
— ~~~

Stanford Artificial Intelligence Laboratory September 1977
• Memo AIM-304

Computer Science Department
Report No. STAN-CS-77-632 -.

HARDWARE VER IFICATION

b

Todd Jeffry Wagner

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

—U •- -- _ _ _ _ _

UNcLASSIPIED
SECURITY CLA SS$YICA T ON OF I’NIS PAGE (Wa. ,, Data Ente,.d)

REA II Ir ~S1 ROCTIONS
REPOR T DOCUMENTATI ON PAGE BEFORE COMPLETING FORM

_______ G NUMBER
~~~~~~~~~~~~~~~~~~~~~~~~~~ .~/ ~2. GOVT ACC

(~‘4J) STAN -CS -77-632 , 

~ ~~~~ ~~~~~~~~ —.

~~ ..- .. ...r (IUI4.I t fUFll tTIERED4 T ITLE (~~id SubISll.) 
_____________

• Verificatio~~) 
Technical 

6. PERFORMING ORG. REPORT NUMBER

AI~~~O~
B 1 T OR GRANT NUMBER(S)7~~~~U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Y3~~~~~~~~~ 

_ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

T~~~~ -76-C-v /
(j~~~Toddjwagner

LL1
/ARPA Orde~~2~9~

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Artificial Intell igence Laboratory
Stanford University
Stanford, California 9li~3O5 ____________________________

I t .  CON FROU.INGOFFSCE NAME AND ADDRESS .
- ‘ kE.P~ R!PATE

Eugene Stubbs Sep — •LLJ
ARPA/}M

• • IIi.O0 Wilson Blvd., Arlington, VA 22209 ________________________

14. MONITORING AGENCY NAME & ADORESS(S1 dilI. rs.et tram ContrWf lnd OWe.) 1S~ SECU~~ #VCLASS. ~o, ~~ra r
Philip Surra, ONR Representative
Durand Aeronautics Building Room 165
Stanford University ~~ DECLASSIFICATION/ DOWNGRAOING

Stanford, California 9~i.305 SCHEDULE

16. DISTRIBUTION STATEMENT (of lbS. Report)

rCI2TRIBUTI0N S~rATEME?~TT
Releasable without limitations on dissemination I•~ ~~~~~~~~~~~~~~~~ 

I• 
( CIItXlbIlttOE UE]th3lted

17. DISTRIBUTION STATEMENT (~ f lb. abstract .nf.r .d Sn Block 20, If dIfl. r.nt from R.part)

lB. SUPPLEMENTARY NOTES

19. KEY WORDS (Contln u. on r.v rae .ld. It n.c...ary wd IdentIty by block numb.r)

• .

Methods for detecting logical, errors in computer hardware designs using symbolic
manipulation instead of digital simulation are discussed. A nonprocedura]. register
transfer language is proposed that is suitable for describing how a digital circuit

• 20. A BSTR should perform. This language can also be used to describe each of the components• used in the design . Transformations are present ed which should enable the designer 
¶

to either prove or disprove that : the s~t of interconnected components correctly• satisfy the specifications for the overall, syst em.
The problem of detecting t iming anomalies such as races , hazards , and oscillations

is addressed. Also explored are some interesting relationships between the problems
of hardware verification and prt.gram ve’~ifica tion. Finally , the results of using an

• existing proof checking program on some digital circuits are presented. Although the
• theorem proving approach is not very efficient for simple circuits, it becomes

increasingly attractive an circuits become more complex. This is because the theoreir

• 
• to the gate level .

proving approach can use complicated component cpecifications without reducing t~i

FORM 
~ A ‘~DD 1 JAN 73 i..7., EDITION OF I NOV 69 IS OBSOLETE

UNCLASS IFT vn01466
CURITY CLASSIFICATION OF TI4IS PAGE (W~i.t~ Data ~~t.r.d)S/ N O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~1Iiii__• ______

• • • •



~ • .. , • • - •~~~~~ • • .  ~~~~ •~~
-.-.-• -~~ -~~~

Stanford Artificial Intelli gence Laboratory Septem ber 1977
Memo AIM-304

Computer Science Department
Report No. STAN-CS-77-632

HA RDWARE VERIFIC ATION

by

Todd Jeffry Wagner

ABSTRACT

Methods for detecting logical errors In computer hardware designs using symbolic
manipulation instead of digital simulation are discussed. A non-procedural register transfer
language is proposed that Is suitable for describing how a digital circuit should perform. This
language can also be used to describe each of the components used In the design.
Transformations are presented which should enable the designer to either prove or disprove that
the set of interconnected components correctly satisfy the specifications for the overall system .

The problem of detecting timing anomalies such as races, hazards, and oscillations is
addressed. A lso explored are some Interesting relationships between the problems of hardware
verification and program verification. Finally, the results of using an existing proof checking
program on some digital circuits are presented. Although the theorem proving approach is not
very efficient for simple circuits, it becomes Increasingly attractive as circuits become more
complex. This is because the theorem proving approach can use complicated component
specifications without reducing them to the gate level.

This thesis was submitted to the Departm ent of Computer Science and the Committee on Graduate
Studies of Stanford University in partial fulf illment of the requirements for the degre. of Doctor of
Philosoph y.

• 
- This research was supported by the Advanced Research Projects Agency of the Department of

Defttnse under ARPA Order No. 2494, Contract MD4903.76-C-0206. The views and conclusions
contained I n this document are those of the author (s) and should not be Interpreted as necessarily

• 

• represent ing the official policies, either expressed or implied , of Stanford University or any agency
of the U. S. Government.

I ••I’
/ / H.

- 

• 

• 

( -

~

• -

iwu~~UT~OI1 ~1A~~~~~T

I ~‘~~c”~ f~r public r.l.aas
1 ~Ia~1bu~ce Uulindt.d

-- ~~~~~~~~~~~ -—  ~~r- ——-j- 
~~~~~~~~~ .~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

-

PREFACE

This thesis represents a first attempt at developing methods for proving the
correctness of computer hardware designs. After several years of experience
working with simulators I realized that some sort of symbolic manipulation program
would be useful in detecting errors In hardware designs. Initially I decided to
pursue hardware verification along program verification lines, but the inherent
lack of sequential statement execution In hardware made this approach
untenable. There Is a point at which program verification techniques do apply, but
not until a hardware device Is a sequential machine with a well understood
mechanism for determining the next instruction. To verify circuits at the gate and• flip-flop level requires some very different tools. -

One of my major desires was to do all of this in a context that engineers
would understand and be willing to use. A very simple non-procedural register
transfer language is presented that can be learned In a few minutes. I believe
that it includes the minimum amount of control lnformatk~n needed to prove things
about how a device will perform In conjunction with other devices, Naturally, the

• specific syntax Is a function of the keyboard I am using and many equivalent
languages are possible.

Transformations that can be applied to statements In this language include the
basic boolean operations, definitions of arithmetic functions, and some special

• Identities that enable us to determine the effects of signal transitions as they
travel thru a circuit. The list of transformations is probably far from complete and
will have to be expanded as special hardware problems are encountered. An• important objective is to define the language and transformations in such a way
that they can be modelled by existing proof checking programs. A major reason
for developing hardware verifiers i~ that they provide a way to prove the
correctness of complex devices for which exhaustive simulation would be
impractical.

I wish to thank Lynn Quam, who first suggested the Idea of a hardware verifier
(In the context of a block structured design automation system) as a thesis
project. Richard Weyhrauch helped me with using his FOL (First-order Logic)
proof checker on hardware problems. Finally, director John McCarthy and the
faculty, students, secretaries, and bureaucrats have all made working at the
Stanford Artificial Intelligence Lab an exciting experience.

• M~~~lOII for
mu White Sect ion ~~

• Butt Section 0
0

• JUSTIFICATION —

IRIBIJHON1AYAJIABIUIT t8ilES
• ~~t. AVAIL an4/~i SPECIM.

H
- - - - • -

~~~~~
-- • - -



Table of Contents

Section • Pigs

1. INTRODUCTION 1
1.1 BasIc assumptions 3
1.2 Relationship to design compilers 3
1.3 Advantages over simulation 

• 
4

2. DESIGN AUTOMATION LANGUAGES • 5
2.1 Procedural register transfer languages - 5
2.2 Non-procedural register transfer languages 6

3. HARDWARE VERIFICATION LANGUAGE 9
3.1 Basic syntax 9
3.2 VarIables and constants 9
3.3 ExpressIons and operators 10

• 3.4 Language examples 11

4. DEFINITIONS AND AXIOMS 12
4.1 Boolean reductions 12
4.2 DefinitIons for subscrIpts and concatenatIon 14
4.3 Definitions of arIthmetIc operators 15
4.4 Miscellaneous transformations 1 7

5. FEEDBACK 19
5.1 Implicit feedback 19
5.2 Axioms for explicit feedback 21

6. TRANSITION ALGEBRA 23
6.1 Basic axioms 23
6.2 MathematIcal basIs of transition algebra 25
6.3 TransItions thru combinatIonal circuits 26
6.4 Transitions thru sequential circuits 28
8.5 Flip-flop design and modellIng 29

7. ERROR CONDITIONS 31
7.1 Race and hazard jargon 31
7.2 Race and hazard detection 32
7.3 OscIllation 34
7.4 Other error conditions 

• 
35

8. MICROPROGAM VERIFICATION 37- - 6.1 Microprogram vs. program verificatIon 37
8.2 Hardware verIfication for microcoded devices 38

9. HARDWARE VERiFiCATION USING FOl. 39
9.1 Syntax modifications 39
9.2 FOL commands 40

• 
• ~~~~~~~~~ ~~~~~~~~~~~~~ — - — ,. 

•
~~~

•—
~~~

•• — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
‘
~~~~~~~

-
~~~~~

—— —
~~~~~~

--—-
~~

—
~~ 

-
~~~~-—~

--—- - -~~~ - ~~~~~~— —

Table of Contents

Section Page

10. SYNCHRONOUS COUNTER 43

11. RIPPLE COUNTER 49

• 12. 8-BIT MULTIPLIER 59

13. CONCLUSIONS • 80

14. REFERENCES 81
14.1 References on design verification 81
14.2 References on design languages 81
14.3 References on transitions 84
14.4 References on races and hazards 85
14.6 References on microprogram verIfication 86
14.6 FOI. references 87

Appendix -
Page

A. BNF LANGUAGE DESCRIPTiON ‘ . 88

• B. LIST OF TRANSFORMATIONS
• 90

C. TRANSITIONS THRU HAZARDS -
.

95

0. FOt. DECLARATIONS AND AXIOMS 97

E. COMPONENT DEFINITIONS - -
99

• ~~~~~ —.-—~~~--- —~ ‘ ~~-~~~~- ,•__ •1._ ___A_____:_ ~~~~~~ ~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~ ~~~~~P ~~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~

1

1. INTRODUCTION

This thesis discusses a method for detecting errors in dIgItal hardware
designs. A system, or module, is specified using a non-procedural register
transfer language. The components that will be used to build the device are also - •

specified in this language. A symbolic manipulatIon technique can then be used to
determine If the interconnected components correctly eatlsfy the specifications
for the overall system. Essentially, the - process of hardware verification Is based
on boolean reductions and some methods for analyzIng the consequences of
signal transitions. The symbolIc manipulation approach should be able to detect
timing anomalies, such as races and hazards, In addition to logical InconsistencIes.

The desirabIlity of using proofs of correctness to detect errors In hardware
• designs has been discussed previously [1,4], but everyone has a different Idea

about what level of description should be used. Some authors thInk in terms of a
finite state automaton that can accept or reject an input sequence depending on
the algorithm it represents. Still others are Interested in determining If a given
algorithm correctly Implements a complex mathematIcal function. In this paper a
proof of correctness will based on showing that, for any single Input change,
equivalent state changes will take place In both logIc descriptions. In other
words, If both models of the logic are in equivalent states and the same input
variable is changed on each of them, then they will change to new states that
are also equivalent.

Hardware verification, as presented here, is entirely oriented to the register
transfer level of system description. Problems such as validation of physical
layout or design rule checking are not addressed. The circuit level, Involving
semiconductor physics and critical time constants, is also not discussed.
Nevertheless, the register transfer level does cover a large spectrum of
computer design activities. It can be used to determIne If the specIficatIons of
an integrated circuit are fulfilled by the gates within the chip, or if a set of chips
satisfy the definItion of a complete backplane. These techniques can also be
used to see If Interconnected cards or backplanes correctly satisfy the

-

requIrements for whole computers.

The most important Idea behind hardware verification Is the concept of
breakIng down the specifications as little as possible. If a designer specifies the
operation of binary addition In the system description and provides an adder chip
In the actual circuIt, then it will only be necessary to show that the correct data

• and control signals are sent to this chip. In this case , breaking the addition
-

•
• operation down to the gate level will not be necessary. This is especially useful

with LSI components such as microprocessors. The microprocessor can supply
the complex operations and the verifier will only have to show that the support
circuitry sends it the, correct control informatjon.

-,

~

——-—
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~ - -



_ _ _ _ _ _  T~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

(U

• 

__ 

- 
—S _______ -— 

~~~~~~~~~~~~~


— — — ‘~~~~~ — -~~--—----—- —~~- ~~~~~~~~~~~~~ ,~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —

INTRODUCTION 3

1,1 BasIc assumptions

A couple of assumptions must be made regarding timing. Any circuit can be
made to operate erroneously it certain external Inputs are changed
simultaneously, so race detection wIll not Include these circumstances. If the
circuit Is to be used In conjunctIon with other circuits It will be possible to detect
races In the composite device by verifying the overall circuit. Components will
not have specific delays. When a possible race Is detected a hardware verifier -

might be able to Indicate which component(s) must be faster than which other
component(s) to insure correct operation. The verification process does not say
anything about how fast a circuit will operate, only that it will work correctly at
some (slow enough) speed if the races and hazards are taken care of.

