
UNCLASSIFIED

an
AO4O,~ O

•
__

I
_ _ _ _ _ _ _ _ _ _ _ _ _ I

I
I

I

a

1.0 :~~i~ L:~(I II ~ ‘~ ~OO~1IIH~.25

~~
MICROCOPY RESOLUTION TEST CF1~~T

NAT I O~ A1 BUREAU OF STAND4 RDS - 1963-j ~

TECHNICAL REPORT SERIES

Q

D DC
JA%

~~~ III DISTRIBUTION TEMF!~T~~~

_ _  

Approved fo~ ~seg

• I1UMPUTE~I
~1FU 1fIT~UIi1
SE~dE~1E!E
BESEFW!kI I EFITEB

THE OHIOSTATE UNIVERSITY COLUMB US, OHIO



DBC Software Requirement

I for

L Supporting Relational Databases~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

D D C
JAN 26 1978

Work performed under

(1~~ contractj NøØ~l4_75-.C-~573J
Office of Naval Research

Computer and Information Science Research Center

The/~hio State University

Columbus, Ohio 43210

~~~~~~~~~~~
DISTRIBUTION ~T :r.’~~ r A

Ar~~r vr~1 ~ •i/ o ? ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

—

L. 
______  4



~~~~~~~~• .

4
•

- PREFACE

•
Thu work was supported by contract N00014—75—C—0573 from the Office

1
of Naval Research to Dr. David IC. Haiao, Associate Professor of Computer

* and Information Science, and conducted at the Computer and Information

Science Research Center of The Ohio State University. The Computer and

- Information Science Research Center of The Ohio State University is an
interdisciplinary research organization which consists of the staff,

*
graduate students , and faculty of many University departments and

laboratories . This report is based on research accomplished in
cooperation with the Department of Computer and Information Science . The
research contract was adminjstered and monitored by The Ohio State

•
University Research Foundation

SIV $ectlis 0

‘ A ________

LgL J~i
-- ~~~~~~~~~~~~~~~~ • — ——~~~~~~~~~~~ -~~ •- -

________ — — —.----t-I~~~~
-

-. —_- -.~----*—— —* ...—p, — ~~~~~~~~ ~*—~ -_-- ~~~~~~ — -~~---.---.--
--~-

SECURITY CLASSIFICATION OF THIS PAGE (lThen D.s. Enter.d~

REPAPT flnrIIuEkrrATtOkI PACE READ IN STRUCTI ONS
~~~~~wii i~~~u r~ U I I BEFORE COMPLETING FORM

I. REPOR~ NUMBER 7 2. GOVT ACCESSION NO. 3. REC I P I E N T S  CATA LOG HUMBIR

OSU—CISRC—TR—77—7 V
4. TITLE (ai d Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

“DEC Software Requirements for Supporting
• Relational Databases” Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(&)

• Jayanta Banerjee
• David IC. Hsiao N00014—75—C—0573

S. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . T A SK 
—

AREA & WOR K UNIT NUMBERS
Office of Naval Research 784115 AlInformation Systems Program - 

—

Washington ._D._ C.__ 20360 ____________________________
II. CONTROLLING OFFICE NAME AND ADDRESS $2. REPORT DATE

November 1977
13. P4UMDER OF PAGES

______________________________________________________ 

82
l4~ MONITORING AGENCY NAME 6 AODRESS(1I dilf.r.n t from Controlling 01(1cc) IS. SECURI~~Y CLASS. (of thia report)

IS.. DECLA SS IF ICAT ION/O OW NGi~CAG tN G
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thi. Report)

Scient ific Officer DDC New York Area,_
ONR BRO ONR 437 DIftRJBUTION STATEMENT A
ACO ONR , Boston App~c ved for public reIea~~NRL 2627 ONR , Chicao Di~~jbnti.n Unlimited
ONR 1021P ONR , Pasadena

$7. DISTRIBUTION STATEMENT (of the abatrect entered In Block 20, II differen t from Report)

18. SUPPL EMENTARY NOTES

15. KEY WORDS (Continue on reverse aid. if necessary and identity by block number)

Database Computer, DBC, relational data model, DENS, System R, security,
view, authorization, tuple, record, attribute, attribute—value pair,
performance analysis, clustering, directory, content—addressing, associative
search, query, predicate, query execution time, memory requirement .

20. A BST~~~ CT (Conti nu, on rov er.. aid. II ncceaalury and ident i ty  by block numb.r )

“rhis is th. final report of a series of work aimed at demonstrating
the capabilities of a back—end database computer (DBC) in supportin g
known data models and systems. In the previous two reports , it was shown
that existing hierarchical and network database management systems, in
particular, the Information Managment System (IMS) of IBM and DMS1100
of UNIVAC, can be supported on the DEC with a vastly improved performance.
In this final report, we study a relational database management system,
namely System R, with a view to supporting such a system on the DBC. ~~~~~~~~~~~

DD 1JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSI FICATION OF THIS PAGE (U~.rn Del. Ent~ r•d,



• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~‘~~~~~~~ -.•• ••‘ •.••. • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~ . ~~~ r’

SECURITY CLASSIFICATION OF THIS PAGE(ITh.n Dais £nicr.d)

The early sections of this report are introductory in nature.1 A brief ,•

description of the DBC and a summary of the important aspects of 8~vstem R havebeen presented . They hjye_b..a-included-.e that a reader -without a detailed - .

knowledge ~L-6tëIi~~onal system or the DBC may follov the rest of the material
witI~ dC~~ due difficulty .

The representation of relational tuples in the DBC is quite straightforward.
The data items of every tuple are converted to attribute—value pairs to form a
single DEC record. Two special attribute—value pairs are also included in each a

DBC record in order to indicate the relation to which the corresponding tuple
belongs , and to provide certain clustering information . -

User transactions in the data sublanguage, called SEQUEL, are converted to
a series of DBC commands. The commands are so structured that the DBC can
simultaneously access a number of records, the contents of which satisfy the
predicates in a SEQUEL query . Given a particular command, the DEC uses its
directory to determine the portions of its secondary storage that need to be
content—searched. ,~ The report further demonstrates how view mechanism,
authorization, inl’R,grity assertions and triggers may be supported.

The report is è~ncluded with an analysis of the memory requirements and - 1
query execution times\ in two different cases: (1) when a conventional computer
system is used to 1mpl~ment a relational database management system and (2) when -

the DEC is used in conj~nction with a front—end computer to do the same Job . -

It has been observed th* the mass memory requirement of the conventional
system is 0.5 to 1.0 timê~s that of the DBC, but the directory memory requirement

• is one or more orders of magnitude greater than that of the DBC. Under usual
circumstances, the query e~ecution time of the DBC is also faster by ten to -

hundred times, and sometimes more.

.1
*

j

i I
.~1
J
5.

• —

SECURITY CLASSIFICA TION OP THIS PAGE(II~~~n beta £nre?ed)

A

F —.-- -- _-
-

TABLE OP CONTENTS

• Page
ABSTRACT

1. INTRODUCTION 1

• 2. THE DATABASE COWUTER (DBC) 3

2.1 The DEC Data Model 3
A. Query 3
B. Security 4

C. Clustering 4
2.2 DEC Architecture 5

2.3 DEC Commands 8

3. THE RELATIONAL DATA MODEL U

3.1 Normalized Relations 11

3.2 SEQUEL: A Relational Data Sub].anguage 12

3.3 Access Aids 14

4. DEC REPRESENTATION OF A RELATIONAL DATABASE 16

4.1 Creation of DBC Records 16

4.2 Access Aids and Clustering 18

A. Use of Clustering Links 20
B. Use of Clustering Images 20

5. THE TRM~SLATION PROCESS 24

• 5.1 Translation of SEQUEL Queries 24

5.2 Use of Clustering Information 31

5.3 Translating the Data Manipulation Statements 34

A. Insertion 34
B. Deletion 35

C. Update 36
I). AssIgnment 37

6. RELATIONAL DATA CONTROL FACILITIES 38

6.1 Views 38
6.2 Authorization and Security 40

6.3 Assertions and TrIggers 43

7. PERPORMANCE ANALYSIS 45

7.1 Mass Storage Requirement 46

r ~~~~~~
“

~~
.—•-. •

~~~
• • .

~~~~~
-,

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7.2 Directory Storage Requirement 47
7.3 Query Execution Time 58

7.3.1 Single—Relation Queries 61

7.3.2 Queries Involving a Join of Two Relations 68]
8. CONCLUDING REMARKS 76

REFERENCES 78

APPENDIX A -— NORMAL FORMS OF RELATIONS 80

:
•

•

Fl
t J

• I
I

j

j

~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~ i~~~ • • • ~~~~~~~~~~~~~~~~~~~~~



1. INTRODUCTION

This is the last of a series of three reports dealing with certain
sof tware aspects of a database computer, known as the DBC. More specifically,

the main theme underlying the studies is the demonstration of the fact that

a database machine like the DBC is indeed capable of supporting the common

data models at a cost which Is considerably less than what would be incurred

on a conventional general—purpose computer. Moreover, certain additional

associative retrieval and access control features can be incorporated into

a database management system without any significant overhead if the DEC

is used to support the system. In the first report (1] of this series,

the DBC software requirements have been presented for handling hierarchical

databases. In the second report [2), the DBC capabilities were studied with

a view towards the support of network (e.g., CODASYL) databases. We shall

now conclude this series by directing our investigation on the sof tware
requirements for relational databases.

The relational model of data, as introduced by Codd [3) in 1970, is an

approach towards providing a data model or view which is divorced from
various implementation considerations as well as providing the database ‘ •.

user with a high—level, set—at—a—time (rather than record—at—a—time) data

sublanguage. Currently there exists no commercial implementation of any

system based on the relational data model. The lack of commercial adaption

is not due to any inherent inadequacy of the relational model , since it is a
very simple and elegant data model [4). The reluctance among the commercial

organizations to accept and implement relational database systems can,

perhaps, be attributed to the fact that other data models are available. It

will require a major effort from the organizations and the users to adapt

a new system such as the relational one. There are, however, two important

attempts at designing and implementing experimental prototype relational

database management systems. One is called System R [5] designed and

implemented at the IBM San Jose Research Laboratory and the other Is
Ingres [6] developed at the University of California, Berkeley. In many

respects, the two systems are quite similar. We shall therefore restrict

our attention to only one of them, namely , System R. In other words, for
the sake of specificity, we shall assume, and perhaps quite justifiably,
that System R does possess most of the important features expected in a

relational database management system.

- 
_

~~~~~~~~
•

~~~~~~

• - • 4



• _____ _ _ _ _ _

—2— -

Database computers are a recent addition to the family of computers .

With the advent of large databases, there has been a growing awareness of

the necessity of a computer architecture that is oriented towards storage,

retrieval and manipulation of large quantities of information. The DBC

• [7,8,93 is a step in that direction. It utilizes content—addressable

memories and processors with various speeds and capacities. In addition it

provides powerful clustering mechanisms for performance enhancement and security

mechanisms for access control . The built—in hardware data structure enables the

DEC to interface directly with existing database management application programs

with minimal software. In other words , it is the purpose of this report to show

• that the required software is minimal and that the new software can replace I
existing database management systems with improved performance .

This report Ti organized as follows. Sections 2 and 3 are introductions —I
• to the DBC and the relational database management systems, respectively.

In Section 4, we demonstrate how relational data is stored in the DBC. In

Section 5, we discuss how commands in the relational data sublanguage are
translated into DBC queries. We propose a methodology in Section 6 to

support relational views and integrity features. We conclude in Sections

7 and 8 with an analysis of DBC performance as compared to the performauce 
-

of a conventional computer in managing relational databases .

j

a



• —.. - • -— -.—--~,—•—,.~—• -•,--•-- •—,. •~•• “
~~~~~~~~

. -• - — - . ‘

2. THE DATABASE COMPUTER (DBC)

As a special—purpose computer, the DEC is intended to be used as a
back—end machine to a front—end conventional computer. It is designed to

handle very large databases of lO~ to 1010 bytes in an efficient manner.
• In this section, we shall concentrate on the major architectural features

of the DBC.

2.1 The DBC Data Model

Let there be two primitive sets: a set AT of “attributes” and a set
VA of “values”. The meaning of the two sets is assumed to be understood

• and is left otherwise undefined in order to allow for the broadest possible

interpretation. A record R is a subset of the Cartesian product AT x VA,

with the restriction that every attribute in a record is distinct. Thus, R

is a set of ordered pairs of the form :
<an attribute, a value>

The keywords of a record (or a group of records) are those attribute—value

pairs which characterize the record (or the record group), i.e., those pairs
that may be used to distinguish the record (or the record group) from all
others. The other attribute—value pairs of a record, if any, are collectively

called the record—body.

The set of all records which are stored in the DBC 18 called the database.
The database may be partitioned into subsets called files, each with its

• unique file—name.

• A. Query

A keyword predicate is a triple of the form:
<attribute, relational operator , value >.

A relational operator is an element of the set {-,#,<,5,?,> ~~ . A keyword
<A,V> is said to satisfy a keyword predicate <Ap,Op,Vp> if and only if A’.Ap

• and V Op Vp, i.e., V and Vp are related by the operator Op. A query is a

Boolean expression of keyword predicates in disjunctive normal form. Thus,

a query is a disjunction of conjuncts known as query conjuncts, where a
query conjunct is simply a conjunction of keyword predicates . A record in
a file satisfies a query if it satisfies at least one query conjunct in the
query. The set of all records in a f ile that satisfy a query will be called
the response set of the query .

~~~~~~~~~~~~~ 
•y.• •• •



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-4-

As an example of the types of queries that may be recognized by the

• DBC, consider the following:

( (DEPT”TOY ’ ]&[SALARY<10000]) v
((DEPT— ’BooK ’]&[S .ALARY>SOOOO]) .

If the above query refers to a file of employees of a department store, then

it will be satisfied by records of the employees working either in the toy

department and earning less than 10,000 , or workin g ~~t the book department

and making more than 50,000 .

Queries are used not only to retrieve a set of records among all the

records in the database but also to specify protection requirements and

clustering conditions.

B. Security

The DBC allows for security specifications based on the actual contents

of the database. A database access or simply an access is the name of a

DBC operation which transfers information to or from the database. Examples

of accesses are retrieve, insert and delete. For every user of the database,

the DBC maintains a database capability, which is simply a list of file
sanctions whose entries are of the form:

(F, [Q1,Al] , [Q2,A2], ..., [Qn,An])
where F is a file name, each QI is a query and each Al is a set ‘f accesses.
The database capability of a user determines the records he can access.

For example, for a user to be allowed to perform an access operation a on
• record R of file F, the following condition must hold for every (Qi,Ai) in

the file sanction for F:

If (R satisfies Qi) then (a EAI) .
This type of security specification is powerful and elegant. With this

• specification, not only can security be enforced in terms of record types
or entire files , but security can also be facilitated at a much more detailed
level based on the actual content of the records In the database. And since
such a mechanism is d~rect1y provided in the DBC , it may easily be incorporated
into any database management system supported by the DBC . A more detailed and

formal discussion of the DBC security provisions will be found in [7] .

C. Clustering

Based on certain prespecif ied information created by the user, clustering
of records is done automatically by the DBC , so that records being accessed

_i~~~~ —-•-••~---•~ — •--~~ •• • -~-~~~ ——---------•-—— ——--~• •— • • - •  •



F- • • 

- —— --——-———-—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~

-
~~~~~~~

—-
~

•

~~~~~~~~

—5—

together are stored close to one another . This is necessary since the DBC

is not designed to be fully associative . The user is provided some degree

of control over the placement of records by application of the concept of
clustering keyword. Certain attributes of a file wiy be designated as

clustering attributes. Keywords whose attributes are clustering attributes

are termed clustering keywords. A cluster is then defined as a set of

records all of which have the same set of clustering keywrods. Each record

in the file will then belong to one and only cluster . The user may now
impose weighted clustering conditions on the records . A clueterin,g condition

is a query formed with clustering keywords . The user , when inserting a

record in the database, specifies certain clustering conditions and their
associated weights. A sum—of—weight corresponding to the above clustering
conditions can be calculated for any record In the database by adding the

weights of those clustering conditions that are satisf ied by that record.
The new record (the record to be inserted) is then placed in the database

close to an existing record with the largest sum—of—weight. The clustering

process does not really require the inspection of the database, as demonstrated

in [9], sInce directories are maintained.

2.2 DBC Architecture

The most natural way of addressing information In a database is In terms

of the content of the records. However, the secondary storages of conventional

computers have so far been limited only to location—addressability. This

implies that in order to find a record In the database, the location of the

record must first be determined via software techniques and auxiliary data

structures. The overhead, therefore, includes the complexity of software to
support auxiliary data structures. This overhead becomes particularly

intolerable when the database is large, since the search of the auxiliary
structure itself becomes a time—consuming process.

The DBC provides for the entire database an on—line storage which can

be content—addressed. Although associative memory also provides content—

addressing, it is not possible to develop a monolithic associative memory

with sufficient capacity for DBC storage. By partitioning the memory into

blocks , each of which is content—addressable , and by limit ing access to only
one of these blocks at a time, the DBC can achieve some degree of associativity

and very large storage capacity. Such a processor and memory organization

is termed a partitioned content—addressable memory (PCAM) . The on—line

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


mass memory (MM) of the DBC is a PCAM. Each partition of the MM is called

a minimal access unit (MAlI). As an example, a ~~~ byte database will have

1,000 MAUs each of which processes and stores io6 bytes, which is the
approximate size of a disk cylinder.

• Another major component of the DBC is a processor called the database

command and control processor (DBCCP). When a command from the front—end

computer (the one which interfaces with the user) is sent to the DBC , the
DBCCP decodes the conmand, determines the l4ttUs to be searched in order to

• satisfy the command, issues appropriate orders to the MM and transfers data
• to/from the fron t—end computer .

Since a large database will c4 ntain many MAUs and since only one NAB

can be accessed at a time, it is not practical to search all the MAUs for
• each search order. Hence, directory entries are made for certain keywords.

These keywords are called Type—D keywords or directory keywords. A directory

entry consists of a Type—D keyword and the numbers of the MAUs in which

records containing this keyword appear . Any query conjunct is expected to

have at least one predicate consisting of a directory keyword. OtherwIse,

an exhaustive search of the NM will be necessary to satisfy the query. In

addition, the clustering keywords and security keywords are treated as

instances of Type—D keywords.

The collection of all the directory entries Is also stored In a PCAN
with a capacity and processing speed that is different from the mass memory

PCAN. This PCAN is known as the structure memory (SM) . Typically directories

are of the order of 1% to 10% of the database. Therefore, the SM has a
capacity of l0~ to l0~ bytes. It is estimated that a query conjunct will

seldom have more than 20 predicates; and a single NAB access will normally

satisfy a query . Therefore, the access speed of the SN Is about 1 millisecond

which is about 20 times faster than the time required to access an MAU . Thus ,
in the time required to process a query in the SM, another query may be

satisfied by accessing an MAU. The relationship of SM, MM and DBCCP is
.~~picted in Figure 2.1.

