

FTD-ID(RS)T-1239-77

L

FOREIGN TECHNOLOGY DIVISION

92-9049069

6

STATIC STABILITY OF VEHICLES WHICH USE THE LIFTING FORCE OF AIRFOILS

by

V. I. Koroley

Approved for public release; distribution unlimited.

EDITED TRANSLATION

FTD-ID(RS)T-1239-77

27 July 1977

FTD

ID(RS)T-1239-77

MICROFICHE NR: 74D - 77-C-000948

STATIC STABILITY OF VEHICLES WHICH USE THE LIFTING FORCE OF AIRFOILS

By: V. I. Koroley

English pages: 14

Source: Sudostroyeniye i Morskiye Sooruzheniya, Izd-vo Khar'kov, No. 2, 1966, PP. 45-55

Country of origin: USSR Translated by: Marilyn Olaechea Requester: FTD/PDRS Approved for public release; distribution unlimited

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD

A LOW A REAL PARTY OF A REAL PARTY

2

<u>ID(RS)T-</u>1239-77

Date 27 July 19 77

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block Italic	Transliteration
Aa	A a	A, a	Pp	R, r
Бб	5 6	B, b	Сс Сс	S, s
8 e	B 1	V, v	Тт Т т	T, t
Гг	Г .	G, g	Уу Уу	U, u
Дд	Дд	D, d	Φφ Φ φ	F, f
Еe	E .	Ye, ye; E, e*	× × <i>X</i> ×	Kh, kh
жж	* *	Zh, zh	Цц 44	Ts, ts
3 э	3 1	Z, z	Чч Ч ч	Ch, ch
Ии	Ич	I, i	Шш Шш	Sh, sh
Йй	A 1	Ү, у	Щщ Щщ	Shch, shch
Нн	Kĸ	K, k	Ъъ З ъ	n
Лл	ЛА	L, 1	ыы ы и	Ү, У
М М	Мм	M, m	ьь ь .	•
Нн	Нж	N, n	33 9 ,	Е, е
0 0	0 .	0, 0	Юю Юю	Yu, yu
Пп	Пп	P, p	Яя Яя	Ya, ya

*ye initially, after vowels, and after ъ, ь; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

GREEK ALPHABET

1 . Jun .

Alpha	А	α	•		Nu	N	ν	
Beta	В	β			Xi	Ξ	ξ	
Gamma	Г	γ			Omicron	0	0	
Delta	Δ	δ			Pi	П	π	
Epsilon	E	ε	é		Rho	P	ρ	•
Zeta	Z	ζ			Sigma	Σ	σ	s
Eta	Н	η			Tau	Т	τ	
Theta	Θ	θ	\$		Upsilon	Т	υ	
Iota	I	ι	6338		Phi	Ф	φ	ф
Карра	K	n	к		Chi	x	x	
Lambda	٨	λ	1.8 - 2 - 2 - 1 - 2 - 2 - 1 - 2	a ya	Psi	Ψ	ψ	
Mu	М	μ			Omega	Ω	ω	

1

AND) EN	GLISH TRI	GONOMETRIC	FUI
0.3	Russ	sian	English	
	sin		sin	
3	cos		cos	, Ø
N	tg	a territor	tan	
	ctg		cot	n Sta
	sec		sec	1. Mar
	cose	ec	CSC	
\$	sh		sinh	CE.
	ch		cosh	et Xa
	th		tanh	
	cth		coth	
	sch		sech	
	cscl	ı	csch	
	arc	sin	sin ⁻¹	
	arc	cos	cos ⁻¹	
	arc	tg	tan ⁻¹	
	arc	ctg	cot ⁻¹	
	arc	sec	sec ⁻¹	
	arc	cosec	csc ⁻¹	
	arc	sh	sinh ⁻¹	
	arc	ch	cosh ⁻¹	
	arc	th	tanh ⁻¹	
	arc	cth	coth ⁻¹	
	arc	sch	sech ⁻¹	
	arc	csch	csch ⁻¹	
	rot		curl	
	lg		log	

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

N N N

6 6 9 4

1

4

N.S.