There is also the philosophical question of what to do about unspecified
operations. The actual circuit will almost always Include other operations and
state variables In addition to those specified in the system description. If a
designer uses an ISi devIce such as a microprocessor to perform only a few
operations there will be a wealth of unspecified operations. A three bit counter
can be Implemented by using a four bit counter circuit and not connecting the high
order bit. At the same time, it is easy to design a circuit In which the unspecified
operatIons can mean disaster. It Is Important to be able to differentiate between
additional operations that are acceptable and those that are not, since a circuit
can satisfy its specifications without being equivalent to them. Some solutions to
this problem are discussed In the section on feedback.

I
1.2 RelatIonship to design compilers

At present there are a number of design compilers that can take the
specifications for a hardware device end generate the necessary circuitry. The
resulting design will be correct and have a near minima~! number of gates and flip-

- flops because of the use of sophisticated state reduction techniques. Although
fairly successful , design compilers have several shortcomings. In much the same
way that good hand coding of software can beat en optimizing compiler, circuit
designers can usually find novel ways to use components that a design compiler
would miss. With current 181 components It is often cheaper to throw In a
complex device than to build a circuit using the minimal number of gates and f lip-
flops. A more serious problem Is that it Is virtually impossible to give a design
compiler the ability to use more than a small fraction of the new components
rapidly becoming available. Furthermore, the best component for a given
application can depend on such varied factors as price, 8iZe, and shape as well
as the usual electrIcal characteristics. Under these circumstances , It would seem
more reasonable to use a program that lets the designer use whatever
components he chooses and then checks for design errors.

A major advantage of a hardware verifier is that it can provide great
flexibility when modifying a circuit. Suppose that a device has been In the field
for a few years when a new component Is developed that can replace several
used In the orIginal design. Using hardware verificatIon it should be fairly sImple

~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ —- -5 ---,---


::‘ -
~~~~~~~~~~~ ~~~~~~~~~ 

‘~~ _ • • S~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

4 INTRODUCTION

to determine if using the new component will change the behavior of the device in
any way. If the behavior is changed, the verification system can indicate what
the differences are so they can be dealt with appropriately.

Incidental ly, one approach to hardware verification has been to submit two
specifications for the same device to a desIgn compiler and see If it generates
equivalent circuits [5]. it is unclear how this would be used when one descriptIon
can satisfy the other without being equivalent to It.

1.3 Advantages over simulation

The most popular method for checking hardware designs Is digital simulation.
Earlier attempts at comparing high level and low level descriptions of digital
devices based on simulation are discussed in [2,3]. Admittedly, digital simulation
is much easier to implement on a computer than the symbolic manipulation
techniques presented in this paper. Simulation methods are well understood, and
are very useful for generation of fault tests that can be used to speed repairs
after a device is in the field. On the other hand, simulation cannot determine if a
design is correct unless It is exhaustive. It may be lucky enough to find some
bugs, but others may go undetected.

The greatest disadvantage of simulation is that certain asswnptions must be
made about initialization, delays, and the possible values of signals. Unless the
logic being designed has a reset sIgnal it is impossible to determine the Initial
state of sequential elements at power-up time. Some simulators assume zero
delay components, others give each component a unit delay, while still others
give each component type a different delay value. These delay values may have
little to do with the real world where two parts of the same type can have very
different propagation delays. SImulators are generally two value or three value.

• Two value simulators use only zero and one, while three value sImulators Include
an undefined state to be used during initIalIzation and signal transItions. Three

• value simulators can detect races , even where they don’t really exist , under
certain delay assumptions.

Hardware verification can determine correctness of a circuit and produce a
list of possible races and hazards, along with information on how to prevent them.
There are no assumptions about circuit initialization since It is based on showing
that a circuit satisfies its specifications regardless of Initial state. Hardware
verification will also generate results that are easier to interpret, It can show
inconsistencies in the context of boolean expressions Instead of the pages of

• ones and zeros output by most simulators. Symbolic manipulation techniques can
often be much faster than simulation since they can handle arbitrarily complex

- - devices without always breaking them down to the gate level. -



-5 — 
—S ~

- - — __________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

5

2. DESIGN AUTOMATION LANGUAGES

An incredible number of hardware design languages have been proposed, many
have been Implemented, and several have become popular in the design
community. Entire papers have been devoted to the philosophy of these
languages [7,9,16,27,36,38,45,49] and to surveys comparing and contrasting

F some of the more popular ones (8,25,33,50,51]. Design automation languages
are generally classified as structural or behav~oral, although some attempt to be
both. Structural languages are primarily Intended to provide Information such as
where data paths go and where control Informa~...’n originates. A good example of
a purely structural language Is PMS (11,12,47], which Is actually Just a
formalized notation for drawing block diagrams of computer systems.

Behavioral languages, on the other hand, attempt to describe what a system
does without Implying anything about the hardware structure. These languages
are often used as simulation models and to help in software production. At a
somewhat more detailed level behavioral languages can be organized to provide
some inkling of how the system Itself is organized, but they could Just as easily
imply an entirely dIfferent structure and still emulate the hardware correctly.

• Virtually all behavioral languages are register transfer languages, in which the
basic unit of Information is a vector of binary digits. Since they were first
proposed by Reed [42) in the 1950’s register transfer languages have
developed Into procedural and non-procedural types. Several of the procedural
languages have complex control structures that permit them to operate in a non-
procedural manner.

2,1 Procedural register transfer languages

Most procedural register transfer languages are programming languages
modified to handle register operations. instructions are executed sequentially,
but In some languages special constructs are provided to permit parallel
execution of blocks. Several procedural hardware languages are based on API
(13,26,28,30,31,32], whose advocates are quIck to point out the tremendous
power of the vector and matrix operations already in the language. Although very
compact , hardware descriptions in API-like languages are among the most dIffIcult
to read. Another large group of procedural hardware languages are based on
Algol [9,11,12,22,29,35,46]. The block structure of Algol can often be used to
help describe the system structure.

Still other procedural languages are based on state machInes (14,15,23,24].
In state machine languages the logIc is partitioned Into blocks whose exet~utIon Is
controlled by st ate registers. Special instructions are provided to allow the state
registers to be altered. Finally, there are some languages (34,39,44) that divIde
the logic into data manIpulation blocks and a control microprogram. These are
essentially the same as the state machine languages except that in the latter
the control microprogram is embedded in the data manipulation blocks.

-

~

-

~

—S

~

=• - - —~~~~~~~-- • -• - -~ —- - - - - - • - , -- • -S• • ,-•-*-~-----, --- -5-- - - - -



r ~~r~~—~-- -~~~~~~~~_ _ _ _ _ _

6 DESIGN AUTOMATION LANGUAGES

The major advantage of procedural register transfer languages is that
al gorithms are easy to read and understand. Many of the procedural languages
provide subroutine and macro facilities. Since there is a definite order for
executing statements , GOTO statements are acceptable. Procedural hardware
languages are excellent for systems level simulation and are frequently used
when producing software for new computers.

Unfortunately, the details of how the control and timing circuIts operate are
not revealed to the user. Since statements are executed more or less
sequentially, It Is implIed that there Is some control logic making sure thIngs

C happen at the correct time. In many procedural languages specifyIng parallel
operations and whether an operation is synchronous or asynchronous is very
difficult. For these reasons , the hardware verification process described In this
paper will be based on a non-procedurai register transfer language.

2.2 Non-procedural register transfer languages

The most popular non-procedural register transfer language is called the
Computer Design Language, or CDI (17,18,19 ,20,21]. This popularity Is largely

• due to fact that CDL translators and sImulators have been made available to the
university community. Below is a CDL description of a stored program computer.
First come the declarations whIch specify the names of all of the registers,
switches , and cIrcuit nodes.

Register , PC(O-11), Sprogram counter
IR(8-15), Sinstruction register
ACC(8-15), Saccumu lator
ADR(B-11), Saddress register
CYCLE(l-I), Scontrol register
6, Srun /halt flag

Subregister , IR(OP)=IR(8-3), Sopcode part of IR
IR(MA):R(4-15), Saddress part of’ IR

Memory, M(ADR):M(8-4095,8-15), Smemory and address register

Decoder, C(8-3)=CYCLE , , . Sdecode control register
I(8-15):IR(OP), $decode Instruction opcode

Term inal , STOP:C(O), Sha lt  state
FETCH:C(1I, Sinstruction fetch

- EX~C(2) , Sinstruction execute
LD=I (8), Sload accumulator
ST:I(1), Sstore accumulator
CIA~I(2), Sclear accumulator
ADD~I(3), $add ins t ruc t ion
SUB~I(4), Ssubtract ins t ruc t i on
JMP~I(5), Sjump command



----- S —— — ,- -_
‘--5_S—.---- - .-— • - 

~~~~~~~~~~~~~~~~ 
- - - —--V - -

~~~ 
—

~~
- 

—

DESiGN AUTOMATION LANGUAGES 7

Sw i tch , RIJN(ON ) , Srun button
HALT(ON) , Shalt button

Clock , T(1-2), Stwo-phase clock

Register declarations define the size and bit ordering (msb-isb) for each
register, while subregister declarations permit a group of bits to be given a
special name. The memory declara’ton specifies both the size of a memory and
which register will be used as the address register. Decoders are used to create
a vector in which only one bit Is true, selected by the value of a register. In the
example above, C(0) will be true if CYCLE O, C(1) will be true if CYCLEz1, and so
on. Switch statements provide variables that can be controlled Internally by the
hardware and externally by data supplied to the CDL simulator. Terminal
statement s are used to rename terminals and describe logic networks. The clock
statement can provide multIple clock phases , and In this example clock phases
T( 1) and T(2) will be repeated continuously.

There are also CDL declarations that permit several operations to be grouped
Into a block, creating a sort of subroutine/macro facility. Some of the
declarations, such as subreglsters and terminals, are not absolutely necessary.
The same logic could be described by using subscripts and the original terminal
names in the logIc descriptIon. However , these declarations do tend to make the
description easier to understand. Below are the statements describing the actual
operations of a computer using the clocks and registers declared previously.

Comment , run and halt control s.
/RUN(ON)/ Gs- 1,
/ H A L T ( O N ) /
/ ST O P*T (2 ) /  IF (G=1) THEN (CYCLEs-i), -

/EX *T(2) /  IF (6=8) THEN (CYCLEs-$ ) ELSE (CYCLE s- i),

Comment , instruction and operand addressing.
/FETCH *T( i)/  ADRS-PC ,
/ FETCH*T(2) I IR.-M( ADR), CYCLE~-2 , PCs-countup PC,
IEX *T( l)/ ADR.-IR(MA),

Comment , instruction execution .
/ LD* EX*T(2)/  ACC .-M(ADR),
/ ST * EX*T (2) /  M(AOR ).—ACC ,
/CLA*EX*T( 2)l ACCs-8,
IADD *EX *T(2)/ As-A add M(ADR),

• / SUB*EX*T(2)/ As-A sub M(A DR),
IJMP*EX *T(2) / PC -IR(MA),

End

The expression enclosed In slashes Is a conditional expression where the “*“

should be Interpreted as a logical AND. Most statements contain one or more
terminals and a clock phase. If all of the terminals are true, then the operation
Indicated will occur at the specified time. Although they make the description

_ _••i .

~

7

~

_ - - 5 —  
~~~~~~~

-
~~ -- --— —- —.S---• - - - -SS- -_-5—--~~---S

r
-

- _

8 DESIGN AUTOMATION LANGUAGES

more readable, the IF-THEN and IF-THEN-ELSE statements are not really needed.
The same effects could be obtained by modifying the conditional expressions to
include the Information In the IF clauses. ArithmetIc and logical operations are
performed by predefined functions such as “shr” (shift right), “countup” and the

like.
I

Although the specific syn tax of declara tions and statements may vary,
virtually all non-procedural register transfer languages share the concept of
permitting a conditional label to be attached to each statement. Obviously a non-
procedural hardware description is more detailed than a procedural one. At the
same time. algorithms become far less readable. Macro-like features can be
provided, but true subroutines cannot because going to a routine and returning
are sequential events. Parallelism is not a problem since any number of
statements can be executed at the same time. CDL Is good for describing
synchronous logic but cannot be used for asynchronous circuits.