The processors associated with the MM have the capability of returning

a group of records (satisfying a query) in a sorted order, say , sorted by
a given attribute. They can also carry out certain set functions . In

particular, they can take a group of records and determine the minimum,
maximum, sum and average of the various values of a given attribute

considering all the records in the group. The number of records satisfying

a query can also be counted by hardware. Furthermore, any specific combination

- JI~~~ - ______ • ____ -

- • •
~~~~~~~~~~~~~~~~~~~~~~~~~~~

. 
~~,•• - •~~~~~~---~~~~~~~--~~ --• • •

—7—

Structure Memory

& related processors
(Refer to [8])

Coimnanci and
To a front—end Control
computer Processor
(e.g.,IBM 370) ~~~~~~~~~~~~~~~~~~~~~~ r t o [9]

Mass Memory

&

related processors

(Refer to [9])

Figure 2.1. Basic architecture of the DBC

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r
• -8-

of fields of a record may be returned (on request) to the user , rather than

• the record in its entirety.

2.3 DEC Commands

The front—end computer communicates with the DBC by issuing DBC commands .
Two types of commands are recognized by the DEC: the access commands and
the preparatory commands . Access commands are used to retrieve , insert ,
delete and update DBC records in a file. Preparatory commands are issued to

manage file information and security specifications in preparation of

subsequent access commands .

Preparatory commnads consist of the following. There is a command to

open a database file for access. A specific preparatory command is reserved

• for informing the DBC the identity of the users who have the right to create
files. Prior to the creation of a file, a command may be sent to the DBC
to open the particular file for creation. The command provides information
on the number of attributes the file is to have , the number of NAUs that

need to be allocated initially and the number of MAIJs that may be allocated
• If the initial allocation is insufficient. Separa~te commands are also used

for specifying the attributes for a new file and for providing its security

descriptors .
An access command is sent by a general—purpose computer to the DBC to

perform a specific data manipulation function. An access coninand is recognized

as being a retrieve, delete, insert or replace command. A retrieve command
has the following form:

RETRIEVE:<file identifier> (WITH POINTER]
((SORT BY <sort attribute>] /
(set function specification> [ONLY]]]

• (<field specification list—b.] <record specification—i>
(CONNECT ON <attribute—l,attribute—2>
(<field specification list—2>] <record specification—2>]

where file identifier refers to the name of the file on which the retrieval
operation is to be carried out: the WITH POINTER clause specifies that the

response data must be accompanied by impleantation—dependent pointers ; the
sort attribute specifies the attribute according to whose values the DEC

must sort the response data (i.e., the records or fields); the set function
specification may be one of COUNT, AVG, MAX, MIN or SUM. COUNT returns the

number of data elements retrieved, AVG computes the average value (s) of the
field(s) specified in the field specification list , MAX returns the maximum

.1

value (s) for each of the field (s) specified in the f ield specification,
while MIN returns the minimum value (s) of the field(s) specified. The

function SUM computes the sum of the values for each of the fields specified .
The functions AVG, MIN, MAX and SUM operate only on numeric fields. The
ONLY clause is used to indicate that the value of the set function need
only be returned. If the ONLY clause is omitted, then both the set function
value and the individual field values will be returned. The field specifica-
tion list—i and list—2 specify the names of the attributes whose values are
to be retrieved as the response data. The values in the response data can

be made unique with respect to any one field by associating the prefix

UNIQUE with the attribute name of the desired field. If the f ield specif ication
lists are not given in the conunand , entire records will be retrieved. The
record specification is either a query (as def ined earlier) or an implementation—

dependent record pointer. A record retrieved in accordance with a record

specif ication or a collection of fields retrieved in accordance with a f ield
specification list is called a data element. The CONNECT ON clause specifies

that the data elements retrieved in response to record specification— l and

record specification—2 must be joined on the attributes specified as arguments

of the CONNECT ON clause. Here join means an equality join. Attribute—l

refers to the connecting attribute in the data elements defined by the field

specification list—l, while attribute—2 refers to the connecting attribute

in the data elements defined by the field specification list—2. In the case
• when the set function specification, the UNIQUE option in the set specification

lists,and the CONNECT ON clause are all specified in a single retrieve command ,

the order of precedence is as follows: First, the fields in the field

specification lists (1 and 2) are extracted , then the UNIQUE option is
executed, next the CONNECT ON clause is effected and finally the set function
is applied to the result.

The general form of a delete command is as follvs :
DELETE : <file identifier> [<record specification>]

where file identifier identifies the file on which the deletion operation is
to take place , and record specification is either a query or a pointer. If
the record specif ication is omitted, then the entire file will be deleted.
The general format of an insert command is as follows :

INSERT: <record to be inserted> [<clustering
conditions>]

The general format of a replace command is as follows :

REPLACE: <record specification>
<keywords for replacement> / <new record >


~~~~~~~~~~~~ —~~—• — -~~~~• —~~~ • ~~~ - ~~ -~~~~~ —
~
--_

~~
•

where record specification is either a query ox a record pointer. The -

record specification describes the record(s) which need to be modified. The
keywords for replacement are attribute—value pairs which will replace

corresponding attribute—value pairs in the records to be modified. The new

record is one which will replace the entire record(s) defined by the record
specification. Only one of the two options may be specified in a replace

• co and. That is, either existing records are modified with respect to
certain keywords or entire records are replaced by a new record .

The commands we have discussed thus far are executed directly by the -

DBC hardware. These commands deviate from conventional machine language -

• commands in the following major ways they are very high—level , they use
variable length formats and they provide set—at—a—time access. In Sections

5 and 6, we shall have occasion to use these extremely powerful commands in 
•

executing transactions written in a relational data sublanguage .

— • -— —•———- • :-~~
- - •‘ ‘• — -- •‘ • 

f 4



• •~~~~ • 
- --

3. THE RELATIONAL DATA MODEL

The relational data model can simplify both the conceptual view and

the user view of a database. All relationships or connections among data
items are shown in the form of mathematical relations over a set of domains (3] .

The data items themselves are simply the values associated with these domains .
Thus , the number of primitives in the relational model is only one , namely,
the relation. This contributes to the overall simplicity of the relational
data model.

Conceptually, a relation is a table in which each column corresponds
to a distinct attribute and each row corresponds to a distinct entity or
tuple. Each tupie is distinct in the sense that no two tuples in a relation

have identical values for all attributes. The set of possible values that
can be assumed by an attribute is called the domain of that attribute . Two
different attributes of a single relation can have the same underlying domain .

For example, the attributes QUANTITY and RUNS—SCORED assume values from the

domain of natural numbers. Finally, a relation R is a subset of the Cartesian

product of the domains associated with the relation’s attributes Al,A2 ,...An.
Such a relation is denoted R(Al,A2,...,An).

There are two important ways in which database relations differ from

mathematical relations: (1) The ordering of the values within a tuple of

a database relation is immaterial if the attribute names accompany the
corresponding values ; (2) The set of tuples that comprises a database relation

will normally change over time as tuples are inserted , deleted or modified.

3.1 Normalized Relations

While the relational model can inherently be applicable to the formulation
of any type of relation , it is a coimnon practice to subject the relations to
a process of normalization. The primary reason for doing this is to eliminate

the possibility of certain types of inconsistencies that may otherwise arise
during the update (such as, modification , deletion, insertion) of a tuple.
A fine treatment of the normalization process is presented in [4] as well as

in 110,11,12]. However , since normalization is not central to an understanding
of the manner in which the relational data model is handled by the DBC, we shall
restrict ourselves, only for the sake of completeness, to a brief description
of the various normal forms in the appendix. 

• • —•,- •-- - - ----- -••~~—•--—• •• •~~-- — • • • • • •-•-—~~~~~~ • • - • • ••



r • _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—12—

3.2 SEQUEL: A Relational Data Sublanguage

A comprehensive database management system (DBMS) should include

provisions such as simple but flexible user views, data definition, data

manipulation and query capabilities, as well as convenient access support ,

system recovery and integrity enforcement. System R [5] is one such system

that is based on the relational data model. System R provides user interface

through a data sublanguage called SEQUEL [13]. An improved version of SEQUEL,

called SEQUEL 2 (14], is currently being used in Sytem R. The language

features used in this document are those of SEQUEL 2, even though we shall

refer to them simply as SEQUEL.

SEQUEL is designed to be used both as a stand—alone language for
interactive users and as a data sublanguage embedded in a host programning

language such as PL/I. In the latter case, the SEQUEL statements in a program

are identified by a precompiler which replaces them with valid PL/I calls to

a run—time module which performs the desired function. SEQUEL, as its name

suggests (Structured English Query Language), provides extensive query

facilities based on English keywords. In addition, a data manipulation

facility permits insertion, deletion and update of individual tuples or sets

of tuples in a relational database. A data definition facility permits

definition of relations and of various alternative views of relations. A

data control facility permits each user to authorize other users to access

• his data; it also provides for assertions about data integrity , and for stored

transactions that may be triggered by various events. The language operates

on relations in first (or higher) normal form . We shall briefly illustrate

the use of SEQU~T~ by writing some transactions in this language.

• A sample database, extracted from [14], is depicted in Figure 3.1.. It

consists of four normalized relations (not necessarily in 2NF or 3NF). The

EMP relation describes a set of employees, giving the employee number, name,

department number, job title, manager ’s employee number, salary and commission

Relation Attributes

EMP EMPNO,NANE,DNO,JOB ,MGR ,SAL,COMM

DEPT DNO,DNANE ,LOC

USAGE DNO,PART

SUPPLY SUPPLIER , PART

Figure 3,1. A Sample Database • - 

•--~~~~~~~~~~ -~~~~~~-~~~~~~~ -~~~~~~~~~~~~~ ••- --~~~~~•-~~~~~~~~~~~~~~~~ - • — -  - - - • •~~~~~~~~~~-~~~~~~~~~~—••• “•-- -- -



— —- ~~~~ -I-- 
-‘ —

for each employee. The DEPT relation gives the department number , name and

location of each department. The USAGE relation describes the parts which

are used by the various departments . The supply relation describes the supplier
companies f rom which the various parts may be obtained .

The most baeic operations of the SEQUEL language involve the query
facilities, For example, to find the names of employees in Dept. 50 , one

may write
SELECT NAME
FROM E~~WHERE DN0 50

The SELECT clause lists the attributes to be returned . If the entire tuple
is desired, one may write SELECT *. The WHERE clause may contain any collection
of predicates which compare values of attributes of a tuple to constant values

(e.g., DNO—50) or compare values of two attributes of a tuple with each other

(e.g., SAL<CONM). The predicates may be connected by AND and OR, and paren-

theses may be used to establish precedence.

Data manipulation facilities are those facilities whereby a user may
directly change values in the database. These facilities fall into the

categories of insertion, deletion, update and assignment. The insertion

facility allows the user to insert a new tuple or a set of tuples into a
relation. Deletion is a process of specifying tuples to be removed from the
database . The tuples are specified by means of a WHERE clause which is
syntactically identical to the WHERE clause of a query . The update features
of SEQUEL are similar to those for deletion, except that additional specifications
must be given for the updates to be made on the selected t~~les. New values

for updated attributes may be stated as constants , as nested queries or as
expressions based on the original values of the attributes . An assignment
statement allows the result of a query to be copied into a newly—created
relation in the database. The new relation may then be queried, updated or
processed in the same way as any other relation. An example of data manipulation
that involves insertion of a single tuple is illustrated below. To insert a

new tuple named ‘JONES’ with employee number 535 in department number 51,
having no other attributes, a transaction may be written as

INSERT INTO EMP (EMPNO,NAME,DNO) :
<535, ‘JONES’, 51>

Th. data definition facilities of SEQUEL enable users to create and

drop relations, define alternative views of relations , and specify the access
aid. (indexes, etc.) to be maintained on the database . For example , to create
the DEPT table (i.e., relation) during the process of constructing the database ,

- •• —---



r - - - -~~ -V-- — --.~--- — ~~~~~~~~~~ -.
—14—

one may write

CREATE TABLE DEPT
(DNO (cHAR(2), NONULL) ,

DNAME (CHAR (12) VAR) ,
LOc (CHAR(20) VAR) )

In this example , it is indicated to the system to create a relation (which
is to be physically stored) with three attributes DNO, DNAME and LOC. The

DNO attribute of any tuple of DEPT is not allowed to take a null value.
SEQUEL data control facilities enable users to control access to their

data by other users, and to exercise control over the integrity of data values.
The owner of the EMP relation , for example , may use the following SEQUEL
statement to grant Smith and Anderson the right to read or update the JOB
and DNO columns :

GRANT READ, UPDATE (JoB , DNO) ON EMP
TO SMITh , ANDERSON

3. 3 Access Aids

System R consists of two major components [5]. The Relational Storage

System (RSS) is the storage subsystem that manages devices, space allocation,
storage buffers , transaction consistency and locking, deadlock detection,
backout and recovery . It also maintains indexes on selected fields of stored
relations , and pointer chains across relations. The Relational Data System

(RDS) provides authorization, integrity enforcement and support for alternative

views of data. It also supports the SEQUEL language and maintains the catalogs
of external names, since the RSS uses only system—generated internal names.
The RDS contains an optimizer for choosing an appropriate path for any given

request among the paths supported by the RSS.

System R relies on the user to specify the access paths to be maintained

on the stored relations. Access paths include images and links. An image

in the RSS is a logical reordering of a relation with respect to one or more

sort fields. It provides associative access capability. The RDS can rapidly
fetch a tuple from an image by keying on the sort field values. The RSS

maintains each image through the use of a multi—page index structure. At most

one image on a relation may have the clustering property , which means that
tuples which are near each other in the orderin g of that image are stored
physically near each other in the database.

Links are access paths in the RSS which link tuples of one relation to 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___ Al

related tuples of another relation through pointer chains. Links are always

employed in a value—depen4ent manner: the user may specify that each tuple
of a relation may be linked to all those tuples of another relation that have
matching values in some field(s) and that these tuples should be ordered in
some valus—d.p.ndsnt way . Like an image, a link may be declared to have a

clustering property, in which case, the tuplee will be kept close to the
neighboring tup las in that link. As an example of images and links, consider
the following. In order to create a clustering image, named IM, on the SAL

attribute of the E?~ table , we may write
CREATE CLUSTERING IMAGE IN ON EMP (SAL) .

Similarly , to create a non—clustering link , called LK , which connects tuples
of DEPT to tuples of EMP that match on the DNO attribute, we may write

CREATE LINK LK
PROM DEPT (DNO)
TO E)4P(DNO).

If we are also to order the employees on the link by, • say JOB and SAL , then

we simply expand this SEQUEL statement with

ORDER BY JOB,SAL.

It must be noted that the access paths (images or links) contain no
logical information that cannot be derived from the data values themselves .
The user has no explicit control over the placement of tuples in images and
links (except for the ability to declare the structure of an image or link) .
Neither can the user use the image or link directly for accessing data. Links
and images are used only by the optimizer to choose optimal access paths .

In the next section we shall demonstrate how a relational database may
be transformed to an equivalent database that can be supported directly by
the DBC.

_

_ _ _ _ _ _ _ _

J

~

~~~~~~ .~~i~ _ _ _



r --- •
~~

-
~ 

•• -—--- -~
. - . • ~~~~~~~~~~~~~~~~~~~~~~~~~~~

-16-

4. DBC REPRESENTATION OF A RELATIONAL DATABASE

Given a conventional general—purpose computer with location—addressable

storage, it is convenient to represent a relational database in the following

manner. A template is maintained for each relation indicating the name of

each attribute and its relative position within the relation (besides other

information such as the type of values assumed by an attribute). The relative

position is a necessary part of attribute information since each stored

tuple carries only the values and not the attribute names themselves. All j
the elements of a single tuple are stored in a physical sequence, i.e.,
contiguously. In order that tuples may be retrieved without having to scan

the entire database, two kinds of auxiliary information are maintained. A

separate index may be maintained for any attribute of a relation in the form
of an m—ary tree. Any leaf of such a tree provides the address to a stored

tuple having a particular value for the given attribute. Another type of

auxiliary information is maintained directly within the stored tuples. The

tuples that are related by the fact that they have the same value for a

given attribute may be linked by means of pointers (addresses) . These

auxiliary information are managed by the system according to the speciflcation~ ]

of the creator of a relation. The user of the database need not have any

knowledge about their existence.
In the DBC , all information is stored in the form of records that

consist of attribute—value pairs. Since the secondary storage is content—

addressable , it is not necessary to have separate indexes or address—dependent
pointers within the records. Since the on—line mass memory (NM) is not a

monolithic associative memory, it is desirable that only one MAU (minimal

access unit) be accessed during the execution of a DBC command. In order
to avoid an exhaustive search of all the MAUs, the structure memory (SM)
of the DBC is utilized. With a proper choice of keywords to be entered in

the structure e ory, it is possible to restrict the search required for

most queries to a single MAU. Address—dependent pointers are, in fact, not

needed . However , a small directory in the SM, automatically managed by the

DBC, is still essential to the achievement of high performance.

4.1 CreatIon of DBC Records

A relational database is represented in the DBC by creating a record
for each tuple. Since each tuple belongs to a certain relation, we represent



this fact in the corresponding DBC record by means of the attribute—value

pair

<RELA TION , relation—name>,
where RELATION is a built—in attribute. With the incorporation of such a

tuple into every record , it will be possible to retrieve any record based on
the fact that it belongs to a particular relation. In response to any query

• 
- involving a certain relation, the DBC will be able to conduct a content—search

and retrieve all those records that belong to that relation and that satisfy

the other conditions required by the query.

A relation (or table) may be defined in SEQUEL by means of a CREATE

statement. For example , the EM1’ relation of Figure 3 .1 may be defined as
follows:

CREATE TABLE EM1’
(EMPNO (INTEGER , NONULL),

N AME (CHAR (12) VAR) ,
DNO (CHAR(2)),
JOB (CHAR(6)),
MGR (INTEGER),
SAL (DECIMAL(8 ,2 ) ) ,
COMM (DECIMAL(8,2))).

In a DEC environment (i.e., where a front—end computer accesses a database
via a DBC) , the definition of the table is retained by the front—end computer .

Whenev w a tuple is to be stored in the database, the software interface in

the front—end computer creates a DBC record which consists only of attribute—

value pairs. Such a pair is created for the relation name and one attribute—
value pair for every column of the relation, as shown below:

<column—name, value>.

Thus , any tuple of the EMP relation is represented in the DBC by means of

the following attribute—value pairs:

<RELATION, EMP>
<EMPNO , employee—number>
<NAME , employee—name>
<DNO , department—code>
<JOB, job—code>
<MGR , manager—number>
<SAL, salary>
<COM1I , commission>.

If any one of the columns does not have a corresponding value in any particular
tuple, then it is not necessary to create (ør store) an attribute—value pair

for that column. Thus, every DBC record representing an ~~~ tuple will have
an attribute—value pair for EMPNO (since this column always takes a non—null

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


value), but it may not have such a pair for DNO (if the value for DNO

happens to be null).

A signif icant feature of the data def inition of the relational model is
its flexibility. Occasionally, it becomes necessary to expand an existing
table by adding a new column to it, e.g., to accoiiinodate a new application.

SEQUEL allows columns to be added to the right side of an existing table by

means of an EXPAND statement, which specifies the name and data type of the

new column. Existing tuples are considered to have null values in the new

column until they are updated. This feature is easily handled in the DBC

representation, since only records representing the new tuples will have an

attribute—value pair corresponding to the new column. Old records, until

they are updated by a transaction, will remain unaltered inspite of the

expansion of the table. For example, a change in the definition of the DEPT

table may be made by adding a column (NEMPS) to keep track of the number of

employees in each department. This is done by the SEQUEL statement

EXPAND TABLE DEPT
ADD FIELD NEMP S (INTEGER) .

In response to this statement, only those DBC records representing new tuples
of DEPT will have the extra attribute—value pair

<NEMPS, number—of—employees>.

Notice that it is possible that a relation may have a column called

RELATION. In that case, it seems that there will be two attribute—value

pairs with the same attribute, namely,

<RELATION, relation—name> and
<RELATION, value—of-the-column,~.

This ambiguity wil l never actually occur . Since all the attributes are

coded and because the built—in attribute RELATION has been given a unique code,

it is different from the codes of all other attributes.

4.2 Access Aids and Clustering

System R makes use of images and links to determine optimal access paths .

The DBC, however , has no use for images and links that are not designated for

clustering purposes. It does not need to implement these access aids in the

way System R does. This is due to the fact that the DBC uses content—

addressable memory, thus eliminating the need of pointers. The only

information on images and links that the DEC will make use of is the

clustering information. It should be obvious that the intention in specifying

- -~ ~S - ,,- -,- ~~~~~~• - ~~
S -,

~~~~~~~~~~~~~~~~~ ~~~~~~~ — --- —-
~~-~-----~

--- -- -

clustering images and clustering links is to physically gather together all

data that will be most frequently retrieved in response to a single query.

