s JNCONDITIONAL LLAD
JLCAL IN JVERLAY
SERRUR

SENTER (QVERLAY

58

APPENDIX A

LCA CyJLNAM §!'MONTR,.OL®
«SYSTM
«JVAPN 7 sLPEN OVERLAY FILE
JMP Q ERRTN $ERROR
JSR GvL3D sLOAC UL#I1

(4}

gvsTl sSTART ADDRS
JSR cvLOoD sLOAD DL#K2

1

CvSTe sSTART ADODRS
JSR QVvL3D sLCAD CL#3

2

gvsT3 sSTART ADDRS
JSR gvLao sL3AD OL#4

3

GVsSTs sSTART ADDRS
JSR gvLadD sLOAD CL&S

4

OvsTs $START ADDRS
LDA 0,ERCCD FERRUR CODE
CIv & 0,0,52ZR $SKIP IF SYSTEM ERROR
LCA 2y0OVRTN §SET UP RECOVERABLE RETURN
STA 2yRECCV sHOLD KECOVFRY ADDRS DR SYSTEM ERRLR
JSR uveor sLCAD CLKO

5

UvsTe s START ADDRS
RALT
et1%2
w1 X /MONTR.CLY/
. $METHOD FILE WCORD POINTER
.2 SMETHOD FILE NAME PCINTER
w0 7
«END START

APPENDIX A

A-2. Overlay Module No. 1--PHAS1.SR |
NAME BLOCK NAME= PHAS1.SR

TIME BLICK
LTITL PHASYT 34C1 19 FEB 76 i
JXTM 1 |

«ENT gvsTi

LEXTD MAGFG SMPRT OVRTN ERRTN ERCOD
LEXTD HSMON L SMON PRINT ‘.

+EXTN MSKTB LSBTB CTLTB MEWPT MEBPT

«NREL
PNTRI: MSKTSB $REPORTED PGINTS TABLE POINTER
CNTRI: BOAC1#®3 sTABLE SIZE
PNTRL: LSBTS #LS BUFFER TABLE POINTER %
CNTRL: BDAC3#3 $TABLE SIZE
DMADB: MJUX]B $MUX OQUTPJT BUFFER POINTER
CNTRB: BDACR2 sCUTPUT BJUFFER LENGTH
SNCHD: 000030 SOEFAULT SWITCHES LEM
SACHL: 000020 $SWITCH 'L
SACHM: 000010 FSWITCH ™!
SACHT: 010230 $SWITCH 'T!
SPLDO: SPLDS sDISABLE SPODLING
0PFLULS OPFLE $UPEN A CHANNEL
CLEFLOE CLFLE sCLOSE A CHANNEL
INMTO: INMTA SINITIALIZE MTO
ROLUOS RDLJT sREAD INTI UTILITY
RISUO: ROSUT $READ SEQUENTIALLY
MVYWUOS: MVWJT $MCVE WORDS FROM UTILITY
C<KNBO: CKABR sCHECK A #
gvsTl: ADC 0,0 $FCRCE -1
LOA 2,0MAGB 30UTPUT BUFFER POINTER
STA 0,042 $RESET CQUTPUT BUFFER
INC 242
D32 CNTRB i
JYP =3
SJB 0,0 sCLEAR ACD
LOA 2yPNTRI SINFUT DATA MASK TABLE
STA 0,0,2 sCLEAR THE TABLE
INC 242 |
3512 CNTRI {
JUP =3]
LOA ZyPNTRL $LS BUFFER MASK TABLE |
STA 040,2 $CLEAR THE TABLE
InC 42 5
i

60

ERR10:

0S2
Jup

JSR @
JSR 3

JSR 2

JSR @

JSR 2
JSR 9

JSR 4

JSR @
JSR 2

JSR 23
JSR @
LDA

JSR 2
JSR @

STA
JSR 4

2y SWCHL
2909 5NR
.*+3

ez

0, SWCHT
1,0,52R
0,0
0,PRINT
CyMAGFG
0,0452ZR
INMTO

OPFLO
MEBPT
06
RDLUO
ROLUO
2,UTBP1
GTSP1
CKNBO
B0OACU
BDACV
0y SMPRT
ROLUIL

APPENDIX A

#D1SABLE SPOGLING
HAE RR S0l
sD1SABLE SPDDLING
siSLPT?

sOPEN $TT0
$ON CH#L

sOPEN COM.CM

$ON CH#H4G

sREAD 'MONITOR®

$READ GLCBAL SWITCHES
$6 BYTES

$MOVE THE SWITCHES
$T0 ROOT BINARY

32 WORDS

$READ METHOD FILENAME
$MOVE THE FILENAME
70 NAME AREA IN ROOT BINARY
$7 WORDS (MAX)

CLOSE CH#H4

GLOBAL SWITCH #1

FGLOBAL SWITCH #2

$SKIP IF SWITCHES PRESENT
sUSE DEFAULT SWITCHES
$SWITCH MASK 'M*

FMASK FOR MAG TAPE

$SET MAG TAPE FLAG
SSWITCH MASK 'L!

$SKIP 1F SLPT REQUIRED

sFORCE 1B15

$SWITCH MASK 'T¢

$SKIP IF NO $TTO REQUIRED
sFORCE 180

$SET PRINT FLAG

iMAG TAPE FLAG

$SKIP IF NO MAG TAPE
SINITIALIZE MTO

sOPEN

i METHOO FILE

yON CH#ea

$READ IDENTIFICATION
$READ SAMPLE RATE
FUTILITY BYTE POINTER
sFORM SP #

JCKECK SR

sLOWER BOUND

$UPPER BOUND

$STORE IN ROOT BINARY
§READ DURATION TIME

61

e —

ooy

APPENDIX A |
LOA 2,UTBP1 FUTILITY BYTE POINTER
JSR @ GTDP1 jFCRM DF #
STA 0,0URAT ;HOLO THE #
STA 1,DJRAT+1
JSR 3 RDLU1 3READ HS BUFFER FLAG
LDA 2,UTBP1 ;UTILITY BYTE POINTER

JSR 2 GTSP1 sFUKM SP &
Mav # Uy09SNR §SKIP IF NOT O

JMP JP9
JSR 2 CKNBO $ChECK HSB SR
ER12: BOACW sLOWER BOUND
8CACKX $UPPER BCUND
STA UydSMUN §STORE IN ROOT RINARY
JSR @ GTBY1 FGET NEXT BYT:
LDA 1yASCAK <#>
SJB 2 sCLEAR AL¢
SuBZ Oyl SNK §SKIP IF NOT <x>
MO VR 212 $SET 1BO
LUA O,HSMUN $HS BUFFER FLAG
AJD 2»0 $ADC IN PRINT FLAG
STA JyHSMON
Jr9: JSK 3 ROLUI sKEAD LS BUFFEK FLAG 4
LDA ¢y UTBP1 SUTILITY BYTE POINTER ’
JSR @ GTSP1 yFURM SP 4
JSR 3 CXNB 1 SCHECK THE
ERR11: BDACF sLUNER BUUND
BLACF+173UFFER SCUND
STA CyLIMON §STORE IN K2OT BINARY
JSR TABLE FCUNSTRUCT MCONITGR POINT TABLE

MSKTB yTABLE PUINTER
8DACA sLIST SIZE
BOAC1=2 SDFFSET SIZE
JSK TABLE 3 CONSTRUCT LS BUFFER TABLE
LSBTB STABLE POINTER
BDACP sLIST Sl2¢€
BOAC3=2 FUFFSET SIZE

JMP JPO sCONTINUE
T3RTNS U fRETURN ADDRS
F3PNT: v sTABLE PODINTER
T3Lsz: 0 yTABLE LIST SIZE
T30FF: © sTABLE COFFSET SI11ZE
TABLE: LDA 040,05 sPUINTER
STA Oy TBPNT
LJA Usly2 fLIST S12¢E
STA 0,T8LS2
LJA Ge2y3 §OFFSET
STA Uy TBCFF
STA 39 TBRTN FRETURN ADDKS
JSR 2 ROLUL §READ REPORTED PCINTS HEADER
: JSR 3 ROLU1 FREAD A LINE OF KREPCRTED POINTS
LA 2yJIBP1 FUTILITY BYTE POINTER

JSR 3 CTS5P¢ yFURM Sp #

62

T
x
»
.
.
wnwre O
m
O PRPEPPCOIDXO0W» D O
e
L) e

2 L ks U T

r

ENEE

A

(S)

C

EPr e e G

{ 45
[
X >
e

-
(&)
B>

SJE &
JuP

b =
<7
o
n

(St it JSR

L)

T3ENUS LDA

HITIM:

DJRAT:

1 UTBP1: (UTBPT
MVWUL: MVWUT
FUMSI: FMMSK
ROSUl: ROSUT
ROLULl: ROLUT
‘ ROLU2: ROLJR
ﬁ CXKNB1: CKNBR
; GTSP1: GTSPN
6TSP2: GTSPR
GTDOPl: GTODPN
GTBYLl: GTBYT
OPFL1: GOPFLE
CLFL1: CLFLE
EIRD1: ERRIR

I

Hn

TBENC
0y0

Uy0
0,0,52C
ErRT1
1,780 82
1y0,82¢
ERRU1
FMMSI
29 TBPNT
Uy3

1, TEMPL
3,TEMEZ
046,43
iv0y SAR
1,0
L.O..’:
oTBYl
1,ASCCR
LelsSNK
LPL
1,ASCAK
0y1482ZR
LP3
1,TEMP]
3,TEMP2
0, TBCFF
G,3
CQO’:‘a
1,0, SKK
1,0
0'3’3
6TsP2
LP1

LP2
3,TBRTA
3'3

iNC # FLUND, END CF TABLE
OECREMENT % BY -1

VSKIP 1F # PLSITIVE
yERRUOK,y JJT CF BOUNDS

s# UF INPUT POINTS

PIKIP IR 8 <= MAX

$ERRUR TUT GF BOUNDS
sFCRM MASK AND DISP.
sSTART CUF INFUT DATA MASKS
tACL IN WORD JFFSET

$MLLD THE MASK GIT

s5CLO THE POINTER

IMASK wuURD

ySKIP IF ALREADY PRESENT
§ALUD IN NEW BIT

sRESTORE THE WCRD

sOET 3YTE FOLLCWING THE &
P <R

$SKIP 1F NOT 200

R

{SKIP IF LPT FLAG

JGET NEXT #

;RETRIEVE MASK BIT
;RETRIEVE POINTER

$TABLE CFFSET

;OFFSET THE POINTER
iMASK WCRD

3SKIP IF ALREADY PRESENT
$ADD IN NEW BIT

;RESTORE THE MASK WORD
sFORM SP #

+NO & FOUND, READ NEXT LINE
;LOCP BACK

+RETURN ADDRS

$RETURN

s TIME STORAGE

OURATIUN TIME

$UTILITY BUFFER POINTER
$MOVE WDRDS FRCM UTILITY
$FCRM A MASK AND DISP.
$READ SEQUENTIALLY INTO UTILITY
READ A LINE INTG UTILITY
$READ A LINE, EXIT UN EOF
sCKECK A NUMBER

yFORM A SP &

sFORM A SP #, EXIT IF NONE
iFCRM A DP ¥

sGET A BYTE

sOPEN A CHANNEL

;CLOSE A CHANNEL

$ERROR ROUTINE

63

APPENDIX A

AT

APPENDIX A

TEMP1:
TEMP2:
ASCCR:
ASCAK:
ASCBK:
ASCCN:

Jraz:

JPO:

ERR3

Jo3z

EXR4 2

EIRS:

ERR6

EIRT7:

0
0
015
052
040
136

ADC
STA
LtDA
LDA
JMP
JSR 3
JSR @

LDA
JSR @

DS
JMP
JSR 3
STA
JSR 2
STA
JSR 2
LDA
LDA
STA
STA
SUBZ
SUBZ

=

(&)

<
Veneoen

157
LDA
ADC
MOV &
Jup
CaM ¥
JMP
LOA
SUBZ
JSR @
LDA
SUBZ #
JSR
JSR 3
CCM
MOV ¥
LOA
LDA
ADD
LOA

0.0
0, TEMP2
0,DURAT

i TEMPORARY

i <CR>
1<2>
3< >
$<~>

sFORCE A -1

$§SET END OF LIST FLAG
JRETRIEVE DURATICN TIME

1,DURAT+1

JP3
RDLUI
RDLU2
JpP2
2,UTBP1
GTSP2
JP2
CNTRO
o*2
ERRO!
0, TEMP1
GTSP1
Uy TEMF2
GTDP1
2yHDTIM

$STGRE DURATION AS FINAL ENTRY
$READ CCONTROL TABLE HEADER
$READ CONTROL LINE

$ECF

SUTILITY BYTE POINTER

$FORM SP #

iNO # FOUND

$SKIP IF OUTPUT TABLE FULL

sERROR ROUTINE
$HOLD THE STATE
+FORM SP #

$HCLD THE SIGNAL #
sFORM DP #
$PREVIOUS TIME

3yHDTIM+1

O,HDTIM

$STORE PRESENT TIME

1yHDTIM+1

3,1,52C
2,0, SKP
240
0,04 SNC
ERRO1
0,0,SZR
ERROI1
1,PNTRO
PNTRO
0, TEMP2
1,1
0,0, SNR
JP1
0,0, SNR
JP1
1,CTLCF
1,04 SNC
ERRO1
1,CTLMX
1,0,52C
ERRO1
FMMS1
1,1
0404 SNR
0,BUFOF
2yPNTRB
0,2

0, TEMPI

SODELTA TIME

$SKIP IF OLD<=NEW TIME

FERROR KDUTINE

§SKIP IF NO OVERFLOW

sERROR ROUTINE

$STORE DELTA TIME

$INC THE POINTER

sRETRIEVE SIGNAL #

$FORCE MASK 10 -1

FSKIP IF NOT ACQUISITION HOLDOFF

$SKIP IF NOT END OF LIST

sCONTROL # OFFSET (257)
+REMOVE OFFSET, SKIP IF IN BOUNDS
$ERRDOR ROUTINE

CF CCNTROL POINTS
sSKIP IF IN BOUNDS
$ERROR ROUTINE

sFORM MASK AND DISP.
$COMPLEMENT THE MASK
$SKIP IF NOT O DISP.
JELSE FORCE MAX DISP.
$0UTPUT BUFFER PUINTER
$ADD IN DISP.

JRETRIEVE STATE

MOVZR 0,0
MOVL 2,0
JP13 STA 2 1,PNTRO
1s1 PNTRO
STA 3 0,PNTRO
1Sz PNTRO
COM # 0,0,52R
JMP JPO+1

JSR @ CLFL1

04
JSR OPFL1
NAMEE
02
JP10: JSR @ CREA1
NAMED
JSR 2 OPFL1
NAMEC
04
JSR @ DPFL1
NAMED
03
LP&: JSR @ RDLUZ
JPé
STA 2,TEMPL
LDA 2,UTBP1
JSR 2 6TBY1
LbA 1,ASCAK
LDA 2,TEMP1
SuB 0,1
STA 1,TEMP1
MOV ¥ 1,1,SNR
JUP JP4
NEG 242
COM 2,2
STA 2, TEMP2
SuB 0,0
JSR 3 STBY1
JP4 2 JSR 2 TYLUL
LDA 1,TEMP1
MOV # 141+ SNR
JMP JP5
Loa 2y TEMP2
LPs: JSR @ RDLU3
02
ADCZL 0s0
ADD 0y2
STA O, TEMPIL
JSR @ GTBY1
LDA 1,ASCCN
SuB # 0,1,SZR
JMP JP5
LDA 0,ASCCR
JSR @ STeYl
ISt TEMP1

§SHIFT LS BIT TO CARRY
$SET STATE BIT IN POINTER
i STORE MASK

$ INC THE POINTER

$STORE STATE BIT AND POINTER

$INC POINTER
$SKIP IF END DF LIST
sLODOP BACK

3CLOSE CH#4
$OPEN

$$TT1

$ON CH #2
sCREATE A FILE
FCTEMPA.TM!

$OPEN PREAM.DA FILE
3ON CH#4

sOPEN TEMPA.TM FILE
sON CH#3

sREAD A QUERY LINE
sECF

sHOLD THE BYTE POINTER
sUTILITY BYTE POINTER
$GET A BYTE

1<

sRETRIEVE THE POINTER
$SET FLAG TD 0 IF <3>
§HOLD THE FLAG

$SKIP IF NOT <%>

$DECREMENT BY -1

+HOLD THE POINTER

sCLEAR ACO 7O NUL
$REPLACE <CR> WITH <NUL>
$ECHO THE LINE

SRETRIEVE THE FLAG

$SKIP IF RESPONSE REQUIRED
$HOLD THE LINE

JRETRIEVE THE POINTER
$READ INTO UTILITY

$FROM CH#2

$FORCE A -2

$BACK UP

+STORE -2 AS FLAG

$GET A BYTE

<>

ISKIP IF <=

$<CR>

FREPLACE <=> WITH <CR>
§INC THE FLAG

65

A gt ———

APPENDIX A

APPENDIX A

JPS5:

PNTRB:
PNTROS
CNTRO:
CTLOF:
CTLMX:
BJFOF:

CREAL:
XFER1:
X3LK1:
WTLUL:
TYLUL:
STBY1L:
CLFL2:
TYPML:
urBpPe2:
ROLU3:
GTBYZ2:

ASCIN:
ASCIY:

JP6:

JP1ls

JSR
LDA
152
JMP
JNP

MUXOB-1
CTLTB
BDACS
BDACH
BDAC”™
BD ACe

CREAT
XFERF
XBLK

WTLUT
TYLUT
STBYT
CLELE
TYPMG
UTBPT
RDLUA
GTBYT

116
131

JSR 2
JSR w
JSR 2

LDA
JSR 3

LOA
JSR 2
LOA
sJB H
JupP
LDA
SJB &
Jvp
J5R a

LoA
M2V ¥
Jup
JiR o

WTLUL
2,UTBP1
TEMP?
LP4

LPS

$WRITE THE LINE

sUTILITY BYTE POINTER

#INC THE FLAG, SKIP IF <->
$READ NEXT QUERY

$CONTINUE QUERY RESPONSE

#POINTER TO DMA OUTPUT BUFFER
sPOINTER TO CONTROL LIST

¢M®Y SIZE OF LIST

< . "NING CONTROL POINT #

g» ' CONTROL POINTS

§MUX QUTPUT BUFFER SIZE

sCREATE A FILE

s TRANSFER ASCII FILES

s TRANSFER FILES BY BLOCKS

tWRITE A LINE FRCM UTILITY BUFFER
sTYPE A LINE FROM UTILITY BUFFER
§STORE A BYTE

sCLOSE A CHANNEL

sTYPE A MESSAGE

JUTILITY BYTE POINTER

0, MAGFG
U.OVSNR
JP7
XFER]
NAMEC
NAMEH
XFERI]
MEBPT
NAME]

sREAD A LINE
yGET A BYTE

F<N>
$<Y>

+CLOSE CH#a

sCLOSE CH#3
sTYPE A MESSAGE
FMESSAGE #H2
SUTILITY

SREAD A LINE
sFRCM CH H2
SUTILITY

$GET A BYTE

$<N>

$SKIP IF NOT <N>

1<Y>
§SKIP 1F <Y>

yCLOSE CHE2
$MAG TAPE FLAG
$SKIP IF MAG TAPE

s TRANSFER
sTEMPAL.TM TO
sMTIC20

s TRANSFER
tMETHOD FILE 70
HALED!

66

JP7:

st ol o

JPg

F41CD:
EXTBL:

ERROR:

SYSER:

CKNBR:

-

JSR @

JSR 2

JSR 4

RZADS
MOV #
Jur

JSR 9@

SUB
INC
JMP
READS
MOV #
Jup
P d

400
ot1
ERR1
ERR2
ERR3
ERR%
ERRS
ERRS
ERR7
ERRSB
ERR3I
ERRIO
ERR11
ERR12
-1
LDA
LDA 2
sz
INC
COM #
JYP
SJB #
JMP
JMP
ADC
STA
JMP 2

LDA
SUBZ #
P
LDA
SJBZ #
Jup
Jup

XBLK1
NAMEM
NAMEJ
XBLK1
NAMEN
NAMEK
XBLK]
NAMED
NAMEL

0

0,0, SNR
L]
TYPMI1
MSGO1
0,0,S2R
=1

0
0,0,SZR
=5
OVRTN

CyPHICD
2,ERTBL
ERTBL
0.0
2424y SNR
«*3
293,S12IR
=6

42

0,0
0,ERCOD
ERRTN

1,0,3
1404 SNC
ERRQOR
1,1,3
0414SNC
ERRQOR
2,3

s TRANSFER BLOCK
$'ASSIGNA.DA'

s'MTOs2!