The Asynchronous Circuit Design Language, or ACOL (10], permits transItions
such as X-8 or X-.i in the conditional expressions. This means that events can be
described as happening on the negative or positive edge of signal transitions.
ACDL is a state machine language which uses these transitions to change states.
For the purpose of hardware verification we will develop a language sImilar to CDL
that also allows transition information In the conditIonal expressions.

a

- ~~~~ • . ~~~~~~~~~~~ •

-

- 9

3. HARDWARE VERIFICATION LANGUAGE

Since the purpose of this paper is to discuss hardware verification techniques
and not to create yet another elegant design language, the language presented
here is extremely simple. Such luxuries as macros and complex operators are not
Included at this time. As with most register transfer languages, the actual syntax
Is largely a function of the keyboard available to the author. A BNF description of
this language will be found In Appendix A.

3.1 Basic syntax

To begin with, there are no declarations. Hardware verification Involves
checking a higher level description of a device against a lower level description
of the same device. in a sense, the hIgher level desc ription can be thought of as
providing the register declarations for the lower level description. In other
computer design languages register declarations are used to allocate storage
space for simulation. This Is not necessary here because we are not going to
simulate the logic. Subregisters and memories can be Indicated by using
subscripts in the actual statements. Clock declarations are not needed since any
variable can be used as a clock. Every statement will be in one of the two forms
shown below. The conditional expressIon Is optional and will not be needed when
describing combInational devices.

vari able .. expression ;

/condlt lons/ variable s- expression ;

3.2 Variables and constants

A variable name must begin with a letter and can contain letters, digits, single
quotes, and underscores. The name can be any length. Variables may also have
one or two subscripts enclosed In square brackets. If there are two subscrIpts,
they are separated by a comma. The first subscript Is a bit number and can be a
constant, two constants separated by a colon, or an expression. The second
subscript is a memory location and may be a constant or an expression.
Additionally, variables can be joined using the “&“ (concatenation) operator.
Some examples of variables are shown below.

X 123’
PROGRAM....COUNTER

• - ACC(3]
INDEX(8: 15]
REG 1(BIT(8 :3]]
MEMORY(8: l5 ,PC(8: 15]+BASE .REG[8: 15]]
A(8]&B(2 :5)

-
--S•—.~~~~ - _________

__________________________ __________________________ S - -

• 10 HARDWAR E VERIFICATION LANGUAGE

For the time being constants are In decimal. Binary constants can be written as
ones and zeroes concatenated together.

3.3 Expressions and operators

Expressions can consist of variables, constants, and other expressions Joined
by various logical and arithmetic operators. The result of an expression can be
one bit or a vector of bits. Below is a list of the operators In order of their
precedence. Parentheses can be used to alter precedence, and operations of
equal precedence are evaluated from left to right.

-. logical complement
t 4 transitions (conditional exo. only)
& concatenation
+ - arithmetic operations

� > < � � arithmetic relations
A logical and
v • - logical or/exclusive or

Conditional expressions are similar to other expressions except that they
must have a one-bit (true /false) result. This means that conditional expressions
can have the above operations (except concatenation) performed on one-bit
operand s. and may Include arithmetic relations when comparing bit vectors.

The transition operators are “t” (8.1 transition) and “4” (1.0 transItion).
These - can only be used in conditional expressions, and must only be applied to
one-bit operands or subexpressions. it Is Important to avoid constructs such as
“-it” and “-,4 ” except to indicate feedback states In which the variable does not
change. Otherwise it would imply that state changes can happen as a result of a
transition not occuring. A basic assumption in hardware verification is that events
are caused by other events, and It is unclear how we should handle events that
are the result of non-events.

/ -~t X/ As-A ; (OK - indicates feedback)

/-tX/ As-Y; (not acceptabl e)

There Is a special mets operator designated by the “a” character. it is used
In conjunction with subscript expressIons to mean all values not equal to that
expression. In other words, the expression

-
: A[*B(8:7]J

might be used to indicate all of the bits in register A except the one pointed to
• by the value In register B. The reasons for having this operator, and some spec ial

rules for how to use It, are discussed in the section of feedback.

•1

• - 5 _~_ - 5~~~~~~~ —- - - — --—

-~~~~~~~~~~~ ---- -~~~~~- ~~- -~~~~~~--5-~~~~ --~~~~~~

HARDWARE VERIFIC ATION LANGUAGE 11

3.4 La nguage examples

Here are some examples of statements In the hardware verifIcation language.
Parentheses are added for clarIty In some places where the precedence of
operations would have done the correct thing. Note that some logical operations,
such as shifts and rotates, can be accomplished thru subscript manipulation and
do not require special operators. The first three examples represent very simple
gates and flIp-flops, while the other examples are what might be found In
computer descriptions or 151 component specifications.

As--,(BAC) ; (c ombinational)

ICLK/ Qs-D; (asynchronous)
/- .CLK/ Qs-Q ;

/4CIJC / Q.-(JA.,Q)v(.IKAQ); (synchronous)
I-.4CLK / Q’-Q;
/(OPCODE(8:5] :8&1&8&0)AtT2/ A(8: 15]s-A(1:15]&A(8];
/ (XAtPHA SE 1)v(YA4 PHASE2)/ A(0: 15)&8(8:15)s-B(15]&A(0:15]&B(8: 14];
/FETCHAI(TIAENABLE)/ INSTR[0:15)s-MENORY[e:15,PC(0:I1]];
/tP2v($P3AC LOCIC_ENAB) / ACC(BIT(0 :3])s-A(0)eOVERFIOW ;

-J
-

—~~~~~~ -

______ - - - -

12

4. DEFINITIONS AND AXIOMS

in order to show that a lower level descrIption of a device satisfies some
higher level specification, we must develop ways to manipulate the statements in

• the descriptions. The Identities In this section are those that the author has
found useful In solving specific ~erIfIcatlon problems. This list is by no means
complete, and addItional transformations will have to be invented as more circuits
are analyzed.

In the definitions of vector operations bIt 0 Is the most significant bit,
although t he opposite bit ordering can be implemented just as easily. Note that In
most of these definitions X[i:J] and Y[i:j] are used only to make the notatIon
simpler. These definitions are valid for arbitrary vectors (expl&exp2&...&expn)
whether they are part of the same register or not. Generally speaking, letters
near the end of the alphabet such as X,Y, and Z will be used to denote arbitrary
expressions , including variables. Letters at the beginning of the alphabet, namely
A and B, will indicate variable names only.

Arithmetic operations are generally defined In the context of positive
integers. Other arrangements , such as 2’s complement or signed magnitude, can
be developed from these with some extra logic in the user ’s circuit descriptions.
It is also possible to implement definitions for other types of arithmetic in the
verifier itself.

4.1 Booiean reductions

Switching algebra identities like those shown below can be found in most logic
design texts. The list below is neither exhaustive nor is it minimal. A hardware

• verification program could use these transformations directly In a pattern
matching routine, or it could use some iterative boolean minimization techniques
based on only a few of them. The first few axioms define the basic nature of
AND , OR, and NOT.

T I . -~0 E 1
~1 a 8

T2. Xvi I 1
XAB a 8

T3. Xve a x
X A 1 E X -

14. X v X E X
H X A X E X

T5. .,(-.X) iX

L.. ~~
- - -

~ . - - : • • -

— L . S S ~~~~~~~~~~ • - 5 ~~S~~~~~ —- —-5—

DEFINITIONS AND AXIOMS 13

16. Xv-~X a 1
XA~X E 8

The next few transformations involve combinations of two or more variables.
They can be derived from the identities above by substituting ones and zeros for
the variables.

-

Ti- . XvY a YvX
XAV S VAX

T8. XV (XAY) I X
XA (XvY) I X

19. (Xv-1Y)AY ‘ X,~V
(X A ~Y) v Y I XvY

118. (XvY)vZ • Xv (YvZ)
(XAY) AZ • XA (YAZ)

111. Xi’~(Yv Z) a (XAY)v(XAZ)
Xv(VAZ) a (XvY)A (XvZ)

112. (XvY)A (- ,Xv Z)A (V vZ) a (XvV)~(-.XvZ)(XAY)v(-.X~Z)v(Y AZ) a (Xi~Y)v(-~X#~Z)

113. (XvY)A (~ XvZ) a (X ~Z)v (-~XM’)

114. ~(XvY) a -~XA-~Y
-i(XAY) a ~Xv-,Y

The last Identity, DeMorgan’s law, is valid for expressions of arbitrary length.
However , the two variable version may be easier to implement and can acheive
the same result by being applied repeatedly. It may also be convenient to define
a series of transformatIons for the exclusive-or function.

Xl . (X, Y)v(-,k.’~Y) a X.Y

X2. X.8 a X

X3. X.i I .IX

X4. X . X a 8

X5. X.-X a 1

X6. X•Y I V.X

X7 . (X.Y).Z a X.(Y.Z)

X8. ~(X.Y) a - XCV

I

I’
~

- -
—. L . -.~~~

-——-
~~~~~~~~~~ 

• •



_ _ _ _ _  - -• • --—

14 DEFINiTIONS AND AXIOMS

4.2 Definitions for subscripts and concatenation

Definitions Dl thru 04 can be used to reduce several concatenated variables
Into a sinqle register variable , or vice-versa. The first two are used to change
reaister vatiables with only one or two subscripts into the full three subscript
format. This is to make them compatible with D3 and [14. Another approach would
be to develop Identities like D3 and D4 for each combination of one or two
subscripts. In a hardware verIfication program it woWd probably be easIest to
have the input parser convert registers into the three subscript format
automatically.

Dl .  A l l )  I A [i:i]

02. A (i:~~] a A [i:j,8)

03. A [ i : j , s ]&A(j+ l:k ,s ] a A [ i : k ,s]
where l�J<k

04 . - .A[ i :j , s J &~A[ j +I :k , s) I -iA[ i:k ,s]
where i�J<k

Tue next definition points out that concatenation Is associative, while the
followina three show that penorming a logical operation on vectors (of equal
Iei’igth) and concatenating the result is equivalent to concatenating the vectors
and then performing the logical operation. Keep in mind that these definitions are
valid for arbitrary vectors which do not have to be part of the same register.

05. (X&Y)&Z • X&u Y&Z)

06. (X[i:JJAY[i:j])&(X[ j+1:k]AV[j+l:k)) a Xti:k]AV (i:k)
where 1�j<k

07. (X[i:jJvY[i:j))&(X(J+1:k)vV( j+l:k]) a X (1:k]vV(i:k)
where I�j<k

08. (XE- i :j]•Y[ i :jJ)&(X[j+i:k].V[j+1:k]) I X(i:k].Y[i:k)
where i�j<k

Definitions DO and Dl 0 (decoder) show how to expand a variable with an
expression as a subscript when it is used as the destination in a register
transfer. the definitions are neariy identical, except that 09 is used when the
first subscript is an expression and D10 Is used to expand the second subscript.
If a variable has expressions for both subsc,Ipts we can use DO and then 010 or
vice-versa. It would not be reasonab e to expand a statement Into several
thousand using these definitions , but a theorem prover could use this Information
to determine the status of specitic bits In a register or memory without
generating statements for all possible values of n.