• Since the DBC does not simultaneously access two or more MAUs it will be
desirable to cluster such data in a single MAU.

Clustering of the DBC records, however, always starts with a relation
name. We first attempt to store in as few MAUs as possible all those DBC

S records that belong to the same relation. The reason for clustering by

relation name is simply that all SEQUEL queries involve one or more relations.

Thus, the relation names being known, it will always be possible to form DBC
commands with the query field consisting of at least one predicate of the form

(RELATION—relation-name) .

In this manner we will almost always be ensured that the DBC will satisfy any
• given query by accessing at most a number of MAUs that is no greater than

the number of MATJs required to store all the records in a given relation. The

actual number of MAUs accessed will , in fact, be usually less than this number.
We observe , therefore, that DBC records are clustered primarily by relation
name. This clustering is done while inserting each record , say, belonging
to relation r, by indicating in the insert command that (RELATION—r) is the
primary clustering condition (which is called mandatory clustering condition

• in DBC terminology). Further clustering is done based on the information

on the access aids (images and links), as we shall now discuss.

For records to be inserted in the database, there is a

secondary clustering condition (called optional clustering condition in DBC

terminology) derived from the specification of the access aids. There are

no secondary clustering conditions for records of any relation for which no

clustering image or clustering link has been specified in the definition

of the database. We assume, in keeping with the language definition of
SEQUEL, that there is no more than one clustering image or clustering link

def ined on any relation. If there are, then we may arbitrarily pick one of
them (in determining a secondary clustering condition) since it normally

does not pay to have more than two levels of clustering in a PCA}1 (partitioned
content—addressable memory) with large partitions. Assuming that we have

decided on a particular image or link for clustering purposes , let us

illustrate whaL clustering conditions are to be provided by the front—end

computer to the DEC. 



.1
A. Use of Clustering Links

Considering the general definition of a clustering link , namely ,

CREATE CLUSTERING LINK link—name
FROM relation—i (attribute—list—i)
TO relation—2 (attribute—list—2)
ORDER BY attribute—list—3

we are to link every record of relation—i to one or more records of relation—2

such that attribute—list—i and attribute—list—2 have matching values. Since

records of two different relations cannot be clustered (because the primary
clustering condition is based on a single relaUon name),we only cluster all those

records of relation—2 that belong to the same link. Thus, usually a maximum

of two accesses will be necessary to access all records that logically belong
to the same link: one access for the records belonging to relation—i

and another access for the records belonging to relation—2. We cluster

relation— 2, therefore, by attribute—list—2; and this is done as follows:

Assume that the tuples of relation—2 together occupy upto N MAUs (in case

no knowledge is available as to the tuple size and number of tuples in a

relation, assume N to be a large number, say 200 , which is likely to be large
enough to accommodate any relation). In any tuple (of relation—2) to be

stored in the database , add an extra attribute—value pair

<CLUSTER, hash number>.,

where hash number, between 1 and N, is obtained by hashing the values of
attribute—list—2. The secondar~ clustering condition for this tupie, then,

is (CLUSTER = hash number) . The primary clustering condition , we may recall,
is simply (RELATION = relation—2).

B. Use of Clustering Images

The implementation of the clustering properties of an image is only a

little more complex. The added complexity arises due to the fact that an

image is always ordered by one or more attributes. Let us illustrate the

implementation process by considering the general definition of a clustering

image :

CREATE CLUSTERING IMAGE image-name
ON reiation—l (attribute—list)

Assume that the attribute-list consists of the attributes Al ,A2 , . . . ,An . L
Then the image is to be ordered logically (as well as physically, since it is

1.
i

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _  • •  .4



• —21—

a clustering image) first by Al, secondly by A2, etc.

• If the possible values of attribute Al have a reasonably wide range ,

then it is clear that clustering by A2 ,...,An (after clustering by Al) will

give no added advantage. For example, if the values of Al were to range

uniformly between 1 and 1000 and the number of MAUs oàcupied by relation—i

is 20, then we may be able to cluster in such a way that records with Al—
values ranging between 1 and 50 are stored in the first of the 20 MAUs, records
with Al—values ranging between 51 and 100 are stored in the second, etc. Further

clustering by attribute A2 serves no purpose because in any search query with

equality predicates involving attributes Al and A2, the value of Al alone
(together with relation name) is sufficient to determine the NAU that contains

all the records satisfying the query.

On the other hand, if the possible values of attribute Al have a very

small range (e.g., the attribute SEX may take values either male or female) ,

then it is advantageous to use attribute A2 for creating finer (smaller)

clusters that may be accommodated in a single MAli. Similarly, if each of
Al and A2 has a small range of permissible values, then attribute A3 may
be used to create finer clusters .Por clustering purposes , therefore , we

use attribute Al,...,Ai such that each of Al,...,A(i—l) assume a small range

of values and either i=n or Ai assumes a large range of values .

To determine the cluster number of any tuple , the front—end computer

makes use of a table for each relation. There are as many columns in a
table as there are attributes chosen for clustering (as discussed in the

last paragraph). The entries in each column have the following meaning:

Entry 1: Name of the clustering attribute.

Entry 2: Range of values of the attribute;

it is either lar1e or small
Entry 3: Integer representing the following:

If Entry 2 — small ,
then Entry 3 = number of values in the range .

If Entry 2 — large,
then Entry 3 — number of partitions

made of the range .
Entries 4,5,...: Values of the attribute’s range ,

or maximum values for the partitions of the range.
As an example , consider a POPULATION relation , some of whose attributes are

SEX: male or female

STATUS: employed, ineligible or “nemployed



—22—

AGE : any integer.

If this relation is to be clustered by SEX , STATUS and AGE respectively, then

we may create a table as shown in Figure 4.1. There are 2*3*5 — 30 clusters

for this relation as shown in Figure 4.2. The number of partitions chosen

for the attribute AGE is 5. This choice should not be arbitrary but should

be based on the fact that the total number of clusters required is equal

to or somewhat larger than (say , double or triple) the number of MAUs
occupied by the relation. In case the size of a relation (in terms of MAUs
required) is unknown , then a suitably large number is assumed, say 200 .

The creator of a clustering image may provide the range information

on the various attributes by statements such as

RANGE OF SEX I S (MALE, FEMALE)
RANGE OF AGE IS INTEGER (SMALLESTa O ,LARGEST—80)

RANGE OF NAME IS ALPHA (SMALLEST— ’ ‘,LARGEST— ’ZZZ ’)

where, in the case of integer, floating—point or alphanumeric attributes,
the usual range is also specif ied. Any range declared to be integer ,

• alphanumeric or floating—point is considered a large range. Any range that

is actually listed out (e.g., male, female) is considered small. This RANGE
specification is currently not a part of the SEQUEL CREATE statement but can

easily be incorporated in the language def inition in order to facilitate
clustering on a partitioned content—addressable memory.

Once a cluster number C is determined for any record of relation R,
then a special keyword <CLUSTER, C> is included as part of the stored record .

The primary and secondary clustering conditions for this tuple, then, are

(RELATION — R) and (CLUSTER — C), respectively .
In this section, we have considered the DBC representation of a relational

database. Clustering of the DEC records has been considered as part of the
over—all clustering problem; it has been shown how an extra keyword with

attribute CLUSTER is created and stored in each record. In the next section

we shall illustrate how SEQUEL queries are transf ormed into DBC commands

-I



—23—

Attribute SEX STATUS AGE

Range Small Small Large

Number of valuei 2 3 5
~r. y&1ua martitini _______ ___________ _______

Values or female employed 20
value partitioni

male ineligible 40

unemployed 60

_______ ____________ 

80

Infinity

Figure 4.1. Table created for a clustering image

Cluster Number SEX STATUS AGE

1 female employed <20
2 female employed <40
. . . .
• . . .

female employed <infinity

6 female ineligibie <20
• . . I. S . .

S

10 female ineligible <infinity

11 female unemployed <20. . .
• . . .
. . S

15 female unemployed <infinity

16 male employed <20
• I .
. . .. • . .

30 male unemployed <infinity

Figure 4.2. Cluster numbers corresponding to various values of
SEX, STATUS and AGE



r ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

— - 

~~~~~~~~~~~~~~~~~~~

-24-

I .

5. THE TRANSLATION PROCESS

.1
The DBC ,as we have indicated earlier , acts as a back—end machine

executing commands given by a front—end computer. Let us call the software

package ,vhich resides in the fron t—end computer and which creates and handles a
relational database stored in the DEC, the RDBI (Relational Database

Interface) . The RDBI intercepts the data sublanguage (in this case , SEQUEL)

statements, which are part of a host language program, and translates them

into a series of DEC commands .

5.1 Translation of !EQUEL Queries

We shall illustrate the process of translation from SEQUEL statements

to DEC commands by means of a series of examples. Our sample database is

that of Figure 3.1. For convenience, we will reproduce here the four

relations in the database:

Relation Attributes

EM? EMPNO,NAME,DNO,JCB ,MGR SAL ,COMM
DEPT DNO,DNAME,LOC
USAGE DNO, PART
SUPPLY SUPPLIER ,PART

In each example , first the SEQUEL statement and then the corresponding

DBC commands are shown.

Example 1: The following SEQUEL statement and its equivalent DEC cotimiand will

find the names of employees in Dept. 50.

SEQUEL:
SELECT NAME
FROM EN?
WHERE DNO—50

DBC Command:
RETRIEVE: (NAME) ((RELATION”EMP’)&(DNO’m50))]

Example 2: A list of all the different department numbers in the EMP table

is created by the following statement or commands.

SEQUEL :
SELECT UNIQUE DNO
FROM EN?

DEC Command:
RETRIEVE: (UNIQUE DNO) (RELATION.” EM?’) j

Example 3: To list the names of employees in departments 25, 47 and 53.

the following statement may be used.

:1
_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ -~~~ • - --—•~~~~-- — -- A

—25—
• ‘I.

SEQUEL :
• • SELECT NAME

* FROM EM?
• WHERE DNO IN (25,47,53)

DBC Command:
RETRIEVE: (NAME) (((RELATION— ’EMP’)&(DNO—25))

v((RELATION— ’EMP ‘)&(DNO—47))
v((RELATION—’EMP’)&(DN0—53)))

Example 4: Consider listing the names of emp loyees wt~o work for departments
in Evanston. This type of transaction requires access to two different

relations and is, therefore , expressed in SEQUEL by means of a nested
SELECT statement. The inner part of the nesting returns the collection of

DNO values of the departments located in Evanston. The outer part then

proceeds as though it were given a set of constants in lieu of the inner
SELECT clause.

SEQUEL :
SELECT NAME
FROM EM?
WHERE DNO IN

SELECT DNO
FROM DEPT
WHERE LOC— ’ EVANSTON’

DEC Commands:
a. RETRIEVE: (DM0) ((RELATION— ‘DEPT’)&(LOC— ‘EVANSTON’))

For each department number ‘di’ retrieved by (a), the RDBI issues the
DEC command:

b. RETRIEVE:(NAtIE)((RELATION— ’EMP ’)&(DNO— ’di’))

The employee number, name, and salary of employees in Dept. 50
may be listed as follows, in the order of employee number.

SEQUEL:
SELECT EMPNO ,NA}IE,SAL
FROM EMP
WHERE DNO—50
ORDER BY EMPNO

DBC Command:
RETRIEVE: (EMPNO,NAME, SAL)

((RELATION— ’EMP’)&(DNO—50))
SORT BY EMPNO

In case the ordering of the response set is to be done also by some
secondary attributes, then such a sorting is done by the RDBI in the
front—end computer, The DBC only sorts by a single attribute.

Example 6: An important class of queries is exemplified in the determination
of average salary of clerks. The built—in SEQUEL function AVG can be used
to accomplish this result . Other built—in functions in the SEQUEL language

are SUM, COUNT , MAX and KIN. These functions are indeed part of the hardware
DBC fea;ures.

SEQUEL:
SELECT AVG(SAL)
FROM EN?
WHERE JOB.’CLERK ’

DBC Command:
RETRIEVE : (AVG(SAL)) ((RELATION— ’EM?’)&(JOB— ’CLERX ’))

Example 7: The following statement determines the count of all the different

jobs held by employees in Dept. 50.

SEQUEL :
SELECT COUNT (UNIQUE JOB)
FROM EN?
WHERE DNO—50

DEC Command:
RETRIEVE : [COUNT ONLY] (UNIQUE JOB)

((RELATION— ’ENP ’)&(DN O—SO))

Example 8: In addition to simple attributes and built—in functions, SEQUEL
allows a user to construct arithmetic expressions in the SELECT clause. All

the following are valid SEQUEL expressions:

AVG(SAL)/52

AVG (SAL)+AVG (COMM)

MIN(SAL+CONM)
Since the DBC does not have any arithmetic capabilities, all arithmetic

operations are done by the RDBI in the front—end computer. For example ,

to execute the SEQUEL statement for the first expression, the RDBI sends
one command to the DEC to retrieve AVG (SAL) . It ther divides the resulting

number by 52. For the second expression, two DBC commands are required

to retrieve two numbers, which are then added. For the third expression ,

a single DBC command is required to retrieve the SAL and COMM f ields of each
EN? record; the addition and MIN operations are then performed by the RDBI .

Example 9: Consider listing all the departments and the average salary of

each. This is an example of a query in which a relation needs to be

partitioned into groups. A built—in function can then be applied to each

group.

SEQUEL : - -

SELECT DNO,AVG(SAL)
FROM EN?
GROUP BY DNO

DBC Commands:
a • RETRIEVE: (UNIQUE DNO) (RELATION— ’ EMP’)

For each departmen t number ‘di ’ retrieved by (a), the RDBI issues a comnand:

z
• •

r
b . RETRIEVE :(AVG(SAL))((RELAT ION— ’EMP ’)&(DNC- ’di’))

Example 10: Sometimes it may be desired to partition a relation into groups

and then to apply a predicate or a set of predicates which chooses only some
of the groups and disqualifies others. These group—qualifying predicates

are placed in a special HAVING clause. A predicate in a HAVING clause may

compare an aggregate property (e.g., AVG(SAL)) of a group to a constant or

to another aggregate property of the same group . The following SEQUEL

statement may be used to list all those departments in which the average
employee salary is less than 10,000.

SEQUEL:
SELECT DNO
FROM EMP
GROUP BY DNO
HAVING AVG(SAL)<l0000

DBC Commands :
a. RETRIEVE: (UNIQUE DNO) (RELATION”” ‘EN?’)

For each department number ~~~j I retrieved by (a), the RDBI issues a
command:

b. RETRIEVE:(AVG(SAL))(RELkTION— ’EMP’)&(DNO— ’di’))

Since the DBC does not make comparisons on aggregate properties , the final

selection of DNO based on (AVG (SAL)<l0000) is done by software (i.e., by

the RDBI) in the front—end computer.

Example 11: When a query has both a WHERE clause and a HAVING clause, then

the WHERE clause has precedence since it is applied to qualifying tuples ,

in contrast to the HAVING clause which is applied to groups of tuples. Use
is made of both these clauses in listing the departments which emp loy more

than ten clerks .

SEQUEL :
SELECT DNO
PROM EMP
WHERE JOB— ’CLERK ’
GROUP BY DNO
HAVING COUNT(*)>iO

The notation COUNT (*) denotes the count of tuples in a group.

DEC Commands :
a. RETRIEVE : (UNIQUE DNO) (RELATION— ‘EM?’)

For each department number ~di’ retrieved by (a) , the following command
is issued :

b. RETRIEVE: [COUNT ONLY]
((RELAT I0N— ’EMP’)&(DNo—’di’)&(JoB— ’CLERK’))

The RDBI now returns the name of only those departments for which a count

of greater than 10 is retrieved by (b).

~

-
-

~

--—

~

~~~~~~~~~~~~~~ . •  _ _ _



- - 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~‘-~ - — ~~~~~•~~~ • • • ~~~ —~

—28—

Example 12: Set comparison operators like — , #, [IS] [NOT] IN, CONTAINS and
DOES NOT CONTAIN are allowed in a HAVING clause as illustrated by this example ,
which lists the departments which have employees with every possible job title.

SEQUEL :
SELECT DNO
FROM EMP
GROUP BY DNO
HAVING SET(JOB)—

SELECT JOB
FROM EN?

DBC Commands :
a. RETRIEVE:(UNIQUE DNO)(RELATION— ’EMP ’)
b. RETRIEVE:(UNIQUE JOB)(RELATION— ’EMP’) SORT BY JOB

For every department nu mber ‘di ’ retrieved by (a) , issue the coimnand :
c. RETRIEVE : (UNIQUE JOB)

((RELATI0N=’EMP ’)&(DNC-’di’)) SORT BY JOB
For each department , the comparison of each of the sets in (c) to the set

in (b) is done by software (i.e., by the RDBI) .

Example 13: The set theoretic operators INTERSECT , UNION and MINU S are also

available in SEQUEL. Consider, for example, the listing of all the departments
which have no employees.

SEQUEL:
SELECT DNO
FROM DEPT
MINUS
SELECT DNO
PROM EMP

DBC Commands:
a. RETRIEVE: (UNIQUE DNO) (RELATION— ‘DEPT’)
b. RETRIEVE:(UNIQUE DNO)(RELATION..E EMP~)

The set operation MINUS is now done by the RDBI.