$ TRANSFER BLOCK

s INPUT MUX ASSIGN FILE TD
$MTO0:3

sTRANSFER BLOCKS

sLOW SPEED BUFFEKR ASSIGN FILE 10
$'MT0 4!

yREAD SWITCHES

$SKIP IF NOT ALL DOWN

yTYPE A MESSAGE

sCLEAR ACD
sDELAY

sREAD SWITCHES AGAIN
$SKIP WHEN ALL DOWN
sL0OP BACK

$RETURN TO ROOT BINARY

sPHASE 1 ERROR CODE
SERROR TABLE POINTER

$END OF TABLE
sPHASE 1 ERROR (CODE
$ERROR TABLE

$INC TABLE POINTER
sINC COUNT

$SKIP IF NOT EOT

$SKIP 1F ERROR FOUND
sLOCP BACK

$SYSTEM ERROR FLAG
$STORE IN ROOT BINARY
$ERROR RETURN TO ROOT BINARY

sLOWER BDUND
$SKIP 1F OK

$UPPER BCUND
$SKIP IF 0K

$NORMAL RETURN

67

APPENDIX A

wscaiinl o

APPENDIX A

Cl1:
Cl2:
CRRTN:
CREAT:

CREAA:

DELET:

DELEA:

XFRTN:
XFERF:

XFSFL:

XFDFL:

OPFLE:

11
12

LDA
INC
STA
«SYSTM
.DELET
JMP
JMP
LDA
SUB #
JUP 3
JMP

LDA
LDA
STA
STA
STA
JSR

JSR

JSR

JSR
Jup
JSR

JSR

LDA
JMP

LOA
LDA
suB
STA
«SYSTM
.OPEN

0,0,3
3,3
3,CRRTN

.’2
CRRTN
1,Cl1I
1y2,SZIR
SYSEL
DELEA
CREAA

0,0,3
3,3
3,USp

ot2

0,3
1,C12
1,2,SZIR
SYSEL
0,3

0,0,3
1,1,3
C,XFSFL
1, XFOFL
3,XFRTN
OPFLE

0

04
OPFLE

o

03
RDLUR
«+3
WTLUT
et
CLFLE
04
CLFLE
03
3,XFRTN
2,3

0,0,3
29143
1,1

3,UsP

77

$RETURN ADDRESS
$NAME POINTER

$STORE RETURN

$CREATE SEQ. FILE
$ERROR
$RETURN

$SKIP 1F FILE EXISTS
$ERROR

sDELETE THE FILE
;TRY AGAIN

$NAME POINTER
$STORE RETURN
+DELETE THE FILE
iNGRMAL RETURN

$SKIP 1F NO FILE
$ERROR
SNORMAL RETURN

sRETURN ADDRESS
$SOURCE FILE
sDESTINATION FILE

$STORE RETURN
$OPEN SOURCE FILE
$POINTER

3sON CH#¢

$OPEN DESTINATION FILE
sPOINTER

sON CH#3

SREAD A LINE
$RETURN ON EOF
WRITE A LINE
yLOOP BACK

sCLOSE

sCHHG

+CLOSE

sCH#3

$RETURN ADDRESS
$RETURN

$NAME POINTER

$CH #

$USE DEFAULT CHARACTERISTICS
$STORE RETURN

$OPEN THE CHANNEL

APPENDIX A

JMP 3 SYSE1L $ERROR

i JMP 2,3 #NORMAL RETURN
CLFLE: LDA 2,0,3 iCH ¥
STA 3,USP $STORE RETURN
«SYSTM
‘ .CLOS 7 $CLOSE. THE CHANNEL
E JMP 9 SYSE1l $ERROR
JMP 1,3 #NORMAL RETURN

MTANM: .+1%2
«TXT IMTO/

INMTA: LDA O,MTANM ;NAME PDINTER
SuB 1,1 sPARTIAL
STA 3,USP $STORE RETURN
«SYSTM
LINIT sINITIAL DIRECTORY
JSR 9 SYSE1 $ERROR
DIA 0,MTA $STATUS
MOVR # 0,0,SNC 3;SKIP WHEN READY
JMP =2 sWAIT FOR ?REWIND
JMP 0,3 §NORMAL RETURN
TYPMG: LDA 0,0,3 $MSG POINTER
INC 3,3
SUBZL 2,2 sFORCE A +1 FOR CH#
JMP -5
TYLUT: SuBZL 242 sFORCE A +1 FOR CH#
JuP o+2
WTLUT: LDA 2,C03 sCH #3, BY DEFAULT
LDA 0,UTBPO FUTILITY BYTE POINTER
STA 3,USP $STORE RETURN
«SYSTM
<WRL 7 SWRITE A LINE
JMP 3 SYSE1 $ERROR
JMP 0,3 sNORMAL RETURN
ROSUT: LDA 1,0,3 $BYTE COUNT
LDA 0,UTBPO SUTILITY BYTE POINTER
LDA 2,C04 sCH #6
STA 3,USP $STORE RETURN
«SYSTM
.RDS 7 FREAD SEQUENTIAL BYTES
JSR @ SYSE1 sERROR
JMP is3 sNORMAL RETURN
SYSEl1: SYSER $SYSTEM ERRQOR
UTBPOS: UTBPT SUTILITY BYTE POINTER
l3: 03
Cla:s 04
Cl6: 06
C177: 177
RORTN: O
ROLUA: ADC 1s1 $RETURN FLAG =1
MOV 2,0 sBYTE PODINTER
LDA 290,3 sCH #
69

APPENDIX A

ROLUR:

ROLUT:

SPLDS:

MVRTNS
MVWUTS

0oFL3Y
CLFRL2L
02MT3:
ROBL3:
MTAW3:
MTAS3:
MTAE3:
X8RTN:
X3LK:

INC
JMP
LDA
INC
JMP
ADC
LDA
LDA
STA
STA
«SYSTM
«RDL
JMP
MOV
ADD
JMP
LDA
sus
JUP
LCA
CaOM
JMP
JMP

L3

Luxn

LDA
STA
+SYSTM
+SPDA
JSR @
JMP

0

LDA
LDA
STA
LDA
MOVZIR

LDA
STA
INC
INC
INC
JupP
LDA
JMP

OPFLE
CLFLE
GPMTA
ROBLK
MTAWT
MTASR
MTAEF
¢

LOA
LoA

3'3

«+7
1,0,3
3,3

.’2

1,1
0,UTBPO
2,C04
1,RDRTN
3,UsP

77

A

0,2

1,2

0,3
0,C06
0,2,5ZR
SYSE1
OyRDRTN
0,0,SZR
RDRTN
SYSE1

0,0,3
3,USP

SYSE1L
1,3

2,0,3
1,1,3
3,MVRTN
3,UTBPO
393

11
0,0,3
0+0,2
3,3

292
191,SZR
.-5
3,MVRTN
2+3

0,043
1y143

$RETURN ADDRESS

$RETURN FLAG -1
fUTILITY BYTE POINTER
FCH #a

§STORE RETURN

$STORE RETURN

§READ A LINE

1CHECK FOR EOF

$MOVE THE BYTE POINTER
$OFFSET THE POINTER
#NORMAL RETURN

$ECF CODE

§SKIP IF EOF

$ERROR

FRETURN

#SKIP IF NO EOF RETURN
EOF RETURN

$ERROR

+DEVICE BYTE POINTER
$ STORE RETURN

iDISABLE SPOOLING
$ ERROR
#NORMAL RETURN

SOESTINATION POINTER
$COUNT

$ STCRE RETURN
SUTILITY BYTE POINTER
$FORM ADDRESS

$NEG THE COUNT

SGET WORD

$STORE WORD

iSK1P WHEN DONE

#RETURN ADDRESS
$RETURN

OPEN A FILE

sCLOSE A CHANNEL
$OPEN MAG TAPE FOR FF
sREAD A DISK BLOCK
$WRITE BLODCK TO MTA
$SPACE REVERSE MTA
iWRITE EOF ON MTA
yRETURN ADDRS

#SOURCE FILE
SOESTINATION FILE

70

it

X3LKS:

X3LKD:

XBLKN:

X3END:

OPMTA:

ROBAK:
ROBLK:S

BLKPT:
BLKCT:
EJFCDS
SYSE3:
SRICMD:
EFCMD:
WICMD:
EJFMK:

STA
STA
STA
JSR @

JSR 9

suB
STA
JSR a

JSR @
152
JMP
JSR
JSR
JSR

L

JSR 2

LDA
JMP

LDA
LDA
SUB
STA
«SYSTM
«MT3PD
JSR @
JMP

0

LDA
LDA
STA
LDA
LDA
STA
«SYSTM
.RDB
JMP
JMP
LDA
suB #
JSR @
JMP 3
BUFFR
000400
06
SYSER
040001
060000
050400
000400

0,XBLKS
1,XBLKD
3,XBRTN
OPFL3

0

0«
aPMT3

0

03

0,0

0, XBLKN
RDOBL3

0

XBEND
MTAW3
XBLKN
.-5
MTAE3
MTAS3
CLFL3
03
CLFL3
04
3,XBRTN
2,3

0+0,3
2'1'3
1,1

3,UsSP

77
SYSE3
2,3

1,0,3
0,1,3
0+RDBAK
04BLKPT
2yBLKCT
3,USP

064

.’2

2,3
1,EDFCD
1y2,SIR
SYSE3
RDBAK

APPENDIX A

SOURCE
$DESTINATION
$RETURN ADDRS
sOPEN

s01SK SOURCE

$CN CH #e

$OPEN MTA
$DESTINATION

iON CH #3

sCLEAR ACO
$BLOCK #

sREAD DISK BLOCK
$BLOCK #

sEOF RETURN
WRITE BLOCK TO MTA
$INC BLOCK #

SWRITE EOF TO MTA
$SPACE REVERSE MTA
sCLOSE

sCH #3

sCLOSE

yCH #6

$RETURN ADDRS
sRETURN

sNAME POINTER

iCH #

3DEFAULT CHARACTERISTICS
$STORE RETURN

sOPEN MTA FOR FF
$SYSTEM ERROR
sNORMAL RETURN

$RETURN ADDRS

$BLOCK &

+EOF RETURN ADDRS
$STORE ADDRS

$BLOCK BUFFER POINTER
sCOUNT OF 1

$STORE RETURN

sREAD A BLOCK
$ ERROR

$NOCRMAL RETURN
sEOF CODE
$SKIP IF EOF
$SYSTEM ERROR
$EOF RETURN

$BLOCK BUFFER POINTER
$8LOCK COUNT

sEOF ERROR CODE
$SYSTEM ERROR

$SPACE REVERSE COMMAND
+EOF COMMAND

$WRITE BLOCK COMMAND
$EOF MASK

71

i e it

MTASR:
MT AEF:

TS

MTANTS

FMMSK:

GTDPN:

GT SPR:

GTSPN:

GTLP1:

APPENDIX A

LDA
JMP
LDA
JMP
LDA
LDA
STA
«SYSTM
.MTDIO
JMP
JMP
LDA
AND #
JSR @
JMP

SUBZL
MOVZR
MavzL
MOVZR
ADDZL
MOVZR
JMP
ADDZL
ADDZL
MOVZR
MOVS
JMP

ADC
MOV
JMP
LDA
INC
JMP
ADC
SUBZL
STA
sus
STA
STA
STA
STA
STA
STA
STA
JMP
1sz
LDA
JSR
LDA
sus
JupP
LDA
ADCZ #
JMP
LDA

1,SRCMD $SPACE REVERSE COMMAND
1,EFCMD $WRITE EOF COMMAND
.’3

1, WTCMD 3WRITE COMMAND
0,BLKPT 3BLOCK BUFFER POINTER
3,USP $STORE RETURN

03 $MTA FF

ot2 $ERROR

0,3 $NORMAL RETURN
1,EOFMK FEOF MASK

1,2ySNR $SKIP 1F EOF

SYSE3 $SYSTEM ERROR

0.3 $NORMAL RETURN

1,1 $SSET BIT T0O +1
0,0,82C $SKIP IF NOT 2%2Q
1,1 $SHIFT 1 PLACE LEFT
0,0,52C $SKIP IF NOT 23»1
1.1 $SHIFT 2 PLACE LEFT
0,0,SNC 3SKIP IF 2892
-*+3

1,1 $SHIFT & PLACE LEFT
1,1

0+,0,S2C $SKIP IF NOT 2223
1,1 $SHIFT 8 PLACE LEFT
0,3 $RETURN

0,0 $0P FLAG

0,1 SERROR ON NO ¥ FLAG
.’6

190,3 SEXIT POINTER IF NO #
3,3

o2

1,1 $ERROR ON ND ¥ FLAG
0,0 $SP FLAG

O0sGTFGO 3SP/DP FLAG

0,0 sCLEAR ACO

O,GTFGY 3% FOUND FLAG
OyGTOVF 30OVERFLOW FLAG
0,GTSTR ¥ STORAGE
0,GTSTR+1

1,GTERT FERROR EXIT FLAG
2/GTBPT 3BYTE POINTER
3,GTRTN $NORMAL RETURN

..2

GTBPT SINC BYTE POINTER
2yGTBPT 3GET THE POINTER
GTBYT SGET THE BYTE
1,ASCIC $<CR>

Oy14SNR $SKIP IF NOT <CR>
GTLP2 s DONE

1,AS5CI9 3<9>

1,0,S2C $SKIP I1F AC1>=ACO
GTLP2 $NOT A DIGIT
1,ASCIO 3<0>

S
o e

GTLP2:

ERRB:
GTLP3:

ERR9:

GTERR:
GTRTN:
GTERT:
GTBPT:
GTSTRS

GTFGO:

ADCZ #
JMP
152
sus
STA
LDA
LDA
MOVZL
MOVL
1894
MOVZL
MOVL
152
MOVZL
MOVL
152
ADD2
INC
ADDZ
IS
LDA
ADDZ

INCZ

o

=

-l
OO R

0,1,SZC $SKIP IF ACO>=AC1
GTLP2 §NOT A DIGIT

GTFG1 $INC # FOUND FLAG
1,0 sFORM BINARY
0,GTUTL 3HOLD THE #

0,GTSTR 3GET PREVIOUS VALUE

1,6TSTR+1

1,1 sN=2

0,0,52C 3SKIP IF NO OVERFLOW
GTOVF $INC FLAG

1,3 HL B

0,2,52C iSKIP 1F NO OVERFLOW
GTOVF $INC FLAG

3,3 $N=8

2,2,S2C $SKIP IF NO OVERFLOW
GTOVF $INC FLAG

1,3,52C 3N=10

0,0

0,2,S2ZC 3SKIP IF NO OVERFLOW
GTOVF $INC FLAG

1,6TUTL 3RETRIEVE THE BINARY
1,3,SNC 3ADD TD PREVIOUS ¥

"3

29249S2C 3SKIP IF NO OVERFLOW
GTDVF $INC FLAG

2,GTSTR 3;HOLD UPDATED #
3,GTSTR+1

GTLPL $GET NEXT BYTE

3,GTFGY 3# FOUND FLAG

3,3,SNR 3SKIP IF # FOUND

GTLP3

0,GTSTR sRETRIEVE THE #
1,6TSTR+1

2,6TBPT 3RETRIEVE THE BYTE POINTER
3,6TOVF SOVERFLOW FLAG

GTFGO $SKIP IF SP #

PRI

0,0,SZR 3SKIP IF NOT SP OVERFLOW
3,3,SKP FINC FLAG

1,0 $MOVE SP #

3,3,SZR ;SKIP IF NO OVERFLOW
GTERR $ERROR ROUTINE

GTRTN sNGRMAL RETURN

1s1,SZR $SKIP IF EOCL

GTLPI FGET NEXT BYTE

1,GTERT SERROR RETURN FLAG
1,1,SNR 3SKIP IF ADDRESS SPECIFIED
GTERR $ERROR ROUTINE

GTERT $EOL RETURN, NO & FOUND

$ERROR ROUTINE
$RETURN ADDRESS

$EOL RETURN FLAG
$BYPE POINTER STORAGE
$# STORAGE

$OP/SP FLAG

73

APPENDIX A

i
(3 4
o

APPENDIX A
GTFGl: O
GTOVF: O
GTUTL: O

ASCIC: 015
ASCI9: 071
ASCIO0: 060

6GTBYT: LDA
MOVZIR
MOVS
LDA
AND
MOVS
MOVL
JMP

BTMSK: 377

STRTN: O

STBYT: DA
AND
MOVZR
MOVS
MOVS
STA
LDA
AND
ADD
STA
MCVL
INC
JMP 2

«TXTM

NAMEA= .2
«TXT

NAMEC= .=2
STXT

NAMED= .#*2
«TXT

NAMEE= %2
JIXT

NAMEF= .%2
STXT

NAMEG= .2
JIXT

NAMEH= %2
STXT

$# FOUND FLAG
$OVERFLOW FLAG
SUTILITY

$<Ck>

$<9>
$<0>

FSWAP

? SWAP

$BYTE

1,BTMSK 3$BYTE
1,0 $MASK
2,2, 5SNC FFORM
0,0,S2C §SWAP
1,1 FSWAP

+BTMSK 3BYTE MASK
»SNC $FCRM WORD ADDRESS.

THE MASK

$GET WORD
NC §$MASK THE WORD, SKIP IF RHS

THE WORD

MA SK

MASK
THE WORD
WORD ADDRESS,

SKIP IF RHS

$RESTORE BYTE POINTER
$RETURN

SKIP IF RHS

WORD, SKIP IF LHS

MASK

3,STRTN STORE RETURN
3,0,2 $GET WORD

1,3 $MASK THE WORD

0,3 $ADD IN NEW BYTE
3,042 $+RESTORE THE WORD

2,2 JRESTORE BYTE POINTER
242 $INC POINTER

STRTN $RETURN

/COM.CM/

/PREAMBLE .DA/

/TEMPA.TM/

/$TTL/

/$TT10/

/$LPT/

/MT0:20/

i i i el

NAME]=

NAMEJ=

NAMEK=

NAMEL =

NAMEM=

NAMEN=

NAMEQO=

MS5GO1=

MSGO2=

UTBPT=

BJFFR=

4
2.2

APPENDIX A 4

/MTO21/
/MT032/
/MT023/
/IMTO024/

/ASSIGNA.DA/

/ASSIGNB .DA/

/ASSIGNC.DA/

/<12>ALL SWITCHES DOWN<12><15>/

/<12>PREAMBLE FILE OK? (Y,N) /

110

$BLOCK BUFFER
400

APPENDIX A

A-3. Overlay Module No. 2--PHAS2.SR

NAME BLOCK

TIME BLOCK

TITL

«TXTM
«ENT

-EXTD
LEXTD

«NREL

DvST2: SKPBZ
NP
NDP
NOP
SKPBZ
JMP
SKPODZ
JuP
LDA
DIA
AND #
JMP
SKPBZ
Jup
NOP
NOP
SKPBZ
JuP
SKPD2
Jup
INTDS
LDA
LDA
STA
STA
LDA
MSKQ

LOA 2
0CAP
LDA
ODIA
AND #
Jup
NI3C

NIOC
LDA

NAME=

PHAS2
0

gvsT2

PHAS2 .3R

$JC1 23 FEB 76

OVRTN BLKCT SMPRT ERCOD HLDCT CTLTB

ERRTN

170
=1

TT10

=S

170

=7
1,SEEKG
0,DKP
Os1,4S2ZR
=2

DKP

=1

DKP
«=5
DKP
=7

0,1
1,INTSV
0, INTSV
1.1

Oy INTMK
0

0y SEEK]
0,0KP
1ySEEKD
0,0KP
O,1,5SNR
(el

DKP

MUX
0,0MUXA

SWAIT FOR TTO IOLE

fDISK SEEKING MASK
#DISK STATUS
$SKIP IF NOT SEEKING

$WAIT FOR DISK IDLE

$DISABLE INTERRUPTS
#RDOS INT VECTOR

$BDACS INT VECTOR

$SAVE RDOS VECTOR
ENABLE BDACS INT SYSTEM
$BDACS INT MASK

FMASK QUT

FSEER CUMMAND

sOUTPUT THE COMMAND
$SEEK DCNE MASK

GET DKP STATUS

FSKIP WHEN SEEK FINISHED

sCLEAR DISK

JRESET THE Mux
$DOMUX 1/0 START ADDR. AND COUNT

76

BTMSK:
DMUXA:
DMUXB:
DMUXC:
DMuUXD:
DYUXE:
DMUXF:
CLKCD:
SEEKG:
SEEKD:
SEEKILS
INTMK:
INTSV:
TTYPT:

JIMP1:

T

DOA
LDA
DOB
LDA
LDA
ADD
DOC
LDA

bOCS

LDA
LDA
INCO
LDA
AND
JMP
DOAS
SKPDN
JMP
MOVCS
JMP
JMP

377
013003
BUFS1+1
140000

0,MUX
0,0MUXB
0,MUX
0,DMUXC
19 SMPRT
1,0
0,MUX
0,0MUXD

0,MUX

2, TTYPT
0,0,2
292
1,BTMSK
0,1,SNR
JUMP1
1,770
TT0

o=
0,0,52C
Tl

T2

100000-BDACM

BUFS1

100000-BDACM-1

‘$BCH INPUT START ADDR.