- Qu

1

N N N

the second second

in a survey of the second of t

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

STATIC STABILITY OF VEHICLES WHICH USE THE LIFTING PORCE OF AIRPOILS

1

V. I. Koroley

In designing rapid transportation facilities which use the lifting force of airfoils near a solid or liquid screen, one important problem is that of providing stable motion of sufficient duration.

A characteristic feature of the operating conditions of these vehicles is that their effectiveness increases as the distance between the airfoil and the screen decreases. Here the optimal operating clearances between the trailing edge of the airfoil and the screen are no more than 5-100/0 of the wing chord. This is the reason for the extremely rigid requirement for stability of motion in the vehicles, which restricts the amplitude of vertical movement of design elements to indicated limits.

2

In the present article we discuss the problem of static stability in vehicles which have two airfoils - a leading and a trailing ("tandem" system) - separated by a certain distance, determined by the length of the cabin body.

Here it is assumed that the main load is carried by the trailing wing, which has greater dimensions and elongation (aspect ratio) per unit length; the leading wing serves to increase the arm of the developing moment.

In the general case the wings may have different angles of attack α_i , aspect ratios - λ_i , chords - b_i , and relative distances from the screen $h_i = h_i / b_i$. We must determine what combinations of these elements, and also what position of the center of gravity along the vehicle, will assure the greatest restoring moments in the case where the vehicle steadily deviates by a small angle from the calculated position.

We will assume that the angle of deviation is so small that the shift in the pressure centers of the wing can be ignored.

The magnitude of the lifting force of the wing is determined as follows [1]:

$$P=C_{\mu}\frac{p^{2}}{2}S,$$

where

$$C_{y} = \frac{e_{x}\psi(e_{y} + e_{y} - \Delta e_{y})}{1 + \frac{e_{x}\psi(1 + v_{y})\xi}{z\lambda}}.$$

(1)

Here a = 5.45;

 $a_{\rm K} - is the edge angle of attack;$ $\mu = \frac{0.778}{1 - 0.68};$ $\psi = \psi_0 [1 - (q_6 + a_6)\tau];$ $\psi_0 = 1 - (1 + \mu)^2 (-\tau^2 + \tau^4 - \frac{3}{4}\tau^6 + \frac{5}{8}\tau^6 - \frac{3}{8}\tau^{10});$ $\xi = 1 - 0.5\tau_{\lambda}^2 - 0.25\tau_{\lambda}^4 - 0.0625\tau_{\lambda}^4 - 0.0469\tau_{\lambda}^8 - 0.0237\tau_{\lambda}^{10} - 0.0188\tau_{\lambda}^{13};$ $\tau = \sqrt{4h^2 + 1} - 2h;$ $\tau_{\lambda} = \sqrt{4\left[\frac{h}{\lambda}K_{s}\right]^2 + 1} - 2\left[\frac{h}{\lambda}K_{s}\right];$ $\Delta a_{0} = -\frac{\pi a_{0}}{\psi_{0}} + \frac{N^{2}\tau^{0}}{2\psi_{0}};$ $z = 0.5\tau^6 - \tau^4 + 0.813\tau^6 - -0.0625\tau^6 + 0.3125\tau^{10}.$

For the segmented wings which rectangular in pepective, studied in the given case, $\tau_1 = 0.171$; K = 1; $\delta = 0.06$; K₂ = 1, $\alpha_0 = 2^\circ$.

....

こう ちょうち ないちいち ちちちちちちちちちちちちちちちち

From statics conditions (Fig. 1) we can write

12368 2 4

$$P_{1} = D\left(1 - \frac{l_{1}}{l}\right) = D\left(1 - \bar{l}_{1}\right),$$

$$P_{2} = D\frac{l_{1}}{l} = D\bar{l}_{1}.$$
(2)

The change in the lifting force on the trailing wing with the change in angle of attack by quantity $\Delta \alpha$

$$\Delta P_1 = \frac{\partial P_1}{\partial a} \Delta a + \frac{\partial P_1}{\partial b} \Delta h = \frac{\partial C_{\mu}}{\partial a} \frac{\rho V^2}{2} S_1 \Delta a + \frac{\partial C_{\mu}}{\partial b} \frac{\rho V^2}{2} S_1 \Delta h.$$
(3)

Bearing in mind that $\Delta h = -1_1 \Delta \alpha$, and also considering (2), we get

$$\Delta P_{1} = D\left(1 - \bar{l}_{1}\right) \left(1 - \frac{\partial C_{p_{1}}}{\partial \bar{h}} \bar{l}_{1} \bar{b}_{1}\right) \frac{\Delta a}{\bar{a}_{1}}, \qquad (4)$$

where
$$b_1 = 1/b_1$$
 and $h = h/b_1$.