41 

~~~• - - -~~~-—- • --~~~~~~~~~~~~~  ~~~~~ -~~~~~-- 


- .---

- - -~~~~ -
_ _ _

DEFINITIONS AND AXIOMS 15

09. /X/ A[V(i:J),sJ~-Z;
I

/XA(Y[1:j] :n)/ Atn ,s]..Z ;

018. IX/ A(s ,Y(i:J)].-Z;
a

IX A (Y (1 :j] =n) / A(s ,n).-Z ;

Similarly, Dl i and D12 (multiplexor) indicate how to expand a variable wIth an
expr ession as a subscript when that variable Is used as part of an expressIon.
This includes conditional expressions as well as register transfer •xpresalona.
As before, there are versions for the first subscript and the second subscript.

011. A[Y [i: ,j), s] I
(At 8 ,s)A (V(1 :j] :S))v(A[1,s),%(y(j :j]~1))v . .
(A [n ,s]A(Y(i :J) n))
when A[Y[1 :j],s] is used in an expression

012. A (s,Y(1: j]] I
(A[s,8]A(Y(1:j] :8))v(A[s,1)A(Y(1:j J.I))v.,.v
(A(s,n]A (Y[i: J]:n))
when A[s,Y[i:J)) is used in an expression

4.3 DefInitions of arithmetic operators

• In this subsection we have the definitions for the various arithmetic
operations and relations permitted in the language. The first two defInItions are
for the carry operation. Definition Al puts It in terms of ANDs and ORs, while A2
provides a way to combine carries from vectors to determine the carry function
for larger vectors. The second definition will probably find more use since most
adder chips provide carry-In and carry-out pins but take care of their own
Internal carries.

Al. X(l)AV(l]v(X(i]vY(-t])ACI • carry(X[i],Y[i],CJ)
X[l)AY[i]v(X[1)yY[1])Acarry(X(1+hJ],y[i+1:j),cI) a
carry(X(I :j],V[I :J],CI)

A2. carry(X(1:J),Y(i ,J),carry(X[J+I:k),y[J+I ,k),cI) •
carry(X[-i:k],V[-$:k],CI)
wh ere i�J(k

~ _ • t ~ Addition is a fairly sophisticated operation, but becomes much simpler using
the carry functions defined above. It can be specified on a bit by bIt level, as in
A3, or as a concatenation of adders as In A4. Once again, the definition whIch
permits us to concatenate small adder chips into big adders wIiI be the most
useful In real verification problems. The carry-In (Cl) bit Is Included In the

I -

- - —~~~ -~~ - --~~~ -~ r~~— ~~~~~~~~~~~~~~~

rlur
_

~

__
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -

16 DEFINITIONS AND AXIOMS

addition definitions to facilitate workIng with adder chips which usually include
this input.

A3. (X[ 1].V( i].CARRY(X( i+1:J],Y(1+1:J),CI)&
i+1).Y( i+1).CARRV (X( i+2 : j],Y( 1+2: j],CI)&. .

(Xf J].Y[j).CI) • X[1:J]+Y[1:J)+CI

A4 . (X[ i:j)+YfI:jJ+CARRY(X[J+I,k),Y[j+I,k),CI))&
(X[ ,j+1:k]+Y[ j+1 :k]+CI) a X( i:k]+V[i :k]+CI
where 1�j<k

We will also define two special cases of addition, subtraction and increment.
Subtraction can be implemented in either ones-complement or twos-complement,
and the carry-In bit defined above provides an easy way to select which.
Although Increment could be derived from the addition defInition as needed, we
will make it an axiom. This can make some verification problems much shorter
since increment Is a very popular function.

A 5. X[i:J)+-,Y[I:j)+i a X[i:J)-Y[i:J) (for 2’s complement)
X[ i: j)+-,V(1:j) +8 a X (1:j] -Y[ l:j ) ( for l’s complement)

A6. X[ iJs(X[ i+l]A ...AX[j ))&X[ i+1)C(X[i+2 ]A...AX[S))&.. .&- 1X (i]
a X[i:jJ+l

Next  come the arithmetic relations. Only equal-to and greater-than are
defined in detail because the others can be defined In terms of these two. Single
bit comparisons for these are shown in A7 and Al 1, while bit by bit comparisons
are provided in A8 and Ai2. The definitions in A9 and A13 show how individual
comparator chips can be connected to form larger comparators.

A7 . ~X[1 ].V(i] a X [i]~Y[ l ]

AB. (X[i]:V (i])A(X(i+l] V(i+1])A...A(X(j]~V[j]) a X(1:j]:Y(i:j]

A9 . (X[ i : j )=V (i :j ] )A (X ( j+1:k]~Y[j+1:k)) a X(1:k] Y(i:k]
where 1�j<k

A lO . - i(X[i: j) V( i : j) )  a X[ I:j] *V( i:j]

All. X(1)A~Y[i] a X[I )>V[i)

A 12. (X[ i] >Y( 1])v ((X[ i]:V( 1])AX( 1+1)>Vf 1+1])V. ..V
((X[ i:j-I]:Y[i:J—1))AX[J)>Y[i]) • Xfi :j )>V[ 1:J]

A 13. (X [1:J)>Y(i:J))v((X(1:J) IY(i:J])AX[J+1:k))Y( i+1:k])
-

- 
- 

a X(i:k))Y( i:k)
where 1�J(k

-‘-5- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~~~



-
~

DEFINITIONS AND AXIOMS 17

A 14. V (1:J])X(i:J] • X[i:J)<Y[i:J]

A 15. .
~(X[ 1 :J]>Y (I:j]) • X(i:j) �V(i:j]

A 16. -i(Y( I:j]>X[ 1:J]) I X[ 1:j]�Y(l:j]

4.4 Miscellaneous transformations

There are several transformations that permit us to combine statements or
expand one statement Into several others. We will consIder these to be
“common-sense ” axioms. The first axiom changes statements that do not have a
conditional part Into one where the conditions are always true. This Is so they
can be used wIth the other axioms in this section. It could be invoked

• automatically by the verifier’s Input parser. Axiom M2 lets us substitute the
expression part of a combinational statement for the variable when that variable
appears in other statements.

Ml. A.-Y ; a Il l  A.-V ;

112. /1/ A ’Y;  ~ (A I Y)

Axiom M3 allows two statements affecting the same variable to be combined,
provided that their conditional expressions are identical except for one
subexpresslon. This subexpresslon must be complemented In one statement and
uncomplemented in the other. The next axiom, M4 , shows how any variable or -

expression can be moved out of the register transfer part. This is done by
creating two new statements , one showing what would happen if that variable
were one and the other showing what would happen If it were zero. Axiom M5
allows us to divide statements having a logical OR in the conditional part into two
separate statements , or to combine two statements with the same register
transfer part. Similarly, M6 can be used to combine statements with the same
conditional expression or to divide a statement Involving vectors into two or more
stat ements.

113. /WA-’X / As-f;
/WA X/ As-Z ;

a
IW/ As-(-~XAV )v(XAZ);

114. IX, As-.. .Y...-;
a

/X, ‘(I A.-~..l...;IXA-tVI As- ...ø...;

-- — - - — - - --. - -
~~~~~~~~~ 

— - ---
~---- - ~~~~~

Fr-.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~

‘-- - --- —.-------------——-- --- — -~~- - - -~~~~—~~~

18 DEFINITIONS AN D AXIOMS

115. /XvY/ As-Z ;
a

IXI A’-Z ;
/Y/ As-i;

• 116. IXI As-Y; (note : A and Y must be the same
/X/ Bs-Z ; length, same for B and Z)

• I
/X/’ A&B~-Y&Z;

• The next two transformations state that If a certain variable or subexpression
appears in both the conditional expression and the register transfer expression,
then it may be possible to determine what its value will be when that event
occurs. Axiom MO Is similar except that another statement affected by the same

• - conditions can control the value of a variable in the register transfer expression.
Since there is the possibility of a critical race under some circumstances these
should be used very carefully.

117. IXI A’-.. .Y...;
and (X~Y)

I
IX!

118. IXI As- . .-~Y . . . ;
and (X~Y)

-

a

P19. IX 1 As- .. .B...;
IYI B’-Z ;
and (X~Y)

IX/ As-...Z...;

Ax iom Mi 0 can be used to Introduce arbitrary expressions into the conditional
part of a statement. This axiom will normally be used to convert statements Into
a form that can be used elsewhere. Finally, axiom Ml 1 can be used when a
variable appears ANDed with an expression that can control Its value. It comes in

— two flavors, complemented and uhcomplemented.

1118. IX/ A’-Z ;

/XAY/ A’-Z ;

Pil l. /X/ As-Y;
,~~~X A A I X A Y ;

X~-A a

4 -

Ii

•
~~~~~ -i~ ~~~~~~~~~~~~~~~~~~~~~~~~~ • 

~~~~~~ -


- -- -—- -~~
— ~~~ - • ~~-- - - •~ •-~~~-.-‘-- - - -• • - - - T

19

5. FEEDBACK
-

-

A major problem with describing components in the language used here is how
to separate feedback from don’t cares. Most component descriptions will not
contain every possible combination of conditional expres sions. Those undefined
conditions can either be considered don’t cares , In which the state of the device
may change in some random manner, or feedback states in which the component’s
state variables do not change. Obviously it Is necessary to different iate
between the two.

5.1 ImplicIt feedback

ThIs subsection represents something of a digression because, after exploring
the possibilities of making feedback implicit , the author decided to use explicit
feedback for the proofs in this paper. Nevertheless, it may be reasonable to
implement some of these Ideas depending on the structure of the proof checker
being used.

If feedback is to be Implicit, then statements must be added to a circuit
description to specify when a varIable can enter a “don’t care ” state. This can
become very messy when using a component having several undefined
operations. In a microprocessor , for example , statements such as

/ (0PC00E(8:7]~” l8O)AtT l f ACC [8:7)’- don’t care ;
/(OPCODE(O:7]: 188)AtTl/ X[8:7]s- don’t care;

• /(OPCODE(8:7]:”188)AtTl/ Y[8:7)s- don’t care;
/(OPCOOE[8:7]:”180)AtTl/ PC[8:15]’- don’t care;

will have to be added for each undefined opcode. Some of thl~ : might be
circumvented by developing meta operators to cover large numbers of undefined
operations.

On the other hand, using implicit feedback means that a component will not -

change state un less specif ically change d by som e statement. Statements of the
fo rm -

/X/ As-A ;

/ - , tX I A’-A ;

are not needed In component descriptions. This Is especially convenient when
defining registers and memories, If one is writting data Into a memory It will not
be necessary to show that locations other than the one being addressed remain
unchanged. -