$HIGH SPEED WORD MASK
$SAMPLE RATE
§ADD IN SAMPLE RATE

$0CH INPUT WORD COUNT
$SET BUSY, RESET DONE

$MSG POINTER

SMESSAGE WORD

§INC THE POINTER

$BYTE MASK

$MASK THE WORD, SKIP IF NUL

sOUTPUT A CHARACTER
§SKIP WHEN DONE

$SWAP THE WORD, SKIP IF VALID
$GET NEXT WORD
$UUTPUT NEXT CHARACTER

FBYTE MASK

$MUX START ADDRESS & COUNT
$ INPUT DMA BUFFER

$HIGH SPEED WORD MASK
-WORD COUNT, AND O IN 1BO
INPUT DMA BUFFER (RUNNING)
$-WORD COUNT (RUNNING)

03 $1MS RTC CODE
002000 $§DKP SEEK IN PROGRESS MASK
040000 $0KP SEEK DONE MASK
SEEKC $INITIAL SEEK. COMMAND
=1 -IMCLK-IMMUX~IMDKP $BDACS INTERRUPT MASK
INTSR $BDACS INTERRUPT SERVICE ROUTINE
+1 $POINTER TO TEXT
«TXT /<15><12>READYC12><15><12>/
NIOC T10 $CLEAR TTO
LDA 0,CLKCD §1 MS CODE FOR CLOCK
LDA 1,0MUXE $DCH INPUT START ADOR. (RUNNING)
LDA 2yDMUXF §DCH INPUT WORD COUNT (RUNNING)
READS 3 $READ SENSE SWITCHES
MOVZL # 3,3,SNC §SKIP WHEN SSO UuP
JMP =2
LDA 3,PNTRO ;0OUTPUT TABLE POINTER
DOAS OyCLK s START THE RTC
NIOP MUX $START THE MULTIPLEXER
ogos 1,MUX OUTPUT RUNNING VALUES
DOC 2,MUX
INTEN $ENABLE INTERRUPTS
LDA 0+0,3 $DELTA TIME
MaV # 0,0,SNR 3SKIP IF NOT O
JMP L1 $ELSE OUTPUT IMMEDIATELY
T
: p-

APPENDIX A

APPENDIX A

L1

L3s

L6 ¢

L2s

Las
ERROR:

SYSER:

P+42CD:
ETRL:

LDA
MOV #
JMP
DSz
NOP
0SZ
JMP
LDA
LDA
COM #
JMP
MOV ¥
Jup
MOVZR
LDA
AND
MUV &
ADC
STA
LDA
ADD
JMP

152
JuP
152
JMP
Jup
SUB
ADC
JMP
LDA
LDA @
152
INC
CoM ¥
JMP
SUB #
Jue
JMP
ADC
STA
N1OC
N1OC
N1OC
INTDS
SuB
MSKO
LDA
STA
INTEN
CoM ¥
P 2
JMP @

1000
l’l

1,RTCCT
1,1,SNR
Lo
RTCCT

0,3

LO
1,1,3
292,3
2929 SNR
L2

2929 SNR
L6

242
0,0,2
1,0
0404 SNC
1,0
0,0,2
0,CTLOF
0,3

LO

HLDFG
L3
ENDFG
L
1,1,S5KP
1,1,SKP
L5
0,PH2CD
2,ERTBL
ERTBL
0,0
292, SNR
l’3
293,5IR
=6

o+2

0,0
0,ERCGD
MUX

CLK

DKP

0,0

0

0, INTSV
0,1

1,1,5ZR
OVRTN
ERRTN

$RTC COUNT

$SKIP IF POSITIVE COUNT
+LO0OP BACK

$0EC THE COUNT

$SKIP IF QUTPUT REQUIRED
3LOCP BACK

sOUTPUT MASK

$STATE AND BUFFER POINTER
$SKIP IF NOT END

$SKIP IF NOT END OF HOLDOFF

$SET STATE IN CARRY

$GET BUFFER WORD

sMASK THE WORD

$SKIP IF +1 STATE

$RESET THE STATE
sRESTORE THE BUFFER WORD
sCONTROL TABLE OFFSET
$OFFSET THE POINTER
sLO0OP BACK

$HOLDOFF FLAG

$END OF ACQUISITION/CONTROL FLAG
sWAIT FOR LAST DATA BLOCK

$SET FLAG O
$SET FLAG -1

$PHASE 2 ERROR CODES
$ERROR TABLE

§INC THE POINTER
$INC THE COUNT

$SKIP IF NOT EOT

$SKIP IF ERROR FOUND
;LO0OP BACK

$SET FLAG -1
$HOLD ERROR COUNT
sRESET MUX
$RESET CLOCK
$RESET DISK PACK
$OISABLE INTERRUPTS
sCLEAR ACO
CLEAR ALL INTERRUPT MASKS
+RETRIEVE ROGS INTERRUPT VECTOR

JENABLE INTERRUPTS

$SKIP IF ERROR

$NORMAL RETURN TO ROOT BINARY
$ERROR RETURN

sPHASE 2 ERROR CODE
FERROR TABLE POINTER

78

z‘ TP—— ——— Sl ” B e o L

APPENDIX A /|
|
ERR1 $DISK ERROR 5
ERR2 $OVERFLUW ERROR
ERR3 $MUX ERRDR
ERRG $OVERRUN ERROR
-1 $END OF TABLE
PNTRO: CTLTB FOUTPUT LIST PDINTER |
CTLOF: BDACK FCONTROL LIST ENTRY SIZE |
RTCCT: O $RTC COUNT
SAVE: 0 FINTERRUPT SAVE AREA
0
0
ENDFG: 0 +END OF ACQUISITION/CONTROL FLAG
‘ MJXFG: O FMUX FLAG
; DKPFG: O ;DISK FLAG | 4
f H.DFG: O $HOLDOFF FLAG
INTSR: SKPON CLK $SKIP IF RTC INTERRUPT
;: JMP .*+5
E | NIDS CLK $RESTART RTC
Et . 152 RTCCT 3INC COUNT
INTEN
JMP 3 0 ;RETURN TO INTERRUPTED PROGRAM
STA 0,SAVE 3HCLD ACO, AC!
STA 1,SAVE+]
MOVL 0,0 $SHIFT CARRY AND HDLD
STA 0ySAVE+2
INTBK: SKPDZ MUX $SKIP IF NOT MUX INTERRUPT
JMP MUXIN
DIAC 0yOKP ;DKP STATUS, CLEAR FLAGS
MOVR # 0,0,52C 3SKIP IF NG DKP ERROR
JSR @ ERRO1
ERR1: ADC 1s1 $FORCE -1
MOVL # 0,0,SNC 3SKIP IF WRITE INTERRUPT
JuP SKINT
DS2 BLKCT 3DEC DATA BLOCK COUNT
v JMP o+l
f LDA 0,ENCFG 3;ENC OF ACQUISITION/CONTROL FLAG
i MOV # 0,0,52ZR $SKIP IF NOT DCNE
| JMP La
Loa 0,BLKCT 3DATA BLOCK COUNT
MOVR # 0,0,SNC ;SKIP IF EVEN SURFACE COMPLETE
Jup DSKSK $SEEK NEW CYLINDER
SCINT: INC 1,1 $FORCE 0
LoA 0,0KPFG 015K PACK FLAG
STA 1,0KPFG ;UPDATE FLAG
MOVZR # 0,0,S2R 3SKIP IF DEFERRED WRITE REQUIRED
Jup INTRL SRELEASE THE INTERRUPT
- LOA 0yMUXFG §MUX FLAG
e . JMP WRITE
: O5KSK: M3V # 0,0,SNR $SKIP IF NO OVERFLOW
| JSR & ERRCI
ExR2: STA 1,DKPFG 3UPDATE FLAG
151 SEEKC 3INC CYL # IN SEEK COMMAND
152 WRITC 3INC CYL & IN WRITE COMMAND
LUA 0,SEEKC
COAP CoDKP LUTPUT THE SEEK COMMAND

e

79

APPENDIX A

MJXHF:
INTRLS

MJUXINS

ERR3:

WRITE:

WTDF:

ERRG:

ERRO1:

SEEKC:
WAITC:
SJRFE:
SJRFU:

BJFS2:
BJFS1:

JuPp
152
INTA
MOV ¥
JMP
LDA
MOVR
LDA
LDA
INTEN
JMP 2
SKPDZ
Jup
JMP

DIAS
LDA
STA
suB #
JSR 3
LDA
MOV #
JMP
LDA
MOV #
JMP
STA
LDA
MOVL
LDA
bos
LDA
MOVL
LDA
pac
LDA
DOAS
Jup
MOVZR
SUB #
JSR 3
SUBZL
STA
JMP

ERROR

17500
17440
00000
00040

.+2+B
o+l
BLK
0

-END

INTRL SRELEASE THE INTERRUPT
HLDCT $INC THE HOLDOFF COUNT

0 $§ INTERRUPT ACK.

0,0,SZR $SKIP IF NO INTERRUPTS PENDING
o7

0ySAVE+2

0,0 sRETRIEVE CARRY

1ySAVE+]

0,SAVE FRETRIEVE ACI AND ACO

0 $RETURN TO INTERRUPTED PROGRAM
CLK $SKIP IF NO CLOCK INTERRUPT
=7

INTBK $L0O0P BACK

0, MUX JRESTART MUX, GET STATUS
1,MUXFG ;0LD STATUS
O,MUXFG 3UPDATE STUTUS
0,1,SNR FSKIP IF NO MUX ERROR
ERRO1
1,HLDFG §FHOLDOFF FLAG
1419SNR §SKIP IF NO HOLDOFF IN EFFECT
MUXHF
1,D0KPFG 3;DISK FLAG
1,1+SZR 3;SKIP IF DISK IDLE
WRTDF $DEFER WRITING
0+OKPFG FSET DISK FLAG
1,BUFS1 51ST BUFFER POINTER
0,0,SNC 3SKIP IF 1ST BUFFER REQUIRED
1,BUFS2 ELSE GET 2ND BUFFER POINTER
1,DKP sOUTPUT THE POINTER
1,SURFE FEVEN SURFACE
0,0,SNC FSKIP IF EVEN SURFACE REQUIRES
1,SURFD FELSE GET ODD SURFACE
1,0KP
1,WRITC FWRITE COMMAND
1,DKP $OUTPUT COMMAND, START WRITE
INTRL fRELEASE THE INTERRUPT
B 1,145ZR §SKIP IF DEFER IN EFFECT

0,1,SNR §SKIP 1F NO OVERRUN
ERRO1
1,1 5SET FLAG +1 (WRITE PENDING)

1,0KPFG 3DISK FLAG
INTRL fRELEASE THE INTERRUPT

$ERROR ROUTINE
0+BDACD $INITIAL SEEK COMMAND
0+BDACD $INITIAL WRITE COMMAND
4 EVEN SURFACE
4 50DD SURFACE
DACM $2ND BUFFER POINTER

#1ST BUFFER POINTER
BOACM=2 §5TART OF DATA BUFFERS

80

o e e ———— ———

A-4. Overlay Module No. 3--PHAS3.SR
NAME BLOCK NAME= PHAS3.SR
TIME BLOCK

LTITL PHAS3 $JCl 24 MAR 76

«TXTM 0

<ENT DvsT3-

<EXTD OVRTN MAGFG ERCOD ERRTN HSMON

«NREL
PNTRO: HSBUF $HS BUFFER POINTER
CNTRO: BDACO $HS BUFFER SIZE
DMAOB: MUXOB $MUX OUTPUT BUFFER POINTER
CNTRB: BDAC2 sOUTPUT BUFFER SIZE
NINE1: NONE $NO HS BUFFER REQUIRED
gvsT3: SuB 0,0 $FORCE O

STA @ O,PNTRO 3RESET HS OUTPUT BUFFER

1s2 PNTRO

1LY 4 CNTRO

JMP .‘3

ADC 0,0 $FORCE -1

STA 3 0,DMAOB $RESET MUX OUTPUT BUFFER

152 DMAOB

DAY 4 CNTRB

JMP .’3

LDA 1,HSMON $HS MONITOR FLAG

MOV # 1,1,S5NR $SKIP IF ACTIVE

JMP 2 NONEL $WRAPUP

SKPBZ TT0 $WAIT FOR TTO IDLE

JMP =1

NOP

NOP

SKPBZ T10

JMP =5

SKPDZ 110

JMP =7

LDA 1,SEEKG $DISK SEEKING MASK

DIA 0,DKP $DISK STATUS

AND # 0y19SZR $SKIP IF NOT SEEKING

JMP -2

SKPBZ OKP $WAIT FOR DISK IDLE

J"P o’l

NOP

NOP

SKPBZ DKP

JHP --5

SKPDZ DKP

81

APPENDIX A ’

APPENDIX A

Ti

123

TIMER:
BTMSK:
DMUXA:
DMUXB:
CAuXC:
DMuUXD:
OMUXE:
DAUXF
DAUXG:
SFEKG:
INTMK:
INTSV:
TTYPTS

JIMP1:

INTRL:

JMP =7
INTOS sOISABLE INTERRUPTS
LoA 0.1 sRDCS INT VECTDR
LDA 1,INTSV 3BCACS INT VECTOR
STA C,INTSV $SAVE RDOS VECTOR
STA 1,1 sENABLE BDACS INT SYSTEM
LDA Oy INTMK $EDACS INT MASK
MSKQO 0 sMASK DUT
LOA 0,DMUXA 3DMUX 1/0 START ADDR. AND CCUNT
DCA 0,MUN
LDA 0,0MUXB 3DCH INPUT START ADDR.
DCB 0,MUX
LCA 0,DMUXC 3HIGH SPEED WORD MASK
pac 0,MUX
LOA 0,0MUXD 0CH INPUT WORD CCOUNT
LaCs 0,MUX $5ET BUSY, RESET DONE
LDA 2,TTYPT 3MSG POINTER
LOA 0,0,2 sMESSAGE WORD
INC3 242 sINC POINTER
LOA 1,BTMSK §BYTE MASK
AND 0y1,SNR $MASK THE BYTE, SKIP IF NOT NUL
JMP JUMP 1]
DOAS 1,TTO sOUTPUT A CHARACTER
SKPON 170 sSKIP WHEN DONE
JUP L
MOVCS 0,0,52C 3SWAP THE BYTES, SKIP IF VALID
JupP Tl $GET NEXT MORD
JMP T2 sOUTPUT NEXT CHARACTER
&4 sOELAY COUNT
AL sBYTE MASK
000069 sMUX START ACDKESS & COUNT
INPJUT~1 s INPUT CMA BUFFER
140164 sHIGH RATE WORD
077776 $-WORD COUNT, AND O IN 1BO
INPUT=~2 s INPUT DMA BUFFER (RUNNING)
g7771% $-WCRD COUNT (RUNNING)
) ¥ iy sLOW RATE WOKD
002000 3OKP SEEK IN PROGRESS MASK
=1-1MMUX $BUACS INTERRUPT MASK
INTSR SECACS INTERRUPT SERVICE ROUTINE
.41 sPOINTER TO TEXT
«TXT /<15><12>HS BUFFER RETRIEVALCLIZ2X<15><12>/
NTOC TT0 sCLEAR TTD
LOA OUyCNTLH
STA 2 Oy CNTLP
LDA O,OMUXE CCH INPUT START AODDR. (RUNNING)
LOA 1,0MUXF $CCH INPUT WORD COUNT (RUNNING)
i1 0P MUX $START THE MULTIPLEXER
D18 UeMUX sCUTPUT RUNNING VALUES
DuC 1,MUX
INTEN JENABLE INTERRUPTS
Jup . sLOOP HERE TILL DONE
JUP =3
82
N e——— s oo e
S o ol

T —,

APPENDIX A
MJXFG: C sMUX STATUS FLAG
CNTLL: 137777 5CCNTROL WCRD (LGCw)
CNTLH: 037777 sCUNTRGL WORD (HIGHI
CNTLP: MJUXOB+BDACZ2-1 sCONTROL WCRD POINTER
ERRO1: ERROR sERFUR ROUTINE
(i
INPUTE O sMUX INPUT BUFFER
g
i4TSR: [CIAS SyMUX $MUX STATUS
LOA 1,MUXFG FREVICOUS STATUS
STA OyMUXFG FUPCATE THE STATUS
SUB # Gyl SNK 3SKIP IF NG ERROR
JSR 2 ERROC1 $ERROR ROUTINE
ERK1: LUGA 1,CNTLL 3CONTROL WOURD MASK (LOW SIGNAL)
MOVL # 0,0,SNC $SKIP IF LOW REQUIRED
LOA 1,CNTLH $CONTROL WORLU MASK (HIGH SIGNAL)
STA 2 1,CNTLP ;CONTROL WORD POINTER
LOA 1,0MUXG LOW RATE WORD
MOVL 4 O0,0,SNC 3SKIP IF LCwW RATE REQUIRED
LDA 1,0MUXC $HIGH RATE WORD
DO 1,MUX
MJOVL # 0,0,52C ;SKIP IF VALID DATA
JMP INTRL
LOA 1, INPUT FDATA WCRD
MJVS 1,1 sSWAP THE BYTES
STA a 1,BFRPT $STURE THE WORC
182 BFRPT sINC THE PCINTER
031 BFRCT $DEC THE COUNT, SKIP WHEN ODONE
JMP INTRL sRELEASE THE INTERRUPT
SUB 1914SKP $SET FLAG O
EJIROR: ADC 1,1,5KP *SET FLAG -1
JMP DONE
LDA U+PH3CD FPRASE 3 ERRUR CODE
LOA 2 2+ERTBL FERROR TABLE
182 ERTBL # INC THE POINTER
INC 0,0 s INC THE COUNT
C3M 8 2+2ySNR SKIP [F NOT EOT
JMP «+3
SJUB # 2y3,52R 3SKIP IF ERROR FOUND
JMP) sLOGP BACK
JuP .+
SYSER: ADC 0,0 $SYSTEM ERROR CODE
STA OERCOD $HOLD ERRIR COUNT
LINE: NTac MUX FRESET MUX
INTODS $01SABLE INTERRUPTS
$U8 0.+0 sCLEAR ACO
M5k0 [SCLEARMALL INTERRUPT MASKS
LA Oy INTSV SRETRIEVE RDOS INTERRUPT VECTOR
>TA C,1
INTEN sENABLE INTERRUPTS
L T (" » 1+1+SNR 5KIP IF NG ERROR
P 4 tQRTIN
L] CRRF 1] sCREATE

cliadhna e,

|
|
|
i
|
|
’ JiR 2 gGPFL1 SOPEN
}
|

APPENDIX A ’v
NAMEE ' TEMPE.TM!
NAMEB PPTEMPE LTM!
: 23 $IN CH #3
JSR o THPO1 $CUTPUT HS BUFFER
JSR CLFL1 3CLOSE
03 $CH #3
LDOA 1,MAGFG $MAG TAPE FLAG
MIV B 1,1,SNR §S5KIP IF MAG TAPE
JMP 3 GVRTN $RETURN TO ROOT BINARY
ISR 2 JPFL1 $GPEN
NAMEB 'TEMPB.TM!
04 sON CH ré4
JIR @ UPMT1 ;OFEN MAG TAPE FLR FF
NAMF A cIMTREE ! 1
03 sON CH 43 i
SuB 0,0 sCLEAR ACO ’
STA 0,BLKNC BLOCK # 3
JSR 2 ROBL1 sREAD A DISK BLOCK
BLKND: C $BLOCK &
YA $E0F RETURN
JSR 2 MTAW] sWRITE BLOCK TU MTA
152 BLKNC $INC BLOCK &
JuP .-5
JSR @ MTAE1L $WRKITE ECF
JSR @ MTAS1 s SPACE REVERSE
JSR 2 CLFL1 sCLOSE
03 3CH H3
JSR & CLFL1 sCLOSE
A sCH #a
JUP 2 OVRTN sRETURN TO RO3T BINARY
BERST: HSBJF+I $START OF HS BUFFER
BERPT: HSBUF $BUFFER PODINTER
B"RCT: BLACO+L §BUFFER COUNT
B.KCT: BLACZJ/430 $4 BLUCKS IN HS BUFFER
C<RF1: (CRRFL fCREATE RANDOM FILE
O7'FL1: UPFLE sOPEN A CHANNEL
C.FL1: CLFLE CLOSE A CHANNEL
CoMT1l: CPMTA sOPEN MAG TAPE FCR FF
ROBL1: RDBLK sREAD A DISK BLOCK
TMPOl: TMPOT sOUTPUT HS BUFFER TC DISK
MTAW1S MTAWT sUUTPUT BLCCK TOD MAG TAPE
MTAEL1S MTAEF SWRITE ECUF ON MTA
MTAS]1: MTASR $SPACE KEVERSE 1 RECORD
F43C0: 1400 sPHASE 3 ERROR CUDE
ERTBL: .+1 SERROR TABLE PCINTER
ERR] $MUX ERROR
-1 $END OF TABLE
c11e 11
C12¢ 1-
CRRTN: O $RETURN ADDRS
! CRRFL: LDA 0,0,3 sNAME POINTER
INC 3,3