Determined analogously is

$$\Delta P_{s} = DI_{s} \left[1 + \frac{\frac{\partial C_{p_{1}}}{\partial \bar{h}}}{\frac{\partial C_{p_{1}}}{\partial s}} (1 - \bar{I}_{1}) \bar{b}_{s} \right]_{s_{1}}^{\Delta s}$$
(5)

where
$$b_2 = 1/b_2$$
.

The restoring moment in this case is determined as follows:

$$\Delta M = l_1 \Delta P_1 - (l - l_1) \Delta P_2$$

(6)

(7)

5

or, in dimensionless form:

$$\frac{\Delta M}{DI} = \bar{l}_1 (1 - \bar{l}_2) \left[(1 - C_1 \bar{l}_2 \bar{b}_3) \frac{1}{\epsilon_1} - (1 + C_2 (1 - \bar{l}_2) \bar{b}_3) \frac{1}{\epsilon_2} \right] \Delta \epsilon.$$

Here

 $C_i = \frac{\frac{\partial C_{pi}}{\partial h}}{\frac{\partial C_{pi}}{\partial C_{pi}}}$

$$\overline{m}_{a} = \frac{1}{Dl} \frac{\partial M}{\partial a} = \overline{l}_{1} (1 - \overline{l}_{1}) \left\{ (1 - C_{1} \overline{l}_{1} \overline{b}_{1}) \frac{1}{a_{1}} - \left[1 + C_{2} (1 - \overline{l}_{1}) \overline{b}_{2} \right] \frac{1}{a_{2}} \right\}.$$
(8)

Direct analysis of the obtained expression is difficult, since the unknown quantity is a function of nine parameters - the arm of the lifting force of the trailing wing \overline{l}_1 , the reverse chord values of the wing \overline{b}_1 and \overline{b}_2 , angles of attack α_1 and α_2 , relative distances between wings and screen \overline{h}_1 and \overline{h}_2 , and relative aspect ratios λ_1 and λ_2 .

It is true that parameters b_1 and b_2 are not entirely independent: there exist between them a connection which follows from the statics condition:

$$-\frac{C_{y_1}\lambda_1\overline{b_1}}{C_{y_2}\lambda_2\overline{b_2}}=\frac{1-\overline{l_1}}{\overline{l_1}}.$$

(9)

6

However, realization of this equation for the elimination of one of the parameters is difficult because of significant complication of the main dependence (8).

Determining the extrema of function $\overline{\mathbf{n}}_{\alpha}$ by the standard method, by calculating the derivatives with respect to independent variables, is extremely awkward and complex, since quantities $\overline{\mathbf{n}}_i$ and $\lambda_i \propto_1^{\text{and particularly}}$ contained in expression (8) in implicit form. Thus, the study is conducted by the calculation-graphic method.

First, the C; values are determined. For this derivatives $\frac{\partial C_y}{\partial h}$ and $\frac{\partial C_y}{\partial a}$ are calculated within the following limits:

$$h = 0.05 - 0.3; \lambda = 2 - 5; \alpha = 2 - 10^{\circ}.$$

The indicated limits were selected from the condition of cptimality of the wings (assuring the highest quality value $k = C_y/C_x$) and from design considerations (the leading wing must have a somewhat lower aspect ratio). Since $\frac{\partial C_y}{\partial h}$, and, consequently, also C_i , have a linear dependence on a_i , it was possible to approximate this dependence by the simple formula

$$C_i = a \frac{2+a^\circ}{4}.$$

7

The values of a are given in Fig. 2.