rT - -

~~~~~~~

--— -

~~

•— 

~~

--- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

20 - FEEDBACK

• Since unspecified conditions imply that the system will not change state,
• statements with explIcIt feedback can be discarded from a logic descrIptIon.

Here are three transformations in which statements are completely eliminated:

• - IX/ As-A; a n u l l (1)

IXAAI As-i ; a null (2)

!XA-.A/ A’-9; a null - (3)

The first one permits us to remove a statement with explicit feedback because
the langmiaqe assumes that the variable will remain the same unless explicitly
altered. The other two statement types can be removed because they don’t do
anything. in the second example the variable must already be one in order for It
to be set to one. The third example is similar to the second and shows a case
where a variable must be zero in order to be set to zero.

We can also derive some general rules for removing the variable being
changed from the conditional expression. To do this we first need the following
identities:

/XAA/ A’-ø ; £ /X! A.-8; (4)

IXi’.-,AI As-i; a /X/ As-i; (5)

The left side of (4) says that if the expression Is true and the variable Is true,
then the variable goes to zero. If the variable Is already zero, then It will remain
that way. Therefore, whenever -the expression is true, the variable will be zero.
Identity (5) uses similar reasoning. Using these transformations we can now -

derive the following general rules:

• /XAA/ As-Y ; • /XA -iY/ As-B ; (6)

/Xi~-~A/ As-Y ; a /XAY/ As- i; (7)

The derivation for theorem (6) is shown below, and theorem (7) can be aerived In
exactly the same way with certain variables complemented.

/XAA/ As-Y; given

IXAMY/ As- i; 114
/XAA.A-,Y/ A’-O;

/X,M-~YI A.-8; other statement eliminated
—

- usIng (2)

/XA -sY/ As-8 ; (4)

- --~--~- • -~-•,~~- -~- •

- _ _ _ _ _ _

FEEDBACK 21

It is apparent that implicit feedback can provide some fairly compact
component descriptions and that transformations (1-7) make It easy to simplify
some statements. Unfortunately, when proving the correctness of a cIrcu it It may
be necessary to show that a given variable does not change state under certain
circumstances. Using implicit feedback this would amount to checking all of the
statements involving that variable to make sure none of them can cause a
change. With many proof checkers, Including the FOl system discussed- In this
paper, It is much easier to make feedback explicit and then verify statements
like -

IX! As-A;
-

the same way other re gister transfers are verified. For this reason we wIll use
explicit feedback for the remainder of this paper.

5.2 Axioms for explicit feedback

By using explicit feedback the problem of specifyIng don’t care conditions is
immediately eliminated. Army set of conditions not accounted for in a component
description corresponds to a don ’t ca re state. On the other hand , some
component descriptions may become somewhat longer since statements must be
added to indicate condItions under which the state of a variable does not change.

The only major problem is in specifying registers and memories , in which large
numbers of variables remain Unchanged. To solve this we have the mets operator
“ * “ , which Is used to indicate all locations other than the addressed location.
Using this, a typical random access memory might be defined as follows:

IWRITEI MEM0RY (O:7,ADDR [O : ll)]s-DATA(O:7];
/-1WRITE/ MEM0RY[B:7,AI3DR(8:l1]]’-l1EM0RY~O:7 ,ADDR[8: 11]];
MEMORY[B :7,*ADDR[e :ll])s-MEMORV (O:7,*ADDR [B:ll)];

This would mean that the unaddressed locations represent feedback conditions
whether the memory is being read or written. To completely formalize the notion
of the “*“ operator we need a few more axioms. Axioms Fl and F2 permit all of
the uneddressed bits to be set to the same expression, while F3 and F4 have the
unaddressed bits remaining at their current value.

Fl. IX/ A[*Y[i:j],sJs-Z;
£

/XA(Yfi:j]l’n)/ A [n,s]s-Z;

F2. /X/ A [s ,*Y[1:J]]s-Z ;
a

/XA(Y[1:j)�n)! A[s ,n)s-Z ;

—~~~ -—— - - ~~-- - -5- - -~~~ —- --~~~-~~~-~~~~-

~

_ _

22 FEEDBACK

F3. /X! A(eY[1:J],s]s-A(*Y(1:.j],s) ;
a

I X t t (Y (i : J) O n) I A1~n,s)-A[n,s];

F4. !X/ A[s ,aY[i:J]3s-A (s,*Y(i:J]] ;
a

/XA (Y[1: J)�n)/ A(s n].-A[s ,n] ;

Admit tedly the “*“ operator is a kiuge designed to solve the problem of
defining memories with explicit feedback. It would be very undesirable to
actually expand a memory into several thousand statements using the above
axioms. They can, however, be set up in a proof checker so that the user can
ask if a given set of locations change or remain the same under specific
circumstances. The “*“ operator should only be used In context shown above, It
Is unclear what we would do with expressions contaIning several “a” terms
combined with logic operators.

- 4 7

••,- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-•—-- - -_- - - - - ---- .

~~

23

6. TRANSITION ALGEBRA

• In this section we will develop some Identities that permit us to study the
effects of signal transitions as they travel thru a circuit. The concept of a
transition algebra was first proposed by Talantsev (58] In 1958. Since then,

• these constructs have been applied to the problem of desIgning cIrcuits using
edge triggered flip-flops (53,54,57].

8.1 Basic axioms

FIgure 6.1 illustrates the nature of the transition operators. The expression
‘tX” refers to that incredibly short period of time during which variable X
changes from 0 to 1, and Is best thought of as a pulse. The fact that constants
do not undergo transitions is illustrated In Ci. Axiom C2 tells us that a signal
cannot be changing from 0 to 1 and from 1 to 0 at the same Instant. It will
simplify things a great deal if we assume that two variables cannot change at
exactly the same time. This assumption Is reflected In axioms C3 and C4. If a
transItion is thought of as a pulse, going from 0 to 1 and back to 0, then It is
possible to think of that pulse as having two transitions associated with It. This
permits us to use axiom C5 to reduce multiple transition operators to just one
(the Innermost).

Cl, t e a e
t i a B• 4 8 1 8

• 4 1 a 0

C2. tXA4X a 8

C3. tXAtY a 8
tXA4Y a 8
4XAtY I 8
4 X A 4 Y I B

-

• C4. tX.tY a tXvtY
tX . 1f  a tX V4Y
4X. ,Y I 4XvtY
4X .4 Y a LXv4Y

C5. ttX I tX
t4X E 4X
LtX a tX
L 4 X I 4 X

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - ~~~~~~~



~~•~~~~-- — -

I

i

(./)
LiJ
-J
ma:
11

D
z

— — 0
H

(I)
— — z

a

H

C-

Iii

(D
— — F-I

1L

xx x 4x f. 4

~ 

—
.-——

- — - --‘--- - -~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_____________________ ___ 
-- - 

=~~~~-- -~z- —-‘--‘~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~

uuu.1UU.”UU’.,

TRANSITION ALGEBRA 25

6.2 Mathematical basis of transitIon algebra

This subsection contains the derivations that permit us to develop transition
functions for switching circuits. To begin with, any variable in a logic function can
be factored out by using Shannon’s expansion theorem (very similar to M4). The -

resulting expression uses two new functions. They are the same as the original
function except that the factored out variable is-set to 1 in one of them and 0 In
the other.

= v x 1f 18 (1)

is f (x 11 x2,...,x~) with x 1:1

IS f(X1.X2,..~ ,Xn) with x1:8

Whenever these two new functions can have complementary values (due to the
values of other variables), a transition In the factored out variable will cause a
transition in the original function. The dIrection of this transition depends on
which of the new functions has the value of 0, which has the value 1, and the
direction of the transition In the variable. The possible ways of obtaIning positive
or negative transitions are shown below.

tf f11 f18tx 1 v f 11f184x 1 (2)

•

-
= fii fiø 4X i v ?11f18tx 1 -

(3)

To find all possible transitions for a given function it Is necessary to develop
expressions like (2) and (3) for every variable in the original function, and OR the
results. in the equations below, the Sigma should be interpreted as a logical OR.

tf (x 1, x2 5 . ., x~) t ~~ f 11?19tx 1 v (4)
1:1

4 f(x 1,x2,...,x~) ~~ v (5)
1=1

_ _ _ _ _ _ _ _ _ _ _ _


~~~~~~~~~~~~~~~ -~~~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • - --- -- - -—

26 TRANSITION ALGEBRA

8.3 TransItions thru combinational circuits

Using (4) and (5) above we could derive transition functions for any
combinational circuit. However, al l we really need are the transition functions for
AND , OR, and INVERT since other circuits can be defined in terms of these three.
The transformations for AND and OR could be stated for arbItrary numbers of
variables, but the same result will be obtained thru repeated application of the
two variable versions. Remember that A and Y can be any expression.

C6. t-.X a 4X
4-,X I ?X

C7. t(XAY) a (tXAY)v(XI~tY)• 4(XAY) a ( 4 X A Y ) v ( X A 4 Y )

C8. t (XvY) a (?X,s,.~y)v(.IXAty)4(XvY) I (4XA -sY)v(iXA4Y)

To show how the above transformations are applied to more complex circuits
• we have two examples. The circuit diagrams are shown in Figure 6.2. The

example in Figure 6.2a is an exclusive-OR function.

t(X.y) = t ( ( X A -’Y )v(- ,X A Y ) )

t ( XA.~Y) A- ~( - ~X A Y)  v .~(X ,~-~Y) ,~t( -,XAY )

(tXA..~Y v XA4Y)A(XV .~Y) v ( sXi ~Y v .~XAtY )A( .~XvY) =

(tXA-~YAX)v (tXA -iY)v(X~4Y)v(XA 4YA-~Y) v

(tXA-~Y)v(XA4Y)v(4XAY)v (-~XAtY)

Notice how terms having the same identifier as a transition variable and a non-
transition variable, such as “?X~YA-,X”, were eliminated by using T8.
Unfortunately, this does not always happen. Watch what happens when we
derive the transition function for the circuit in Figure 6.2b.

V -uXAZ )

t ( XAY) A-i ( ...XA Z) v ?(-~XAl)A-~(XAY)

(‘XAY v XAtY)A(X v -~Z) v (4XAZ v -,XMZ)A(-,X v -~Y)

( t~~ YAX)v (tXA YA-i Z )v(XAtY)v(XAt YA. ,2 )v
( &XA ZA~X)v(4XA ZA-iY)v (- ,XA?Z)v( -iXA? ZA .iY )

( t XA XA Y) v ( tXAYA-. Z )v (XM Y )v( 4XA ..,XAZ )v( 4XA iYAZ )V (.i XAtZ)

-- -rr~:-~ ~~~~~—--------— ~~~~~~~ .... ~~~~~~~~~ -~--
-

-~~~~ -- -~~~-- •~~~~~~~~~~~~~~ ~~~~~~



w_-~ • 
~~~~
—-- --

~~~~~~~
• - - -~~~~~~~-~~~~

Li
0

_ _  

I ”  _ _

• 
(

#L

~)

c:::

~

;*

~~ c”~~~~~~

>- x ax
X ) -  N LIJ

z
0

I—
I-I
(I)

- z
-

. I—

A~~~~~~~~~~~~~~~~~~

w -

9 ‘—4
• 

_ _ _ _ _ _ _  

~- IL

• 3o
L _ 

~~~

I” (X
x ..

4 ‘
~~

I ;

-
- - 4- >.. x

• ~~~~~~
- 0

-

-
- x >-

~ -~ - - - -- --~

28 TRA NSITION ALGEBRA

Elements such as “tXAX...” indicate the possibility of a hazard. It can be shown
(Appendix C) that any circuit having a hazard will have this sort of expression.
The reverse is not true, and terms of this type are still present when the hazards
have been corrected by consensus gates.

Another problem of thIs sort arises when trying to expand a non-transition thru
a combinational circuit. The resulting terms seem to indicate the possibility of a
hazard In a non-transition. We could add some axioms to make these extraneous
terms vanish but it would no longer be true that .1(-,tX) Is equivalent to tX.

-

= .,(tXAY V X1~tY) = (.,tXv -~Y) A (.cXv .s t Y) $

(- t X X) v (- ~tX ~-, t Y)v(.~XA .i Y)v(-~tYA..iY)

6.4 Transitions thru sequential circuits

The last transformation in this group demonstrates how to obtain a transition
at the output of a sequential component. Axiom C9 is easily explained if we think
of a latch like the one in Figure 6.2c, in which the output follows the input as long
as the clock is true. A transition will develop on the output of the latch if the
data input undergoes a transition while the clock Input Is held true4 Another way
to get a transitioti Is for the clock Input to switch to true while lie data inputs
are set to switch the latch to a new state.

-
C9. IX!

‘A a (XAtY)v(-~MYAtX)4A a (XA 4 Y)v(A A -~YAt X)

This becomes even simpler if we want a transition on the output of an edge
-

triggered component like the flip-flop In Figure 6.2d. In this case the Input
changing while the clock Is true does not apply, so we need only consider the

• second part of the expression: the clock going true when the Inputs can cause
an output transition. It is possible to handle this special case wIth another
transformation similar to C9, but the desired results can be obtained using the
id entities we already have. This particular problem was the major reason for
including C5 In the list of axioms.

/txI As-f ; given

tA = (?X ,~t Y)v (t tXAYA .
~A) a C9

(tX AYA -iA)

It should be noted that thl~ is completely consistent with the Idea of
expressing combinational circuits as statements where the conditional expression
is always true.

_ _ _ _ _ _
•

TRANSITION ALGEBRA 29

/1/ As-Y; given

‘A = (1A t Y)v (t IAYA sA) C9

‘V Cl

Other problems can develop if the transition variable being expanded is
controlled by several statements. Generally speaking, the correct approach
would be to apply the transition Identities to each of the statements and then OR
the results together. This Will work unless some of the statements are
contradIctory, which is an error anyway. Contradictory statements are discussed
in the section on error conditions.

6.5 Flip-flop design and modelling

The transformations presented thus far are not sufficient to prove the
correctness of some flip-flop designs. Simple latches such as those in Figure
6.3a and Figure 6.3b are easily verified. On the other hand, edge triggered
devices like the ones In Figure 6.3c and Figure 6.3d cannot be verified using
these methods because they depend on hazards being carefully adjusted to work
correctly. The type-D flip-flop shown in Figure 6.3c, for example , will work
correctly only if the delay thru the first latch Is longer than the delay thru the
inverter connecting the two clock inputs. The manufacturer will bias these delays
to insure correct operation. Additionally, many circuits use capacitance Instead
of feedback to store data. For these reasons we will not attempt to verify the
correctness of flip-flop designs. If a given flip-flop circuit Is known to work
correctly it can be added to the verification scheme as an axiom.

It is important that components be modelled carefully if the proof of
correctness Is to be valid. Some JK master-slave flip-flops, like the one drawn in
Figure 6.3d, have the nasty habit of ones-catching [55,66]. This means that a
short pulse on the J or K input while the clock is high could set or clear the
master latch. This erroneous data would then be transferred to the slave latch
during the clock transition. Many JK flip-flops are designed to eliminate ones-
catchIng. At any rate , when using a JK flip-flop which does exhibit this
cha racter ist ic It should be modelled as two sequential devices. By specifying the
master part as a latch and the slave part as an edge triggered device the overall
behavior can be properly described.

/CAJA-’Q/ X-l ;
ICAKA Q/ X.-O ;
I 4C1 Q - X;
I-~4C/ Qs-Q;

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r~ ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— -