APPENDIX A ’
STA 3,CRRTN ;STDRE RETURN
CRRFA: STA 3,USP sSTORE RETURN
«SYSTM
.CRAND sCREATE RANDOM FILE
JMP .42
JMP 0,3 sNCRMAL RETURN
LOA 1,C11
SUB # 1,2,5ZR §SKIP IF FILE EXISTS
JSR 2 SYSEL +ERROR
JSR DELEA sDELETE THE FILE
JSR CRRFA s+ [RY AGAIN |
JMP 2 CRRTN sRETURN .
DELET: LDA 0,0,3 sNAME POINTER {
INC 3,3 g
DELEA: STA 3,USP s STCRE RETURN ’,
«SYSTM
LDELET ¢DELETE THE FILE
JMP .+
JMP 0.3 sNCRMAL RETURN
LDA 1,C12
SJB # 1,2,SZR ;SKIP IF NO FILE EXISTS
JSR 2 SYSE1 s ERROR
JMP 0,3 sNORMAL RETURN y
0°MTA: ADC l¢14SKP $SET FLAG -I
O0PFLES SUB 1,1 $SET FLAG O
LDA 0,0,3 $sNAME POINTER
LDA 29143 sCHANNEL #
STA 3,USP sHGLD RETURN
M3V # 1,1:52R ;SKIP lF REGULAR DPEN
JMP .*+5
.SYSTM
.JPEN 77 sUPEN THE CHANNEL
JSR @ SYSE1 sERROR
JMP 2,3 sNORMAL RETURN
INC 1,1 sDEFAULT CHARACTERISTICS
+SYSTM
LMTOPD 77 sOPEN MAG TAPE FOR FF
JMP 2 SYSE1 $ERROR 1
JMP 2,3 $NORMAL RETURN
SYSE1 SSYSER $SYSTEM ERROR
EJFMK: 000400 sEOF ERROR MASK
SRCMD: C60001 $sSPACE REVERSE COMMAND
EFCMD: 060000 $ECF WRITE COMMAND
WTCMD: (050400 sWRITE COMMAND
MTASR: LDA 14SRCMD $SPACE REVERSE COMMAND
JupP .t
MITAEF: LDA 1,EFCMD FECF WRITE CODMMAND
JMP .3
MITAWT: LCA DyBFRST $START OF HS BUFFER 1
LDA 1,WTCMD ;WRITE CGMMAND
STA 3,UsP shCLD RETURN
+S5YSTM
+MT1D010 03 sMAG TAPE FF 1/0
85

APPENDIX A

TAECT:

RIOBAK:
RIbLK:

BLKPT:
B_kSz:
EJFCOD:

C_FLE:

NiMEA=

NAMEB=

HSEUF =

Jup
Mp
LDA
AND #
JSR @
Jup

LDA
suB
LDA
LA
574
«SYSTM
.WRS
JSR 2
Jup

0

LLA
LDA
STA
LoA
LEA
STA
«SYSTM
«RDB
Jup
JMP
LDA
SUB w
JSR W
JUP 2

HSBUF
000400
06

LDA
STA
«:YSTM
«LLDS
JMP @
JMP

«TXTM

42
LIXT

=2
TXT

o+

0,3

1y E3JFMK
1,2,45NR
SYSE1
0,3

CyBFRST
1,1
2,BLKCT
242
3,USF

03
SYSE1L
0,3

1,0,3
Usl,3
J¢ROBAK
QyBLKPT
2yBLKSZ
3,JSP

ua

o*2

2,3
1+EUFCD
1,2,S52R
systl
RDBAK

2,043
3,usp

77

SYSF1
1,3

/MTC:5/

sNGRMAL RETURN
$ECF ERROR MASK
$SKIP IF EOF
$ERROR

$NORMAL RETURN

$START DF HS BUFFER
sRELATIVE BLOCK ADDRS 0
3# BLOCKS

sSTORE RETURN

yWRITE THE HS BUFFER TC DISK
$ERROR
sNURMAL RETURN

sRETURN ADDRS

3BLCCK #

sEOF RETURN ADDRS
$STCRE ADDRS

$8LOCK BUFFER PDINTER
$BLOCK SIZE

$STORE RETURN

+READ A DISK BLOCK
$ERROR

sNCRMAL RETURN
sECF CODE

$SKIP IF EOF
$SYSTEM ERRCR

$ECF RETURN

s8LOCK BUFFER FOINTER

$BLOCK COUNT 1
sECF ERROR C(CCDE

+CH B
$HOLD RETURN
+CLUSE THE CHANNEL

$NCRMAL RETURN

/TEMFB.TM/

BUACC+1

$HS CUTPUT BUFFEK

groe

e, o e m———

U SU——

APPENDIX A

A-5. Overlay Module No. 4--PHAS4.SR
NAME 3L K NAME = PHAS4 .Sk
TiME BLICK
«UETE PHAS4 yJCI 10 MAR 76
LIXTH 1
LENT UvsTa
LEXTD OVRTN ERRTN ERCOD MAGFG SMPRT
LEXTD BLKCT HLDCT LSMON
+EXTN MSKTB LSBTB
+NREL
BJFSZ: BODACY $RECUCED DATA BUFFER SIZE
BJFFTS MTABF sBUFFER PJINTER
C<RF1¢ (RRFL sCREATE RANDOM FILE
U2FL1: CGPFLE sUPEN A FILE (NORMAL)
UoMT1: OPMTA sOPEN FF MAG TAPE FILE
CONEl: DONE TWRAPUP
OvVSTs: SUB 0,0 sCLEAR ACO
STA 2 0,BUFPT SRESET REDUCED DATA BUFFER
182 BUFPT
0s2 BUFSZ
JMP =3
JSR 2 LPFL1 sOPEN
NAMEC $'BDACS.CA!
(14 sGN CH R4
LDA 1,MAGFG $MAG TAPE FLAG
MOV ¢ 1y19SZR $SKIP IF ND MAG TAPE
JMP o+7
JSR o CRRF1 sCREATE A RANDCM FILE
NAMEB s'TEMPC.TM!
JSR 2 OPFL1 sCPEN
NAMEB s'TEMPC.TM!
03 $ON CH#3
JMP .+4
JSR @ UPMT] sFF OPEN
NAMEA s 'MTO2 3!
03 sON C(HA3
LOA 1+BLKST §OATA BLOUOCK START CUUNT
LDA 0yBLKCT FCURRENT COUNT
suB 1,0 sFORM NEG DIFF
oV o # 0y0ySNR ;SKIP IF DATA STURED
JMP 3 DUNE1
STA CeBLKCT $SET COUNT
LDA 1,SMPRT 3SAMPLE RATE
SJUB 0,0 sCLEAR ACO, ACZ2, AC3
MoV 042

ERK1:?

LJy:

APPENDIX A

MOV
ADDZ
INC
DS2
JMP
LDA
MOV #
NP
STA
MOV
ADDZ
INCZ
ADDZ
JSR 2
DSZ
JMP
STA
STA
LDA
STA
SUB
LDA
LDA
ADD
SUBZ #
SuB
oS
JMP
MOV #
STA

LDA
ADCZ
NEG
M3VL
JMP
INC
JUP
STA
READS
ADDZL #
JMP
JSR @
LDA
LDA
ADCZ #

INC

JMP

0,3
1,3,52C
2492
CNTRO
-3
1,HLDCT
1,1,S5NR
LLO
1,CNTRO
0,1
3,1,52C
0,0, SNC
2+,0,52C
ERRO1
CNTRO
«=5

0, TIMER

$DETERMINE HOLDOFF TIME PER FILL
+SKIP WHEN DONE

sHOLDOFF COUNT
$sSKIP IF HOLDOFF

$HOLD COUNT

sCLEAR AC1

sOETERMINE TOTAL HOLODOFF TIME
$SKIP IF OVERFLOW

$SKIP IF NO OVERFLOW

sERROR ROUTINE

$SKIP WHEN DONE

§STORE THE TIME

1, TIMER+1

0,HLDCT
0,CNTRO
0,0
1,HLDOV
2yRRCNT
1,0
2,0,4S52C
CNTRO
=4
0,0,52R
0,PRADD

2,LSMON
0,0
242,52R
0,0, SKP
.’3
2424 SIR
=3

0, LSBMK
0

0,04 SNC
LL1
GTBWI
29yPRALD
I1,RRCNT
2414 SNC
1,2

2492
2+PRADD
ROBW1
GTBWl
Zy2
RDBW1
INTMR
L0

$GET HOLDOFF COUNT

$RESET THE COUNT

sCLEAR ACO

$RCUND ROBIN OVERFLOW PER FILL
$ROUND ROBIN COUNT

ADD OVERFLOW

iSKIP IF AC2>ACO

ELSE RESET THE OVERFLOW

$SKIP WHEN DONE

$SKIP IF NC NET OFFSET
§UPDATE PREVIOUS ADDRESS

LS BUFFER MONITOR POINT
sFORCE -14,CLEAR CARRY
$SKIP IF NO LS

$FORM THE LS MASK

$SKIP WHEN DONE

$STORE THE MASK
sREAD SWITCHES
$SKIP IF NO ERROK RECOVERY

$GET A LS WCRD

$GET PREVIOUS LS OFFSET
sMAX COUNT

$SKIP IF AC2<AC1

sRESET THE OFFSET

$ INC THE OFFSET
SRESTORE THE CURRENT OFFSET
JREDUCE LS WCRD

sGET A HS WORD

30 CFFSET

yREDUCE HS WCGRD

$INC THE TIMER

sLCOP BACK

i
|
i
|

H_.DOV:
PRADD
RRONT:
BLKST:
CNTRO:
LSMSK:
KISTR:
H5PNT:
GIBW1:
ROBW1:
ERKO1:

TIMER:

INTMR:

ERR2:

BOAC7+BDACB/BDAC7+*BDACT7-BDACS

BDAC7? sPREVIODUS LS ADDRS

BUAC? 3% OF LS WORDS

BDACE =2 $MAX DATA BLOCK COUNT
BDACS i# CF HS/LS PAIRS PER BUFFER
160000 LS ADDRS MASK

0 sDATA WORD STORAGE

MSKTB yREPORTED PDINTS MASK TABLE
GTBWD $GET A BUFFER WORD

RCBWD sREDUCE A BUFFER WORD
ERRCR $ERROR ROUTINE

8 sCURRENT TIME

LDA 0y SMPRT ;SAMPLE RATE

LDA 1,TIMER ;CURRENT TIME

LDA 2 TIMER+1

ADDZ 0,2,SZC UPDATE THE TIMER

INC2Z 1y1,SNC $SKIP IF OVERFLOW

Jup .42

JSR @ ERRO1 sERROR ROUTINE

STA 1, TIMER 3RESTORE TIMER

STA 2y TIMER+]

LDA O,LSMON LS BUFFER MONITOR POINT #
MOV # 0,0,SNR 3SKIP IF BUFFER IN USE

JMpP 0,3 $RETURN

1S LSPNT $INC LS POINT COUNT

LDA OyLSWMK 3LS WORD MASK

MOVZL 0,0,SZR §SHIFT, SKIP IF OVERFLOW
JMP «+3

152 LSOFF $INC OFFSET COUNT
SUBZL 0,0 JRESET MASK

STA OyLSWMK FRESTORE THE MASK
LDA 0,LSOFF 3GET QFFSET

LOA 1,LSMAX $MAX OFFSET

SUBZ # 0,1,SZC $SKIP 1F ACO>ACI1

JMP «+5

SuB 0,0 sCLEAR A(CO

STA O0yLSCFF 3RESET THE OFFSET
LDA O,LSFST 31ST LS POINT

STA O,LSPNT FRESET THE POINT COUNT
JMP 0,3 $RETURN

SuBZL 0,0 7+1 INITIAL HS COUNT
STA 04yCNTRO 3HS COUNT

sus 0,0 sCLEAR ACO

STA 0ySEQFG FRESET ERROR FLAG

JSR 2 GTBWI $GET A BUFFER WORD
MOVL 0,0,S5NC $SKIP IF HS WORD

Jup L2

MOVIR 0,0 $RESET HS BIT
SuB 242 +0 OFFSET

JSR @ ROB W1 $§REDUCE HS WORD
152 CNTRO §INC HS COUNT

JSR INTMR $INC TIMER

APPENDIX A

APPENDIX A

JMP L1

(W LA 1,LSMSK
AND Uyl
SJE 1,C
MTIVZIR c,0

1 STA Uy WIOSTK
] ATDZL 1,1

MIVL 1,1
MLVL 1y1
L_A ZyPRACD
STA 1,PRADD
LDA Uy RRCNT
ADCZ o 24,145NC
ALD Jel
$.J8 4l
A€ 2,2
LTA CyCNTKC
ALD & 2914 SNR
A0D ¥ 109 52R
JMF L&
InC 242
STA 2yCNTRO

L3 LOA O, WDSTR
LoA 2 PRADD
JSR 2 kOBW1
Jyp EY

L4 SJUBZ Ty 1y SNC
JSK 2 ERRD1

ER>: STA 1y(NTRO
152 SEQER
152 SEQFL
LOA Uy SEGER
LOA 2y SZUMX
SJBZ 3 2,0,52C
JSR @ ERRO1

E2RG S MCV ¥ 1y,1,5NR
JUP s
JSR INTMK
o5 CNTROU
cMP =2
JMF L3

S:Qvx: BIACN

$SZGER: O

oF wMKe 0C 06400

SzWFGe v

LSEMK: 177717

LoWMKS 000001

LSFST: 040000+BCACOQ

L. FNT: 0o CQUUO+BLACE

LIMAX: BOAC3-]

ESGEFE ©

LSTPT: LSBTB

L3IRTNS O

sLUCP BACK

sLS MASK

iMALK THE ADCLRS
iFURM DATA WORD

EITS

$STLRE
FJEHIFT ADDRS

ThE CATA
BITS

sFREVIGUS LS ALDRS
$STCRKE CURRENT LS
sRCUND RUBIN CCUNT
SSKRIP IF ACe<ACl
$ALC MOCDULUS

SECRM ALUKS UILFF ‘
$FCRCE =1 i
sHS COUNT

ssiile e BILER NQT #l

iSKIP IF HS CAOUNT +]

ASOURS

yCLEAR AC2

sKESET nS COUNT
sRETRIEVE THE DATA
§bS GFESET 3
sREDUCE LS WORD

yoLCP BACK

sFUORM DIFF, SKIF IF ACC<=AC1
yERROR RUUTINE
+FORCE COUNT TO DIFF

s INC ERRUR CO'NT

ySET ERRUR FLAC

JCRROR COUNT

sMAX COUNT

sSKIP 1F AC2>ACO
$ERROR ROUTINE

$SKIP 15 NONZIEROD COUNT

yINC TIMER J
$SKIP WHEN DCUNE

JMAX # SEQUENCE ERRCRS
FSEQUENCE ERKURS
ySECUEN"E ERRTR MASK
ySEQUENCE ERRUR FLAG

$LS BUFFER MASK |
iLS W3IRD MASK - |
$F1KST LS POINT = |
yCURRENT LS POINT & |
PMAY LS OFFSET

4 CURRENT LS LFFSET
$START UF LS MASK TABLE

sRETURN AQDRS

.

APPENDIX A "
L.E&R2T STA 3,L5KTN 35TCKE RETULRA
A SyLSTPT ;STAKT (F TAGBLE
LOA OyLSUFF 3UFFSET
ALD 0,3 $THE PUINTER
LDA 1,0,3 $RECURTED POINTS MASK
3 L0 CyLSWMK jWURD MASK
AD 8 Uy1,SNR $SKIF 1F REPCRTED
JMP LS1
LDA 1,BDAC3,5 $PREVICUS VALUE
MovL 2,2 $MOV CURRENT STATE TO CARRY
MLV 1,2,52C 3MOLV PREV. VALUE, SKIP IF O CURRENT STATE
CoM 252 sCUM PKEVIOUS VALUE
ANG 4 0s2,5NR §SKIP IF CHANGE CTCCURRED
Jvue LS1
CM Uy0 ;CGM WORD MASK
A\D Uy1452C 3TURN GFF BIT, SKIP IF TO TURN UFF B
AdC Dl s TURN O
SiA 1,8DAC3,3 tRESTORE UPTCATED MASK
LDA 19LSPNT 3LS BUFFER PCINT &
SUBCR 242,5KP jRETRIEVE CURRENT STATE KIT
L5.e SuB 1s1 $SET FLAG ©
JYP 9 LSRTN 3RETURN 3
y
RIBWD: S7A 3,RDKTN jRETURN ADDRS]
LDA 3,HSPNT ;MASK TABLE PJINTER
ADD 243 $A0D IN GFFSET ;
LUA 100,2 $tREPIRTED PLINTS MASK
AND 1,0 tMASK THE WOAD
LDA 1,80AC1,3 $PREVIOQUS VALUE
STA 0,BDACL, 3 $UPDATE PREVIOUS VALUE
ASDIL 2,2 FFCRM PUINT # (MULT BY le)
AUDIL 2,2
STA 2,STNBR ;HOLD THE POINT #
(M 0,2 3CCM PRESENT VALUES
oM 1,3 $CLM PAST VALJES
ANU 2,3 $FORM SAME 0'S MASK
AND 05l sFURM SAME 1'5 MASK
ASC 341 FMASK COF NON CHANGED POINTS
Loa 3,LSMON 3L S BUFFER MONITGR PUINT
LuA 2,STNBK 3;PRESINT 4
MOV # 3,3,52R ;SKIP IF NO MUNITOR BUFFER
MOV #2424 SZR 3SKIP IF AS WIRD
JUP e+3
LDA 2,LSBMK ;LS BUFFER MASK
AND 21 $SET THE LS BIT
oM 1,1 $FURM CHANGES MAYK
Lol MOV #1431 ,SNR $SKIP IF MURE CHANGES
JMP @ RORTN $RETURN !]
152 STNBR ;INC PTINT & ‘ 1
MT VR 040 $MLV PRESENT VALUE TO CAKRRY |
SUBCR 242 $MCV VALUE T0 180
MCVZR 1yl 45NC $SKIP IF CHANGE
Jvp LPl z
STA OyHLOPR $HCLD THE REMAINING VALJES |
STA 1,HLDDF 3HOLD THE DIFF MASK
LDA 1,STNBR ;RETRIEVE PUINT ¢
LDA U,LSMON ;LS BUFFER MLNITLR PLINT |

APPENDIX A

LP2:

RDRTN:
STNBR:
HLDPR:
HLCOF:
MTAST:
MTABP:
MTASZ:
MTACT:
TIME:
C403:
C20:
CNVTR1:

02FL2:
CLFL1:
TMPO1:
MTADI:
MTAEL
MiAS]

DINE:

SuUB #
JSR
MOV #
JMP
ADD
SUB
LDA
MOV #
LDA
ADD
STA 2
ISz
LDA
tDA
STA @
182
LDA
STA 2
IS
DSz
JMP
Loa
MOV #
JMP
JSR @
JMP
JSR @
LDA
STA
LOA

MTABF
MTABF
420
400
TIMER
-8DACL
20

0

GPFLE
CLFLE
TMPOT
MTAOT
MTAEW
MTASKN

LOA

O¢19SNR
LSBRD
1,1,SNR
LP2

1,2

1,1
3,SEQFG
3,3,S2R
1, SEQMK
1,2
2yMTABP
MTABP
2, TIME
1,0,2
1,MTABP
MTABP
19142
1,MTABP
MTABP
MTACT
LP2
1,MAGFG
1,1952R
.*+3
TMPO1
-t2
MTAD1
1,MTAST
1,MTABF
1,MTASZ
1.MTACT
O,HLDPR
1,HLDDF
LP1

0,0
2,(M03

$SKIP 1F NOT LS POINT
§REDUCE THE LS POINT
$SKIP IF STORAGE REQUIRED

FADD IN PDINT #

sCLEAR AC2

$ SEQUENCE ERROR FLAG

$SKIP IF NO ERROR

§SEQUENCE ERROR MASK

$ADD IN ERROR MASK

+STORE STATE,POINT #, AND ERROR FLAG
$INC THE POINTER

sTIME PDINTER

$MS TIME

LS TIME

$SKIP WHEN BUFFER FULL

sMAG TAPE FLAG
$SKIP IF ND MAG TAPE

sWRITE BUFFER TO DISK FILE

$WRITE BUFFER TO MAG TAPE
SRESET INITIAL BUFFER POINTER

IRESET BUFFER COUNT

sRETRIEVE PRESENT VALUES
sRETRIEVE DIFF MASK
sLO0OP BACK

$RETURN ADDRS

sPOINT &

sPRESENT VALUES STORAGE

sDIFF MASK STORAGE

$MAG TAPE BUFFER START

$BUFFER POINTER

$REDUCED DATA BUFFER SIZE

$BUFFER COUNT

$CURRENT TIME POINTER

$S12E UF REDUCED DATA BUFFER ENTRY (NEG)

$B81T COUNT

yOPEN A CHANNEL

;CLOSE A CHANNEL

sUISK OUTPUT ROUTINE
$MAG TAPE OUTPUT ROUTINE
sWRITE MAG TAPE EOF
$SPACE REVERSE 1 RECORD

sCLEAR ACD
s1TEM ENTRY SIZE

92

APPENDIX A |
MOV 2¢i
STA @ O.MTABP jNULL FILL REMAINING BUFFER SPACE
152 MTABP ;INC PDINTER
INC 1,1,52R ENTRY COMPLETE
JMP .3
DS MTACT 3SKIP WHEN DONE
JMP .6
LDA 1,MAGFG 3MAG TAPE FLAG
MOV § 1,1,SZR 3SKIP 1F NO MAG TAPE
JMP .43
JSR @ TMPOl ;WRITE BUFFER TO DISK FILE
JMP otl
JSR @ MTAD1 ;WRITE BUFFER TO MAG TAPE
JSR @ MTAEl ;WRITE EOF
JSR @ MTASI ;SPACE REVERSE I RECORD _
JSR @ CLFL1 $CLOSE E
03 $CH #3
JSR @ CLFL1 3CLOSE
04 iCH #4