Depending on attack angles α_i and the values of $\mathbf{1}_1$ the limits of change in values $C_1\mathbf{b}_1$ and $C_2\mathbf{b}_2$ (Tables 1-2) were determined. Here it was assumed that $\mathbf{h}_1 = 0.05-0.2$; $\lambda_1 = 2-5$; $\alpha_1 = 4-10^\circ$; $\mathbf{h}_2 = 0.05-0.2$; $\lambda_2 = 2-4$; $\alpha_2 = 2-10^\circ$.

Calculated in the range of $\overline{l}_1 = 0.1-0.6$ and $\alpha_1 = 4-10^\circ$ were guantities

$$\bar{m}_{e_1} = \bar{l}_1 (1 - \bar{l}_1) (1 - C_1 \bar{l}_1 \bar{b}_1) \frac{1}{e_1},$$

$$\bar{m}_{e_1} = \bar{l}_1 (1 - \bar{l}_1) [1 + C_1 (1 - \bar{l}_1) \bar{b}_2] \frac{1}{e_1},$$
(11)

at two fixed values of C, b, equal to 1 and 7.

The straight lines passing through the obtained points on curves with coordinates $\overline{m}_{e_1} - C_1 \overline{b_1}$ and $\overline{m}_{e_2} - C_2 \overline{b_2}$, respectively (Figs. 3-4), determine the value \overline{m}_{e_1} and \overline{m}_{e_2} at fixed angles of attack and different values of 1_1 or different values $C_1 \overline{b_2}$.

Here and henceforth the symbol T, denotes relative values of the

(10)

derivative of the restoring moment with respect to the angle or, in other words, the magnitude of increase in the relative recovery moment during deviation of the vehicle by an angle equal to one radian. To determine the moment which develops during deviation of the vehicle by 1° we must divide this guantity by 57.3.

The limiting values $C_i \tilde{b}_i$ for each value \tilde{l}_1 are determined on the indicated straight beams of the points corresponding to the upper and lower limits $\tilde{m}_{u'}$, which can be obtained for the given α_i and \tilde{l}_1 . In this case we are not interested in the lower limits. The upper limits are determined by the family of curves of constant values of \tilde{l}_1 .

As we see from the curves (Figs. 3-4), the component of the restoring moment \bar{m}_{e_i} , and \bar{m}_{e_i} attain their highest values at minimal angles of attack of the trailing wings and the maximal angles of the leading for completely determined values of $C_i \bar{b}_i$. Here the limiting values of $\bar{m}_{e'}$ are to a certain degree conditional, since generally the angles of attack can exceed the limits of the selected boundaries, which leads to a considerable decrease in the quality of the wings. For this reason determining $\bar{m}_{e'}$ outside of the indicated limits is not of practical interest.

However, the values of $\bar{m}_{\alpha'}$, which correspond to fixed values of the angles of attack α ; and relative arms \bar{l}_1 are completely

8

determined quantities which determine the restoring moment for specific vehicle parameters.

9

In order to determine which combination of angles of attack of the leading and trailing wing will give the maximum restoring moment during deviation of the vehicle by 1° it is sufficient to plot curves of the sum \bar{m}_{u} for the same values of \bar{l}_{1} and different angles α_{1} and α_{2} .

As an example of the obtained dependence Fig. 5 shows the values of \overline{m}_{α} for $\alpha_1 = 4^{\circ}$ and different values \overline{l}_1 and α_2 .

For other α_1 values the magnitude of $\overline{\mathbf{n}}_{\alpha}$ can be calculated with sufficient accuracy by the following approximate formula

$$\bar{m}_{a} = \bar{m}_{(a_{1}-4^{\circ})} + b(a_{1}^{\circ}-4^{\circ}).$$
(12)

Values of b for different values of $\mathbf{1}_1$ are shown in Fig. 6.

It is obvious that quantity \overline{n}_{α} have a maximum which is not very pronounced at $\overline{l}_1 \approx 0.35$. At lower values \overline{l}_1 the magnitude of \overline{n}_{α} declines drastically with a decrease in \overline{l}_1 , and at $\overline{l}_1 = 0.4-0.6$ is virtually independent of arm \overline{l}_1 . An increase in the angle of attack of the leading wing α_2 leads to a certain increase in quantity \overline{n}_{α} . Figure 7 shows the values of maximal moment \overline{n}_{α} which can be obtained in the studied range. These correspond to the maxima of curves similar to those presented in Fig. 5. In all cases these maxima correspond to values $\overline{1}_1 \approx 0.35$.