Example 14: A join operation may be required to return values selected from

more than one relation. The names of all employees and the locations where

they work may be listed by the query:
SEQUEL :

SELECT EM?.NA}IE,DEPT .LOC
FROM EMP ,DEPT
WHERE EMP .DNO—DEPT.DNO

DBC Command :
RETRIEVE : (NA}IE,DNO) (RELATION.’ ‘EN? ’)

CONNECT ON (DNO,DNO)
(LOC ,DNO) (RELATION— ’DEPT ’)

Here , there are two field specification lists : (NANE ,DNO) for the first - -

query and (LOC,D? - for the second query. The command is to connect (join)

r -

~~~~~~

-29-

on the two DNO attributes and return as response data triples of the
form (NAME ,DNO,LOC), where NAME is taken from the first field specifications
list, LOC is taken from the second list, and DNO is common to both . The

RDBI now returns to the user only the pairs (NAME ,LOC) by deleting DNO
from the triples returned by the DBC.

Example 15: In some circumstances, it is necessary to join a relation with

itself according to some criterion. The relation name may then have to be

listed more than once and labelled , e.g., X and Y may be two labels for a
relation EM?. As an example, the following SEQUEL query will list the

employee ’s name and his manager’s name for each employee whose salary exceeds

his manager’s salary.

SEQUEL:
SELECT X.NAHE,Y.NANE
FROM EN? X, EMP Y
WHERE X. MGR=Y. EMPNO
AND X.SAL>Y.SAL

DEC Command :
a. RETRIEVE: (MGR)(RELATION=’EMP’)

CONNECT ON (MCR ,EMPNO)
(ENPNO) (RELATI0N= ’ EMP’)

The only difference between this command and the command for Example 14

is that only one attribute is returned, instead of X.NAME and Y.NAME as

well. This is because the AND clause has still got to be considered.

Notice that since a manager has at least one employee (in general), a

modified command (a’) would also have the same effect as (a), yet taking

less time to execute. However, (a’) is not general enough for all situations.
a’ • RETRIEVE: (UNIQUE MGR)(RELAT ION— ’EMP ’)

For each manager number ‘ml’ returned by (a), do the following: Send
a command

b. RETRIEVE: (NAME ,SAL)((RELATION=’EMP’)&(EMPNO=’mi’))
and for each (nj ,sk) pair returned by (b) , send a command

c. RETRIEVE:(NAME)((RELATION— ’EMP’)&(MGR=’mi’)&(SAL>sk))
Notice that the name retrieved by (c) is an emp loyee name , and that

returned by (b) is the corresponding manager’s name.

Steps (b) and (c) have been written in such a way that for every

manager, the DBC accesses all his employees at the same time. These

two steps could otherwise have been written such that for every employee,
the DBC accesses all his managers at the same time. But, of course, every

employee has a single manager. Therefore , the way we have written the

commands is better than its alternative, since fewet number of accesses

is required in the former case. The decision is mad-”u on the basis of 

IT~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



Fr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—

~~
---—-

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—30—

‘ a

the fact that there are fewer unique values of MGR than there are of EMPNO.

• Example 16: SEQUEL permits a label to be used to qualify attribute names

outside the block in which the label is defined. The following query uses

this feature in listing the suppliers who supply all the parts used by

Dept. 50. - •

SEQUEL :
SELECT SUPPLIER
FROM SUPPLY X
WHERE

(SELECT PART
FROM SUPPLY
WHERE SUPPLIER=X.SIJPPLIER)

CONTAINS
(SELECT PART
FROM USAGE
WHERE DNO—50)

*

DBC Command :
a. RETRIEVE: (UNIQUE SUPPLIER) (RELATION— ’ SUPPLY ’)
b. RETRIEVE: (PART) (RELATION—’USAGE’)&(DNO”50))

Since the block after CONTAINS has a comparison involving a constant ,
it needs to be executed only once, This is done by command (b) given
above. For each supplier ? 5~~~ retrieved by (a), a DBC command

c. RETRIEVE: (PART) ((RELAT ION’’ ‘SUPPLY’)&(SUPPLIER” ‘SI’))
is sent, and the sets retrieved by (b) and (c) are compared by software.

The same query could have been made in SEQUEL by means of GROUP BY

and the special function SET , as given below:
SELECT SUPPLIER
FROM SUPPLY
GROUP BY SUPPLIER
HAVING SET(PART) CONTAINS

SELECT PART
PROM USAGE
WHERE DNO—50

The DBC commands would be the same as before.

Example 17: As a final example , consider listing the names of employees who
have the same job and salary as those of Smith. This is done as follows:

SEQUEL:
SELECT NAME
FROM EMP
WHERE <JOB,SAL> =

SELECT J0i3,SAL
FROM EMP -

WHERE NANE— ’SMITH’

DBC Commands :
a. RETRIEVE: (JOB, SAL)((RELATION— ’EMP’)&(NANE— ’SMITN’))

For the tuple (j , s) retrieved by (a) , a second DBC command is sent :
b RETRIEVE:(NAIiE)((RELATION— ’EMP’)&(JOB— ’j’)S(SAL— ’s ’))

- •~~~~— -•

- ~~~~~~~
- - -

~~~~~~~- -- - ---

—31—

5.2 Use of the Clustering Information

Through an extensive list of examples, we have tried to indicate in
the last section some of the principles involved in translating SEQUEL

queries to DEC commands. The relation name associated with a query is seen

to be a part of all DEC commands, thereby making it possible to limit the
search to at most as many MAUs as are required to store the entire relation.

This is because the DBC records are clustered primarily by the relation

names. Not all record—contiguity information, however, has been made use
of in formulating the DBC coum ands•

As we might recall from Section 4, the definition of a relational

database consists of , besides other things, a specification of certain access
aids such as the images and links. Furthermore, some of these access aids

are declared to be applicable for clustering purposes. There can be no
more than one clustering image or clustering link for any relation. We

have shown in Section 4, how a special keyword with attribute CLUSTER is
created for each DBC record that represents a tuple of a relation having
a clustering image or clustering link. This keyword is created during the

time of insertion of a new record into the database. - Thereaf ter , whenever

records are to be retrieved in response to a SEQUEL query, the special

keyword may be regenerated and used as a predicate in the corresponding DEC

query. This will be possible, however, only when the SEQUEL query consists

of comparisons involving an attribute that is one of the attributes in a

clustering image or clustering link.

Given a SEQUEL query, the DEC commands are created in two steps :
1. The DBC commands are initially created as shown in all our earlier

examples.

2. For each DBC command thus generated, whenever possible, the special

keyword <CLUSTER,cluster number> is computed and included as a

predicate in the DEC command. The modified cotmnand is finally sent

-
~~~~~ to the DBC for actual execution.

Computation of the special keyword is quite straightforward. If there is

a clustering link on attributes Al,A2,...,An and if these same attributes
occur in a DBC command (created in the first step given above) in the form

of equality predicates, then the values (of the attributes) are hashed to

generate a cluster number. The hashing algori thm is the same as the one
used during the record—insertion process. As an example, consider that

there is a clustering link as defined below:

- - ~~~ -

CREATE CLUSTERING LINK L5
FROM DEPT (DNO)
TO EMP (DNO)

Then the EM? relation is clustered secondarily by DNO. Now a sume that there

is a SEQUEL query

SELECT EMPNO,NAME,JOB
FROM EN?
WHERE DNO—50

This query is translated to DBC commands in two steps:

Step 1. The initial DBC command generated is

RETRIEVE: (EMPNO,NANE,JOB)
((RELATION— ‘EMP’)&(DNO—SO))

Step 2. The department number 50 is hashed to compute a cluster

number 1. The modified DBC command now generated is:
RETRIEVE : (EMPNO,NAME,JOB)

((RELATION— ’EMP’)&(Dwv—SO)&(CLUSTER — ’i ’))

In the case of a clustering image, the clustering table (discussed in
Section 4) used during the process of record insertion is again used for
retrieval purposes. For example, consider the clustering image as defined
below:

CREATE CLUSTERING IMAGE 13
ON EMP (DNO ,SAL)

Let the possible department numbers be DlOO,D200,D300 and D400. Let us

further assume that the SAL attribute (which has a very large range) is

partitioned into five subranges. Then the clustering table may look like

as shown in Figure 5.1. There are a total of 20 clusters for the EM?

relation as shown in Figure 5.2. Now assume that there is a SEQUEL query:

SELECT EMPNO
FROM EN?
WHERE DNO.’’D200’
AND COMM>5000

Then the DBC command is generated in the following steps:

Step 1. Generate initial command

RETRIEVE: (EMPNO)
((RELATION— ’EMP’)&(DN0.”D200’)&(coMJb5000))

Step 2. Since DNO- ’D200’ corresponds to the five cluster numbers

6,7,8,9 and 10, the modif ied DBC command is

RETRIEVE : (EMPNO)
((RELATIoN— ’ Mp ’)&(DNO— ’D200’)&(C0M)bS000)
& (CLUSTER~6) & (CLUSTER~ lO))

di

___ A

_ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _

Attribute DNO SAL

Range Small Large

Number of values 4 5

Value partitions DlOO 510 ,000

B200 515,000

D300 520,000

D400 525 ,000
>25,000

Figure 5.1. Table used for the clustering image on DNO
and SAL attributes of the ~~~ relation

Cluster
Number DNO SAL
1 blOC 510,000
2 DlOO 515,000
3 Dl0O 520 ,000
4 0100 525,000
5 0100 >25 ,000
6 0200 510,000
.
10 D200 >25,000
11 D300 510,000
. S

.

15 D300 >25,000
16 D400 510,000

S
S

20 D400 >25,000

Figure 5.2. Cluster numbers corresponding to the various

values of DNO and SAL attributes

I.I ~
- .Pr—,

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

-34-

5.3 Translating the Data Manipulation Statements

The data manipulation facilities of SEQUEL allow the user to directly

change values in the database. Using these facilities, the user can insert,

delete or update a tuple or a group of tuples in the database. He can also

assign the result of a query to a newly—created relation.

A. Insertion

Any time after a relation has been defined, a new tuple may be inserted

into the database by an INSERT statement. As an example, the following SEQUEL

statement will insert a new employee named ‘Jones’ with employee number 535

in Dept. 51, having other attributes null:

INSERT INTO EMP (EMPNO,NAME ,DNO) :
<535, ‘JONES’ ,51>

To insert such a tuple, the RDBI first determines if the relation has a

clustering link or a clustering image. Accordingly, it then creates a
keyword <CLUSTER,cluster number> and then sends the DBC command

INSERT: (<RELATI0N= ’EMP5~,<EMPNO=535>,<NAME= ‘JONES’>,
<DNO= 51>,<CLUSTER=cluster number>)

with primary clustering condition (RELATION ’EMP’)
and secondary clustering condition

(CLUSTER .cluster number)

In case the secondary clustering condition cannot be determined either due

to the absence of a clustering image or clusrering link, or due to the absence

of clustering attributes in the tuple to be inserted, then only the primary

clustering condition is sent as part of the DBC command.

Set—oriented insertions in SEQUEL consist of the evaluation of a query

and insertion of the resulting tuples into some existing relation. Assume,

for example, that the database contains a relation called CANDIDATES which
has columns for employee number, name , department number and salary . The

following SEQUEL statement will then add to the CANDIDATES table all those

employees whose commission is greater than half their sal ary :

INSERT INTO CANDIDATES :
SELECT EMPNO ,NAIIE,DNO ,SAL •

~1FROM EM?
WHERE COMM>O.5*SAL

The RDBI executes this statement in four steps:

(1) The query is evaluated by using the DBC RETRIEVE command .(Part

• —.-——— ——— - ;~ -~~.- - p



~~~~~~
.

~~~~~~~~~~~~~~~~~~~~~~~ 
— —,—- — -=--- —--v —‘----.-

~~~ 
-

~
_

~~
---.

~~
•
~~~~1~ •1-0 -~~ — — —F - - - —--

~~
—

—35—

of the query is, of course, evaluated in software since the
arithmetic operation 0.5*SAL cannot be done by the DBC hardware.)

(2) For each tuple retrieved in Step 1, the keyword <CLUSTER,cluster
number> is generated, if the definition of the CANDIDATES relation
allows it.

(3) For each tuple, a DEC record is formed as shown in Section 4.

An INSERT command is now sent to the DBC for each DEC record
created in Step 3. The primary and secondary clustering

conditions are sent together with every record.

B. Deletion

Deletion, in SEQUEL, is done by means of a DELETE statement accompanied
by a WHERE clause. The WHERE clause specifies the conditions that must be

satisfied by the records to be deleted. A simp le example of the DELETE
operation is the deletion from the EN? relation the employee with employee

number 561. The SEQUEL statement to achieve this is:

DELETE EM?
WHERE EMPNO—56l

The corresponding DBC command is:
DELETE: (RELATION. ‘EM?’) & (EMPNO.’561)

Once again, whenever applicable , the cluster number to which the record(s)
belongs may be specified by means of another predicate.

A more complex example that uses labels is the deletion from the DEPT

relation all the departments having no employees. A SEQUEL statement to do

the job is given below:

DELETE DEPT X
WHERE

(SELECT COiJNT(*)
FROM EM?
WHERE DNO—X. DNO) —o

The RDEI achieves the same effect with the following procedure:

(1) Send a DEC command
RETRIEVE: (DNO)(RELATION— ’DEPT’)

For every department number ‘di’ retrieved by (1), do the
following steps:

(2) Send a DBC command

RETRIEVE : [COUNT ONLY]
((RELATION— ’EMP’)&(DNO—’di’))

_



(3) If the result of (2) is zero, then send a command
DELETE : ( (RELATION’.’DEPT’ )& (DNO.’ ‘di’))

C. Update

Updating a tuple in SEQUEL is done by an UPDATE statement with a SET
clause specifying the updates to be made on the selected tuples . The RDBI

can translate the UPDATE statements in one of two ways : 1) By using the

RETRIEVE command to determine the MAIJ addresses of the selected records ,
and then using the REPLACE command to modify these records one at a time,
or 2) By using the REPLACE command to modify all the selected records

simultaneously. Which of these two methods is to be used depends on the

actual SEQUEL statement. If the SET clause makes identical changes to all

the selected tuples, only then can the second method be used. We illustrate

the two cases with two examples.

Update Example 1: Update the EN? table by giving a 10% raise to all those

employees who are in the CANDIDATES relation.

SEQUEL :
UPDATE EN?
SET SAL~SAL*l.l
WHERE EMPNO IN

SELECT EMPNO
FROM CANDIDATES

DBC Commands:
a. RETRIEVE: (EMPNO) (RELATION ’CANDIDATES ’)

For each employee number ‘ei’ retrieved by (a) send a coimnand
b • RETRIEVE: [WITH POINTER] (SAL)

((RELATION— ’EMP ’)&(EMPNO— ’ei’))
Finally, for each pointer ‘pi’ and salary ‘sj’ retrieved by (b),
compute a new salary sk=(l.1*sj) and send a DBC command
c. REPLACE: (pi) (<SAL sk>)

This command specifies that the record pointed to by ‘pi’ is to get
the modified value ‘sk’ for the SAL attribute.

Update Example 2: Update the EM? relation by giving a commission of $5000

to every clerk.

SEQUEL :
UPDATE EM?
SET COMM—5000
WHERE JOB— ‘CLERK”

DEC Command :
REPLACE: ((RELATION— ’EMP’)&(JOB— ’CLERK’))

(<COMM,5000>)
This command specifies that all the records satisfying the query conjunct

ii

- ••~~~~~~~~~~



p.r - 
~~~~~~~~~~~ 

-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --__ — ~~~~~~~~~~~ ~~~~~~~~~--~~~~~ --~~---~~~-

must have the value of their COMM attribute modified to 5000 .

D. Assignment

An assignment statement in SEQUEL allows the result of a query to be

copied into a newly—created relation in the database. Thus, the execution
of an assignment statement by the RDBI is done in two parts:

(3.) The records satisfying the query are retrieved as shown In

Section 5.1, and

(2) A new relation is created with the records retrieved in (1).

These records are then stored in the database.

_ _ _



pr
-38-

6. RELATIONAL DATA CONTROL FACILITIES

System R , our model for a relational database management system , has

extensive data control facilities that enable users to control access to

their data by other users, and to exercise control over the integrity of
data values . The data control facilities have four aspects : transactions,

authorization, integrity assertions and triggers.

A transaction is a series of statements which the user wishes to be
processed as an atomic act. The user controls transactions by the operators

BEGIN—TRANS and END—TRANS. The user may specify save points within a

transaction by the operator SAVE. As long as a transaction is active, the

user may back up to the beginning of the transaction or to any internal save

point by the operator RESTORE. Implementation of transactions on the DBC

involves no new concepts. From the save point onwards, any update made by

the transaction will cause the old version of the updated record to be
stored in the DBC mass memory as part of a temporary database. A subsequent

RESTORE command may be executed by simply deleting from the database all
updated records and replacing them by their old copies stored away in the

temporary database.

6.1 Views

System R relies on its view mechanism for authorization. As opposed

to the base relations which are physically stored in the database, a view

Is a virtual relation which is a dynamic’window ’ on the database. In

response to a query, the tuples of a view are dynamically computed from the

base relation(s). An update to a view is not allowed if it is defined on

more than one base relation. We shall briefly describe below how a view

is definad in SEQUEL and how it is implemented in the DBC.

Any SEQUI.L query which results in a relation may be used to define

a view. The RDBI translates any SEQUEL query by first translating it

into DBC commands in the normal way (as discussed in Section 5). Any

reference to a view, in the first step, is treated as a base relation,
but the DEC commands thus formed are only intermediate commands not to
be immediately transmitted to the DBC. These commands are now qualified

with predicates determined from the view definition. The modified commands,

then , are the ones that are transferred to the DBC for execution. We shall

Illustrate this process by means of the three most important cases of view

definition.

- I
-j

~~~~~~~~~~~~ Tiii~~~~~~ ~~~~~~~~~~~~~~~~~~ 


-~~~~~

—39—

A view may be a row and column subset of a base relation . For example ,

the following SEQUEL statement may be used to define a view called D50

containing the employee number, name and job of the employees who work in
Dept. 50.

DEFINE VIEW 050 AS:
SELECT EMPNO ,NAME ,JOB
FROM EM?
WHERE DNO—50

A user may now wish to find the names of all clerks in D50 by issuing the

SEQUEL statement

SELECT NAME
FROM D50
WHERE JOB— ’CLERK ’

This statement is first translated into an intermediate DBC conunand

RETRIEVE: (NAME) ((RELATION— ‘050’)& (JOB— ‘CLERK ’))

However, there is no stored relation called D50. Hence, the view definition

for 050 is used to replace the predicate (RELATION ’DSO’) by ((RELATION ’EMP’)&

(DNO— ’D50’)) . We thereby come up with the modified DBC command

RETRIEVE: (NAME)
((RELATION= ’EMP ’)&(DNO.’50)&(JOB=’CLERK’))

This is the command that is finally transmitted to the DEC , after making

sure that no reference is made to any field (in this case, NAME) that is

not included in the view definition (in this case, NAME does occur in the

definition of D50).

A view may also be the join of the information in two or more relations.