JMP 9 OVRTN sRETURN TO ROOT BINARY

SYSCp: ¢ $SYSTEM ERRDR CODE
PH4CD: 200C sPHASE 4 ERRDR CODE
EXTBL: o+l +ERRDR TABLE PDINTER
ERR1
ERR2
ERR3
ERRG
! $END OF TABLE
EXROR: INTEN $ENABLE INTERRUPTS
LDA O0,PH4CD j;PHASE & ERROR CODE
LDA 2 2yERTBL $ERROR TABLE ENTRY
182 ERTBL $INC TABLE POINTER
INC 0,0 $ INC COUNT
COM # 2y2,SNR $SKIP IF NOT EQT
JMp «+3
SUB # 29343SZR 3SKIP IF ERRGR FOUND
JMP)
JSR @ CLFL1 sCLOSE
03 sCH #3
JSR 2 CLFLI sCLOSE
18 sCH #Ha
JYP JH2
SYSER: ACLC 0,0 $+SYSTEM ERROR FLAG
STA 0,ERCOD $STORE IN ROOT BINARY
JMP 2 ERRTN +ERROR RETURN
GTBWD: STA 3,GTRTN ;STORE RETURN ADDRS
DR 4 BFRCT $DEC COUNT, SKIP WHEN EMPTY
JUP GTBUF
LOA 0+BLKCT $DATA BLOCK COUNT
MOV & 0,0,SNR $SKIP IF NOT OONE
JMP 4 DUNE2
INC 0y0 $INC THE COUNT
STA Oy8LKCT FRESTORE THE COUNT
LOA 1,8LOCK FCURRENT DATA BLOCK

it e it TIPS

CTBUF:

"
XX u

oo o@o >
(N ouon
s

YOV O A O

MX AN -~

es %0 o0 00 oe oo

r
>

—
—
hel
=

SYSE
L.NE

e oo oo

(SIS

GTRTNS
CPRTNS
D2>S57TR:
D2EPT:
(110
CHGs
PLTIRGS

CAFWD:

APPENDIX A

LOA
MJVS
ATC
STA
LOA
STA
«SYSTM
.RDB
JMP 2
LA
STA
LCA o
MZVS
12
READS
MZCVR #
VP 2
JSR
NP 9

BUFER
bJFFR
BOACM
¢l

:_r

14
TYPMO

SYSER
TaNE

~ oo

LEMSG/2

STA
EER
LCA
LCA
STA
LOA
MTV
MOvL
INC
MIV5
MivL

AuZ
STA 3
) 1 4
inC
wMP

0,BLKCF
0'2
1,0
U,BLCCK
Uy3FRST
GyBFRPT

06
SYSE1
JvyBFRSZ
JyBFRCT
0,BFRPT
c,0
BFRPT

I

1919 SNC
GTRTN
IMPWD
CTRTN

JyD¥ SR
39PKIN
3yCY 10
1,0PBri
1,PNTRO
19C6C
1,2
0,0052C
1yl

1,1
Uys0s52C
¢y 2

¢yl
LyPNTRC
PNTRC
3,3454R
Nl
TYypvil

$BLCCK OFFSET
$SET BLOCK CCUNT
yuP2ATE CURRENT RLOCK

s START CF DATA BULFFER
$RESET THE BUFFER PDINTER

sREAD THE DATA BLGCK INTO BUFFER

$SYSTEM ERRCR

JBUFFER SIZE

$RESET THE COUNT

CET WURD FRCEM BUFFER

SWAP THE BYTES 3
THE PODINTER

SWITCHES '

$ySKIP IF 1E15

tRETURN

sLUNMP THE WORD

sRETURN

yOTERT OF BUFFER .
sBUFFER PJINTER b4
sEUFFER SIZE

yBUFFER COUNT

s CURRENT DATA BLOUCK

$ELCCK PFFSET (14 SECTDRS)

yTYFE A MESSAGE
ySYSTEM EZRRLKR ROUTINE
inRAPUP

URN ADCRS STCRAGE
URN ADDKS STLRAGE

3 <0>

P SKIP
yoLy 1
iwAT THE BYTE ;
SSKIP IF BIT Q ;
sl]
JALD Rb BYTE |
$STIRE THE BYTES
INC "HE PCINTER
INC COUNT, SKIP
LLmr BALK

PYFD THE MESSAGE

e ST d

|
|
wHEN DONE |
|

1
.
v
.
’
.
'
.
’

ELFEES

UOMTA:
EPELE'S

Cils
Cilas
CRRTN:G
CIKFLS

CRRFAS

VELETS

UELEA:

coA
w¥yP a

LDA

w3 YSTM
+EL TS
JYP 3
JMp

ARC

LCA

STA
«SYSTM
LLRAND
Jup
Jvp
LOA
SUB #
JMP 2
JSR
JSR
JMP 2
LOA
INC
STA
+SYSTM
+DELET
JuP
JYP
LCA
SJUB #
JMP 2
Jyp

UFMSG
UyJIPSTR
DPRTIN

2'0’3
3,USP

T
SYSEL
1,3

1,1,S5KP
1,1
Gy0,3
29,143
3,USP
1+41+52R
«¥5

77
SYSE1
243
1,1

77
SYSEL
243

42

0,3
1,C12
1,24SIR
SYSE1L
0,3

3AURD DUMP
SRETRIEVE DATA WCRD
$RETURN

sCH #
s STOURE RETURN

$CLOSE THE CHANNEL
y ERROR
i NCRMAL RETURN

$SET FLAG +1

$SET ELAG O

sNAME PUINTER

FUHR

$STUKE KETUKN

sSKIP IF RECULAR DPEN

sCPEN THE CHANNEL

sERRUR

sNURMAL RETURN

SOEFAULT CRHARACTERISTICS
sLPEN THE CHANNEL

s ERRUR

sNCRMAL RETURN

sRETURN ADDRS
sNAME PDINTER

s STORE RETURN
$STORE RETURN

sCREATE RENOUM FILE
sNGRMAL RETURN

yollP LE FLELE EXTSTES
$DELETE THE FILE
$TRY AGAIN

yRETURN

sNAME PUINTER

#STORE RETURN
SDELETE THE FILE

sNORMAL RETURN

$SKIP IF NO FILE EXISTS
$ERRCR
$NORMAL RETURN

APPENDIX A

APPENDIX A

TYPMG:

MTASR:
MTAEW:

MTAOT:

TMPOT:

MTABL:
MTASC:
MTAEC:
MTEOQF:
MTACM:
TYPCT:
TAPBK:
NAMEA=

NAMEB=

NAMEC=

DMSG=

LDA 0,0,3 ;BYTE POINTER
SUBZL 2,2 ;FORCE CH #1
STA 3,USP §STORE RETURN
SSYSTM
WRL 77 iWRITE A LINE
JMP 3 SYSEI ;ERROR
JMP 1,3 ;NORMAL RETURN
LDA 1,MTASC ;SPACE REVERSE COMMAND
JuPp +5
LDA 1,MTAEC FECF WRITE COMMAND
JuPp .+3
LDA 0,MTAB1 REDUCED DATA OUTPUT BUFFER
LDA 1,MTACM $WRITE FF COMMAND
STA 3,USP 3STORE RETUKRN
SSYSTM
.MTDIT 03 ;0UTPUT BUFFER TO MAG TAPE
JuPp 42
MP 0,3 sNORMAL RETURN
LDA 1,MTEQF ;EQF ERROR MASK
AND # 1,2,SNR ;SKIP IF EOF
JSR @ SYSEL ;ERROR
Jup 0,3 sNORMAL RETURN
LDA 0,MTABl REDUCED DATA CUTPUT BUFFER
LDA 1, TMPBK ;CURRENT BLOCK #
STA 3,USP ;STORE RETURN
MOV 1,3 ;HOLD THE BLOCK #
LDA 2,TMPCT 3# WORDS IN BUFFER ENTRY
ADD 2,3 3UPDATE BLOCK #
STA 3, TMPBK
MOVS 2,2 5SWAP BLOCK COUNT
SSYSTM
.WRB 03 ;0UTPUT THE BUFFER
JSR @ SYSEL ;SYSTEM ERROR
JMPp 0,3 iNORMAL RETURN
MTA3F 3REDUCED DATA CUTPUT BUFFER
040001 $SPACE REVERSE COMMAND
060000 $EUF WRITE COMMAND
000400 {ECF ERROR MASK
050000 +BDACY $FF WRITE COMMAND
BOACL $S12€ OF REDUCED DATA BUFFER ENTRY
0 3CURRENT TEMP.TM BLOCK #
22
(TXT /MTOz6/
JIXT JTEMPC.TM/
52
JIXT /BDACS.DAZ
82
BLK 10 20 BYTES
0064CC $<CR>

0

f. AD-AO49 303 HARRY DIAMOND LABS ADELPHI MD F/G 9/2 \—.‘
f BDACS SOFTWARE. (U) B
NOV 77 J C INGRAM MIPR-76628 :
UNCLASSIFIED HOL=-TR-1831 NL

T .-.
ADADAS 303
END
FILMED
3 -/8

il 5

MTABF=

BJFFR=.

«BLK BOACY $REDUCED DATA CLUTPRUT
C

«2LK BDACM ;BUFFER AREA

0

+END

97

APPENDIX A

APPENDIX A ':

A-6. Overlay Module No. 5-~PHASS5,SR

NAME BLOCK NAME= PHASS.'%

TIME BLOCK
LTITL PHASS HAT® | 19 MAR 76
JTXTM 1

JENT ovSsTS

LEXTD OVRTN ERRTN ERCOD MAGFG PRINT
LEXTD HSMON LSMON HLDCT SMPRT

—
e

<EXTN MSKTB LSBTB MEBPT
«NREL

JSR @ OPFL1 $OPEN
NAMEG SISTTI!
02 #+ON CH #n2
JSR @ CREAL fCREATE A FILE
NAMED $'TEMPD .TM!
JSR 2 OPFL1 $OPEN
NAMED $'TEMPD.TM!
03 $ON CH #3
JSR @ OPFL1 $OPEN
NAMEJ $'POSTSCRIPT.DA!

~

04 iCN CH #4
JSR 2 RDLUZ $READ A QUERY LINE

JP1 $ECUF
STA 2,TEMP1 $HGLD THE BYTE POINTER :
DSZ TEMP1 sDEC THE POINTER 3
LOA 2,UTBP1 jUTILITY BYTE POINTER ﬂ
JSR @ GTBY1 $GET A BYTE
LDA 1,ASCAK 3<*> .
suB 0,1 3FLAG O IF <=> !
STA 1,TEMP2 3HOLD THE FLAG :
LDA 2,TEMP1 FRETRIEVE THE POINTER]
MOV # 1,1,S5NR 3SKIP IF NOT <#> 3
JMP Jp2
SuB 0,0 sCLEAR ACO
JSR 2 STBY1 $REPLACE <CR> WITH <NUL>
JSR @ TYLUL sECHO THE LINE
LOA 1,TEMP2 FRETRIEVE FLAG
Mav & 1919SKR ;SKIP IF RESPONSE REQUIRED
Jup Jp3
LOA 2y TEMP1 FRETRIEVE POINTER
JSR 2 ROLU3 $READ INTO UTILITY

02 $FRCM CH #2
ADCZL 0+0 $+FORCE -2
ADD 042 $BACK UP 2 BYTES
STA 0,TEMP2 §HCGLC FLAG

98

JSR
LDA
sus
JMP
toA
JSR
1SZ
JSR
LOA
152
JUP
JMP

UTBPT
CREAT
OPMTA
UPFLE
CLFLE
XFERF
PRLNE
ROLUT
RDLJR
RDLUA
WTLUT
TYLUT
TYPMG
G7SPN
GTBYT
STBYT
ERROR
PRFLE

c

o

C15
040
052
060
116
131
136

NAMEH
NAME |

EDAC

F

BDACQ

JSR
JSR
JSR

LDA
JSR

LDA

o

)

e

e

GTBY1 $GET A BYTE

1,ASCCN §<-2

Oy19S2ZR 3SKIP IF <>

JP3

0,ASCCR §<CR>

sTBY1 $REPLACE <-> WITH <CR>
TEMP2 $INC FLAG

WTLUL $WRITE THE LINE
2yUTBP1 SUTILITY BYTE POINTER
TEMP2 $INC FLAG, SKIP IF <>
LP1 $READ NEXT QUERY

LP2 $CUNTINUE QUERY RESPONSE

$POINTER TO UTILITY BUFFER
sCREATE A SEQ. FILE

$OFEM MAG TAPE FCR FF

SUPEN A CHANNEL

$CLOSE A CHANNEL

$TRANSFER ASCII FILES
$PRINT A LINE

§READ A LINE TO UTILITY
SREAD A LINE, RETURN ON EOF
$READ A LINE, POINTER IN AC2
SWRITE A LINE FROM UTILITY
$TYPE A LINE FROM UTILITY
yTYPE A MESSAGE

GET A SP #

$GET A BYTE

$STCRE A BYTE

$ERROR ROUTINE

SPRINT THE FILE

$ TEMPORARY

$<CR>
$< >
§<E>
$<0>
$<ND
$<Y>
$<=>

318170

3ISLPT!

$MUX INPUT MIN POINT #
iLSB MIN POINT #

FL1 CLOSE

iCH M4
FL1 #CLOSE
$CH #3
PM1 sTYPE A MESSAGE

GO01 sMESSAGE #1

UTBP1 SUTILITY

Lu3 $READ INTO UTILITY
sFROM CH #2

UTBP1 JUTILITY

APPENDIX A

APPENDIX A

JSR & GTBYl 3G.T A BYTE
LDA 1,ASCIN 3<N>
SUB # 0,1,SNR 3SKIP IF NOT <N>
J4P JPO
LDA 1,ASCIY 3<Y>
SUB # 041,SZR 3SKIP IF <Y>
JMP 7
JSR @ CLFL1 3CLOSE
02 $CH #2
LDA 0,8AGFG $MAG TAPE FLAG
MOV # 0,0,SNR 3SKIP IF MAG TAPE
JMP JPa
JSR @ XFER1 ;TRANSFER
NAMED ;'TEMPD.TM®
NAMEF ;'M10:7!
Jo4: LDA 0,PRINT ;PRINT FLAG
MOV 4 0,0,SNR ;SKIP IF PRINT REQUIRED
JYP @ OVRTN ;RETURN TO ROGT BINARY
LDA 1,DEV] ;$TTO NAME POINTER
MIVR # 0,0,52C -3'SKIP IF TTY
LCA 1,DEV2 3SLPT NAME POINTER
STA 1,.42
JSR @ DPFL1 ;DPEN
0 $DEVICE NAME
02 ;ON CH #2
JR @ PRLN1 §PRINT A LINE
HEAD1 ;HEADER #1
-2 $<FF> AND 2 LINES
JSR @ PRLN1 3PRINT A LINE
HEAD2 j;HEADER #2
02 32 LINES
JSR @ PRFL1 PRINT FILE
NAMEA ;FPREAMBLE FILE
J5R @ PRLNI PRINT A LINE
BKLN2 52 BLANK LINES
02 32 LINES
JSR & PRFLI 3PRINT FILE
NAMED 3PUSTSCRIPT FILE
J5R @ PRLNL 3PRINT A LINE
HEADS ;HEADER #3
-2 $<FF> AND 2 LINES
JSR @ PRFL1 3PRINT THE FILE
MEBPT 3METHOD FILE
LCA 0,HSMON 3HSB MONITOR FLAG
MOVL 0,0,5NC §5KiP IF 4S8 PRINTOUT
JYP oth
MIVIR 0,0 $RESET PRINT BIT
STA O,HSMON $HOLO SAMPLE RATE
JSR @ PRHS1 $PRINT THE HSB
SJB 0,0 sCLEAR ACO
JSR @ (HKP1 §CHECK MUX BUFFER
PRTEL: MSK™B jMUX TAELE
BLACA/2038 MUX WLRLS
JSR & (HKP1 $CHECK LB
PATB: LSBTE 3LSE TABLE
BCACP/203k LSB WORDS
MV B 00y SNR 3SKIP IF PRINTCUT REGUIRED
100

§ I

L°C:

ERRG:

-

JMP
JSR @

JSR @

LDA
MCv #
JMp
JSR 9

Jup
JSR @

JSR 9

JSR @

JSR @
STA
LOA
MOV
JMP
LDA
LDA
LOA
AND #
JMP
LDA
LOA
LDA
AND
SJUBZ
JSR 9
JSR 2
ACO
LCA
AND #
JupP
LDA
LDA
LDA
LDA
JSR 3
LLA
LOA o

n o

AND ¥
LDA
JSR 4
LOA
LOA

JPS
DPFL1
NAMEL
04
OPFL1
NAMEM
0s

0, MAGFG
0+0,S2R
«+5
OPFL1
NAMEC
03

LPO
OPMT1
NAMEE
03
PRLN2
HEAD3
=2
PRLN2
HEAD4
02
GTDAlL
2yTEMP3
0, TEMP3
0s049SNR
JP6
1,LSBMK
2,PRTBI
3,0SETB
Cyl,ySNR
«*+3
2,PRTB2
3,0SETC
1,SI1GMK
1,0
3,09 SNC
ERRQO3
FMMS1
Us2
0,0,2
1,04SNR
LP3
2,TEMP3
Oyly2
1,242
2yLINE
FMOP1
0,ASCBK
3,TEMP3
1, SEQAMK
3,1,52R
0,ASCIK
5TBY2
0,ASCCO
2ySTPNT

==
}
|

sOPEN

$'ASSIGNB.DA'

sON CH #4

$OPEN

$'ASSIGNC.DA!

$ON CH #5

$MAG TAPE FLAG

$SKIP IF NO MAG TAPE

sOPEN
$'TEMPC.TM!
sON CH #3

sOPEN MTA FOR FF
$'MT0s6!

#$0N CH #3

$PRINT A LINE
+HEADER #3

i<FF> 2 LINES
$PRINT A LINE
sHEADER #4

$ON CH #2

$GET DATA POINTER
#HOLD POINTER

3 STATE € SIGNAL WGRD
$SKIP IF NOT END

$LSB MASK

$MUX PRINTOUT TABLE
$MUX INPUT MIN POINT #
FSKIP IF LSB DATA WORD

sLSB PRINTOUT TABLE

LSB MIN POINT #

$SIGNAL # MASK

$GET SIGNAL #

$SKIP IF AC3=<ACC

$ERROR ROUOUTINE

sFORM MASK AND DISPLACEMENT
$ACDO OISPLACEMENT TO POINTER
$GET TABLE WGRD

$SKIP IF PRINTOUT REQUIRED
$LO0OP BACK

$DATA POINTER

$MS TIME

LS TIME

sLINE POINTER

$FORM THE OP ¥

i< >

$STATE & SIGNAL WORD
$SEQUENCE ERROR MASK

3SKIP IF NO ERROR

$<®>

$STORE THE ERROR FLAG BYTE
1 <C>

§STATE BYTE POINTER

1n1

APPENDIX A

i

APPENDIX A ’ :

LDA 2 1,TEMP3 3STATE €& SIGNAL #
MOVL # 1,1,5S2C 3SKIP IF STATE 0

INC 0,0 $FORCE <1>

JSR @ STBY2 $STORE THE STATE

LOA @ O, TEMP3 3STATE € SIGNAL WORD

LDA 1,SIGMK $SIGNAL MASK

LDA 29ySIGPT FSIGNAL BYTE POINTER
AND 1,0 $MASK THE SIGNAL

STA 0,ST1 $HOLD THE SIGNAL

JSR @ FMSP1 sFORM THE SP #
i0A 2 O, TEMP3 3STATE & SIGNAL WORD

LDA 1,LSBMK FASSIGN MASK
AND # 0y14SZR 3SKIP IF ASSIGNB.DA
JMP otl
LDA O,ASCIM 3<M>
LCA 1,BPNTR B BUFFER PCINTER
Jup .*3
k LOA 0,ASCIL <L>
LDA 1,CPNTR 3C BUFFER POINTER
STA 1,5T1+1 3STORE BUFFER POINTER
JSR @ sT8Y2 $STCRE ASSIGNMENT BYTE
JSR @ OPENI $GET ASSIGN FILE ASSIGNMENT POINTER
0 $POINT #
0 sBUFFER POINTER
LDA C,MNMPT SMNEMONIC POINTER
JSR 9 MVBYIL $MOVE THE BYTES
20 $20 BYTES MAX
LDA 0,ASCIR 7<CR>

JSR 9 STBY2 $STORE THE CR
JSR @ PRLN2 sPRINT THE LINE
LNEBF sLINE BUFFER

01 #1 LINE
JMP LP3 L0O0OP BACK
JSR 2 CLFLZ2 sCLOSE

05 $CH #5
JSR @ CLFL?2 yCLOSE

0% sCH #o
JSR @ CLFL2 #CLOSE

03 sCH 33
JSR @ CLFL2 $CLOSE

02 sCH #2
JSR @ CLFL2 $CLOSE

01 sCH #1
JMP 9 OVRTN $RETURN TO RGOT BINARY
0 $TEMPORARY
PRLNE FPRINT A LINE
GTDAT $GET DATA WORD POINTER
FMSPN $FORM SP #
FMDPN $FORM DP #
FMMSK $FORM MASK AND DISPLACEMENT
MVBYT $MOVE A BYTE STRING
CHKPM §CHECK PRINT MASKS
OPEN $READ ASSIGNMENT FILE
PRHSB sPRINT HSB

102

STBYZ2:
l MVBYZ2:

DoFL2:
i CLFL2:
BPNTR:
CPNTR:

ASCIR:
ASCIK:®
ASCCO:
ASCIL:
ASCIM:
SIGMK:
LSBMK:
SEQMK?
C20:

STPNT:
SIGPT:
MNMPT:

PRHSB:

HSBAA:

AS5CNT:

ASNPT:

HSBJO:

STBYT
MVBYT
OPFLE
CLFLE
BUFRB
BUFRC

015
052
060
114
115
000377
040000
000403
20

LNEBF+17
LNEBF+24
LNEBF+35

STA
JSR @

JSR @
JSR @
JSR @

LDA
STA
LDA
LDA
JSR 2
JSR 2

LDA
JSR @

LDA
JSR 9
JSR @

152
DS
JMP
JSR 2

LIA

3,H5RTN
OPFL2
NAMESB

OPFLZ2
NAMEK
0s
PRLNZ
HEADS
-2
PRLNZ
HEAD6
02
0,C20
Oy HSCNT
Oy ASCNT
29ASNPT
FMSP1
OPEN1
BDACS
BUFRA
UyASMNP
MVBYZ2

0,ASCIR
sTBY2
PRLNZ
ASGBF
01
ASCNT
HSCNT
HSBAA
PRLNZ
HEAD7
-2
2yHSBPT

$STORE ‘A BYTE
$MOVE BYTE STRING
sOPEN A CHANNEL
sCLOSE A CHANNEL
3B BUFFER POINTER
7C BUFFER POINTER

$ <CR>

§<%>

i<0>

F<L>

<MD

$SIGNAL MASK

iLSB MASK

$SEQUENCE ERROR MASK

$STATE POINTER
$SIGNAL POINTER
FMNMEMONIC POINTER

SRETURN ADDRS
+0OFPEN
$'TEMPB.TM!
0N CH #4
$OPEN
$'ASSIGNA.DA!