~~~
--- - - -

~~~~~~~~
-- - - —

~~
—

~~~
-
~~

---• • • - • • -
~
--

~~~~~~

ci

0
I ~~~~ 0 1 %

o I ~ I I rL
I I L-

~
—_-

~
j *

o ‘ I 6
~~~ 

u~- 
° 3 °

LNJ
a

-‘ 0
‘-4

o o (I)
I~J0
0~0

~ U

o_
‘—4
-J
IL

N

CI I - u



r — 
_ - - -  •

~~~~~~~~~ 
_

- 31

7. ERROR CONDITIONS

in this sectIon we shall explore a variety of error conditions, such as races,
hazards , and oscillations, that can be detected In the hardware descriptions. It Is
not completely clear how this fits in with the idea of comparing two descriptions
of the same devIce since it is possible to Include error conditions in higher level
system specifications. if the user ’s system description includes a hazard, for
example, then the actual circuit may need to have that hazard for the verifier to

- prove its correctness. Because of this conflict this section will not contain
specific rules for what to do when an error is encountered. It Is mainly Intended
to show under what conditions en error can exist , and why a verifier may have
trouble proving the correctness of some circuits.

7.1 Race and hazard jargon

Now we come to the question of timing. To show correctness It Is not really
necessary to know specific delay times or to make any assumptions on how fast
the device will go. Usually a device built from ECI will go faster than one built
from MOS, but both can be logically correct. Nevertheless , it Is possible to
develop ways to detect timing anomalies such as races and hazards on an
algebraic level wIthout introducing specific delays.

Stat ic and dynamic hazards [61,62,66,66,68,69,70,73,74,75) are logical
conditions under which combinational circuits can produce spurious transitions.
The actual transitions, created by a logic hazard and specific component delays,
are called hazard pulses. Some authors use the term static-i hazard to refer to
a momentary 0 in an output that will normally be 1, and statlc-0 hazard to refer to
a momentary 1 result. A-typical example of a static-i hazard was presented In
the section on transition algebra. The term transient hazard is sometimes used to
refer to a hazard that will not do any damage, while a steady state hazard can
affect the final value of a state variable. A dynamic hazard is a momentary 0 and
a momentary 1 occuring on an output as It changes from one state to the other.
In other words, a dynamic hazard causes three transitions where only one was
expected.

Some papers [59,60,63] have attacked the problem of detec9ng hazard
conditions for specific multiple input changes. Such hazards are often refered to
as M-hazards. These hazards are further divided Into function hazards and logic
hazards. A function hazard is inherent in the definition of the logic, while a logic
hazard may exist In a particular implementation of a circuit which could otherwise
be constructed without hazards. Although the problem of multiple Input hazards
will not be addressed In this paper, the concepts of function and logic hazards
are closely related to the problem of comparing hazardous system specifications
with their Implementation.

,
~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

- , _



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —‘~~---~~~~~ z - - ~~~~ :~~~~~~~~~~~~~~~~
-
~

~ --— — -~~~~ ~~~~~~~~~~~~~

32 ERROR CONDITIONS

An essential hazard [6i ,65,87,69,71,74,76J is a unique set of conditions In
which the transition of an Input variable causes a tranSition In a state variable,
and the comparative delays In these transItions can detsnnins the output of still
another state variable. By Unger’s definition (74] a circuit contains en essential
hazard If the result after one input transition is diff•r•nt than the result after
three input transItions. Essential hazards are not n.cessarily bad, and are
requIred In counting circuits. The circuit delays must be adjusted to make sure
the desired effect is achieved. A sImIlar condition Is a race (64,67,89,74,75],

• except that a race Involves transitions of two state variables. A critical race is a
race that can affect the final state of the circuit (Ilk. a st•.dy state hazard).

Race and hazard terminology will be used somewhat differently in this paper
as a matter of convenience. Since static and dynamic hazards can be thought of
as a “race ” between a variable and its complement (in a combinational circuit),
and an essential hazard can be thought of as a “ race bstw een an Input variable
and a state variable, all of these phe~,omsna will often be ref ered to as races.

• This eliminates the problem of having to determine which variables are state
variables when one of these problems Is detected.

7.2 Race and hazard detection

For purposes of hardware verification we are only Interested in races that can
cause a permanent change in the state of the system arid hazard pulses on the
outputs of a device that can cause a malfunctIon when the circuit Is used In
conjunction with other equipment. Output hazards tend to take care of
themselves. If the output Is from state variable an output hazard will appear as a
race that can affect its final state. If the output is from a combinational circuit -

the hazard will usually show up In the boolean expression for that circuit.

Figure 7.1 a Is a block diagram of a race condition. A transition In variable X
passes thru circuits A and B, whIch might be combinational, sequential, or just
wires. If the flnat state of circuit C can depend on whether path A Is faster than
path B, then we have race condItion. After using the transition theorems on the
circuit the statements describing circuit C will be In terms of the input variable X
and the state variables (if any) of A and B. Races will then be apparent in one of
the following forms:

1. A static-ø hazard in a conditional expression.

I.. .static-8 hazard...! As-X;

• 2. Any static or dynamic hazard in a transition
• variable.

1... ?(statlc hazard)...! As-X;
/ ...‘(statlc hazard)..,/ As-X;
/...t(dynamic hazard)...! As-X;

• I,..1(dynamlc hazard).../ As-X;

— ~~ .. — ~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~ 

• - •



ERROR CONDITiONS 33

3. X or -~X ANDed with tX or LX in the conditional
expression .

I.. .XA tX. . .1 A.-Y ;
I . .  .X i’~4 X . .  .1 Ai-Y ;
I. .- ,XAtX . . .1 A~-Y;
I. .-~X A 4 X.  . .1 A’-Y;

4. X , -,X , tX or LX In the conditional expression
with X or -~X In the register transfer part.

I. .-iX . . .1 A’-.. .X . . .;
I.. tX.. .1 A’-.. .X...;
I . .  LX. ../ A’- .. .X ...;

I...X .../ A’-... -iX. ..;
!. .-~X .  . .1 A’-.. .-‘X...;
I. .tX .  . .1 A’-.. .-~X . . .;

I.. LX...! A’-.. .-1X ...;

Some of these conditions may not mesn disaster. A dynamic hazard in a
conditional expression does not matter If we are merely gating some data into a

• re~ister. On the other hand, if something else can happen on the opposite
• transition, or the register transfer part involves counting or shifting, then It can

be very important.

Although we have freely indicated where static and dynamic hazards can
cause problems, we have not said anything about how to detect them. Static
hazards are well understood, but dynamIc hazards are extremely difficult to

• detect. There are, however , some fairly simple conditions under which static and
• - dynamic hazards cannot exist [65,66,68,69,70,75]. ThIs is not to say that they

necessarily will exist if these conditIons are not met, but these methods are easy
to implement and will probably be adequate for a verification program. A very
simple rule would be to say that hazards cannot exist unless a variable appears

• both complemented and uncomplemented In the same expression.

It should be noted that static hazards In transition expressions will become
apparent when the expression is expanded. This will generate two
subexpressions of the form “tXA X” and “4X~ ,X” (or “4X i~X” and “tXA -.X”).
Ad ding a consensus gate will still produce two subexpresslons of this form, but
they will be In terms of two different variables such as “t YA-,V” and “tZA-~Z” . It
may be possible to develop some specific rules based on this, but for the time
being it is probably easier to expand the minimal transition expression and then

• look for a consensus gate when a possible hazard Is detected. Some results of
expanding transition expressions containing static hazards are shown In Appendix
C.

• When a race Is found a verification program may be able to indicate which
• port ion of the circuit must be faster to insure correct operation. Another 

~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~ • Al


r

~~~~
:-

~~~~~~~~:~~
--

~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • •—~
• • •

34 ERROR CONDITIONS

approach would be to have the user indicate which branch is faster and let the
verifier determine if the circuit Is correct under that assumption. Eventually It
may be possible to lnciude statistical Information on component delays so that

-

hardware verifier can determine the probability of a race or hazard.

7.3 Oscillation

Another tlnuuy anomaly, oscillation, can also be detected thru careful
examination of the circuit ‘ipseription. Oscillation can occur by a variable being
repeatedly complemented or by a continuous bit rotatIon. Figures 7.lb and 7.ic
illustrate circuits where variable 0 W~ be complemented as long as X Is true. The

• only difference between the gate circuit and the latch circuit is that the latch will
remain in some random state after X goes low. Figure 7.ld shows a rotate circuit
that will keep rotating as long as the CIK signal i~ frue.

Although the illustrations show very simple clrcuitS~,- an oscillation can occur
thru arbitrary amounts of combinational and sequential logIc. The only requirement
is that a variable is repeatedly complemented, or that two or n~ re state variables
are exchanged or rotated continuously. In the latter case the ~iarIables can be
complemented any number of times during the rotation. Here is a-~ example of
oscillation involving a few statements:

IX ! A’-B ;
lYl B’-C,\D;
!ZI C’--1A ;

In this example , oscillation can occur only if X,Y,Z, and D are all true at the
-

same time. A simple algorithm for detecting oscillation in a given variable would
be to determine the conditions under which each of the variables In the register
transfer expression are transferred into that variable. Then do the same thing
for each of these variables, and so on until the original variable or its complement
is detected, or until the process terminates. An oscillation will be Indicated
anytime a variable can be continuously complemented, or when a variable Is
rotated (complemented or not) thru at least one other state variable.

This algorithm may not be practical in that it can grow incredibly large trees
and consume lots of computer time, but It is hoped that most branches will be
pruned very quickly. Anytime the process reaches a variable that is controlled by
a transition It can eliminate (I-pat variable as a possible oscillation path. Branches
can also be eliminated when they require conditions that contradIct other

• conditions farther up the tree. Below are two variations on the previous example
in which an oscillation wIll not occur. In the first we have replaced V with IV, and

• in the second oscillation is prevented because X and -.X would both have to be
true at the same time.

_

~

_—- .-—-— --•- - -- •

r’~~~~~ ~
—

~

-——-—

~

—-— - —.
~

-.-—-—

~~

-.•---.-—- —••--.--- - - — - - - - --.-.

~

•---,

~

.-•—

~~

•
- .— ,-- _ .-—--—- •,. ~— ,

• ERROR CONDITIONS 35

IX/ A’-B ;
/4 y/ B’-CAD ;
/2/ C.--,A ;

/X/ A’-B ;
L,XI B’-CAD ;
!Zf C’--’A ;

7,4 Other error conditions

A more obvious problem for a hardware verifier Is that of contradictory
statements. By comparing state ments which can change the value of the same
variable one of three relationships will be discovered. The conditional
expressions can be the same , they can be different but not exclusive, or they
can be exclusIve. An example of each is shown below.

1. IXI A’-Y;
IX! A ’-Z ;

2. /W/
IXI A’-Z ;

3. IVAXI A’-Y ;
IWA-’XI A.-Z ;

The first example is undoubtedly an error since the variable must be set to
t h e results of two different expressions for the same conditions. The second
case will be incorrect only if the cIrcuit using this devIce can cause W and X to
the true at the same time. This sort of problem can be detected by verifying the
still larger circuit in which this device is used. if this larger circuit includes such
thi ngs as an operator ’s console then there is no way to tell If the operator wilt
push the wrong two buttons at the same time. The third condition is not problem,
and can be reduced to a combinational circuit (using M3) If V and W are Identical.

Many types of Integrated cIrcuIt devices permit outputs to be connected
together in a wired-AND or a wired-OR arrangement. An easy way to avoid
getting into problems with contradictory statements on these circuits would be to
Include the appropriate AND or OR function in the hardware description as If there
were additional gates In thp circuit. -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •



F 

—

~~

-

~~~

- - - • - - - -------

~~

----—-- — -

•

a

o

r L k
_ _ _

UJ 1~ !~
-
~~~~~~~~~~ L- J..

• ~~~~~~~x 

_ _  

.