A view called OS, for example, may be defined as follows as a join of the

PART attribute of the relations USAGE and SUPPLY:

DEFINE VIEW DS AS:
SELECT DNO, SUPPLIER
FROM USAGE ,SUPPLY
WHERE USAGE • PART—SUPPLY. PART

To find the department numbers of the departments to which the supplier

‘Jones ’ supplies any part, one may issue the following SEQUEL statement:

SELECT DNO
FROM DS
WHERE SUPPLIER— ‘JONES ’

The first step in the translation of this statement i8 the creation of the

DBC command
RETRIEVE: (DNO) ((RELATION— ‘DS ’) & (SUPPLIER— ‘JONES’))

_ _
A

- -

-40-

-

Since DS is only a view, the view definition is now used to come up with the
DBC commands :

a. RETRIEVE: (PART) ((RELAT ION— ‘SUPPLY ‘)&(SUPPLIER — ‘JONES’))

and for each part ‘p1’ retrieved by (a), another command
b. RETRIEVE: (DNO) ((RELATION— ‘USAGE ’)&(PART— ‘pi’))
A view may be a summary of the information in a base relation . For

example, to define a view consisting of the average salary of each department,
one can issue the SEQUEL statement:

DEFINE VIEW AVGSAL AS:
SELECT AVG(SAL)
FROM EM?
GROUP BY DNO

Any reference to the average salary of some department ‘di ’ in AVGSAL may

then be translated to the DBC command

RETRIEVE: (AVG(SAL))((RELAT IONi. ’EMP ’)&(DNOu. ’di ’))

Although views are used for facilitating the description of a relational
query, a more important use of the views is in the process of authorization.

The crea tor of a base relation may grant (and may later revoke) any privilege
(such as READ, INSERT , DELETE , UPDATE) to (from) other users. He may further

provide any of these users with the GRANT option. In that case, the latter

user has the privilege to grant (revoke) all his privileges on the given
relation to (from) yet another user. If a user is authorized to create

a view on a base relation then he has the sole authority to perform any

action on it consistent with his privileges on the base relation. He may

also grant those privileges to another user.

6.2 Authorization and Security
•1

System R allows for an extremely simple method of authorization checking

[15). System R maintains two tables for the use of the authorization subsystem,

namely, SYSAUTH and SYSCOLAUTH. The SYSAUTH table has upto two rows for each

combination of relation (base relation or view) and user. The columns in the

SYSAUTH table correspond to user Id, base relation or view name, type (whether
base relation or view), a column for each of the privileges on the relation

(the entry being ‘Y’ or ~~ in every such column) and a column for grant

option (f y I or ‘N’). For each relation on which a user is authorized to

perform some action, there are upto two tuples in SYSAUTH : one for grantable
and the other for non—grantable privileges.

r v
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In case the user has update rights on a relation, the table SYSCOLAUTH
indicates precisely those columns of the relation on which the user has the

update privilege. These two tables SYSATJTH and SYSCOLAUTH are updated

whenever a new base relation or view is created or whenever an authorized
user executes a GRANT statement thereby granting a set of privileges to one
or more other users. The two tables are ref erenced immediately before the
execution of any SEQUEL statement. Since all SEQUEL statements refer to

an action and to one or more relations, authorization checking can be

accomplished by the RDBI even before the statements are translated to DBC

commands. The checking process is exactly identical to that in System R.

As a possibility, however, an extra dimension can be added to the
authorization mechanism of System R by using the hardware security

enforcement feature of the DEC. Although the view mechanism of System R
is important for its use in specifying authorization, a view need not

necessarily be used for that purpose alone. A view may be defined, for
example, for the sole purpose of simplifying SEQUEL queries. Therefore,

it may not be practical to represent every view of a base relation In the

security module of the DBC. Furthermore, this is not necessary since

security enforcement by views and relations can be easily done even before

the SEQUEL statements are translated to DBC commands.

Suppose, now, that many different row—subsets of a relation are to be

authorized for access by various users. Then a view must be defined for

every such subset, and each user must be aware of the names of the views

corresponding to the row—subsets he is allowed to access. A better scheme

would be to somehow allow each user access to appropriate logical subsets

of the base relation without requiring the user to remember the names of

these subsets. In any SEQUEL statement, the user can then make a reference
directly to the base relation. If the statement requires the retrieval

(or update) of any part of the relation on which he has no authorization

for the corresponding action, then the statement will not be executed.

Such a scheme is ideally implemented on the DBC. The values of any

attribute to be used for authorization may be partitioned. Access

privileges of any user may be specified in terms of predicates using the

above attributes. The specifications of the access privileges are stored

in the DBC structure memory. Users may then write SEQUEL statements that

refer to an entire base relation. These Statements will be converted to

DBC commands , and the commands will be executed by the DBC only if the

_
~~~~ ~~~~~~~~~~~~~~~~~~~


--- -—---------_ - - -
~~~~~~~~~~

-- --- - -
~~~~~~~~~~~~

—42—

authorization specifications of the user determined automatically by the

DBC allow such operations.

Here is a simplified exposition of how the DEC security mechanism works.

The creator of a file may specify certain attributes as security attributes.

The file creator also specifies security descriptors that partition the values

of the security attributes.

The capabilities of a user are specif ied in the form of file sanctions,
a file sanction being a pair <predicate conjunct, access privilege>. Each

predicate in a file conjunct is restricted such that it must refer to

complete blocks of the partition made by the corresponding security descriptors

(i.e., the descriptors whose attribute parts, agree with the attribute part

of the predicate). In addition to the file sanctions, the user capability

also consists of certain default access privileges applicable to any record

that does not satisfy the predicate conjunct in any file sanction.

The DBC will then create an atomic access privilege list (AAPL) for

the given user. An atom is a set of records consisting of keywords that

satisfy the exactly same security descriptors. Using the user capabilities

and the security descriptors of the file, the DBC creates an AAPL for each
user. An AAPL consists of entries of the form <atom number, access privilege>.

The construction of an AAPL is done only once , i.e., one AAPL is constructed
for each <file,user> pair.

During the actual command execution time, the DBC refers to the AAPL
corresponding to the user who makes the command and the file to which the

command refers. For every predicate conjunct within the command , the DBC
determines the atoms to which it will refer. Using the AAPL, the DBC now

decides whether the requested access is grantable or not. Only if the access

is grantable for every referred atom is the coimnand finally carried out.

As an example, consider that there is a file with two security attributes,

JOB and SALARY. The security descriptors are as given below :
SD1. 0<SALARY$5000

SD2. 5000<SALARY510000

SD3. 10000<SALARY530000
SD4. 30000<SALARY510000000

SDS. JOB—’CLERK’

SD6. JOB— ’ANALYST ’
SD7. JOB— ’MANAGER ’

Further assume that the capability of a particular user is given as:

I

-~~~ ~- -----.--, -~,--~~~ -----~---- —- ~~ -~~ —-
~~~ 
-

—4 3—

File Sanction Access Privilege

(1) (SALARY510000) READ,UPDATE ,DELETE
(2) (SALARY>l0000)&(JOB— ’ANALYST’) READ ,UPDATE

(3) Default READ

The DBC now creates an AAPL for the given user. There are 12 atoms

and they have the following access privileges:
• (1) SD1,SD5 READ,UPDATE,DELETE

(2) SD1,SD6 READ,UPDATE,DELETE
• (3) SD1,SD7 READ,UPDATE,DELETE
- (4) SD2 ,SD5 READ,UPDATE,DELETE

- . . (5) SD2,SD6 READ,UPDATE,DELETE
(6) SD2 ,SD7 READ,UPDATE,DELETE

— 
. . 

(7) SD3,SD5 READ
(8) SD3,SD6 READ ,UPDATE
(9) SD3,SD7 READ

(10) SD4,SD5 READ
(11) SD4,SD6 READ,UPDATE
(12) SD4,SD7 READ

A DBC command made by this user can now be compared against his AAPL

to determine whether the required access is to be granted. For example, if

- the command is to update some field(s) of any record belonging to an analyst

— . earning more than 12000, then the atoms referred to are atom 8 (which satisfies
SD3 and SD6) and atom 11 (which satisfies SD4 and SD6). The update privileges

are grantable for both these atoms. Therefore, the command is carried out.

On the other hand , if the command is to update some field (s) of any clerk

earning between 6000 and 15000, then the atoms referred to are atom 4 (which
satisfies SD2 and SD5) and atom 7 (which satisfies SD3 and SD5). While the

update privilege is grantable for atom 4, it is not grantable for atom 7.
Therefore, the given command is not carried out, i.e., the requested access
is denied.

6.3 Assertions and Triggers

- Another importan t aspect of data control as provided in System R is

that of assertions about data integrity. Any SEQUEL logical expression

I. (e.g., AVG(SAL)>20000) associated with a base relation or view may be stated

as an integrity assertion. At the time an assertion is made (by an ASSERT

E
I— - —

~~~~~~~~~~~
-

~~~~~~~
- 

--•-~~~ _ - - -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--.- - -

~~

-- -——-— 

statement) ,  its truth is checked; if true, the assertion is enforced until
it is explicitly dropped (by a DROP ASSERTION statement) . As examples of
the implementation of assertions on the DBC , consider the following:

Example 1: No employee should have a salary greater than 50000 . In SEQUEL ,
this assertion is written as: H

ASSERT ON EM?: SAL ~ 50000 j
In the DBC, this assertion is first checked to be true by means of the command H

RETRIEVE : [COUNT ONLY]((RELATION..’EMP ’)&(SAL>SOOOO ))

If the count is zero , then the assertion is true to start with. Thereafter,

after any update to employee records, the SAL f ield is checked to verify
that the truth of the assertion still holds .

Example 2: The salary of an employee should never decrease. This is written

in SEQUEL as:
ASSERT ON UPDATE TO EM?: NEW SAL ~ OLD SAL

This assertion requires no initial chekcing. Only during an update on the

EM? relation, must it be checked if the SAL field is going to be modified .

In such a case , an extra retrieval query may be required by the DBC in order
to retrieve the records that are going to be affected by the update; the

assertion is checked via software, and then the update is made if the assertion -

holds.

A final data control aspect of System R is the concept of triggers, which
is a generalization of the concept of assertions. A trigger causes a

prespecified sequence of SEQUEL statements to be executed whenever some
triggerir~, Cvent occurs, such as retrieval , deletion , insertion or update of

a base rels~-j oi or view. The RDBI can monitor such events by simply scanning

a transactioi. for SEQUEL statements that correspond to a particular triggering

event. Immediately after each of these statements, a call statement is

included to invoke the appropriate trigger routine . The modified transactions

and the trigger routines are now translated, as usual, into DEC conunands.

.— -

~

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -—r n  - -  ----- _ _



- --~
—--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—45—

7. PERFORMANCE ANALYSIS

Because of the parallelism involved in the operations performed by the

DBC , it should be intuitively clear that user transactions will run faster

on the DBC than on a conventional computer. The speed is further enhanced

by the fact that a sequence of software operations can be replaced completely

by a single DBC command. For example, in order to find all the records
satisfying a conjunct of predicates, a conventional system will first deter-

mine (in some manner,e.g., via an index) the eligible records. It will then

retrieve these records and compare each of them against the given predicates.

In the DBC, on the other hand , not only are all the eligible records retrieved
in parallel, but it is also true that this set of retrieved records is exactly
the required response set. In~ reason is simp ly that records are compared

against the given predicates simultaneously with their retrieval , thereby

rendering unnecessary any subsequent software refinement of the retrieved set.

In this section , we shall make an analytical study of the DBC performance

and compare it against that of a conventional computer where a relational

database management system (in particular , System R) is being supported. The

DBC will function in conjunction with a front—end computer. The support

software, which we have been calling the Relational Data Ease Interface (RDBI)

is housed in the front—end computer. The RDBI interprets the data management

calls of user programs and executes them with the aid of the DBC . We shall

call the environment consisting of the DBC and front—end computer as the

DBC environment. A conventional system, on the other hand , consists only of

a general—purpose computer (GPC) which houses the database management system

software and executes user transactions by reading (writing)reeord -from (to)

conventional secondary storage devices. We shall call such an environment

a GPC environment.

Although the response time and throughput of a system is the most widely

used measure of performance of th~ system, the cost of the system is surely

a complementary measure since a tradeoff is involved between the cost and

speed . We , therefore , will start with estimat ing the cost of a system by

determining the storage requirement. The cost of the other components of a

system will not be considered since they are fixed (e.g. , the DBC is itself a

fixed—cost component in a DBC environment). We will then go on to measure

response time in terms of the number of secondary storage accesses and

processor time required to complete the execution of user transactions.

Numerical results are also computed for typical database parameters .

~ 

----- ------ ~~~- - -~--- - - - - -~~~~ - - -- --— - —- 



- ~
--- - - -

~~~~
. _ --

7.1 Mass Storage Requirement

The mass memory of the DBC stores the database records. Correspondingly,

• the secondary storage of a conventional relational system stores the tuples .

Here, in this section, we shall try to estimate this storage requirement.

The following definitions will be used:

n = relation cardinality (1/ of tup les or records in the relation);

d = degree of a relation (1/ of fields);
p = length of a pointer field (or Tuple Identifier, TID) , in number

of bytes;

£ — # of links defined on a relation ;

Vi= average length , in bytes , of the value of the i—th attribute of

a relation; and

ai average length , in bytes , of the i—th attribute name of a relation .

We will ignore in our analysis the details of certain implementation

features since they are non—standard and have only marginal effect on the

storage requirement. For example, the loading factor of the physical blocks

may be maintained at a level slightly below unity in order to allow for

database growth. Even if the loading factor were to have any appreciable

effect on the storage requirement of a given system, this effect will be

nullified when we compare two different systems against one another.

GPC Environment

In a conventional implementation of System R , every physical tuple j
consists of an ordered list of values and a pointer (or TID field)for every

link defined on the relation to which the tuple belongs . Thus , the mass

storage requirement, M
8,

for a given relation is

Mg n(~vj +

In case, Vi — v, for every i, we have

Mg n (vd + p e) .

DBC Environment

For each relation of cardinality n , the DEC stores n records . A record

is composed of d attribute—value pairs if the degree of the relation is d. A

record also contains a special keyword with attribute RELATION to identify the
relation to which it belongs , in addition , assuming that a clustering link

or a clustering image has been defined on the relation , another special keyword

•
-

-
- :

~~~~~~~
-

~~~~~~

~
--

~~~
—‘ - ----- ------- —

—47—

with attribute CLUSTER is also included in the record . Thus, the mass storage
- - requirement, M.j,for any given relation is

Md - n~~ 2
(vi + ai) .

where the two special keywords are numbered (d+l)—th and (d+2)—th , respectively.
Since the DBC assigns a unique fixed—length code to each attribute, it

follows that ai — a, for every i. We, therefore , have

Md — na (d+2 ) + n 2 v
— d+2

Further , if for every i ,v~ — v, we have

Md — n(d+2) (v+a) .

• We now define the mass storage ratio R~ as the ratio of mass storage

requirements in the two different environments, namely, the GPC environment
and the DEC environment. Therefore,

Em Mg/Md 
= (~ Vj + Pt ) / (

~+2
vi + (d+2)a)

If vi — v for every i we have
— (vd + pt )/ ( (d+2) (v+a) )

In Figure 7.1, we have tabulated the mass storage ratio Em for P = 4

bytes, a — 2 bytes and various values of v,e and d. Since the number of
attributes in a file is small, a length of 2 bytes for attributes name should

be sufficient. The average length of the value part of an attribute—value

pair is varied in steps of 2 , from 2 to 8. Since the number of links de9~ned

on a relation is not likely to exceed the number of attributes (unless an
attribute appears in a number of links , each connecting two relations) , we
may assume that in a practical database, £ 5 d. Thus, we notice from Figure 7.1
that Rm is usually less than unity. Furthermore, since the number of links
defined on a relation is usually one or more , the value of R,~ is likely to be
greater than 0.5. That is, in a practical database,

0.5 5R,~
5 l.O

We, theref ore, conclude that the mass memory requirement in a DBC environment
is somewhat more than and up to double the requirement in a GPC environment.

7.2 Directory Storage Requirement

While the mass memory stores the database files containing the tuples

or records , storage is also required for keeping the indexes (directories)



~~
—‘- — ---—----- 

— ~~~~
—

~~~~~
-
~
-

____- - -

—48— - -,

_ _

2 3 4 5 10 2 3 4 5 10

0 0.25 0.30 0.33 0.36 0.42 0 0.33 0.40 0.44 0.48 0.56

1 0.50 0,50 0.50 0.50 0.50 1 0.50 0.53 0.56 0.57 0.61

2 0.75 0.70 0.67 0.64 0.58 2 0.67 0.67 0.67 0.67 0.67

3 — 0.90 0.83 0.79 0.67 3 — 0.80 0.78 0.76 0.72

4 — — 1.00 0.93 0.75 4 — — 0.89 0.86 0.78

5 — — — 1.07 0.83 5 — — — 0.95 0.83

(i) v 2 ,p’4,a 2 (ii) v 4 ,p 4,a 2

-1

£
‘
~~~
.., 2 3 4 5 10 £~~~~

... 2 3 4 5 10

O 0.38 0.45 0.50 0.54 0.63 0 0.40 0.48 0.53 0.57 0.67

1 0.50 0.55 0.58 0.61 0.67 1 0.50 0.56 0.60 0.63 0.70 
-

2 0.63 0.65 0.67 0.68 0.71 2 0.60 0.64 0.67 0.69 0.73

3 — 0.75 0.75 0.75 0.75 3 — 0.72 0.73 0.74 0.77

4 — — 0.83 0.82 0.79 4 — — 0.80 0.80 0.80 
-

5 — — — 0.89 0.83 5 — — — 0.86 0.83

(iii) v—6 ,p—4 ,a—2 (iv) v-’8 ,p—4 ,a’2

Figure 7.1 Mass storage ratio Em for Various values of
£ , d, v, p , and a — 

- - - • -

-L - ~~~~~~~~~~~~~~ ——-  -—--- — — —-- ——- -•—--- — — ____ —



p — -,-—-
~

- — ,—
~~ 

-_--- -
~~

—
~
•-

~
•“--- —

~ 
— --- —-•• 

~~~~~~~~~~~~~~~~~ ——~~~ ---~~~ —•--——--—-

—49—

and the database definition. The database definition consists of the

characteristics of every relation such as relation name, degree , attribute

names and types , names and def inition of links and images, and def inition of
triggers and assertions. The database definition constitutes the conceptual

view or schema of the database. It must be stored by any system that implements

the given database. Thus, the storage requirement for the s’hema is independent
of the machine on which the database management system is being implemented.

We shall,therefore, make no further attempt to estimate the memory requirement
for the schema.

More important is the amount of memory occupied by the indexes. The size

and structure of the indexes varies from one realization of the database to

another depending on the machine which supports the database. This is

— particularly true when one machine uses conventional location—addressed

secondary storage and the other is a database machine using (partitioned)

content—addressable memory and having the capabilities for hardware main tenance
of directories. We shall now analyze the directory storage requirement in the

two different cases.

GPC Environment

In System R, each image is an index to a relation. System Vs Relational

Storage System (RSS) maintains each image through the use of a multi—page index

structure. Each index is a dense index in the sense that every value of the

underlying attribute or attribute combination is represented in the index,

thereby making it possible to determine the address of every record satisfying

an equality predicate based on the above attribute or attribute combination.

The pages for a given index are organized into a balanced hierarchy structure,

called B—trees [16].

A B—tree of order s is a tree which satisfies the following properties :

(1) Every node has 5 s sons.

(2) Every node, except for the root and the leaves has ? m/2 sons.

(3) The root has at least 2 sons~
(4) All leaves appear on the same level , and carry no information.

(5) All non—leaf nodes with k sons contain (k—i) keys.

In ~igure 7.2, we have extracted from [16] an example B—tree of order 7, with
the root at level 0 and with all leaves at level 3.

In System R, the B—trees for the images slightly differ from the above

definition. Since the records are not actually stored in the B—trees , their

addresses (or TIDs) must be stored . Thus the leaves are not empty; they carry

——--:_

~

--

-~~ ~~~ ~~~~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~~
- - - -

~~
- -

(iii
027 - -
023

oil
027
059
067
073 031

292

249
157
167
179

297
221
227

242
25?
269
277

30?
32 3 283
332
317 353

3~7 402
379
321

419 233
432

449

462
467
497

H

627 499
631

599

682
— 677

6~il709—
727
739
752 839
762

°•—r=~97 88~
821
8Z3j

253

877

257
“9
937
047
967

2

Figure 7,2 A B-tree of order 7

_ _ _ _ _ _

...5j..
~~~~~~~~~~~~~~~~~~~~~ ~~- ---- ---r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

a list of TIDs . The B—trees in System R are defined as follows. Each page

is a node within the tree and contains an ordered sequence of index entries .
For each non—leaf node , an entry consists of a <sort value ,pointer . pair. The

pointer addresses another page in the same structure which may be either a
leaf page or another non—leaf page. In either case , the target page contains
entries for sort values less than or equal to the given one. For the leaf
nodes , an entry is a combination of sort values along with an ascending list
of TIDs for tuples having exactly those sort values . The leaf pages are
chained in a doubly—linked list , so that sequential access can be supported
from leaf to leaf. The structure of the nodes in such a B—tree is depicted
in Figure 7.3.