$CN CH #5
3PRINT

$HEADER #5

§<FF> AND 2 LINES

$PRINT

fHEADER #e

32 LINES

yHSB WORD SIZE

$SET COUNT

jCURRENT BIT #
sASSIGNMENT LINE POINTER
$FORM SP #

$GET ASSIGN FILE ASSIGNMENT POUINTER
$8IT #

$BUFFER POINTER
SMNEMONIC POINTER

$MOV BYTE STRING

320 BYTES MAX

$<CRD>

$STCRE <CR>

sPRINT A LINE
FASSIGNMENT LINE POINTER
$1 LINE

$INC BIT #

$SKIP WHEN DUNE

sPRINT A LINE
$HEADER #7

$<FF> AND 2 LINES
$4SB POINTER

103

APPENDIX A

S—

APPENDIX A

BJFFT:

h>BJI1S

h3EJes

nSB:

HS8J3:

HSTIMS

HSCNT:
HSBCT:
H5BSZ:
H5BPT:
ASMNP:
H>RTN:

DAY HSBCT
JUP HSBJ1
JSR 2 RDBL1
BUFRB
0
404
HSBJ3
LDA 2yHSBSZ
STA 2yHSBCT
LCA 2,BUFPT
STA 2yHSBPT
152 HSBPT
DA 0s092
STA 0,TEMP3
LA O,HSTIM
LOA 1yHSTIM+
M2V 0,2
LOA 3,HSMCN
ADDZ 1,3,S2C
INC 2,2
STA 2yHSTIM
STA 39HSTIM+
LtDA 2,AS8
JSR @ FMDP1
LDA 0,C20
STA 0, HSCNT
LDA UyASCCC
LDA 1,TEMP3
MOVZR 1,1,52C
INC 0,0
STA 1,TEMP3
INC 292
INC 2.2
JER @ STBYZ2
OS2 HSCNT
JMP HSBJ2
JSR @ PRLN2
HSBBF
01
JuP HSBJO
JSR @ CLFLZ
04
JSR @ CLFL2
05
JMP 2 HSRTN
C
c
C
0l
400
BEJFRB+400
ASGBF+7
¢
TMPIN
MTAIN

$HSE COUNT

FREAD A BLOCK
$BUFFER POINTER
sCURRENT BLOCK #
$SI12E € CH #
yEOF ADDRS

$HSB BUFFER SIZE
SRESET COUNT
$BUFFER POINTER
sHSB POINTER
$INC THE POINTER
sGET BUFFER WORD
$HULD THE WORD
iHS TIME

1

$MCV MS TIME
$HSB SAMPLE RATE
$ACD IN SAMPLE RATE

$RESTORE JUPDATED TIME
1

sLINE PCINTER
sFORM DP 4

#HSB WCRD SIZ2E
$ySTGRE COUNT

3<0>

$HSB WCRU

$SKIP IF O BIT
sFCRCE <1>

$HOLD SHIFTED WORD
$INC PUINTER

$STCRE THE BYTE
ySKIP WHEN DUNE

$PRINT A LINE
$HSB LINE

31 LINE

+LUCP BACK
$CLCSE

yChH #e

$CLCSE

iCH %5
sRETURN

yCURRENT TIME

$COUNTER

$BUFFER COUNT

$BUFFER SIZE

FBUFFER POJINTER

sASSIGNMENT MNEMONIC POINTER
sRETURN ADDRS

sRECUCED DATA FROM DISK
SRECUCED DATA FROM MAG TAPE

104

E |

A

APPENDIX A

!::T’!“Lw — . B i i
i
4 ROBL1: RDBLK sREAD A BLOCK
| GTDORT: O sRETURN ADDRS
GTDAT: STA 3,GTDRT $STORE RETURN
, Sz MTACT $SKIP IF BUFFER COUNT O
JMP 6TDJ1
! LDA 1,MAGFG $MAG TAPE FLAG
MOV & 1¢1¢,5ZR ;SKIP 1F NO MAG TAPE
JMP .th
JSR @ TMPI1 sDISK INPUT
JP6 $ECF CCNDITION
JMpP .*+3
JSR 9 MTAIl $MAG TAPE INPUT
JP6 sEOF CONDITION
LOA 1,MTAST $START OF INPUT BUFFER
STA 1,MTAPT SRESET POINTER
LLA 1,MTASZ ;BUFFER CDUNT
STA 1,MTACT ;RESET COUNT
GTDJ1: LDA 2+MTAPT $GET CURRENT POINTER
LOA 0,MTAOF ;CFFSET
ADD 2+0 $ADD OFFSET
5TA O,MTAPT ;UPDATE POINTER
JuP @ GTDRT sRETURN
MTAST: BUFFR s INPUT BUFFER POINTER
MTAPT: BUFFR+BDAC? sCURRENT PDINTER
MTASZ: 400 sBUFFER SIZE
MTACT: Q1 sCURRENT COUNT
MTAOF: BJOACL sDATA ENTRY SIZE
P45CD: 2409 sPHASE 5 ERROR CODE
ERTBLE ¥l $ERROR TABLE PODINTER
ERR1 sASSIGN FILE READ ERROR
ERR2 sASSIGN FILE SEQUENCE ERROR
ERR3 sLINE CUUNT ERROK
IRRG $MUX OR LSB POINT # OFB
=1 :END OF TABLE
EIROR: LDA C,PH5CD sPHASE 5 ERROR CODE
LDA o 2+ERTBL $TABLE ENTRY
INC 0,0 $INC ERROR COUNT
152 ERTBL $INC POINTER
CCM # 2+2ySNR ;SKIP IF NOT EOT
JMP o *+3
SJB # 2934SZR $SKIP IF ERROR FOUUND
JMP) sL00OP BACK
JMP o*2
SYSER: ADC 040 sFORCE -1
STA OyERCCD $STORE IN ROCT BINARY
JMP 9 ERRTN sERRCR RETURN TO ROOT BINARY
ERIRD1: ERRQOR sERROR ROUTINE
gPS1L: 40 s# MNEMONICS PER BLOCK
D2 0FF: 0O sPOINTER OFFSET
02RTN: O $sRETURN ADDRS
UPENS STA 3,0PRTN ;RETURN ADDRS
LoA 1,0,3 sPUINT &
; 105
|
e —e—— . w—
... D DA

i

ERR2¢

ERR1:

Cll:
cl1e:
CRRTN:
CREAT:

CREAA:

XFRTNG
X=ERF:

APPENDIX A

LDA
LDA
suBz
JSR @
SuB
LDA
DIv
ADDIZL
MOVZL
STA
LDA
STA
M3V
suB #
JMP
LDA
«SYSTM
.RDB
JSR @
LDA
ADDZL
LA
Jup

11

12

0

LDA
INC
STA
SSYSTM
LCREA
JMP
JuP 2
LDA
SUB #
JYP 2
JSR
JMP

LOA
INC
STA
«SYSTHM
LLDELET
Jup
Jup
LOA
SJB #
JMP @
JMp

0

LOA
LOA
STA
5TA

3,1,3
0"3'3
0,1,SNC
ERRO1
G,0
2,0PS12

0,0
0,0
0,0POFF
29-1,3
19-1,3
3,0
241 SNR
.+5
29=243

77
ERRO1
2:0POFF
0,2
3,0PRTN
2,3

0,0,3
3,3
3,CRRTN

o +2
CRRTN
1,C11
1,2,SIR
SYSE1
DELEA
CREAA

00,3
3,3
3,USP

ot2

0,3
1,C12
142,SIR
SYSE1
0,3

$BUFFER POINTER

$INITIAL POINT #

§SKIP IF ACO=<A(1

$ERROR

$CLEAR ACO

OF MNEMONICS PER BLCCK

P4

i%2

$STORE POINTER OFFSET
$CURRENT BLOCK #
$STORE NEW BLOCK #
MOV BUFFER POINTER
$SKIP 1F NOT SAME

$GET CH # AND COUNT

$READ A BLOCK

$ERROR

$GET DFFSET

$ADD IN BASE, FORM BYTE POINTER
$RETURN ADDRS

$RETURN

$RETURN ADDRESS
$NAME POINTER

$STORE RETURN
sCREATE SEQ. FILE
$ERROR

$RETURN

$SKIP IF FILE EXISTS
$ERROR

OELETE THE FILE
sTRY AGAIN

$NAME POINTER
$STORE RETURN
JOELETE THE FILE
$NORMAL RETURN
$SKIP IF NO FILE
$ERROR

$NORMAL RETURN
$RETURN ADDRESS

$SOURCE FILE
$OESTINATION FILE

106

STA 3,XFRTN 3STORE RETURN
JSR OPFLE $OPEN SOURCE FILE
XFSFL: 0 $POINTER
, 04 $ON CH#4
JSR OPFLE $OPEN ODESTINATION FILE
XFDFL: 0 $PCINTER
: 03 $ON CH#3
| JSR RDLUR $READ A LINE
o .43 $RETURN ON EOF
JSR WTLUT $WRITE A LINE
| JMP .-3 ;LOOP BACK
JSR CLFLE $CLOSE
l 06 $CH#G
l JSR CLFLE $CLOSE
03 $CH#3
LD A 3,XFRTN ;RETURN ADDRESS
JMP 2,3 $RETURN
0PFLE: LOA 0,0,3 ;NAME PDINTER
LDA 2,1,3 CH #
SUB 1,1 $USE DEFAULT CHARACTERISTICS
STA 3,USP $STORE RETURN
«SYSTM
JPEN 77 $OPEN THE CHANNEL
JYP @ SYSEl 3ERROR
JMP 2,3 sNORMAL RETURN
CLFLE: LDA 2,093 CH #
STA 3,USP ;STORE RETURN
«SYSTM
ELOS 77 sCLOSE THE CHANNEL
JMP 2 SYSEL ;ERROR
JMP 1,3 $NORMAL RETURN
TYPMG: LDA 0,043 3MSG POINTER
INC 3,3
SUBZL 242 $FORCE A +1 FOR CH#H
Jup .+5
TYLUT: SUBZL 2,2 $FORCE A +1 FOR CH#
JMP 2
WTLUT: LDA 2,03 ;CH #3, BY DEFAULT
LDA 0,UTBPO UTILITY BYTE POINTER
STA 3,USP 3STORE RETURN
LSYSTM
JWRL 77 $WRITE A LINE
JMP @ SYSE1l ERROR
JMP 0.3 $NORMAL RETURN
ROSUT: LDA 1,043 $BYTE COUNT
LDA 0,UTBPO UTILITY BYTE POINTER
LDA 2,C06 3CH #4
STA 3,USP $STORE RETURN
LSYSTM
.RDS 77 $READ SEQUENTIAL BYTES
JSR @ SYSE1 $ERROR
JMP 1,3 $NORMAL RETURN
‘ 107
]
a8
&,_—» S-"- — T

APPENDIX A

APPENDIX A

ROLUR:

ROLUT:

SPLDS:

WITLNE:®

PRFRT:
PRFLE:

SYSER

03
04

06

G

ADC
MOV
LDA
INC
JNP
LDA
INC
JMP
ADC
LDA
LDA
STA
STA
.SYSTM
-RDL
JMP
MOV
ACD
JMP
LOA
SUB
JMP 2
LDA
CoM
JMP
JMP

w

e 3

LOA
STA
«SYSTM
.SPCA
JSR 2
JUP

LDA
LCA

O S
«ARL
JS5R 3
JUP

LDA
INC
STA
STA
JSR

1,1
0,UTBPO
2,C04
1,RDRTN
3,USP

77

o4

0,2

1,2

0,3
0,C06
0+2,SZR
SYSEL
O+RDRTN
0+,0,52R
RDRTN
SYSE1L

0,0,3
3,USP

SYSEL
1,3

$SYSTEM ERROR

$RETURN FLAG -1
$BYTE POINTER
tCH #

sRETURN ADDRESS

fRETURN FLAG -1
sUTILITY BYTE POINTER
3CH #6

§STORE RETURN

$STOKE RETURN

sREAD A LINE

sCHECK FOR EOF

tMOVE THE BYTE POINTER
$CFFSET THE POINTER
$NORMAL RETURN

+ECF CODE

§SKIP IF ECF

sERROR

sRETURN

sSKIP IF NO EOF RETURN
st0F RETURN

$ERROR

$DEVICE BYTE PUINTER
$STURE RETURN

3OISABLE SPOOLING
$ERROR
sNCRMAL RETURN

sMNAME PODINTER
HE I
1 STORE RETURN

JWRITE A LINE
§SYSTEM ERRCR
$NURMAL RETURN

sRETURN ADDRS
+NAME PCINTER

ySTCKE KETURN
§STCRE PUOINTER

sOPEN
sNAME PLINTER
tOl CH mo

108

e IS TS

UTBPO:

SXFLG:
LNMAX:
LNCNT:
PGCNT:
PRSTR:
PRRTN:
ERROZ:
FYSP2:
PGOFF:
PRLNE:

PRLNC:

PRLNB:

JSR

JSR

Jup
JSR

JMP 2
UTBPT

=1

036

20

0

0

0
ERROR
FMSPN
PAGEI+13
LDA
LDA
STA
STA
STA
MOVL #
Jup
ADC
STA
NEG
STA
JMP
LDA
READS
COM ¥
JMP
COM #
JUP
COM #
STA
LDA
SUBZ #
JMP
LDA
M3IVR #
JMP
Isz
152
JSR

0S2
JMP
JMP
JSR

0,0,3
1,1,3
3,PRRTN
1,PRSTR
Oy PRMSG
191,55NC
.+6

0,0

0, SKFLG
1,1
1,PRSTR
PRLNC
0y SKFLG
2
0,0,SNR
.+3
2492y SNR
2,3
212yS2ZR
2y SKFLG
Oy LNCNT
1,0,52C
PRLNA
OyPRINT
0,0,52C
PRLNB
LNCNT
LNCNT
WTLNE
BKLN1
02
LNCNT
)

.+“
WTLNE
T0F

fREAD A LINE
$EUF RETURN
sPRINT THE LINE
SUTILITY

1 LINE

sCLOSE
sCH #e
§RETURN

UTILITY BYTE POINTER

sLINE SKIP FLAG
FMAX LINE COUNT
$CURRENT LINE COUNT
$CURRENT PAGE COUNT
sLINES STORAGE
$RETURN ADDRS
sERROR ROUTINE
sFORM SP #

yMESSAGE POINTER

§# LINES

$RETURN ADDRS

sSTORE LINES

$STORE MESSAGE POINTER
ISKIP 1F NEG

s FORCE ~1

FRESET SKIP FLAG
sFORM POSITIVE

$STORE POS LINE COUNT

§SKIP LINE FLAF
SREAD SWITCHES
$SKIP IF FLAG SET

$SKIP I1F NOT ALL UP
$RETURN

F§SKIP IF ALL uP
$SET SKIP FLAG
$CURRENT LINE COUNT
$SKIP IF ACI>ACO

$PRINT FLAG
$SKIP IF $TTD

sINC LINE COUNT
FAGAIN

FWRITE A LINE
#1 BLANK LINE
sON CH #2

$SKIP WHEN DONE

FWRITE A LINE
;70P OF FORM

109

APPENDIX A

PILNA:
PRMSG:

ERR3:

MVRTN:
MVWUT:

CHKCT:
C4AKPM:

FUMSK S

APPENDIX A

LDA
STA
Is2
LDOA
LDA
JSR @
JSR

JSR

LDA
LDA
SuB2
JSR 2
STA
LDA
JMP

LDA
LDA
STA
LDA
MOVZIR
NEG
LDA
STA
INC
INC
INC
JMP
LDA
JMP

LDA
LDA
ADD
ADD
STA
STA
LDA
INC
MOV &
INC
sz
Jup
JuP

SUBZL
MOVIR
MOVZL
MOVZR
ADD1ZL

02

0, LNMAX
Oy LNCNT
PGCNT
0y PGCNT
2,PGOFF
FMSP2
WTLNE
PAGEL
02
WTLNE

0

02
1,PRSTR
0y LNCNT
1,0, SNC
ERRO2
0+ LNCNT
3,PRRTN
293

2,0,3
1,1,3
3+MVRTN
3,UTBPO
3,3

1,1
0,0,3
0,042
3,3

242
1,1,S2R
=5
3yMVRTN
2,3

2+0,3
1,1,3
1,2

1,2
19CHKCT
1,042
242
1y1,5ZR
0,0
CHKCT
.'5

243

1,1
0,0,52C
1,1
Us0,452C
1,1

sON CH #2

#MAX COUNT

JRESET COUNT

$ INC PAGE COUNT
$GET PAGE ¥

$PAGE # OFFSET
$FORM SP #

SWRITE A LINE
$PAGE #

$ON CH #2

FWRITE A LINE
$MESSAGE POINTER
$ON CH #2

sLINE COUNT STCRAGE
5CURRENT COUNT
$SKIP IF AC1=<ACO
$ERROR ROUTINE
$UPDATE COUNT
$RETURN ADDRS
$RETURN

sOESTINATION POINTER
sCOUNT

$STORE RETURN
SUTILITY BYTE POINTER
$FGRM ADDRESS

$NEG THE COUNT

$GET WORD

$STORE WORD

$SKIP WHEN DCNE

FRETURN ADDRESS
$RETURN

sCOURTER

$TABLE POINTER
$COUNT

JUFFSET THE POINTER

$UPDATE THE TABLE POINTER

$STORE THE COUNT
$GET A WORD

$INC PGINTER
$SKIP IF O

$SET FLAG

$SKIP WHEN DONE

$RETUKN

FSET BIT 10 +1
$SKIP IF NOT 2%2(
§SHIFT 1 PLACE LEFT
§SKIP IF NOT 23%]
$SHIFT 2 PLACE LEFT

110

APPENDIX A

I MOVZIR 0,0,SNC ;SKIP IF 2282
| JuPp .+3
{ ADDZL 1,1 sSHIFT 4 PLACE LEFT
| ADDZL 1,1
MOVZR 0,0,SZC ;SKIP IF NOT 2223
MOVS 1,1 $SHIFT 8 PLACE LEFT
JuP 0+3 $RETURN
GTDPN: ADC 0,0 sOP FLAG
MOV 0,1 sERROR ON NO # FLAG
JMP)
GTSPR: LDA 1,0,3 $EXIT POINTER IF NO
INC 3,3
JMP «+2
GTSPNs ADC 1,1 $ERROR ON NO # FLAG
SUBZL 0,0 $SP FLAG
STA 0,GTFGO 3SP/DP FLAG
SUB 0,0 sCLEAR ACO
STA 0yGTFGI 3# FOUND FLAG
STA 0,GTOVF ;OVERFLOW FLAG
STA 0,GTSTR $# STORAGE
STA 0)GTSTR+1
STA 1,6GTERT FERROR EXIT FLAG
STA 2.GTBPT $BYTE POINTER
STA 3,6TRTN ;NORMAL RETURN
JMP .42
GTLP1: 152 GTBPT $INC BYTE POINTER
LOA 2,6TBPT 3;GET THE POINTER
JSR GTBYT sGET THE BYTE
LDA 1,ASCIC 3<CR>
SuB 0,1,SNR $SKIP IF NOT <CR>
JMP GTLP2 sDONE
LDA 1,ASC19 $<9>
ADCZ # 1,0,52C ;SKIP IF AC1>=ACO
JMP GTLP2 sNOT A DIGIT
LOA 1,ASCI10 3<0>
ADCZ H 0,1,52C $SKIP IF ACO>=A(l
JMP cGTLP2 sNCT A DIGIT
152 GTFG1 sINC # FOUND FLAG
SuUB 1,0 sFORM BINARY
STA 0,6GTUTL §HOLD THE #
LDA 0,GTSTR $GET PREVIOUS VALUE
LDA 1,GTSTR+1
MOVZL 1,1 iNs2
M3VL 0+0,52C $SKIP IF NO DVERFLOW
12 GTOVF sINC FLAG
MOvZL 1,3 HELS
MOVL 0,2,52ZC $SKIP [F NO OVERFLOW
15 GTOVF s INC FLAG
M3vZL 3,3 sN=8
MOVL 242¢52C $SKIP IF NO OVERFLOW
1§21 GTOVF $INC FLAG
ADD2Z 1,3,52C 3N%10
INC 0,0
ADDZ 0y2,52C $SKIP 1F NO OVERFLOW
152 GTOVF sINC FLAG
LOA 1,GTUTL SRETRIEVE THE BINARY
AOCZ 1,3,5NC $ADD TO PREVIOUS #
1
i.!’g:—E--!--;—ﬁf_ “?!!‘: » — R -