-

~~~~ 
Hh! 1L.~
a

_ _ _

-

I I -

x -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ - -- ---~~~~~~~ ——~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~ .-—- •-—-~~~—-- —


~.~~~~~L -UJ ~~

37

8. MICROPROGAM VERIFICATION -

This section on microprogram verification has been Included for several
reasons. To begin with, there are some interesting similarities between the
problems of microcode verification and hardware verification. A hardware
verification system should be able to handle descrIptions of microprogrammed
devices. Also, it should be possible to interface circuit descriptions In a hardware
verification language to existing microprogram verifiers to determine the
correctness of microprograms for that particular devIce.

8.1 Microprogram vs. program verification

• Although work on program verification has been going on for about ten years,
the specific problem of microprogram verification has only been discussed fairly

• recently. Much of this work was done at IBM using a hypothetical computer
called the S-machine [77 ,78,81,82,83). The S-machine is a very simple stack
machine and problems involving the control structure and timing constraints were
not considered.

The distinction between microprogram verification and program verification Is
often very hazy. One major difference is that microprogram verification concerns
a program for a precisely defined piece of hardware Instead of using generalized

• algebraic language. Details like word length and register structure are very
important in microprogram verification. Additionally, each microprogram Instruction
usually specifies several internal operations that may happen simultaneously.

Microprograms are usually loop free or have very few loops. This makes the
verification problem much simpler than for programs in general. The problem of

• verifying loopfree microcode Is discussed in [85). One other observation is that
the desired operation of a microprogram Is usually described as an algorithm
rather than as a result. In program verification, for example, a sorting program
might be specified by saying that It takes an array of numbers and returns them
in numerical order. A microprogram verification problem, on the other hand, will
usually involve showing that a specific algorithm is followed by a detailed
program. For this reason most microprogram verifiers are based on proving that
each statement in the algorithm description Is satisfied by one or more
microinstructions. For more background on microprogram verifIcation techniques
see [80,82].

— Of particular Interest Is the STRUM (STRUctured Microprogramming language)
system d eveloped at UCLA [84]. This system uses a very popular procedural
register transfer language, ISP (Instruction Set Processor), for describing the
hardware to be microprogrammed. It also uses generalized program verification
techniques rather than methods specifically tailored to microprogram problems.
ThIs means that loops cause fewer problems wIth STRUM than they do with some
other microprogram verifiers.

_ _ _ ~~- -• -

______ —

38 - MICROPROGAM VERIFICATION

8.2 Hardware verification for mlcrocoded devices

Since the hardware verification language described here is non-procedural It
• is also loopfree. Microcoded devices can be specified in several ways. To
• define a circuit that fetches and executes instructions pointed to by a given

register (the program counter) is fairly straightforward. Thus It Is simple to prove
that tile hardware does the correct thing for an unspecified microprogram.

Verifying that a circuit with a specific microprogram Is correct can be handled
In one of two ways. Assuming that the microprogram Is stored in a read-only
memory it Is possible to include the ROM data in the conditional parts of the
overall design specification. This would result in a hardware description with
statements like:

!(PC(O:15) 188ø)AtT8/ A’-X ;
!(PC(8:15]:1O81)AtTO! B’-Y ;
/ (PC[8:15]:1882)AtTØ ! C’-Z ;

Another approach would be to describe the ROM as a combinational circutt in
the higher level specifications. Although very cumbersome, this may make the
hardware description more readable In those cases where the designer Is actually
us ing the ROM In place of several other combinational circuits. Facilities could be
added to a hardware verifier to permit the user to specify the contents of a ROM
as a bit table, combinatIonal equations, or both.

Embedding the microprogram In the hardware description is only practical for
very small control memories since the entire program must be Included In the
higher level description. For larger microprograms it would be much more
reasonable to use other microprogram verification techniques. This would Involve
converting the non-procedural hardware description to a procedural one by
making assertions about sequences of control signals. At the very least it would
be necessary to Indicate that certain clock Inputs change continuously In a

• specific sequence and that the hardware has a well defined mechanism for
determining the next instruction, such as a program counter. Adapting the
hardware language used in this paper to program verification systems would be
an Interesting future project.

• —,--- -
--~~~~--.-~~

—--—— • ~~~~
—.--——-—— -

~ ~
_
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ .~~:—.—-- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ :~~~~

-=•~
•- 

~~~~~


39

9. HARDWARE VERiFICATION USING FOL

In this section we will discuss how the FOL (First Order LogIc) proof checker
[86,87,88,89] can be used to prove the correctness of circuits. FOL Is a manual
proof checker , written in LISP, which permlt~ the user to manipulate assumptions
(component definitions) usIng a set of axioms and some simple commands.

9.1 Syntax modifications

Since the FOL proof checker is designed to work with formal logic it Is
necessary to convert the hardware language Into the format of well-formed
formulas (WFFs). Although the conditional expression can be related to the
register transfer part by a logical implies, FOL has no understanding of
dynamically changing variables. In other words, FOL cannot model register
transfers. The easiest way out is to convert statements in the language used In
this paper to a function of three arguments:

/X/ A.-Y; becomes F(X ,A ,Y)

A ’-Y; becomes F(1 ,A ,Y)

This way the axioms can be applied to these functions, and the results can be
converted back Into the hardware language on output (at the time of this wrltting
the Input conversion was being done manually and the output conversion had
been implemented Inside FOL).

Another minor problem Involves the FOL character set. Certain logical symbols
including A ,v ,-,,a ,= , and ~ have special meanings in FOL. The logical AND operator,

- for instanc e, is used to combine WFFs and is somewhat dIfferent than the bitwlse
AND used In circuit design. To make this more clear we have the FOL

• representation of axiom M6, which requires that the first statement AND the
second statement be true for the result to be valid.

P16. IXI A’-Y ;
IXI B’-Z ;

I
IX! A&B’-Y&Z ;

becomes

AXIOII P16 : Vx a y b z. (F(x ,a ,y)A F(x ,b,z) IF(x ,a&b ,y&z));;

The other logical connectivee have the obvious meanings except for the equals
operator (z). Equals works just like equivalence (.) except that it can be used
for expressions whIle equivalence can only be used with WPFs. Transformation
T7 might look like: •

.

~

-:

~

,

~

. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~ -J~~~~ -~ • - • —


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ •- - -

40 HARDWARE VERIFICATION USING P04.

AXI OPI 17: Vx y. xny~ynx;;

Because the standard logical connectives are already In use, the following
special symbols will be used as boolean connectives when we want a bitwise
operator:

— complement
n and
U or
* equals

The FOL declarations and axioms that will be used in the examples are shown
in Appendix D, and the FOL users manual [89] can explain what the syntax
means. Three special functions have been provided: carry, sub, and suc. The
carry function can be used In component definitions and manipulated by axioms

• such as *2 and A4. Sub is a function that provides a way to handle subscripts.
Only the first subscript Is provided for at this time since the examples do not use
memories.

Q[1] becomes sub( Q, 1,1) 
-

Q[ø:3] becomes sub(Q,8,3)

The successor function suc is attached to the LISP function ADD 1. To Illustrate
its use we have the FOL version of defInItion D3:

AXIO If  03: Yx I j k. sub(x,l ,J)&sub(x ,suc(j),k)~sub(x ,j ,fc); ;

9.2 P01 commands

FOt. has a wealth of very powerful commands, but only a few are actually
used In the examples that follow. How to define AXIOMs has already been amply
Illustrated, but there Is a slight problem with axiom names. When an axiom has
more than one part , like most of the I series and C series, FOL will try to append
the numbers 1, 2, etc. to the axiom name for each of the different versions. This
means that if we try to define both parts of Ti using only this name we wIll get
axioms Ti 1 and T12. This can cause problems If there are other axioms with

• these names. A simple solution is to give the axioms names like T 1A and T1B, as
Is shown in Appendix D.

- 
- • Variable names are declared using the DECLARE command and are set to the

type INDCONST (Individual constant) for signal and register names. The ASSUME
command can be used to input component definitions. Assumptions are really just
like axioms except that axiom names do not appear In the Nat of dependencies

. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ... .•~~~~~~~ -~~ __-&_ -—



F — -

~ 

- -  _______  ____  
__________

HARDWARE VERIF ICATION USING P01 41

for a given proof step. Each proof step has a number or label appearing in
parentheses to the left. The dependencies for each step appear In parentheses
on the right. Assumptions depend on themselves.

The Al (AND introduction) command can combine two WFFs , end wIll often be
used to put two statements together so that MR can be used. Sim ilarly , AE (AND
elimination) can separate two WFFs. One way to generate a copy of an axiom
with the correct variable names substituted Is with the YE (FORALL elimination)
command. Below is an example of this command applied to axiom D3 above.

YE 03 Q 8 1 3; . 
-

gi ves the result

# sub(Q,8,1)&sub(Q,suc( 1 ) ,3)~sub(Q,8,3)

The SIMPLIFY command will cause the “suc(1)” term to be evaluated and
replaced by the number 2. To substitute the right side of the above equation for
the left side In another statement the SUBSIR command is used. The other

• substitution command , SUBST, works the same way except that the left side of
the expression above would be substituted for the right side. SUBSTR and SIJBST
work for both equals and equivalence.

One of the most powerful FOL Instructions Is the TAUT (tautology) command. It
uses a parallel simulation routine to determine if some WFF logically follows from
the axioms and assumptions. The WFF can include other WFFs connected by
logical operators. For our purposes the TAUT command will be used when a YE
produces a step containing an implies connective.

Having to use a YE and a substitute command every time we want to apply an
axiom can become very tiresome. Fortunately, FOL has a REWRITE command that
will apply axioms to expressions automatically. Since REWRITE will only use
axioms In a left to right direction it wIll sometimes be useful to have reversed
copies of some axioms (see T1OB and T1OBR in Appendix D). REWRITE will use
the axioms repeatedly until no more substitutions can be made. For this reason
the REWRITE command cannot be used with axioms like the commutative relation
in Ti. A REWRITE using this axiom will result in an infinite loop.

The LOGICTREE operator can be used to link several axioms together so they
can be used by the REWRITE command. For the examples in the following
sections we will use three axiom sets linked by LOGICTREE (see AppendIx 0).
The REDUCE group will automatically apply axioms Ti thru 18, and to help with the
commutative problem these axioms have been defined in both permutations. The
TRANS group contains most of the clock transition reductions. A CONCATENATE
group has been Included that can reduce concatenated terms just as if simplified

• copies of 03 were applied repeatedly.

• 
- 

The only time FOL is really inconvenIent Is *hen two variables that can be
combined In some way are separated by parentheses or need to be commuted

• 

- 
before they can be reduced. SimplIfying expressions like

H



r 
- -

~ 

-

~~

-—

~~

- -

~~

- ------•--— -— • • • • • • •—-

~~~~~~~

- - - -•——- •-• - • -- ---- - - —-.• - •

42 HARDWARE VERIFICATION USING P04.

(XnY) n— X

can take several steps. It Is possible to work out the transformation once and
then use the VI (FORALL introduction) command to put the quantifiers back In. By
manipulating the axioms that would be used to sImplIfy the expression above and
then usinq V I we can obtain the following:

Vx y. (xny)n~x=8

• This result can then be used with the REWRITE command whenever an expression
of this sort appears. In hardware problems, where there Is a tremendous amount
of redundancy from one bit to the next , this can be a terrific tlmesaver.

• FOL also provides a substantial number of administrative features including
some fairly involved file handling. A backup file of the user’s typed input Is kept
in case t h e system crashes or a terrible error is made that cannot be remedied
by cancelling proof steps. The CANCEL command deletes steps only from the end
of tile proof. Other commands let the user look at specific steps and axioms
already in the proof. To reduce typing there are ways to refer to a specific
expression in a given step. The second expression in step 12?, for example ,
WOUI(I be obtained when the user types 127:#2. The proofs In the following
sections were printed out by the FOL. print routines, which often substituted the
actual expressions where the author only typed in a couple of numbers.