To compute the storage requirement per image we use the following
nomenclature:

n = relation cardinality (# of tuples in the relation) ;
p = length of an internal pointer, in bytes ;

t = length of a TID , in bytes ;

v = average length (in bytes) of a value of the attribute on which the

image is defined. We assume that the image is a single—attribute

iaage,since this is the most common case ;
s = order o f- t h e B—tree. The order , which determines the range of the

number of pointer (and key) fields in each non—leaf page (internal node) ,

depends on page size, on average key length v , and on the length p of
an internal pointer ;

I — image cardinality , which is the number of distinct sort f ield values
in the image; and

bg = page size , in bytes .

For given parameters n ,p, t ,v ,i and bg we shall try to compute the minimum

amount of memory required to store an image . We begin by computing the expected

minimum number of external nodes in the B—tree . We then compute the order s

of the B—tree. Next we compute the minimum number of internal nodes , thereby

completing the analysis.

Since the average number of TIDs per key is n/ i, we may expect

(b g — 2p)/ (v  + (n/ i)t)
keys per external node. Hence , the minimum number of external nodes E is given

by

E ri(v + (f l h i ) t ) I (b g — 2p)1
— 1(iv + f l t )/ (bg — 2p) 1

- -  -~~~~- - -



I , Kil IP2~
Ki2 . - ~P (q_l)~ K~ (q~~~J P q I

(i) Structure of an internal node in the B—tree

~~~~~~ I K l
~

(tul , tl29 ..., tlhl K2 ,(t 2l, t22
~~
..., t2i

2+
.

.I~~~
,(t ml

~
tm2.

~~
, tm)~~~ ~ f I

-

- (ii) Structure of an external (leaf) node in the B-tree
~~~ 

is a

backward pointer to the preceding leaf page and Pf is a forward
pointer to the next leaf page)

Figure 7.3 Nodes in a B-tree

(K stands for a key , t for
a TID and p for an internal pointer)

_____________________________________ .
- 
. . - - - - 

-~ —-~~~ ~~~~~~~--~~~~~~~~~~~~~~~~~~~~ — - -~~~~~~~~~ -~~~—~~-- - -



—~ 
- --- —,—-

~~~~
--—-- ---

~~~~~
-------

~~~ -- — ------------ —----
— ———- - •—,-~ - —

—I’

The order s of the B—tree, which is the maximum number of pointer fields

in each internal node, is given by

— L0’g - p)/(v + p) .~I
+ 1.

In order to compute the minimum number of internal nodes, I, notice that

there are E nodes in level u, where u is the maximum level of the tree; there

are at least jE/s~ nodes in level (u—i) , at least fE/s2f nodes in level (u—2),...,

at least IE/s’~I nodes in level 0. Since there is only one node in level 0, it

follows that

E,su ~ 1 < E/s”4.
Thus, u flog5El.

The minimum number I of internal nodes is now given by

I rE/si + IE/s21 + ... + IE/s’i
~ E(s’~~~- — l)/ (s’~~ —

In most practical situations s is large and, theref ore, even if u is small
(say , 2 or 3), 8u—l >> 1. Hence,

I c~ E/ (a2 — s).

Finally, the minimum directory storage requirement per image, Dg~ is given by i
Dg — (E + I) pages

— (E + I)bg bytes
= E(l + (l/(s2 — 8)))b g bytes

In the above calculations we have assumed the fact that every internal node

has s pointers. Due to updates on the database, it is more likely that there

will be approximately 0.75s pointers per internal node, since the number, in
steady state, is likely to be uniformly distributed between 0.5s and s. The

directory storage requirement will therefore be somewhat greater than what

the above calculations indicate.

DBC Environment

Even though the RDBI maintains no directories corresponding to the images
and links defined on relations, some minimal directories are, in fact,

maintained in the structure memory of the DBC. We will now try to estimate

the size of such directories.

To begin with , we may recall that there are directory entries for only
two classes of keywords: those with attribute RELATION and those with attribute

CLUSTER. Since these keywords are also defined to be clustering keywords, the

DBC assigns a unique cluster number to all records having the same two keywords

-

r ~~~

-

~~~~~~~~~

-- — - -

~

—54—

<RELATION, r—name> and <CLUSTER , c—nu~~~. Thus , a cluster in the DBC consists

of the set of records S such that two records Ri and R2 are in S if and only if
<RELATION , r—namel>,<CLUSTER , c—numb- E Ri ,
<RELATION , r—name2>, <CLUSTER , c—num2> K P.2,
r—namel — r—name2 , and c—numl — c—num2 .

A directory entry in the DBC is of the following form (where we have ignored

security atom numbers)

<keyword , (m dcxi , index2 ,... , index Ii) >-
where each index is of the form

(MAU#, cluater#)

We use the following nomenclature:
a — length of a (coded) attribute name, in bytes;

v — average length in bytes of the (coded) value part of the keywords

with attributes RELATION and CLUSTER;

c — numbers of clusters of a relation (usually of the order of the

number of MAUs required to store the relation) ;

m = length of an MAU#, in bytes ;

k — length of a cluster# , in bytes ; and

j  = average number of NAils spanned by a cluster (the number of ?4AUs spanned

by a cluster is defined to be the number of MAUs in which there is at
least one record belonging to the cluster) . 7

The number of different index terms (i .e.,(MAU# ,cluster#)pairs) for a relation
is simply equal to cj. Since , for any given relation, there is only one

directory keyword with attribute RELATION, the corresponding directory must
have all the index terms for the relation. On the other hand, there are up

to c directory keywords with attribute CLUSTER, and each of the corresponding
entries has an average of j index terms, Thus, the directory memory requirements

for a relation is given by

Dd — storage for the ent ry with keyword <RELATION , —

+ storage for all entries with keywords of the form <CLUSTER , —

— ((a + v) + c j ( m + k ) )

+ c ( (a + v) +j ( m + k))
— (c + 1) (a + v) + 2cj (in + k ) .

We observe that the directory memory requirement per relation , Dd, of

the DBC is independent of the total number of images defined on a relation.

This contrasts with the fact that in a GPC environment the directory memory

I
_ _  ~~~~~~~~~~~~~~~~ 



- V -

~~~~~~~

---— - - ---

~~~~~~

- _ _

~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— - - — - —-- ----

~ 

requirement per relation is the sum total of the storage requirements for

- - 
all images on a relation, If there are L images on a relation and each image

requires the same space Dg~ then the directory memory requirement per relation ,

in the GPC environment , is LDg. We define the directory storage ratio Rd
as the ratio of the directory memory requirement in the GPC environment to

that in the DBC environment. If there are L images per relation and every

image is of equal size , we then have
Rd = LDg /Dd

where Dd (c+l) (a+v) + 2cj (nrfk) ,
Dg = E(l+(l/(s 2 

— S) ) )b g~
E r(iv + n t )/ (bg — 2p)l ,

and s = L(bg — p)/ (v+p )J  + 1.

In the computation of Dd, the value of j ,  which is the number of MAUs
spanned by a cluster , is a dependent parameter. It depends on the cluster

size, MAU si ze , loading factor of the database and the storage pattern . We

conducted a number of simulation experiments to estimate the value of j.

For a given number of clusters c, it was assumed that there is an equal
probability of any record belonging to any given cluster. The essential

structure of each experiment is summarized below in the form of an algorithm :

Step 0. To start with, all MAUs and all clusters are empty .
Step 1. If enough records have been generated so that the loading

factor of the mass memory is 1, then compute statistics and
stop. Else go to 2.

Step 2. Generate a random record and determine its cluster number,
CN. (It is actually enough to generate only a random cluster
number CN , since all records are assumed to be of equal size).

Step 3. If the cluster CN was previously empty, then select an I1AU
which is currently being occupied by the least number of
records, Assign that MAil to the cluster CN, store the record
in that MAU and go back to 1.

Step 4. If the cluster CN is not empty , then it has already been
assigned one or more MAUs, all of which , excep t one , is known
to be full. Select from these MAils, the only one MAU # , M ,
which possibly is still not full .

Step 5. If M is not full then store the record in that 14AU and go
back to 1. Else go to 6.

Step 6. Select an MAU which is currently being occupied by the least
number of records . Add that MAU to the list of MAils
assigned to the cluster CN , store the record in that MAil
and go back to 1.

A total of 40 simulation runs were made in all , for 100 ,000 fixed—length

records in each case , An experimen t was conducted for every combination of

(1) total number of MAUs , taken from the set {50 ,l00 ,200 ,4b0 ,800},



- -~~ ~~~~~~~~~~ ~~~~~~~~~ —~
—

~~
---

~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~

-----.-- --

(2) ratio of total number of clusters to the total number of MAUs ,
taken from the set (l,2,4,8} and

(3) loading factor, taken from the set {0.9,0.95}

Notice that , since the number of MAils, the number of records and the loading

factor are constant for any given experimen t , the length of the fixed—size

records for that experiment is automatically determined (in terms of the size
of an MAU) . For example , if there are 100,000 records , 100 MAils and the
loading factor is 0.9 , then the ratio

Record Size/MAU Size — 100 * 0.9/100000 0.0009

We observe from the tables in Figure 7. 4 that even at a very high loading

factor , 0.95 , the value of j  does not exceed 2. In practice , even when database

updates are taken into account, as long as the loading fac tor does not exceed
0.95 , say, we do not expect a cluster to span more than two MAUs , on the average .
Therefore , we anticipate the following bounds on j

15 j  5 2 .
Coming back to the computation of the directory storage ratio Rd, we assume

that there is only one image per relation , i.e., L—l . Consider the following
parameters :

a = length of a coded attribute name — 2 bytes ;

j  = # of MAUs spanned by a cluster — 2 ;

v = length of the value of an attribute = 4 bytes ;

m— length of an MA U#— 4bytea ;

k — length of a cluster 1/ 4 bytes ;

t length of a TID = 4 byte. ;

p — length of an internal pointer in a B—tree = 4 bytes ;

bg page size (size of a node in the B-tree) = 4000 bytes ;

(This is , perhaps , larger than usual ; but , then , smaller bg will

only reduce Dg~ thereby reducing the storage ratio)

r — ratio of the number of clusters of a relation to the number of

MAils occupied by the relation = 5;

bd— MAU size = 500 ,000 bytes ;

n = number of records in the relation, taken from the set {1000 ,2000 ,
500O,l0000 ,20000 ,50000 ,10000C) ) ;

n/ i ratio of relation cardinality to image cardinality , taken from the

set {1,2 ,5,lO ,20 ,50 ,lOO}; and
q — length of a DBC record , in bytes , taken from the set (50 ,100 ,200 ,500 ,

l000,2000}.



r ç - ~—~~-~ ----- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S.

a .

a .

- - 1 2 4 8 M \
\

1 2 4 8

- 50 1.00 1.44 1.51 1.31. 50 1.00 1.33 1.53 1.56

100 1.00 1.32 1.56 1.28 100 1.06 1.43 1.70 1.44

200 1.01 1.34 1.39 1.27 200 1.14 1.48 1.49 1.42

• 400 1.05 1.39 1.38 1.26 400 1.21 1.53 1.48 1.37

• . 800 1.13 1.36 1.35 1.21 800 1.33 1.52 1.46 1.30

. .
(I) $ — 0.9 (ii) t — 0.95

Figure 7.4 The rn~~ er ,j , of MAils spanned by a cluster for

- - various combinations of loading factor £, ni~~ er
of MAUs M and ratio, r , of n~~~er of clusters to

number of MAUs

-I- - -- ~~ - .—------

Using the fact that the number of MAUs required for a relation is

~nq/d 1 and the fact that c , the number of clusters of the relation , Is r t imes

the above—mentioned number, we can now compute the directory storage ratio

Rd. These calculations are tabulated in Figure 7.5. Observe that,other para-

meters remaining unchanged, af ter the number of records , n, has reached a high
enough value , further increase in n does not have much effect , since both Dg
and Dd tend to increase proportionately with n , for large n. Further observe

that as DEC record length increases , fewer and fewer records are accommodated

in an MAU, thereby increasing the number of index terms and hence the storage

ratio Rd.
We notice that for a reasonable record length between 100 and 1000 bytes ,

the DBC directory memory requirement lies between 0.05% and 10% of that of

a conventional system. Furthermore, if there are more than one image per

relation (which is often the case) , then the directory memory requirement

in a GPC environs-tent increases proportionately with the number of images . The

DBC directory memory requirement , in contrast , remains steady .

7.3 Query Execution Time

Query execution time is perhaps the single most important measure of

performance of a database management system. Given a SEQUEL query in a

conventional GPC environment , the system first uses an optimizer to determine

a good access strategy from among a large number of possible access strategies.

Ignoring the parsing and optimization t ime, the execution time of a query
consists mainly of

(1) the t ime to access a number of index pages and search their contents

in order to determine a list of eligible TIDs ,
(2) the time to access a number of data pages in order to fetch the

eligible tuples , and
(3) the CPU t ime to determine the final response set from the list of

eligible tuples.

For a given query, a single predicate of a predicate conjunct in the query
may be used for determining the eligible TIDs. After the corresponding tuples

are retrieved, they are placed in the final response set only if they satisfy

all the other predicates in the predicate conjunct.
In a DBC environment , the execution time of a query consists mainly of

(1) hardware search t ime of the structure memory to determine the

eligible MAils, and

~~~~~~



‘ 
-

~~~~

•- ---—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

n 1 2 5 10 2() 50 100
1000 61.2 40,8 40.8 40.8 4 0 + 0  40.8 40.0
2000 102,0 81.6 61.2 61.2 61.2 61.2  61,2
5000 224.5 163,3 142.9 122+4  122.4 122.4 122.4

- . 10000 428.6 326.5 265.3 244.9 224.5 224.5 224 .-S
20000 424.9  321.2 259.1 238.3 228.0 217.6 217.6
50000 422.6  310.0 255.2 234.3 221.8 217.6 213.4

100000 421.8 316+9 253.9 232.9 222.5 216.2 214.1

q = 50 byteu

n/i
n 1 2 5 10 20 50 100

1000 61.2 40.8 40.8 40.8 40.8 40.8 40.8
2000 102.0 81.6 61.2 61.2 61.2 61.2 61,2
5000 224.5 163.3 142.9 122.4 122.4 122.4 122.4
10000 217.6 165.8 134.7 124.4 114.0 114.0 114.0
20000 214.1 161.9 130,5 120.1 114.9 109./ 109.7

- . 50000 212.0 159.5 128.0 117.5 111.2 109.1 107.0
100000 211+2 158.7 127.2 116.7 111.4 108.3 107.2.

q = 100 bytes

n/i
n 1 2 5 10 20 50 100

. - 1000 61.2 40.8 40.0 40,8 40.8 40.8 40.8
2000 102.0 81.6 61.2 61.2 61,2 61.2 61.2
5000 114.0 82.9 72.5 62.2 62.2 62.2 62.2

10000 109,7 83.6 67.9 62.7 57.4 57.4 57.4
20000 107.5 81.3 6S.5 60.3 57.7 55.0 55.0
50000 106.1 79.9 64.1 58.9 55.7 54.7 53.6

100000 105.7 79.4 63.6 58.4 55.7 54.2 53.6

q — 200 bytes

Figure 7.5 Directory storage ratio Rd for single image

per relation and various values of relation

cardinality n, ratio of relation cardinality

to image cardinality (n/i) , and length of a
DBC record ,q 

~~~~~~~~~~~~~~~~~~~~~~~~~~


—
~

-
~ ---. .---- -----

—60—

1 :- - ~~~~ ~* I. C’~.;

1000 .~1.2 40 ,~3 40 . 8 40 , -i 40. 8 40,~~ 1C.~~
2000 51,8 4:[, 3 : 1 . 1 .3 :1. 1. 31.1 .3 .1 .1 31.~
‘,OOO 46.() 3-s . ‘ ~~. ~ 1

1000<) 44.1 33,.~:. 22.3 2~~ ..-.’ ~;3,i 7.:~ .i 1.-~.i

200.. 0 4:%,:L :.~~ 6 ~~~~ .14. 2 3 .J -12.1 - 12.
0u00 4), 0 ‘ . I I ‘ I

.l OOuO () 42 . 3 .5 1. .~~: ~~~~~~ - 2.1~,4 27.3 ..i .7 .~1 ..

q = 500 byt es

n —... 1 :~-: ~~ Ri 20 ~~ 1 (i)
1000 3:1.1 20 .7 20.! 2 0 . ’ ~0. 20,~ 2’ 7 -

2000 26.1 20.9 1~~.
./ t : + — J5~~7

- I , .’
~~~~~~~~~~

,000 > 
~ I L 6 8 I • I

10000 22 . 1  16.~J 13,?  :12,6 i . 1 . 6  ~~~~ i . --

20000 21 .6  16.3 :i .3. .I  :12.1 :1.1.6 J 1 , ( )  i i , .
5000<) 21.3 :1.6.0 :12.8 11.8 :1 L 2  :10.9 0+~
10000<) ,-.‘1,2 15.9 .17.? 11,7 .1 :1.2 10,8 .I.0.~

q = 1000 bytes

1 2 5 :10 20 50 I 00
:1.000 15,7 1.0.4 10, 6 :10,4 :I.0. -.~ 10.4 0.4
200<) .13. I. :I.0,~ i ~~~~~~~ 7.9 :7 ,9 - 

• 9

500() .1.1.6 ~- i . 4  2 . 4  6 . 2  .~~~ + 3  - - . 3  ‘: . ,2

1000<) 1.1.0 ~ ,4 6.b 6+3 i,~~.1 ~i: ,J ~ ..8

2000() io .H 8,2 6.6. .~i ,1 ~~~~~~~ ~~~~~

50000 .L Ci ,a 8,~ 6. ’~ :5 ,9  ..,.. 1.: -i ~~~
:100000 k.,6 /,.— ~..4 :-..8 ‘J , á  i,4 L’ ,4

q = 2000 bytes

Figure 7.5 (continued) Directory storage ratio Rd 



~‘ r 1~~~w—r---- ~~~~~~~~~~~~~~~~~~ —-~~- - --.-.- -.. •.—,•,—- - - . -~~-.- - ..- —

—61—

(2) the time to search each eligible MAil for records satisfying a

predicate conjunct.