The obtained results permit us to solve the following problems:

a) make a rational selection of the elements of the airfoils to provide maximum duration of vehicle stability at full speed;

b) determine the magnitude of restoring moments for a vehicle
 with known elements;

c) determine the values of restoring moments for the different moving regimes of the vehicle.

The first of these problems can be conveniently solved in the following order: If we must obtain the maximal values \overline{n}_{α} and the overall design allows us to do this, then quantity \overline{l}_1 should be selected equal to 0.35, while angles α_1 and α_2 should be minimal (although we must consider the possibility of a considerable loss in quality for very low angles of attack). When, however, due to the

0

conditions of the overall arrangement, the optimal value of the arm \overline{I}_1 cannot be perserved, then it can be increased if the angles of attack of the leading wing are relatively large.

Decreasing \tilde{l}_1 leads to a considerable decline in the restoring moment. In any case, according to the curves presented in Fig. 5 and formula (12) we can easily estimate the magnitude of moment loss as a result of deviation from optimal ratios.

From the values 1_1 , α_1 , and α_2 thus selected, on the curves (Figs. 3-4) the values of $C_1 \overline{b}_1$ and $C_2 \overline{b}_2$ which correspond to them are determined by interpolation.

These values in turn depend on the following factors: angles of attack α_1 and α_2 , chord of wings b_1 and b_2 , relative distances from screen h_1 and h_2 , and relative aspect ratio of the wings λ_1 and λ_2 .

Since α_1 and α_2 are already determined, then we now select six guantities - b_1 , b_2 , \bar{h}_1 , \bar{h}_2 , λ_1 and λ_2 - which are related by three equations - the equation of (9) and equations:

 $C_1 \dot{b}_1 = F_1(a_1, b_1, h_1, \lambda_1),$ $C_2 \ddot{b}_2 = F_2(a_2, b_2, h_2, \lambda_2).$

(13)

Thus, three parameters remain undetermined and are selected by design consideration. Consequently, the designer still has a wide range of possibilities for selecting the three independent parameters without impairing static stability, since conditions (13) automatically assure the restoring moment.

Determining the values of restoring moments for a vehicle with known elements of the lifting system is reduced to calculating values $C_i \overline{b}_i$, determining the \overline{m}_{α} components from the curves on Figs. 3 and 4, and subsequent summation of them.

The third of these problems is solved in a similar manner, provided we have a diagram obtained through calculation or experiment for the landing (distances from screen and angles of trim) for the vehicle at different rates of motion. Values \bar{h}_i and a_i with the trim and the trajectory of motion of the vehicle considered are introduced into the calculation.

BIBLIQGRAPHY

1. А. Н. Панченков. Гидродинамина подводного крыла. Изд-во «Зауказа дунка», К., 1985.

.

14

ĥ	0,1	0,2	0,3	0,4	0,5	8,0
ō,	4-2,5	4,45-2,7	5-2,95	5,7-3,25	6,67-3,6	8-4
a1		San Secondar	Ciói		•	•
4°	1,65-0,263	1,835-0,284	2,06-0,309	2,36-0,339	2,75-0,375	3,3-0,42
6° .	2,2-0,35	2,44-0,378	2,75-0,412	3,14-0,452	3,66-0,5	4,4-0,56
8°	2,76-0,437	3,06-0,472	3,44-0,515	3,93-0,565	4,59-0,625	5.5-0.7
10.	3,3-0,525	3,67-0,567	4,12-0,618	4,72-0,678	5.5-0.75	6,6-0,84

Jable 2.