APPENDIX A

GiLP2:

ERRB:
GTLP32

E]R9I:

GTERR:
GTRTN:
GTERT:
GTBPT:
GTSTR:

GTFGO:
GTFG1:
GTOVF:
GTUTL:
ASCIC:
ASCIB:
A5CI9:
AsCIO0:

GTBYTS

BTMSK:

STRTN:
S'bYT:

JYP
INCZ
152
STA
STA
JMP
LDA
MOV #
JuP
LDA
LDA
LOA
LOA
052
JMP

o
(%)
x

E X VN P 3

e

JMP

ERRIR

cooocQcoocCco

0oo0o
~N -
- Oowm

060

LDA
MOVZIR
Mavs
LDA
AND
MJVS
MavL
JMP

377

LDA
AND

«*3
292+S2C 3SKIP IF NO OVERFLOW
GTOVF 3 INC FLAG
2+GTSTR $HOGLD UPDATED #
3,GTSTR+1
GTLP1 SOGET NEXT BYTE
3,6TFG1 3# FUUND FLAG
3,3,5NR $5KIP IF # FOUND
GTLP3
0,GTSTR SRETRIEVE THE #
1.GTSTR+1
2,GTBPT FRETRIEVE THE BYTE POINTER
3,GTUVF OVERFLDOW FLAG
GTFGO $SKIP IF SP #
«ta
0,0,52ZR $SKIP IF NOT SP OVERFLOW
3,3,5KkP FINC FLAG
1,0 $MOVE SP ¥
3,3,52R 3SKIP IF NO OVERFLOW
GTERK $ERROR ROUTINE
GTRTN $NORMAL RETURN
1,1,5ZR ;SKIP [F EOL
GTLP1 $GET NEXT BYTE
1,GTERT SERROR RETURN FLAG
141,SNR 3SKIP IF ADDKESS SPECIFIED
GTERR $EKROR ROUTINE
GTERT sEOL RETURN, NO # FOUND
$ERROR ROUTINE
sRETURN ADDRESS
$ECL RETURN FLAG
3BYPE PCINTER STLRAGE
+# STORAGE
+DP/SP FLAG
FOUND FLAG
$OVERFLOW FLAG
SUTILITY
$<CR>
H
$<9>
$<C>
1,BTMSK 3BYTE MASK
292,SNC ;FCRM.WORD ADDRESS, SKIP IF RHS
1,1 $SWAP THE MASK
0,0,2 $CET WORD
1,0,SNC $MASK THE WORD, SKIP IF RHS
0,0 $SWAP THE WORD
2,42 $RESTORE BYTE POINTER
043 $RETURN
$BYTE MASK
1yBTMSK BYTE MASK
1,0 $MASK THE WORD

112

s T 7

MVSPT:
MVDPT:
M. CNT:
MVBRT:
M/BYT:

MVBYA:

FYSPN:

FADPN:

FYJPO:

SUB
JMP
STA
LDA
STA
STA

x

CaMm

MIVR H
151

1,0,3
3,3
O,MVDPT
1,MVCNT
2yMVSPT
3,MVBRT
2yMVSPT
MVSPT
GTBYT
2yMVDPT
MVDPT
0,04 SNR
MVBRT
STBYT
MVCNT
MVBYA
MVBRT

3,FMRTN
3,FMSPP
0,1
0,0
.’3
3,FMRTN
3,FMDPP
3,FMTBP
2yFMBPT

$FCRM WORD ADDRESS,y SKIP IF RHS
$SWAP WORD, SKIP IF LHS
$SWAP MASK

$STORE RETURN

$GET WORD

iMASK THE WORD

$ADD IN NEW BYTE
$RESTORE THE WORD
$RESTORE BYTE POINTER
$INC POINTER

$RETURN

3 SOURCE POINTER
sOESTINATION POINTER
$ CCUNTER

$RETURN ADDRS

$MAX BYTES

$DESTINATION POINTER
$MAX COUNT

$ SOURCE POINTER
$RETURN ADDRS

$GET SOURCE POINTER

$GET THE BYTE
$GET DESTINATION POINTER

§SKIP IF NOT NUL
$RETURN

sSTORE THE BYTE
$SKIP IF MAX COUNT
sLCOP BACK

$RETURN

$STORE RETURN

$SP TABLE POINTER
MOV LS WORD
$CLEAR MS WORD

$STORE RETURN

$DP TABLE POINTER

$HCGLD THE PCINTER

sHOLD BYTE PCINTER

1,FMSTR+1

0.,FMSTR
0,0
0,FMSUP
2yFMTBP
292,51IR
.’3
2yFMBPT
FMRTN
FMTBP
3,FMTBP
FMTBP
3,3,5NR
FMSUP

#HOLD DP #

$CLEAR ACO

$RESET ZERC SUPPRESSION FLAG
POWER TABLE ENTRY

$SKIP IF EOT

$RETRIEVE BYTE POINTER
sRETURN

s INC POINTER

sPOWER TABLE ENTRY

sINC PDINTER

$SKIP IF NOT LAST ENTRY
$SET SUPPRESSICN FLAG

APPENDIX A

i
:
|
:
i

APPENDIX A

SUB 0,0 sCLEAR ACO
STA O FMCNT SRESET COUNT
LDA C,FMSTR SRETRIEVE DP #
LoAa 1,FMSTR+1
SuBz 3,1,S5NC ;PERFORM DP SUBTRACT
ADC 250, SKP
suB 2,0
MOVL # 0,0,S2C $SKIP IF NC OVERFLOW
JUP .*3
152 FMCNT $INC DIGIT COUNT
JMP =6
ADCZ 3,1,52C 3POSITIVE
INC 0,0
ACD 2,0
STA OyFMSTR 3HCLD THE REMAINDER
STA 1,FMSTR+1
LDA 0,ASCIO 3<C>
LDA 1,FMCNT 3DIGIT COUUNT
MOV # 191,SZR 3SKIP IF NO COUNT
152 FMSUP $SET SUPPRESSICN FLAG
ADD 1,0 sADD CCUNT TO BASE
LOA 1,FMSUP ;SUPPRESSION FLAG
MOV # 1,1,SNR §SKIP IF NO SUPPRESSION
LDA 0,ASCIB 3< >
LDA 2,FMBPT :BYTE POINTER
152 FMBPT s INC THE POINTER
JSR STBYT $STORE THE BYTE
JMP FMJPO ;LOOP BACK
0 sRETURN ADDRS
0] sPONER OF TEN TABLE POINTER
o sBYTE POINTER
0 §SUPPRESSION FLAG
0 s0IGIT COUNT
0 sOP # STORAGE
0
.+16 §START OF SP TABLE
ot1 $START OF DP TABLE
035632 $10229
145000
02765 108
150403
c00230 510227
113200
30017 $10%%6
041100
L0001 $10%25
1332430
0000093 $10=224
J23420
000009 $10%%3
0017590
03C203 §10022
000146
000330 $10%%]
000012
v00303 $10%20
620901
177717 sEOT
114
o~ A g SO

g -
: APPENDIX A
E ROBLK: STA 3,USP $STORE RETURN
LDA 0,BLKMK 3BLOCK MASK
LDA 1,1,3 sCURRENT BLOCK
LDA 212,43 $SIZE € CH #
ANDS 2,0 $GET SIZE
ADD 1,0 $ADD TO CURRENT BLOCK
STA 0s1+3 sUPDATE CURRENT BLOCK
LOA 0,0,3 sBUFFER PDINTER
LtoA 3+3,3 $EOF ADDRS
STA 3,EFRTN EOF RETURN
+SYSTM
+«RDB 17 sREAD THE BLOCK
JMP o+2
JMP 4,3 $RETURN
LDA 1,EQFCD EOF CODE
SUB # 1,24SZR 3SKIP IF EGF
JSR @ SYSEZ $SYSTEM ERROR
JMP 9 EFRTN sEOF RETURN
TMPRT: O sRETURN ADDRS
THYPIN: LDA 0:,0,3 $EOF RETURN
INC 3,3
STA 3,TMPRT 3RETURN ADDRS
STA Ose+5
JSR RDBLK $READ A BLOCK
MIrABl: BUFFR $BUFFER POINTER
o sBLOCK #
BOACL#400+02
0 $EUF RETURN
JUP 2 TMPRT
BLKMK: 177400 $BLOCK SIZE MASK
EJFCD: 06 $EOF CODOE
EFRTN: O $EOF RETURN
EJFMKS: 000400 $EQF MASK
SYSE2: SYSER $SYSTEM ERROR
ROCMD: 000000+BDACY sFF READ COMMAND
MTAIN: LDA 0+0,3 $EOF RETURN
STA O,EFRTN ;STORE THE RETURN
LDA O+MTAB1 ;INPUT DATA BUFFER POINTER
LDA 1,RDCMD ;READ COMMAND
STA 3,uUsp s STORE RETURN
+SYSTM
.MTDIO 03 $INPUT BUFFER FORM MAG TAPE
JuP o+2 $ERROR
JMp 1,3 $sNORMAL RETURN
LOA 1,ECFMK §ECF MASK
AND # 1429SNR §SKIP IF EOF
JSR 2 SYSER $SYSTEM ERRDOR
JMP 2 EFRTN sEDF RETURN
U2MTA: LDA Cy0,3 $NAME POINTER
LCA 2491,3 sCH ¥
sJB 1s1 $OEFAULT CHARACTERISTICS
STA 3,USP $STORE RETURN
«SYSTM

115

APPENDIX A

NAMEA=

NAMEB=

NAMEL=

NAMED=

NAMEE=

NAMEF=

NAMEG=

NAMER=

NAME]=

NAME J=

NAMEK=

NAMEL=

NAMEM:=

ASGBF=

H5BBF=

o+ TXT /01

LVEBF=

n-401=

HIADc:=

LMTOPD
JSR @
JvP

002
«TXT

.QZ
JEXE

o2
«TXT

.’az
SIXT

.:rz
STXT

.2
STXT

v 2
T XT

22
JIXT

2
JTXT

o®2
STXT

42
JIXT

o2
oTXT

77 $OPEN THE CHANNEL
SYSE2 $SYSTEM ERROR
2,3 #NORMAL RETURN

/TEMPA.TM/

/TEMPB.TM/

/TEMPC.TM/

/TEMPD.TM/

/MTO0s6/

/MTQ:27/

/8TT1/

/$TT0/

/$LPT/

/POSTSCRIPT.DA/

/ASSIGNA.DA/

/ASSIGNB.DA/

/ASS1IGNC.DA/

/01234 ABCOEFGHIJKLMNOP=>2<15>/

1 0 L0 KI5

-
o
-

(=)
-—
(=]
—
o
—
o
—
o

/01236456785 » 12345 ABCDEFGHIJKLMNOPeo=<15>/

/<16><11><11><11>BDACS ONLINE PRINTOUTC12><15>/

/<16><11><11><11>PREAMBLE € POSTSCRIPT FILES<12><15>/

116

HZ AD 3=

HEAD4=

HEADS=

H: ADo=

H=ADT=
LIXT/7 T1
HZADB8=

M5601=

PAGEL=

BALNL=

BKLN¢=

T3F=

UiBpPT=

BJFRA=

BJFRB=

BUFRC=

BJFFR=

w2
LIXT

o#2
ME (NS)
o2
JIXT

)
JIXT
52

JTXT

o %2
STIXT

.22
JIXT

.#2
LTIXT

o2
BLK

BUACS
000405
177777
«BLK

0

BDACF
000404
1777177
+BLK

%}

BOACQ
000405
1777717
.B LK

0

BLK

+END

APPENDIX A

/<16><11><1I><11>REDUCED MUX € LSB DATAC12><15>/

/ TIME(US) STATE SIGNAL MNEMONIC<C12><15>/

/<16><T1I><II>C<II>HSB ASSIGNMENT L DATA<1&><15>/

/ BITH MNEMONIC NAME<12><15>/

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16<12><15>/

/<16><11I><II><1IDMETHOD FILELI2><15>/

/<12>POSTSCRIPT FILE OK? (Y,N) /

/<11><11><11><11><11><11><11>PAGEQOOCOOLK15>/

/<15>/

/<11><12><15>/

/<14>/
110
$INITIAL HSB BIT #
$CH # AND BLOCK COUNT
$CURRENT BLOCK #
400
$INITIAL MUX POINT #
sCH # AND BLOCK COUNT
$CURRENT BLOCK #
BUFFER FOR ASSIGNB.DA
400
§INITIAL LSB POINT W
+CH # AND BLOCK COUNT
$CURRENT BLOCK #
$BUFFER FOR ASSIGNC.DA
400
$INPUT DATA BUFFER
BDACY

APPENDIX A

A-7. Overlay Module No. 6--ERMSG.SR
NAME BLOCK NAME= ERMSG.SR
TIME 3LOCK
LTITL ERMSG $JCl1 10 MAR 76
+TXTM 1
+ENT ovsTe
.EXTD OVRTN RECOV ERRTN ERCOD |
«NREL
BTMSK: 377 $BYTE MASK
PASNO: MSGO0+10
OvSTé: LDA 0,ERCOD ;ERROR CODE
MOV # 0,0,SNR 3SKIP IF ERROR CONDITION r
JMP NORML $NORMAL EXIT
COM # 0,0,SNR $SKIP IF NOT SYSTEM ERROR
JMP SYSTM $ABNDRMAL EXIT
SMSG: ADC 1,1 $FORCE A -1
STA 1,ERCOD 3RESET THE CODE
LDA 1,BTMSK §BYTE MASK
AND 0,1 $ERROR #
SUBS 1,0 $PHASE #
LDA @ 2yPHSNO 3WORD IN PHASE MASSAGE
ADD 0,2 $ADD IN OFFSET
STA @ 2,PHSNO 3RESTORE THE WORD
LDA 2»TBLPT ;TABLE OF POINTERS
ADD 0,2 $ADD IN PHASE # OFFSET
LDA 29042 $GET THE POINTER
ADD 1,2 $ADD IN ERROR ¥ OFFSET
LDA 2,0,2 $MESSAGE PODINTER
MOVZL 242 $MOVE REC. BIT TO CARRY, FORM BYTE POINTER
SuBCL 1,1 $MOV CARRY TO 1B15
STA 1,ERCOD §HOLD RECOVERABLE ERROR COODE
STA 2+MSG $STORE THE POINTER
JSR TYPMG $TYPE THE MESSAGE
| MSGOO0=2
| JSR TYPMG $TYPE THE MESSAGE
i M5G: 0
DsZ ERCOD $§SKIP IF RECOVERABLE ERROR
JMP o*2
‘ JMP 2 RECOV SRETURN TO ROOT BINARY
. 1
NIRML: SUB 1+14SKP 3SET FLAG O
SYSTM: ADC 1,1 $SET FLAG -1
«SYSTM
«RESET $RESET ALL I/0 CHANNELS
HALT
LDA OyMTANM ;'MTO'

TYPMG:

MTANM:

T3LPT:

P4AS1:

P4AS2:

P4AS3:

.SYSTM
SRLSE
JuP
LOA
MOV #
JMP
LSYSTM
RN
HALT
LSYSTM
LERTN
HALT

LDA
SUBIZL
STA
«SYSTM
+WRL
JMP @
JMP

o+1%2
+TXT

PHAS1
PHASZ2
PHAS3
PHASG
PHASS

MSG11
MSG12
MSG13
MSGl6
MSG15
MSGle
MSGL7
MSG18
MSG19
MSH10
MSH11
MSH12
MSG99

MSGel

o+l
2,RECQV
1,1,52R
o+l

0,0,3
242
3,USP

m

ERRTN
1,3

/MTO/

M5G22+180

M5G23
MSG26
MSG99

MSGe3
MSG99

$RELEASE MTO

$ IGNORE ERRORS
$RETRIEVE ERROR CODDE
$SKIP IF NORMAL EXIT

iNORMAL RETURN TO CLI

$sERROR RETURM TO CLI

$GET BYTE POINTER
$FORCE +1 FOR CH#
$STDRE RETURN ADDRESS

$WRITE A LINE
$ERROR RETURN
$NORMAL RETURN

$MTO NAME POINTER

$START OF POINTERS

$POINTER TO START OF PHAS1 ERRORS

SPOINTER TO START OF PHAS2 ERRORS

$POINTER TO START OF PHAS3 ERRORS

119

APPENDIX A

APPENDIX A

P1AS4s

P4ASS:

MSGl4=
M5G15=
M5G16=
MSCG17=
MSGlE=
M5619=
MSH10=
MS5H11=

M3H12=

M>Gel=
MiG22=
M5G23=

M5 G24=

$PCINTER TO START OF PHAS4 ERRORS

MSGal
M5Gel
MSG42
MSG&a3
MS G99
$PCINTER TO START OF PHASS ERRORS
MSGS1
MSGS2
MSG53+1B0
MSG54
MSG39
STXT /<12>ERRLR IN PHASE 0<15>/
LTXT /MONITOR POINT UNDERFLOW<1S5>/
STXT /MONITOR POINT OVERFLOWC1S>/
JTIXT /JCUTPUT CONTROL TABLE OVERFLOWK1S5>/
JIXT /OUTPUT LIST NOT IN SEQUENTIAL ORDERK15>/
LTXT JOUTPUT LIST DELTA TIME OVERFLOW<L15>/
«TXT /CONTROL PGINT UNDERFLOW<L15>/
LTXT /CONTRGL LIST OVERFLOWK1S5>/
LTXT /SP-DP OVERFLOW<L15>/
«TXT /EQL, NO NUMBER FOUND<K15>/
STXT /SAMPLE RATE OUT OF BOUNDS<K15>/
STXT /LOW SPEEL BUFFEK MONITOR POINT OUT OF BOUNDS<15>/
. TXT /HS BUFFER SAMPLE RATE OUT OF BOUNDSK15>/
STXT /D1SK ERRCORK15>/
STXT /OISK OVERFLOW<K15>/
o TXT /MULTIPLEXER ERRORKL15>/
STXT /INPUT BUFFER OVERRUNK1S>/
STXT /CURRENT TIME UVERFLOW<15>/
STXT /MAJUR SEQUENCE SLIP OCCURREDK15>/
oTXT /MAX SEQUENCE ERR3JR COUNT EXCEEDEDK15>/

120

MSG51=

MSG52=
MSG53=

M5G54=

MSG99=

STXT
LTXT
LTXT

LTXT

LTXT

«END

APPENDIX A

/ASSIGN FILE READ ERROR OCCURREDK1S5>/
/ASSIGN FILE SEQUENCE ERROR OCCURRED<15>/
/LINE COUNT ERRORK15>/

/MUX OR LSB POINT # OQUT OF BOUNDS<15>/

/UNKNOWN ERRORK1S>/

bt

it i o ks e B e

—

APPENDIX A

A-8. BDACS System

Parameters--BDACS.SR

NAME= BDACS.SR

NAME BLOCK
TIME BLOCK
LTITL BDACS
N3P= 000401
CLK= 054
MUX= 032
MJX0B= 300

IMCLK= 000004
IMMUX= 001000
IMDKP= 000400

BDACA= 200
BOACB= 100
BOACD= 1464
BDACE= 144
BOACF= 1
BOACG= 200
BDACH= 401
BOACI= 476
BDACJ= 200
BDACK= 03
BOACL= 02
BOACM= 6000
BOACN= 144
BDACO= 4000
BDACP= 200
BOACQ= 1
BDACR= 200
BDACS= 1
BDACT= 20
BOACU= 60
BDACV= 7777
BOACW= 764