To get a handle at the analysis , we make the following practicable

assumptions:
(1) For every MAli accessed by the DBC , we allow for an extra processing

time in the structure memory (in order to determine the index terms

and thus the MAU numbers). Therefore, a constant factor K > 1 will
be used to multiply the number of MAil accesses , thereby accounting

for query processing time in the structure emmory.
(2) Binary search of the index pages , in a GPC environment, takes a

negligible amount of time compared to the time to access each page.

(3) The time to access an index page, the t ime to access a data page

and the time to ac.~ess an I4AU are all equal (equal to the latency

time plus rotation time needed to access a disk cylinder) .

In the ensuing discussion , we consider the two most important types of

queries: single-relation queries and two—relation join queries . The analysis

is in the style of [5]. The time to execute a query is determined in terms of

the number of accesses to the physical blocks .

7.3.1. Single-Relation Queries

A single-relation query is exemplified by the following SEQUEL query

which lists the names and salariea of programmers who earn more than $10,000:

SELECT NAME , SAL
FROM EMP
WHERE JOB- ‘PROGRAMMER ’
AND S.AL>10000

This is an example of a single—relation query with a single predicate conjunct.

In the general case, there can be a disjunction of X predicate conjuncts , but

then the query may be treated as X queries each with a single predicate conjunct .
- We, therefore, only restrict ourselves to çueries with a single predicate

conjunct. Furthermore, the predicates are assumed to be simple predicates

(i.e., the predicates are simple comparisons of a field with a value) so that

they can be matched with an image. More complicated predicates , such as

EMP X.MGR — EMP Y.EMPNO, cannot be matched by an image. Finally, since the

consideration of links involves a straightforward extension of the analysis

given below, we will only consider images.

The following notations are introduced to simplify the ensuing discussion : 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -


--

n = relation cardinality;

p = number of predicates in the query ;
h = coefficient of CPU time (1/h is the number of tuple comparisons

which are considered equivalent in cost to one page access) ;
i = image cardinality;

K = coefficient of DBC structure memory processing time, the time

required to determine index terms (K > 1);

f — # of index page accesses per index search in the GPC environment (for

a given storage device and given key length , it is a function of the
relation cardinality n and the image cardinality I , but normally
has a value lying between 2 and 4) ;

Bg = average number of tuples (of a relation) per data page (subscript g

refers to the GPC environment);
Bd = average number of records per MAil (subscript d refers to the DBC

environment); and

j = average number of MAils spanned by a cluster in the DBC .

The optimizer in System R , has the option to select an access strategy

among a variety of choices . The most importan t of these are listed below .
In each case , the execution—time ratio Rt may be determined by computing the

ratio of the time Tg required to execute a query in the GPC environment to

the time Td required in the DBC environment .

Case 1. A clustering image is available which matches a predicate with the

comparison operator ‘=“ . Since the expected number of tuples that satisfy

the predicate is n/ i , the expected number of data pages to be accessed in

the GPC environment is fl/ (iBg). Since each of the retrieved tuples must now
be compared against the other (p—l) predicates , the total t ime required in

the GPC environment is

Tg
= fl/(lBg) + (p—l)hn/i + f .

Tg may , in actuality, be somewhat less because some of the retrieved

tuples may have to be eliminated from further consideration even before all

the (p—l) predicates have been compared with them. Furthermore , since the

number of tuples retrieved , which is n/ i , is expected to be very small , we

may even neglect the CPU time required for comparing predicates . Therefore ,
Tg is simplified to

Tg
= n/ (iBg) + f .

In the DBC environment , whenever the equality predicate matches a

clustering image, only one cluster need be searched. Therefore,

~~~
_i~~~I - - - - - - - .- ~~--~~~~~— 



r ~~~~~~~~~ ~~T~~~~~~~~~:~~
--—- -

~

-- --

~

-----

~~ 

‘— 
~~~~~~~~~~~~~~~~~~~~~

T~~~~j K
where the factor K accounts for the structure memory processing time. Finally ,

the execution—time ratio is

Rt — Tg/Td n/ (iBgiK) + f I (jK)

Case 2. A clustering image is available which matches a predicate whose
comparison operator is not ‘ — ‘ . Assuming that half the tuples of the relation
satisfy the predicate, the expected times are

n/ (2Bg) + (p—l)hn/2 + f
and

Tg — nK(2Bd)

Case 3. A non—clustering image is available which matches a predicate whose
comparison operator is ‘— ‘ . If this image is used in a GPC environment, then
one page access will be required for each of the n/i expected tuples that

satisfy the predicate . Without the advantage of secondary clustering information
(in the query) , the DBC has to access the entire relation . Therefore,

Tg — n/i + (p—l)hn/i + f
and

— DK/Bd

Case 4. A non—clustering image is available which matches a predicate whose

comparison operator i8 not ‘— ‘. If this image is used in the GPC environment ,
then

— n/2 + (p—1)hn/2 + f
and

Td nK/Bd

Case 5. A clustering image is used which matches no predicate . In this case ,
all the tuples must be examined in the GPC environment. Therefore,

Tg — fl/Bg + phn + f
and

Td — nX/Bd

Case 6. A non—clustering image is used which matches no predicates . Since ,
we may justifiably assume that every relation has a clustering image (or

clustering link) , this choice will actually never have to be made in a GPC
environment. In any case, if the choice were , indeed , to be made , then

~:i
•
~_ __

~~~~~~ .... ~~~~~~~~~~~~~~~ - - ,-— _ ---- .- - —  .-—.----
~~~

.---- -

F
— 64—

Tg = n + p h n + f
and

Td = flK/B d

Case 7. Suppose there are Pe~
1 equality predicates and p

~~
l non-equality

predicates each of which matches an image , then the (Pe + Pn) images may be
searched and a TID list generated for each predicate. These lists may be

sorted separately and then intersected to determine the final TID list to be

searched. We then get,

Tg = (n/ (iPe2~~) + (Pe + p~)f
where we have neglected the predicate comparison time since the final list
of TIDs will be very small; we have also neglected the time to sort the TID

lists , which may be appreciable if the lists are actually quite long. Notice

that when Pe~
2
~

the first term in Tg is likely to be quite small as long as

the image cardinalities are moderately large. In such a case, we may write

Tg = e + P n)f

In the DBC environment, we have

Td = JK , if an equality predicate matches a clustering image and

Td = nK/B~
, otherwise,

In Figure 7.6, we have tabulated the values of execution time ratio R~ for

each of the seven cases mentioned above . We have used the following f igures :

K — 1.2

f = 3
p = 2

h = 0.0001

j = 2

Bd/Bg
= 50

Bg is taken from the set {5,20 ,l00 ,500 }
n/i is taken from the set {l,2,5,lO ,50,l00}
n is taken from the set {l000,5000,20000 ,l00000}

(Pe + p~) is taken from the set {2 ,3}.

The assumption of Ba/Bg = 50 requires a little explanation. An MAU in

the DBC is a disk cylinder which normally consists of 20 to 40 tracks . The

track size to page size ratio in a conventional system usually var ies f rom

1 to 5. Finally , the size of a DBC record varies from 1 to 2 t imes the size

of the corresponding tupie of a conventional system. Taking these factors

into consideration, we have arrived at a reasonable f igure of 50 for the ratio

Bd/Bg • .

—-—-~~-- — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~— -.. . - -—- .—

r
- -—— —-- .

~~~~ 

- -  - .—--— 

~~ 1~ 
- -- --- -

~~

--. 

~~~

- --- -- -- --- -- - -
~~~~~~

‘
~1

—65 —

S .  

:7?•
~%k.. 20 100 500
1 1.33 1.2? 1.25 1.25
2 1.42 1.29 1.26 1.25

- 5 1.67 1.35 1.27 1.25
10 2.08 1.46 1.29 1.26

• • 50 5.42 2.29 1.46 1.29
100 9.58 3.33 1.67 1.33

• . (i) Case 1

• 20 100 500
1000 42.94 46.75 67.00 168.75
5000 41.94 42.75 47.08 68.75

20000 41.75 42.00 43.33 50.00
100000 41.70 41.80 42.33 45.00

(ii) Case 2

_ _ _ _ _ _ _ _ _  

250 1000 5000 25000

~ 100O 0.d3 3.33 16.o? 03.34
5000 0.17 0.67 3.33 ~6.67

• 20000 0 .04 0.17 0.83 4.17
100000 0.01 0.03 0, 17 0.83

. • (iii) Case 3, n/i = 1.

250 1000 5000 25000
1000 1.04 4.1? 20.83 104.17
5000 0.21 0,83 4.17 20.83

- - 20000 0.05 0.21 1.04 5.21
100000 0.01 0 .04 0.21 1.04

• • (iv) Case 3, n/ i 2

n ‘SO 1000 5’ 00 ‘sooo
• • 00 1.6? 6.6, ~ 3.34 166.o3

5000 0.33 1.33 6.6? 33.34
• 20000 0.08 0.33 1.67 8.33

100000 0.02 0,07 0.33 1.67

- (v) Case 3, n/i — 5

• • Figure 7.6. Execution time ratio for single—relation
queries 

-- ._ ~~~~~~ . J~~1. .~~~~~ ~~~~~~~~~~~~~ A



- - .- - .~~~~---- - -

— 66—

250 1000 5000 25000
1000 2.71 10,83 -54.17 270.85
5000 0.54 2.17 10.83 54.17

20000 0.14 0.54 2.71 13.54
100000 0.03 0.11 0.54 2.71

(vi ) Case 3, n/i = 10

1000 5000 25000
1000 11.04 44.17 220.85 1104.27
5000 2.21 8.83 44.17 220.85

20000 0.55 2.21 11.04 55.21
100000 0.11 0.44 2.21 11.04

(vii) Case 3, n/i = 50

n 250 1000 5000 25000
1000 21.46 85.84 429.21 2146.04
5000 4 .29 17.17 85.84 429.21

20000 1.07 4 .29 21.46 107.30
100000 0.21 0.86 4 .29  21.46

(viii) Case 3, n/i = 100

250 1000 5000 25000
1000 - 104.80 419.21 2096.04 10480.21
5000 104.30 417.21 2086.04 10430.21
20000 104.21 416.83 2084,17 10420.83

100000 104.18 416.73 2083,67 10418.33

(ix) Case 4

_________ 5 20 tOO 500
1000 42.33 44.33 55.~~0 108.33
5000 41.83 42.33 45.00 58.33
20000 41.74 41.96 43.13 48.96
100000 41.71 41.86 42,63 46.46

(x) Case 5

Figure 7.6. (continued) Execution time ratio Rt

- -n . • - • 



250 1000 5000 25000
1000 209.00 836.00 4 180.00 20900.00
5000 208.50 834.00 4 170.00 20850.00

20000 208.41 833.63 4 168.13 20840.63
100000 208.38 833.53 4167.63 20838.13

(xi) Case 6

__________ 

250 1000 5000 25000
1000 1.25 5.00 25.00 125.00
5000 0.25 1.00 5.00 25.00
20000 0.06 0.~~5 1.25 6.25

100000 0.01 0.05 0.25 1.25

(xli) Case 7 , 
~e + ~~ 

2, no clustering image

__________  
250 1.000 5000 25000

1000 1.w3 7.50 37.50 187.50
5000 0.38 1.50 7.50 37.50

20000 0.09 0.38 1.88 9.38
100000 0.02 0.08 0.38 1.80

(xiii) Case ~~‘ Pe + P~ = 3,no clustering image
(xiv) Case 7 , Pe + p~ = 2; if clustering image

matches an equality predicate , then Rt = 2.50

(xv) Case 7 , Pe + P~ 3; if clustering image
matches an equality predicate , then Rt =

Figure 7.6. (continued) Execution time ratio Rt

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 4


-

~~:~

-- - -—— ‘--- ----

~~~~~~

- - - 
—

~
- - --.-_-—

~~~
-

~~~~~~~~~~~
_
~~~~

--
~~ — _ -

—6 8— -

We observe a number of important facts from the tables in Figure 7.6.

Whenever there is an equality predicate matching an image (e.g., Case 1 and

Case 3), very few pages need to be searched in the GPC environment , because

of the choice of large image cardinalities. Therefore, in these cases the

term f dominates the value of Tg. En Case 1, the DBC has to search only one

cluster because the equality predicate matches a clustering image. In Case 3,

however, the DBC has to content—search the entire relation. So, for very

large relations and very large records , the GPC environment is clearly more

f avorable in Case 3. Similar reasoning holds for Case 7 if the clustering

image does not match even one of the equality predicates . In all other
cases , the DBC performs one or more orders of magnitude better than a

conventional system. In short , the DBC works much better than a conventional

system, whenever any one of the following holds :

(1) record size is small, say 50 to 200 bytes ,
(2) relation is of small or medium size , say less than 20 ,000 tuples ,

(3) many records (say, greater than 50) are satisfied by an equality

predicate, so that many records have to be retrieved by either

system,

(4) image cardinality is medium, say n/i > 100, which will easily be

true for large relations (this observation actually follows from 3),

or

(5) a given query does not have any equality predicate that matches

an image.

The GPC environment, in contrast, works out as good or better than the DBC

only when afl the following conditions hold :
(1) the relation is large , say greater than 20 ,000 tuples ,

(2) the records are large, say 500 bytes or larger ,
(3) the query has an equality predicate that matches an image, and

(4) the cardinality of the above image is very 1ar~e , say n/i ~ 10.

7.3.2 Queries Involving a Join of Two Relations

While the most common type of SEQUEL query is the single—relation query

(because such queries appear both as simp le statements and also as embedded

queries within compound SEQUEL statements) , the second most frequently used

query is possibly the one involving a join of two relations . An example of

such a query is as follows. It lists the names, salaries and department
names of programmers located in Evanston.

______________________________ • . •- - -)
-

~

_ --

~

--- ---—~ -_,--- - - --- - _ -- —-_-----•--~—-~-_--_- .-•- -- --—--_-•-— - ---_- -- -.~--••--•_----__-- --- ---

—69—

SELECT NAME , SAL, DNAME
FROM EMP ,DEPT
WHERE EMP .JOB — ‘PROGRAMMER ’
AND DEPT .LOC — ‘EVANSTON ’
AND EMP .DNO — I~EPT.DN0

The most general form of a join query involves restriction, projection and

join. The general query has the form:

Apply a given restriction (which is a single—relation subquery Qi)
to a relation Ri , yielding a set of tup les Rir . Apply a possibly
different restriction (which is another single—relation aubquery Q2)
to a relation R2, yeilding R2r. Join

~
1r a~ d R2r and project some

fields to derive the final response set.

The optimizer of System R determines an access strategy for such queries,

based on the characteristics of the two relation. Four possible methods are

shown in [5] but the full details of the optimizer, as well as the justification

of the various methods , have not yet been published. Based on a study of the

above four methods , we will describe a number of different cases. Once again,

images alone will be considered. Consideration of links involves a straight—

forward extension of the techniques described. Because of the enormous number

of ways a join query may be executed , we will of ten generalize a number of
possibilities by describing them in terms of the individual single—relation

subqueries Qi and Q2. - In such circumstances, we will formulate the query

execution time in terms of the execution times of Qi and Q2.

The following -nomenclature is used in the analysis :

El,E2 = average number of external nodes in a B—tree of relations

Ri and R2 , respectively ;

01,G2 = the best execution times for separate executions of the subqueries
Qi and Q2 in the GPC environment ;

Dl.D2 = the best execution times for separate executions of the aubquerles

Qi and Q2 in the DBC environment ; —

n1,n2 = cardinalities of relations Rl and R2 , respectively
i1,i2 = average image cardinality of images on attributes of Ri. and R2 ,

respectively ;
f — # of index page accesses for searching a given key in the GPC

environment

j — average number of MAUs spanned by a cluster in the DBC ;

K — coefficient of DBC structure memory processing time
• Bg — average number of tuples per data page (in GPC environment) ;

Bd — average number of records per MAU (in DEC environment) ;

— -- - --
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - .~-- --wr ~~~~~~~ -_- -.- -

—7 0—

Tg — execution time of a join query (in GPC environment);
Td — execution time of a join query (in DEC environment); and

Rt — execution time ratio

Since, the number of secondary storage accesses required for a join

query is usually quite large , we will ignore the CPU time required for

comparing tuples against predicates in the GPC environment . With this

simplification in mind , the various cases are discussed below.

Case 1. If clustering images are available on both the join attributes , if

there is an equality predicate in each of Qi and Q2 and if there is an image

on each of the attributes, Al and A2,that match these equality predicates ,

then the following algorithm (called the TID algorithm) may be used in the

GPC environment:

Using the image on Al, obtain the TIDs of tuples from Rl which satisfy
the equality predicate of Ri. Sort them and store the TIDs in a file
Wl. Do the same with R2, using the image on A2 and yielding a TID
file W2. Perform a simultaneous scan over the images on the join
attributes of RI and R2, finding the TID pairs of tuples which match
on the join attributes. Check each pair (TID1, TID2) to see if TID1
is present in Wl and TID2 in W2. If they are , the tuples are fetched,
joined and projected. 

- -

The time to execute this algorithm consists of the time to search the images
on Al and A2 , the time to scan entire clustering images (on the join attributes)
and the time to retrieve the required tuples from the database. Neglecting
the sorting time, the approximate expression for Tg is

Tg = 2f + (El + E
2 
+ 2f) + (n1/i1

) + (n2/i2
)

= 4f + E1 + E2 + (n1/i1
) + (n 2/i

2 ) .

In the DBC environment, in the worst case, it may be required to use a

CONNECT ON command, thus focing a content—search of entire relations Ri and

R2. Therefore, in the worst case

Td = K(n
1 + n2

) / Bd.
However, if n1/i1 is small , then it may be faster to retrieve the records

satisfying the subquery Ql , sort these records by the join attribute and send
a separate command for each unique value of the join attribute, in order to
retrieve the records satisfying Q2. This process leads to

Td = Knl/Bd + Kj (n1/i1) .

On the other hand , if n2 /i2 is small , then we may start by retrieving the
records satisfying Q2 and then use the unique values of the join attribute of
these records to retrieve the records satisfying Ql. We then have

Td — Kn2/Bd + Kj (n2/ i 2) .

1~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _- _~~~~~~~~~~



- 
—

—71— 
- _____

In Figure 7.7 , we have tabulated Rt — T / T
d 

for the worst—case value of

T
d
. We have used the following values: f—3; n—n 1 n2 taken from the set

(1000. 5000, 20000, 100000) E—E1=E2 
= n/500; i—i 1=i2 ; n/ i  taken from the

set (1, 5, 20, 100} B
d
taken from the set {250, 1000, 5000, 25000) and K l.2.

We observe that the DBC performs one or more orders of magnitude better except

when record size is very large, say greater than 500 bytes (corresponding to

B
d 

— 1000).

Case 2. In case there are clustering images on both the join attributes but no

other predicate matches an image , then the following algorithm may be used in
the GPC environment:

Perform a simultaneous scan of the images on the join attributes of the
two relations. Advance the Ri scan (retrieving the tuples of Ri. at the
same time) until the next tuple is found which satisfies Ql. Let the
join attribute of this tuple have a value V. Advance the R2 scan and
fetch all tuples of R2 that have a value V for the join attribute and
satisf y Q2. Repeat until the image scans are completed. (By inter-
changing Ri with R2 and Qi with Q2 in the statement of the algorithm,
we may get yet another algorithm) .

Assuming that there is an equality predicate in Ql , whose attribute has a

cardinality i1, the time required to execute the join query consists of the

time to scan completely both the clustering images, the time to access all

tuples of Rl and the time to access (n1/i1) tuples of R2. Therefore ,
Tg = (E

1 
+ f) + (E

2 + f) + n1/Bg +

The worst case value of Td, on the other hand , is
Td = k(n1 + fl2)/ Bd

If n1/i1 is small , we may use the method shown in Casel , to derive an actually

better performance .

In Figure 7.8 , we have tabulated R t = T / T
d 
for the worst—case value of T

d
.

The values used in the calculations are: f3; k 1.2; n=n
1
—n
2 taken from the

set (1000, 5000, 20000 , 100000); E=E
1
=E
2=n/500; i=i~=i2~ 

n/i taken from the set

(1, 5, 20, 100) li
d/E

g 
= 50; B

g 
taken from the set (5, 20 , 100 , 500 ). We notice

tha t the DBC demonstrates a performance that is uniformly better than that of a
conventional system.

Case 3. If there is a clustering image on the join attribute of Ri, and if there
is no clustering image on the join attribute of R2 , then a conventional system may
first retrieve the restriction of R2 (by executing the single—relation subquery Q2 