ī	0,1	0,2	0,3	0,4	0,5	0,6
b,	10	10-6,67	10-5	8-4	6,67-3,33	5-3,33
•			C,ō,		11.000	
2	. 2,75-0,85	2,75-0,567	2,75-0,425	2,2-0,34	1,83-0,283	1,375-0,283
*	4,13-1,28	4,13-0,853	4,13-0,64	3,3-0,512	2,75-0,427	2,06-0,427
•	5,5-1,7	5,5-1,135	5,5-0,85	4,4-0,68	3,67-0,567	2,75-0,567
*	6,88-2,13	6,88-1,42	6,88-1,06	5,5-0,852	4,59-0,71	3,44-0,71
10-	8,25-3,55	8,25-2,37	8,25-1,77	6,6-1,43	5,5-1,18	4,12-1,18

.

REPORT NUMBER 2. GOVT ACCESSION NO. 3. 1	DEFODE CONDI ETINC FORM
	RECIPIENT'S CATALOG NUMBER
FTD-1D(RS)T-1239-77	
TITLE (and Subtitle) 5. 1	TYPE OF REPORT & PERIOD COVERE
STATIC STABILITY OF VEHICLES WHICH USE THE LIFTING FORCE OF AIRFOILS	Translation PERFORMING ONG. REPORT NUMBER
AUTHOR(4) 8. (CONTRACT OR GRANT NUMBER(*)
V. I. Koroley	
PERFORMING ORGANIZATION NAME AND ADDRESS 10. Foreign Technology Division Air Force Systems Command U. S. Air Force	PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS 12.	REPORT DATE
. 13.	NUMBER OF PAGES
	14
. MUNITURING AGENET NAME & ADDRESS(II ditierent from Controlling Office)	Countri i Conss. (or une report)
-	UNCLASSIFIED
	SCHEDULE
Approved for public release; distribution unl . DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different from Re	limited
Approved for public release; distribution unl Distribution STATEMENT (of the abetract entered in Block 20, 11 different from Re	limited port)
Approved for public release; distribution unl	Limited Port) ACCESSION for
Approved for public release; distribution unl . DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Rep . SUPPLEMENTARY NOTES	ACCESSION for NTIS White Section DDC Buff Section UNANNOUNCED JUSTIFICATION
Approved for public release; distribution un Distribution STATEMENT (of the abstract entered in Block 20, 11 different from Res SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide 11 necessary and identify by block number)	ACCESSION for ACCESSION for NTIS White Section DDC Buff Section UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/AVAILABILITY CODES Dist
Approved for public release; distribution un Distribution STATEMENT (of the abetract entered in Block 20, if different from Res SUPPLEMENTARY NOTES N. KEY WORDS (Continue on reverse eide if necessary and identify by block number)	ACCESSION for NTIS White Section DDC Buff Section UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/AVAILABILITY CODES Dist. AVAIL and for SPICIAL A
Approved for public release; distribution units D. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Res S. SUPPLEMENTARY NOTES N. KEY WORDS (Continue on reverse side if necessary and identify by block number) D. ABSTRACT (Continue on reverse side if necessary and identify by block number)	ACCESSION for NTIS White Section DDC Buff Section UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/AVAIL AND/OF SPICIAL A

the second of th

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGAN	IZATION	MICROFICHE	ORGAN	IZATION	MICROFICHE
A205	DMATC	1	E053	AF/INAKA	1
A210	DMAAC	2	E017	AF/ RDYTR-W	
B344	DIA/RDS-3C	8	E404	AEDC	
C043	USAMIIA	1	E408	A FWI.	
C509	BALLISTIC RES LABS	1	E410	ADTC	
C510	AIR MOBILITY R&D	1	E413	ESD	;
	LAB/FIO			FTD	
C513	PICATINNY ARSENAL	1		CCN	1
C535	AVIATION SYS COMD	1		ETID	
C557	USAIIC	1		NIA/PHS	
C591	FSTC	5		NICD	2
C619	MIA REDSTONE	1			Section Constraints
D008	NISC	1			
H300	USAICE (USAREUR)	1			
P005	ERDA	1			
P055	CIA/CRS/ADD/SD	1			
NAVOR	DSTA (50L)	1.			
NAVWP	NSCEN (Code 121)	<u> </u>			
NASA/	KSI	1			

1

AFIT/LD

and the second second

and the second second

FTD-ID(RS)T-1239-77