BOACX= 23420

BOACl= BDACA/20
BDAC2= BOACB/20
BOAC3= BDACP/20
BDACS= BDACJ*BDACL
BOAC6= BLAC1+BDACI
BDAC7= BDAC1-1
BDAC8= BDACM/2
BOAC9= BDACL#*400

END BLOCK

$JC1 19 FEB 76

iNOGP (JUMP .+1)

$RTC DEVICE CODE (HARDWARE)

$MUX INTERFACE DEVICE CODE (HARDWARE)
$MUX OUTPUT BUFFER ADDRESS (HARDWARE)
$CLK INTERRUPT MASK BIT

sMUX INTERRUPT MASK BIT

$OKP INTERRUPT MASK BIT

sMUX INPUT SIZE

$MUX OUTPUT SIZE

$STARTING CYLINDER # FOR RAW DATA STURE
sMAX # OF CYLINDERS USED

SMIN MUX INPUT POINT #

$MAX MUX INPUT POINT #

$MIN MUX OQUTPUT PDINT #

$MAX MUX OUTPUT POINT #

$MAX # OUTPUT POINT CHANGES

$LENGTH OF ENTRY IN OUTPUT CONTROL LIST
sLENGTH OF ENTRY IN REDUCED DATA BUFFER
sLENGTH OF MUX DATA BLOCK

sMAX ALLOWABLE SEQUENCE ERRORS

$HS BUFFER SIZE

LS BUFFER SIZE

$MIN LSB POINT #

$MAX LSB POINT #

$MIN HSB BIT #

$MAX HSB BIT #

§MIN MUX SAMPLE RATE

§MAX MUX SAMPLE RATE

$MIN HSB SAMPLE RATE

$MAX HSB SAMPLE RATE

s# INPUT WORDS

OUTPUT WORDS

LS BUFFER WORDS

sLENGTH OF OUTPUT LIST BUFFER
sOISPLACEMENT FOR LPT MASKS

i# OF LS WORDS

i# OF HS/LS PAIRS PER MUX BUFFER
$REDUCED DATA BUFFER SIZE

122

-

e S ———

DEFENSE DOCUMENTATION CENTER
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

ATTN DDC-TCA (12 COPIES)

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCPP/MG C. M. MCKEEN, JR.
ATTN DRCPP-M/COL R. W. SPECKER
ATTN DRCPM-SCM-WF
ATTN DRCDE-D/MR. HUNT
ATTN DRCDE-D/COL J. F. BLEECKER
ATTN DRCDE, DIR FOR DEV & ENGR
ATTN DRCDE-DE/H. DARRACOTT
ATTN DRCMS-I/DR. R. P. UHLIG
ATTN DRCMS-I/MR. E. O'DONNEL
ATTN DRCDMD-ST/N. L. KLEIN

COMMANDER
US ARMY ARMAMENT MATERIEL

READINESS COMMAND

ROCK ISLAND ARSENAL

ROCK ISLAND, IL 61201

ATTN DRSAR-ASF, FUZE & MUNITION DIV
ATTN DRSAR-PDM/J. A. BRINKMAN

ATTN DRCPM-VFF

COMMANDER

USA MISSILE & MUNITIONS CENTER & SCHOOL
REDSTONE ARSENAL, AL 35809

ATTN ATSK-CTD-F

COMMANDING OFFICER

NAVAL TRAINING EQUIPMENT CENTER
ORLANDO, FL 32813

ATTN TECHNICAL LIBRARY

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD

ARLINGTON, VA 22209

ATTN TECH INFORMATIOMN OFFICE

ATTN DIR, STRATEGIC TECHNOLOGY

ATTN DIR, TACTICAL TECHNOLOGY

DIRECTOR

DEFENSE COMMUNICATION ENG CENTER
1860 WIEHLE AVENUE

RESTON, VA 22090

ATTN R104, M. J. RAFFENSPERGER
ATTN R800, R. E. LYONS

ATTN R320, A. 1220

DIRECTOR

DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301

ATTN DI-2, WEAPONS & SYSTEMS DIV

DISTRIBUTION

DIRECTOR

DEFENSE NUCLEAR AGENCY

WASHINGTON, DC 20305

ATTN PETER HAAS, DEP DIR,
SCIENTIFIC TECHNOLOGY

ATTN RAEV, MAJ S. O. KENNEDY, SR.

ATTN VLIS, LTC ADAMS

DEPARTMENT OF DEFENSE

DIRECTOR OF DEFENSE RESEARCH & ENGINEERING
WASHINGTON, DC 20301

ATTN DEP DIR (TACTICAL WARFARE PROGRAMS)

ATTN DEP DIR (TEST & EVALUATION)

ATTN DEFENSE SCIENCE BOARD

ATTN ASST DIR SALT SUPPORT GP/

MR. J. BLAYLOCK

CHAIRMAN

JOINT CHIEFS OF STAFF

WASHINGTON, DC 20301

ATTN J-3, NUCLEAR WEAPONS BR

ATTN J-3, EXER PLANS & ANALYSIS DIV
ATTN J-5, NUCLEAR DIR NUCLEAR POLICY BR
ATTN J-5, REQUIREMENT & DEV BR

ATTN J-6, COMMUNICATIONS-ELECTRONICS

DEPARTMENT OF DEFENSE

JOINT CHIEFS OF STAFF

STUDIES ANALYSIS & GAMING AGENCY
WASHINGTON, DC 20301

ATTN STRATEGIC FORCES DIV

ATTN GEN PURPOSE FORCES DIV
ATTN TAC NUC BR

ATTN SYS SUPPORT BR

ASSISTANT SECRETARY OF DEFENSE

PROGRAM ANALYSIS AND EVALUATION
WASHINGTON, DC 20301

ATTN DEP ASST SECY (GEN PURPOSE PROG)
ATTN DEP ASST SECY (REGIONAL PROGRAMS)
ATTN DEP ASST SECY (RESOURCE ANALYSIS)

DEPARTMENT OF THE ARMY

OFFICE, SECRETARY OF THE ARMY
WASHINGTON, DC 20301

ATTN ASST SECRETARY OF THE ARMY (I&L)
ATTN DEP FOR MATERIEL ACQUISITION
ATTN ASST SECRETARY OF THE ARMY (R&D)

DEPARTMENT OF THE ARMY

ASSISTANT CHIEF OF STAFF FOR INTELLIGENCE
WASHINGTON, DC 20301

ATTN DAMI-OC/COL J. A. DODDS

ATTN DAMI-TA/COL F. M. GILBERT

US ARMY SECURITY AGENCY
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212
ATTN DEP CH OF STAFF RESEARCH & DEVELOPMENT

|

DEPARTMENT OF THE ARMY
US ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE
BETHESDA, MD 20014
ATTN COMPUTER SUPPORT DIV
ATTN WAR GAMING DIRECTORATE
ATTN METHODOLOGY AND RESOURCES DIRECTORATE
ATTN SYS INTEGRATION ANALYSIS DIRECTORATE

ATTN JOINT AND STRATEGIC FORCES DIRECTORATE

ATTN FORCE CONCEPTS AND DESIGN DIRECTORATE

ATTN OPERATIONAL TEST AND EVALUATION AGENCY

DIRECTOR
NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MD 20755

COMMANDER-IN-CHIEF
EUROPEAN COMMAND
APO NEW YORK, NY 09128

HEADQUARTERS
US EUROPEAN COMMAND
APO NEW YORK, NY 09055

DIRECTOR
WEAPONS SYSTEMS EVALUATION GROUP
OFFICE, SECRETARY OF DEFENSE
400 ARMY-NAVY DRIVE
WASHINGTON, DC 20305
ATTN DIR, LT GEN GLENN A. KENT

DEPARTMENT OF THE ARMY
DEPUTY CHIEF OF STAFF FOR OPERATIONS
& PLANS
WASHINGTON, DC 20301

ATTN DAMO-RQD/COL E. W. SHARP

ATTN DAMO-SSP/COL D. K. LYON

ATTN DAMO-SSN/LTC R. E. LEARD

ATTN DAMO-SSN/LTC B. C. ROBINSON
ATTN DAMO-RQZ/COL G. A. POLLIN, JR.
ATTN DAMO-TCZ/MG T. M. RIENZI

ATTN DAMO-ZD/A. GOLUB

ATTN DAMO-RQA/COL M. T. SPEIR

DEPARTMENT OF THE ARMY

CHIEF OF RESEARCH DEVELOPMENT
AND ACQUISITION OFFICE

WASHINGTON, DC 20301
ATTN DAMA-RAZ-A/R. J. TRAINOR
ATTN DAMA-CSM-N/LTC OGDEN
ATTN DAMA-WSA,COL W. E. CROUCH, JR.
ATTN DAMA-WSW/COL L. R. BAUMANN
ATTN DAMA-CSC/COL H. C. JELINEK
ATTN DAMA-CSM/COL H. R. BAILEY
ATTN DAMA-WSZ-A/MG D. R. KEITH
ATTN DAMA-WSM/COL J. B. OBLINGER, JR.

ATTN DAMA-PPR/COL D. E. KENNEY

DISTRIBUTION (Cont'd)

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS
P.O. BOX 1500
HUNTSVILLE, AL 35807
ATTN BMDSC-TEN/MR. JOHN VEFNEMAN

COMMANDER

US ARMY FOREIGN SCIENCE
AND TECHNOLOGY CENTER

220 SEVENTH ST., NE

CHARLOTTESVILLE, VA 22901

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSES ACTIVITY
ABERDEEN PROVING GROUND, MD 21005

ATTN DRXSY-C/DON R. BARTHEL

ATTN DRXSY-T/P. REID

COMMANDER

US ARMY SATELLITE COMMUNICATIONS AGENCY
FT. MONMOUTH, NJ 07703

ATTN LTC HOSMER

DIRECTOR

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR-XA/MR. J. MESZAROS

COMMANDER
US ARMY AVIATION SYSTEMS COMMAND
12TH AND SPRUCE STREETS
ST. LOUIS, MO 63160
ATTN DRCPM~AAH/ROBERT HUBBARD

DIRECTOR
EUSTIS DIRECTORATE
US ARMY AIR MOBILITY R&D LABORATORY
FORT EUSTIS, VA 23604
ATTN SAVDL~EU-MOS/MR. S. POCILUYKO
ATTN SAVDL~EU-TAS (TETRACORE)

COMMANDER
2D BDE, 101ST ABN DIV (AASLT)
FORT CAMPBELL, KY 42223
ATTN AFZB~KB-SO
ATTN DIV SIGNAL OFFICER,
AFBZ~SO/MAJ MASON

COMMANDER
US ARMY ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703

ATTN PM, ATACS/DRCPM-ATC/LTC DOBBINS
ATTN DRCPM-ATC-TM

ATTN PM, ARTADS/DRCPM-TDS/BG A. CRAWFORD
ATTN DRCPM-TDS-TF/COL D. EMERSON

ATTN DRCPM-TDS-TO

ATTN DRCPM-TDS-FB/LTC A. KIRKPATRICK

DISTRIBUTION (Cont'd)

US ARMY ELECTRONICS COMMAND (Cont'd)

ATTN PM, MALOR/DRCPM-MALR/COL W. HARRISON
ATTN PM, NAVCOM/DRCPM-NC/COL C. MCDOWELL, JR.
ATTN PM, REMBASS/DRCPM~RBS/COL R. COTTEY, SR.
ATTN DRSEL-TL-IR/MR. R. FREIBERG

ATTN DRSEL-SA/NORMAN MILLSTEIN

ATTN DRSEL-MA-C/J. REAVIS

ATTN DRSEL-CE-ES/J. A. ALLEN

COMMANDER

US ARMY MISSILE MATERIEL READINESS COMMAND
REDSTONE ARSENAL, AL 35809

ATTN DRSMI-FRR/DR. F. GIPSON

ATTN DRCPM-HA/COL P. RODDY

ATTN DRCPM-LCCX/L. B. SEGGEL (LANCE)
ATTN DRCPM-MD/GENE ASHLEY (PATRIOT)
ATTN DRCPM-MP

ATTN DRCPM-PE/COL SKEMP (PERSHING)
ATTN DRCPM-SHO

ATTN DRCPM-TO

ATTN DRSMI-R, RDE & MSL DIRECTORATE

COMMANDER

US ARMY ARMAMENT RESEARCH

& DEVELOPMENT COMMAND

DOVER NJ 07801

ATTN DRDAR-ND-V/DANIEL WAXLER

COMMANDER

US ARMY TANK/AUTOMOTIVE MATERIEL
READINESS COMMAND

WARREN, MI 48090

ATTN DRSI-RHT/MR. P. HASEK

ATTN DRCPM(XM-L)/MR. L. WOOLCOT
ATTN DRCPM-GCM~SW/MR. R. SLAUGHTER

PRESIDENT

DA, HA, US ARMY ARMOR AND ENGINEER BOARD
FORT KNOX, KY 40121

ATTN STEBB-MO/MAJ SANZOTERRA

COMMANDER

WHITE SANDS MISSILE RANGE

WHITE SANDS MISSILE RANGE, NM 88002
ATTN STEWS~TE-NT/MARVIN SQUIRES

COMMANDER

TRASANA

SYSTEM ANALYSIS ACTIVITY
WHITE SANDS, NM 88002

ATTN ATAA-TDO/DR. D. COLLIER

COMMANDER

197TH INFANTRY BRIGADE
FORT BENNING, GA 31905
ATTN COL WASIAK

COMMANDER

US ARMY COMMUNICATIONS COMMAND

FORT HUACHUCA, AZ 85613

ATTN ACC-AD-C/H. LASITTER (EMP STUDY GP)

125

COMMANDER

USA COMBINED ARMS COMBAT DEVELOPMENTS
ACTIVITY

FT. LEAVENWORTH, KS 66027

ATTN ATCAC

ATTN ATCACO-SD/LTC L. PACHA
ATTN ATCA/COC/COL HUBBERT
ATTN ATCA-CCM~F/LTC BECKER
ATTN ATSW-TD-3 NUCLEAR STUDY
TEAM/LT D. WILKINS

PROJECT MANAGER
MOBILE ELECTRIC POWER
7500 BACKLICK ROAD
SPRINGFIELD, VA 22150
ATTN DRCPM-MEP

DEPUTY COMMANDER

US ARMY NUCLEAR AGENCY

7500 BACKLICK RD

BUILDING 2073

SPRINGFIELD, VA 22150

ATTN MONA-WE/COL A. DEVERILL

COMMANDER

US ARMY SIGNAL SCHOOL

FT. GORDON, GA 30905

ATTN AISO-CID/BILL MANNELL

ATTN ATST-CTD-CS/CAPT G. ALEXANDER
(INTACS)

ATTN ATSO-CID-CS/MR. TAYLOR

ATTN ATSN-CD-OR/MAJ CARR

DIRECTOR

JOINT TACTICAL COMMUNICATIONS OFFICE
FT. MONMOUTH, NJ 07703

ATTN TRI-TAC/NORM BECHTOLD

COMMANDER
US ARMY COMMAND AND GENERAL STAFF COLLEGE
FORT LEAVENWORTH, KS 66027

COMMANDER

US ARMY COMBAT DEVELOPMENTS EXPERIMENTATION
COMMAND

FORT ORD, CA 93941

COMMANDER
HQ MASSTER
FORT HOOD, TX 76544

COMMANDER

US ARMY AIR DEFENSE SCHOOL
FORT BLISS, TX 79916
ATTN ATSA-CD

COMMANDER

US ARMY ARMOR SCHOOL
FORT KNOX, KY 40121
ATTN ATSB-CTD (2 COPIES)

DISTRIBUTION (Cont'd)

COMMANDER
US ARMY AVIATION CENTER
FORT RUCKER, AL 36360
ATTN ATST-D-MS (2 COPIES)

COMMANDER

US ARMY ORDNANCE CENTER AND SCHOOL
ABERDEEN PROVING GROUND, MD 21005
ATTN USAOC&S

ATTN ATSL-CTD

COMMANDER

US ARMY SIGNAL SCHOOL
FORT GORDON, GA 30905
ATTN ATSS-CTD (2 COPIES)

COMMANDER

US ARMY ENGINEER SCHOOL
FORT BELVOIR, VA 22060
ATTN ATSE-CTD (2 COPIES)

COMMANDER

US ARMY INFANTRY SCHOOL
FORT BENNING, GA 31905
ATTN ATSH-CTD (2 COPIES)

COMMANDER
US ARMY INTELLIGENCE CENTER AND SCHOOL
FORT HUACHUCA, AZ 85613

ATTN ATSI-CTD (2 COPIES)

COMMANDER

US ARMY FIELD ARTILLERY SCHOOL
FORT SILL, OK 73503

ATTN ATSF-CTD (2 COPIES)

CHIEF OF NAVAL OPERATIONS

NAVY DEPARTMENT

WASHINGTON, DC 20350

ATTN NOP-932, SYS EFFECTIVENESS DIV
CAPT E. V. LANEY

ATTN NOP-9860, COMMUNICATIONS BR
COR L. LAYMAN

ATTN NOP-351, SURFACE WEAPONS BR
CAPT G. A. MITCHELL

ATTN NOP-622C, ASST FOR NUCLEAR
VULNERABILITY, R. PIACESI

COMMANDER

NAVAL ELECTRONICS SYSTEMS COMMAND, HQ
2511 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20360

ATTN PME-117-21, SANGUINE DIV

126

HEADQUARTERS, NAVAL MATERIEL COMMAND
STRATEGIC SYSTEMS PROJECTS OFFICE
1931 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 20390
ATTN NSP2201, LAUNCHING & HANDLING
BRANCH, BR ENGINEER, P. R. FAUROT
ATTN NSP-230, FIRE CONTROL & GUIDANCE
BRANCH, BR ENGINEER, D. GOLD
ATTN NSP-2701, MISSILE BRANCH,
BR ENGINEER, J. W. PITSENBERGER

COMMANDER

NAVAL SURFACE WEAPONS CENTER

WHITE OAK, MD 20910

ATTN CODE 222, ELECTRONICS & ELECTRO-
MAGNETICS DIV

ATTN CODE 431, ADVANCED ENGR DIV

US AIR FORCE, HEADQUARTERS

DCS, RESEARCH & DEVELOPMENT

WASHINGTON, DC 20330

ATTN DIR OF OPERATIONAL REQUIREMENTS
AND DEVELOPMENT PLANS, S/V &
LTC P. T. DUESBERRY

COMMANDER

AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117

ATTN ES, ELECTRONICS DIVISION
ATTN EL, J. DARRAH

ATTN TECHNICAL LIBARY

ATTN D. I. LAWRY

COMMANDER

AERONAUTICAL SYSTEMS DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN ASD/YH, DEPUTY FOR B-1

COMMANDER

HQ SPACE AND MISSILE SYSTEMS ORGANIZATION
P.O. 96960 WORLDWAYS POSTAL CENTER

LOS ANGELES, CA 90009

ATTN S7H, DEFENSE SYSTEMS APL SPO

ATTN XRT, STRATEGIC SYSTEMS DIV

ATTN SYS, SURVIVABILITY OFC

SPACE AND MISSILE SYSTEMS ORGANIZATION
NORTON AFB, CA 92409
ATTN MMH, HARD ROCK SILO DEVELOPMENT

COMMANDER
AF SPECIAL WEAPONS CENTER, AFSC
KIRTLAND AFB, NM 87117

DISTRIBUTION (Cont'd)

ASSISTANT CHIEF OF STAFF FOR
COMMUNICATIONS ELECTRONICS

XVIII

AIRBORNE CORPS

FORT BRAGG, NC 28307

ATTN

HARRY
ATTN

ATTN

ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN
ATTN

AFZA-CE/LTC K. KILLINGSTEAD

DIAMOND LABORATORIES
RAMSDEN, JOHN J., COL, COMMANDER/
FLYER, I.N./LANDIS, P.E./
SOMMER, H./OSWALD, R. B.
CARTER, W.W., DR., TECHNICAL
DIRECTOR/MARCUS, S.M.
KIMMEL, S., PAO

CHIEF, 0021

CHIEF, 0022

CHIEF, LAB 100

CHIEF, LAB 200

CHIEF, LAB 300

CHIEF, LAB 400

CHIEF, LAB 500

CHIEF, LAB 600

CHIEF, DIV 700

CHIEF, DIV 800

CHIEF, LAB 900

CHIEF, LAB 1000

RECORD COPY, BR 041

HDL LIBRARY (5 COPIES)
CHAIRMAN, EDITORIAL COMMITTEE
CHIEF, 047

TECH REPORTS, 013

PATENT LAW BRANCH, 071
GIDEP OFFICE, 741

LANHAM, C., 0021

CHIEF, 0024

CHIEF, 1010

CHIEF, 1020 (20 COPIES)
CHIEF, 1030

CHIEF, 1040

CHIEF, 1050

NOON, T. V., 1020