~~~~~~~~~~~~~~ -_ ~~ -



~~~~~~- ----

250 1000 5000 25000
1000 1.88 7.50 37.50 187.50
5000 0.71 2.83 14.17 70,83
20000 0.49 1.96 9.79 48.96
100000 0.43 1.73 8.63 43.13

(i) n / i = 1

250 1000 5000 25000
1000 2.71 10.83 54.17 270.83
5000 0.88 3.50 17.50 87.50

20000 0.53 2.13 10.63 53.13
100000 0.44 1.76 8.79 43.96

(ii) n/i = 5

250 1000 5000 25000
1000 5.83 23.33 116.67 583.33
5000 1.50 6.00 30.00 150.00
20000 0.69 2.75 13.75 68.75
&00000 0.47 1.88 9.42 47,08

(iii) n/i — 20

~~~~~~~~~Bd
U

~~~~. 250 1000 5000 25000
1000 22.50 ~0.0O 450.00 2250 ,00
5000 4.83 19.33 96.67 483,33

20000 1.52 6.08 30.42 152.08
100000 0.64 2.55 12.75 63.75

(iv) n/ i  = 100

Figure 7.7. Execution time ratio Rt for a join j
query (Case 1)

A



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—73—

5 20 100 500
-

1000 21.98 25.42 43.75 135.42
5000 21.40 23.08 32.08 77.08
20000 21.29 22.65 29.90 66.15
100000 21.26 22.53 29.31 63.23

(i) n / i = 1

B
5 20 100 500

1000 22.40 27.08 52.00 177.08
5000 21.48 23.42 33.75 85.42
20000 21.31 22.73 30.31 68.23

- - 100000 21.26 22,55 29.40 63.65

(ii) n / i = 5

B
5 20 100 500

1000 23.96 33.33 83,33 333.33
5000 21~~79 24.67 40.00 116.67

- - 20000 21.39 23.04 31,88 76.04
100000 21.28 22.61 29.71 65,21

(iii) n/i = 20

-

-

5 20 100 500
1000 32.29 66.67 250.00 11o6.6,
5000 23.46 31.33 73.33 283.33
20000 21.80 24.71 40.21 117.71

100000 21.36 22.94 31,38 73.54

• (iv) n/i — 100

Figure 7.8, Execution time ratio for a join query

(Case 2)

_ _ _ _ _ _ _ _ _ _ _ _ _ _

_—•-~—-w~-- _
-
~~ ~~~~~~~~~~~~ ~ --- ,—•--—— — -•—••--—-—.- —-— __ _

~~~~ 
, — ‘

~~

— - -

~

-_--—--—

~~~

• - ~ 7••~~~~
_ _ _ _ - ‘ - ‘~~~~~~~~~~~

in the best possible way), sort these tuples by the join attribute of R2 and then

use these values (of the join attribute) for scanning the clustering image of Ri.
In this case , ‘if there is at leas t one equality predicate in Q2 , then

Tg = + (n2/i2) + Ej

where we have assumed that , because of the clustering image of RI , only one
access is required for each unique value of the join attribute .

The worst—case value of Td is still
Td k(n1 + 112)/Bd.

If n2/i2 is small, then, in the DBC environment, it may be faster to f i rs t
retrieve the records satisfying Q2 in the best possible way , and then use the
unique values of the join attribute of these records to fetch the records of
Ri. In that case

Td — D2 + (n2 /12)j k.

If (n2 /i2) is very small and also much less than D2 , then we have

Rt (G2 + E1)/ D 2

If (n2/i2
) is very small but not much less than D2 , then the minimum value of

Rt is

Rt
(C2 + E1) /2D2

Thus, whenever (n2/j 2)is small , the magnitude of Rt is at least of the order of

value that can be expected for the single—relation query Q2, For large values

of (n2/i2), Tg is at least of the same order as Td. We do not tabulate any
values, because G2 and D2 are unknown quantities depending on the execution

time of single—relation queries , specific cases of which have already been

treated in Section 7.3.1

Case 4. This does not involve any novel situation. This case is basically

similar to Case 3, and it can be derived from Case 3 by interchanging Ri with

R2 and Qi with Q2. The analysis is also similar.

Case 5. As a final possibility, if there is no clustering image on either of

the join attributes, then the following algorithm may be used in the GPC

environment as well as in the DBC environment :

Using the best possible method , retrieve the restriction of Ri and sort the

records by their join attributes. Do the same for the restriction of R2.

Join the two sets of records.

I

~~~~~~~~~~~~
- 
i_~~~~~~~~~~~~ _~~~~~_~~~~~~~ ~- • ---~~~~~ ~~~~~~~~ --~~~~~~ -- -- 

:_~~~
-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-,-—•—-. -——— —-—“ --—-—- •~— —--
—--- —

—75— 
••-•---“,- - - - - - -  -- -

In the DBC environment , however , the best possible way is the usual way of

expressing the commands. For example, if a predicate in Qi matches a clustering

attribute, then the DBC automatically uses its directory to guide its search.

Furthermore, this entire algorithm may be expressed by a single DBC command

using the CONNECT ON clause.

In this case , we have
Tg = G 1 + G 2 and Td = D 1+D2 .

Therefore , the execution time ratio in this case is of the same magnitude as

would be obtained for single—relation queries.

7.4 Summary

In this section we have compared the performance of two different systems

that implement the same relational model of data. We have expressed the

performance ratio in terms of various database parameters such as clock length,
record size, relation cardinality, image cardinality , etc. Typical values of

these parameters have then been inserted Into these expressions to obtain some

concrete numerical results. The result of these computations is as follows :
(1) The mass memory used by the DBC typically varies from 1 to 2 times

that used by a conventional system.

(2) The directory memory required in the DBC environment is typically
one or two orders of magnitude less than that required in the GPC

environment (by a conventional system) .
(3) The execution time required for usual SEQUEL queries is normally one

or two orders of magnitude faster when the DBC is used.

—--



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—76—

8. CONCLUDING REMARKS

This report brings to conclusion the second phase of a study , the goal
of which is to design , construct and evaluate a hardwar e architecture that can

support existing database management activities. After initial contemplation

(17 , 18] on the viability of such a goal , it was decided that a large—scale
database machine may not actually be out of reach either from the cost stand—

point or from the technological standpoint. The most important database activity

is decidedly the search of data by their content. To store a very large database

on a monolithic associative memory is an enormously costly undertaking . Furthermore ,
at any given moment , only a small fraction of the database (therefore , the memory)

Is actually in use . The solution envisioned for this study is a partitioned - -

content—addressable memory (PCAN ) where each partition or block is individually

content—addressable (9]  and only one block is accessible at any given t ime . This

removed one of the cos t p roblems facing the construction of database machines .

But the use of PCAM for mass storage gave rise to another problem . In order to

execute a user transaction with a reasonab ly good response t ime , it should be

possible to efficiently identify the blocks relevant to the transaction and

thereby avoid an exhaustive search of the entire database store . This necessitated

the maintenance of directories in a faster storage which is at least one—

hundredth the size of the database storage. To ensure fast response , the

directory storage (called structure memory) should also be a PCAM. The answer

to such a storage seemed to lie in one of the emerging memory technologies,

such as magnetic bubble memory , electron beam addressable memory or charge—

coupled devices [8].

The second phase of the study was aimed at demonstrating that the

architectural design of the DBC is effective . By effective we mean that the DBC

ought to be capable of supporting the most important data models, namely ,

hierarchical , network and relational, in a manner that it at least outperforms

conventional computers and systems . That the DBC clearly outperforms a

conventional hierarchical or network database management system has been r
demonstrated in [1,2] .  The current report concludes this work by considering

the relational data model and system.

ia complete the perspective , we briefiy outline the future works envisioned

his •ti.dy . The next phase consists of bringing the individual components

~~. )S~ dvw’n t o  th. log ic-desi gn level. The design and testing of all

W~~~~1 be dome at the same t ime. Following this , we plan to construct

..a .  -~~~~ a • .1st-down prototype of the DBC . The final phase

- ~~~~~~~~~~~~~~~~~~~~~ - - 
- ---- —--~~~~ - -~~~~-- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.,—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-,1~~-

consists of an evaluation of the DBC by supporting on it an existing database.

In this report, as has been indicated earlier, we have tried to show how
well a relational database management system can be supported on the DBC.

System R has been considered as a typical relational system. We have shown how

user queries written in the data sublanguage called SEQUEL, are represented in

the form of DBC commands. Other statements in SEQUEL, for example , those used

for updating the database are similarly translated. The clustering information

provided in the schema in the form of clustering images and clustering links are

appropriately used in clustering the DBC records . It has also been shown how
the view mechanism, integrity assertions, triggers and authorization can all be

9upported on the DBC .

Finally, in this report, we have made a performance analysis in which we

have compared the storage requirements and query execution times of a conventional

relational system versus a DBC—supported relational system. It has been observed

that while the mass memory requirement in the DBC is usually between one and

two times the requirement in a conventional system, there is a tremendous saving
in directory memory and very large reduction in the execution time of queries

when a DBC is being used. Specifically, the usual directory memory requirement

and query execution times are likely to be one or more orders of magnitude better

than those of a conventional system. The reason for this performance enhancement

lies in the very large size of the DBC mass memory blocks, content-addressability

of each block and the clustering of DBC records primarily by relation names.

Because of very large block sizes , directories are small and every mass memory
access allows the DBC to inspect a very large number of records. Because of

the content—addressabiiity of each block, the response set of a query is usually

the same set of records as returned by the DBC. Therefore, no added CPU time

is needed to compare the retrieved records against the predicates that form the

query. Clustering of all records belonging to any given relation ensures that
any single—relation query, whatever its composition , will requi re at most as
many mass memory accesses as there are blocks occupied by the relation. Further

speed gains , which do not show up in the analysis , follow due to the various

other functional features of the DBC such as hardware sorting, automatic memory

management , and hardware to compute the common set— f un~ tions such as average ,
maximum, minimum and sum. 

-~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~

—78— - ;

4

REFERENCES

[1] Hsiao, D.K., D.S. Kerr and F. Hg, “DBC Software Requirements for Supporting

Hierarchical Databases ,” The Ohio State University , Tech . Rep . No.
OSU—CISRC—TR—77—1, April 1977.

[2] Banerjee, J., D.K. Hsiao and D .S. Kerr , “DBC Software Requirements for

Supporting Network Databases,” The Ohio State University , Tech. Rep.

No. OSU—CISRC—TR—77—4, June 1977.

[3] Codd, E.F., “A Relational Model of Data for Large Shared Data Banks , ”

Comm. ACM, 13, 6 , June 1970 , pp. 377—387.
[4] Date, C. J., An Introduction to Database Systems, Second Ed. , Addison—

Wesley , Reading, Mass., 1977.

(5] Astrahan , M.M. , et al , “System R: Relational Approach to Database Management ,’t

ACM Trans. Database Systems, 1, 2 , June 1976 , pp. 97—137 .
(6] Stonebraker , M., E. Wong, P. Kreps and C. Held , “The Design and Implementation

of INGRES,” ACM Trans. Database Systems, 1, 3, Sept. 1976 , pp. 189—222.

(7 1 Baum, R.I., D.K. Hsiao and K. Kannan , “The Architecture of a Database
Computer — Part I: Concepts and Capabilities ,” The Ohio State University ,
Tech . Rep . No. OSU—CISRC—TR—76—l, Sept. 1976.

[8] Hsiao , D.K. and K. Kannan , “The Architecture of a Database Computer — Part I I :

The Design of Structure Memory and Related Processors , ” The Ohio State

University , Tech. Rep. No. OSU—C I SRC-TR—76— 2 , Oct. 1976.
(9] Hsiao , D.K. and K. Kannan , “The Architecture of .~ Database Computer —

Part III: The Design of the Mass Memory and its Related Components,”

The Ohio State University, Tech, Rep. No. OSU—CISRC—TR—76—3, Dec. 1976.

(10] Codd, E.F., “Further Normalization of the Data Base Relational Model ,”
in Couran t Computer Science Symposium 6: Data Base Systems , Prentice—Hall ,
Englewood Cliffs , N. J ., May 1971, pp. 65—98.

(11] Bernstein , P.A., “Synthesizing Third Normal Form Relations from Functional
Dependencies ,” ACM Trans. Database Systems, 1, 4 , Dec. 1976 , pp. 277—298 .

(12] Fagin , R., “Multivalued Dependencies and a New Normal Form for Relational
Databases ,” ACM Trans. Database Systems, 2, 3, Sept. 1977 , pp. 262—278.

(13] Chamberlin,D.D. and R.F. Boyce , “SEQUEL: A Structured English Query
Language,” Proc. 1974 ACM SIGMOD Workshop on Data Description, Access and

Control , Ann Arbor , Mich., May 1974 , pp. 249—264 .
[14] Chamberlin, D.D., et al , “SEQUEL 2: A Unified Approach to Data Definition

Manipulation and Control,” IBM Rep . No, RJ1798 (#26096), IBM Thomas J.

Watson Research Center , Yorktown Heights , N.Y., June 1976.

- - - ~~ - - - -rnr - - — .- -r ” • • - ... ••~~ -
—.—, P~._.•~_ _____ —— - -~~ j -• -— — — -_ —_-- -

p -•

~
—- ----—•-‘• - - - •-—----- ---

~~
—,- --—-—,‘ —---,. —)•-

-
________ - - - - - ~~~‘~r~~~~ ’—- --- ~~~ -- - -

- — —79—

* I

[15] Griffiths, P.P. and B.W. Wade, “An Authorization Mechanism for a Relational

Database System,” ACM Trans. Database System1, 1, 3, Sept. 1976, pp. 242—255.
* f 16] I(nuth, D.E. , The Art of Computer Programming, Vol. 3: Sorting and Searching,,

- Addison—Wesley , Reading , Mass., 1973.
[17) Baum, R.I . , “The Architecture of a Secure Database Management System,”

- - Ph.D. Dissert,, The Ohio State University, Tech. Rep. No. OSU—CISRC—TR—75—8,

• Nov. 1975 .

-
[18] Baum, R.I. and D.K. Rsiao , “Database Computers - A Step Towards Data

Utilities,” IEEE. Trans. Computers, C—25, 12, Dec. 1976 , pp. 1254—1259 .

1
-

• S

‘ S

•

a .

a .

4 .

- ~ ~~~~~~~ - -
- --~~~~—-- ~—- ----- —~~ - — —~-—-- —--~ - - - - -

F _ _ _

- - -—- -
- - --

~~~~~~~~~~~~~~~~~~
--

~~~~
--
~
--

—80—

APPENDIX A — NORMAL FORMS OF RELATION S

We shall start with some definitions. For a relation R consider two

attributes A and B. If , at every instant of time , for every value of A ,

there exists exactly one value of B in the tuples of R, then B is said to

be functionally dependent on A , written A4B . This definition is generalized

in the obvious way to functional dependencies involving compound attributes.

An attribute set (compound attribute) X of a relation R is said to be

a key of R if every attribute of R is functionally dependent on X and if

no subset of X has this property. An attribute that appears in any key

of R is called a prime attribute of R. All other attributes are non—p r ime .

The keys of a relation are normally underlined.
If there are three attribute sets X ,Y ,Z such that X C~~~, X-+Z and Y-+ Z ,

then Z is said to be partially dependent on Y. If Y-~ Z and there exists no

X c Y such that X~~Z , then Z is fully dependent on Y.

An attribute A is transitively dependen t upon a set of attributes X

if there exists a set of attributes Y such that x9’Y , Y74X and Y-4 A , where

A f X , A $ Y and A ,X ,Y are taken from the attributes of a single relation R.

A relation R is in first normal form (or 1NF) if every attribute A

assumes values from only single—valued domains . That is , relation—valued

domains are excluded from relations. The advantage of a 1NF relation over a

general relation is that the database can be viewed as a collection of simple

tables (instead of ‘tables ’ of tables) so that a small class of operations
is applicable to all relations in the database.

The second and third normal forms are introduced to eliminate certain

update anomalies. Consider the functional dependencies of a database as

shown in Figure A.l. If we create a 1NF relation R(PRODUCT , SUPPLIER, QTY ,
CITY, STATE) , then insertion—deletion anomalies can occur due to the partial

dependency of CITY on the key IPRODUCT,SUPPLIER}. Thus, when a supplier is
supplying no parts , his city of origin cannot be recorded in the database.

A relation is in 2NF if it is in 1NF and each of its non—prime attributes

is fully dependent upon every key. Thus, the database of Figure A .lcan

be represented by two 2NF relations:

R1(PRODUCT , SUPPLIER, QTY)
and R2(SUPPLIER , CITY, STATE)
There is still another problem with R2 , even though it is in 2NF. Since

STATE is transitively dependent on SUPPLIER via CITY , any time the last

~~~~~~~~~~~~~~~~~ _.~~~~~~~J~~11L



-

~~~~~~

tuple for a city is removed from P2 , the correspondin g city—state association

is simultaneously destroyed.

A relation is in 3NF if none of its non—prime attributes are transitively

dependent upon any key. The 2NF relation R2 can be split up into two 3NF

relations :
R3 (SUPPLIER, CITY)

and R4(CIT Y , STATE)
Further normalization to a revised version of 3NF relations (called the

Boyce—Codd Normal Form) and to 4NF relations (involving multiple dependencies)

may be found in [4 ,12].

[~~
oDUCT

] ~~~~~~~~~~~~~~~~~~~

SUPPLIER t ’j CITY 1 P.1 STAT~
J

PRODUCT , SUPPLIER -* QTY
SUPPLIER -~~ CITY
CITY~~ STAT E

Figure A.l. Functional dependencies in a Product—Supplier database.

p-~~~ -- -~~~
-

~~~ 
~~~~~~~~~~~~~ - 4