~

-~~~~ - — _ _ _ _ _ _ _ _

~--~~ —----— - - - ---

43

• 10. SYNCHRONOUS COUNTER

As our first example of a circuit being verified by P01 we will use the
synchronous counter shown in Figure 10.1. To make the proof a little simpler we
will use a JK flip-flop that does not exhibit ones-catching. Definitions for the
components used In these examples are In Appindix E. The desired goal Is to
prove the following:

/~CLEAR/ Q[8:3].-8 ; (19)

/CLEARn4CLOCKI Q[8:3]’-Q(8:3]+1; - (39)

/CLEARn-.4CLOCK/ Q(8:3]..Q[8:3]; (4 4)

The number in parentheses on the right Indicates the proof step at which that
result was achieved. The proof is Incredibly straightforward because the circuit
does not do anything complicated with the clock transItIons. Notice how steps
20-23 are used to create a commuted definition for exclusive-or . After working
on the problem for a while the author realized that the exclusive-or terms were
coming out reversed relative to what was needed to fit the Increment axiom. The
problem was solved by cancelling a few steps and then adding steps 20-23. -

Only the final result Is shown here.

:

~

. -

--
-
~ ~~

-•, -
~~~ —- ~~~~~~~~~

—
~~~~~

• --.-
~~~~ - •  ~~~ -— -~~~~~~ -~~~~~~ -

•--
~~

—- -  

~~~
-,
~—- ---— -- ——

~
• -

~~~~~~~

-
- 

_ _  

_ _ _

- I I I

- 
- 

V t  ~H l 1T 7 ”
- 

• 

. 

_ _ _ _ _ _  
, ,h~

• . • - - 
- - - -~- • ~~~~~~~~~~—~--.- — -~~ — ~~~~~~~~~~~~~~~



~ —-‘--- - -~~~~~~~~~ --------~~- — - -—-~ -~ .—~~ — -  ~ - --~~~~-~~~- • -—-~~~~~ --~-—

- SYNCHRONOUS COUNTER 45

*****DECLARE INDCONST CLEAR ,CLOCK ,Q,X.Y;

*****ASSUPIE / .CIEAR/Q(3]’-8 ; ;

1 /~C1EAR /Q(3]s-8 ; (1)

*****ASSIJIIE fC1EARn’CL0Ck/Q(33’(1n~Q(3])u(’1nQ(3]);

2 /CLEARnSCLOCK/Q( 3]. ( In*Q(3))u(*InQ(3)); (2)

*****ASSUPIE /CLEARn..w4CLOCKIQ (3]..Q[3];

3 /CLEAR n...4 CLO CKIQ(3 ) *Q(3) ; (3)

*****ASSEJIIE i...CLEAR/Q(2]*ø;

4 /~CLEAR/Q(2).i; (4)

*****ASSLJME /CLEARn4CL0CK/Q[2).~(Q[3]n.Q[2))u(*Q[3)nQ(2J);

S ICLEAR n4CIOCK/Q(2].-(Q(3]n*Q(2])u(...Q(3]AQ(2]); (5)

*****ASSUME ICLEARn..4C1OCK IQ( 2 ] ’Q(2 ] ;

6 ICLEARnA.4CL0CKIQ (2}t~Q(2] ; (6)

*****ASSIJIIE /—CIEAR/Q(1]’4;

7 /—CLEAR /Q[1J.9; (7) • 
-

*****ASSIJIIE /CLEARn4CIOCKIQ (1)*(Xn..Q[1])u(*XnQ(1]);

8 /CLEARn4CL0CKIQ( 1]*(Xn~Q(1))u(..XnQ(1]); (8)

*****ASS1JIIE ICLEARn’.4CIOCKIQ( 1 ] .Q( 1];
9 /CLEARn—4CLOCK/Q(lj’-Q(l]; (9)

*****ASSIJME I...CLEARIQ(O).8;

10 /~CLEAR /Q[8)4; (10)

****eASSUME / CLEAR n4 CIO CKIQ( 0]. . (Yri... Q( O])u( *YnQ[8]);

11 /CIEARn4CLOCK/Q(0J..(YnwQ(8])u( ’YnQ(83); (11)

¶ *****ASSIJME ICLEARn.’4CLOCK/Q[9].-Q9];

12 /c1EARn.~4cL0CKIQ[0].Q(0]; (12)

*****ASSIJPIE X*Q(2]nQ(3]; ;

13 X..Q(2]nQ(3]; (13)

a**a*ASSUME Y.-(Q(1]aQ(2])riQ(3];

14 Y*(Q(1]nQ(2])n0f3]; (14)



F!~~ ~~~~

-

~

---— —•--—

~~
---

~~~~
-

46 SYNCHRONOUS COUNTER

*****AI (38 7);
-

15 /—CLEAR/Q[0]’-0; A I—ç 1EAR/Q [1] ~0; (7 18)

*****AI (15 4); -

16 (I~ CLEAR /Q[0 J’-0 ; A /—CLEAR/Q[1)8;)A / .~CLEAR /Q[2).-8 ; (4 7 18)

*****AI (16 1);

17 ((I ..CLEARIQ[0)4-0; A /—CLEAR/QC 1]..8;)A IaCIEARIQ(2] .4;)A I.~CLEARI%
Q[3].-e ; (1 4 7 10)

***** REWR IT E 17 BY 1 116);

18 I - . CL EAR/ ((Q[0]& Q[1])& Q[2])&Q[3] . ((O& 0)& 8)& 8 ; (1 4 7 18)

*****REWRITE 18 BY CONCATENATE ;

19 I—CLEAR/Q[e:3J’-((O&O)&O)&O ; (1 4 7 18)

e*e**VE Xl x ,y;

20 ((xn.~y) u (~.xny)):(x.y)

*****VE X6 x,y;
-

21 (xey)=(y.x)

*****SUBSTR 21 IN 20;

22 ((xn~y)u(-xny))=(y•x)

*****VI 22 x y;

23 Vx y.((xn’..y)u(...xny))z(y.x)

***** REWR ITE 2 BY REDUCE ;

24 /CLEARn4CLOCK/Q(3]’-’Q(3]; (2)

***** REWR ITE 5 BY (23);

25 /CLEARn4CL.OCK/Q[2].Q[2).Q(3]; (5)

***** REW RITE 8 BY 1 23);

• :
-

26 /CLEARn4CIOCK/Q[1].-Q(1].X; (8)

***a*VE P12 X ,Q[2JnQ(33;

• 27 X.-Q(2)nQ(3]; ~Xt(Q(2]nQ(3])

*****TAUT X.(Q(2]nQ(3J) 13,27;

28 X= (Q[2]nQ(3)) (13)
q

*a***SUBSTR 28 IN 26;

~—--

--

~~~~

-

~~~~~~~~~ I
SYNCHRONOUS COUNTER 47

29 /C IEA Rn4CLOC K /Q[1J.-Q[1).(Q[2 JnQ(3]); (8 13)

• *****REWRITE 11 BY 1 23);
30 /CLEARn4CLOCK/Q [0]4-Q(8}.Y; (11)

*****VE M2 Y,(Q[lJ nQ[2))nQ(3);

31 Y4-(Q[1]nQ[2])nQ[3J; ~Y~((Q[1]nQ[2J)nQ[3])

*****TAUT Y:((Q(1]nQ[2])nQ(3]) 14,31;

32 Y =((Q [l]nQ(2])nQt3]) (14)

* * * * *SUBSTR 32 IN 30;

• 33 /CLEARn 4CIOCK/Q [8)’-Q[0).((Q[1]nQ[2])nQ[3]); (11 14)

*****AI (33 29);

34 /CLEARn~CLOCK/Q[8].-Q[0].((Q(1)nQ[2])nQ[3]); A ICLEMRn4CLOCK/Q [1]~-Q%
(1J.(Q[2]nQ[3]); (8 11 13 14)

*****AI (34 25);

35 (/CLEARn 4CLOCK/Q[8]’-Q[8]I((Q[1]AQ[2))flQ[3]); A /CLEARn4CLOCK/Q[1)’-%
Q[1).(Q[2)nQ[3]);)A ICIEARn4CIOCK/Q[2)’-Q[2]CQ[3]; (5 8 11 13 14)

*****AI (35 24);

36 ((/CLEAR n4CLOCK/Q[8] .-Q[B]e((Qt1]nQ(2])nQ[3]); A ICLEARnLCIOCKIQ [1]%
‘-Q[1J.(Q~2JnQ[3)) ;)A /CLEARn4CLOCKIQ[2] ’-Q[2].Q[3];)A /CLEARn4CLOCK/Q%
[3]’- ..Q [3} ; (2 5 8 11 13 14)

*****RE WRJJE 36 BY (P1 6) ;

37 /CLEARn4CLOCK/((Q[8]&Q[1])&Q[2))&Q[3]4-(((Q[8]•((Q[1]flQt2])rIQt3)))&%
(Q[1].(Q[2] nQ[3])))& (Q [2].Q[3]))&’~Q[3]; (2 5 8 11 13 14)

*****REWRITE 37 BY (A6);
38 /CLEARn4CLOCK/((Q[0)&Q[1])&Q[2])&Q(3]’-(((Q[O]&Q(1])&Q[2])&Q (3))+1 ;%

(2 5 8 11 13 14)

*****REWRITE 38 BY CONCATENATE ;

39 ICIEARn4CLOCKIQ [0:3)’-Qf8:33+1; (2 5 8 11 13 14)

*****A I (12 9) ;

40 /CLEAR n...LCIOCK /Q[0]’Q(8]; A ICLEARn’4CLOCK/Q[1]’-Q[1]; (9 12)

* * * * *A I (40 6) ;

41 (/CLEARn. 4CIOCK/Q[0].Q(8]; A /CIEARn—4CLOCK/Q (1)-Q(1];)A ICLEARn-.%
• 4CLOCK /Q[2].Q(2]; (6 9 12)

* * * * *AI (‘ 1 3);

• ~~~~~ _—~~~~~~~-
- _ ----‘~

- _!:___.___ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
- • ~~~

-.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - -— • - --. 
~~~
—---- —

~~~~~~~~~~~~~~~~~ - -

48 SYNCHRONOUS COUNTER

42 ( (  /CLEA Rn~ sCLOCK /Q[ 8 )—Q(8); A /CLEARn.dCLOCK/Q [1].Q[1]; )A /CLEARn%
—4 C LOC K/Q[2 } ’ - Q[2]; )A ICLEARn—4CLOCKIQ [ 3)..Q(3]; (3 6 9 12)

*****REWRI1E 42 BY ( 116);

43 /CLiARn -~4CLOCK/( (Q[0 J&Q[ 1 ])&Q(2 J)&Q[3 ) ’ ( (Q[8)&Q( 1 ])&Q[ 2 J)&Q[3]; %
(3 6 9 12)

*****R [WRJJE 43 BY CONCATENATE ;
- 44 /CL EARn - 4CLOCK/Q[8:3)’-Q[0:3]; (3 6 9 12)

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~•--•~~~~~~~-~~~~~~~~ -~~~~~~~~~ -~~~~~~~~~~
-— - —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—- .•


r~ ~~~
--.

~~~~
-- .

49

11. RIPPLE COUNTER

The next verification example will be the binary ripple counter shown In Figure
11.1. The desired goal is the same as for the last example:

/...CLEAR/ Q[0:3]’-8; (17)

/CLEAR n4CLOCK/ Q(8:3)’-Q(8:3]+1; (96 )

• /CLEARn...4CLOCK / Q(8:3).~Q(8 :3];  ( 1 8 1 )

Although the circuit Is simpler than the synchronous counter In terms of wires
• and components, the proof Is much more complicated. ThIs Is because transition

expressions for the first 3 bits must be determined and then substituted Into the
original assumptions. Many of the steps involve moving variables and
parentheses around so that conditional expressions can be simplified. Quantifiers
are used to a great advantage In this proof. Steps 26-33, for example, creat e a
special version of transition axiom C9 that can be used for edge-triggered toggle
devices with a clear Input.

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~ •~~~

r~ —-
~~~~~~~~ 

—-V 
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

I-’

•

a
S

II S

- -

I-’ Lii
z

• r
a ri .. 0

U

S U S ~~~~l±, ILl
-J0~.-&‘-a

-H

~~~~~~~~~~~~~~~~~~~~ 

In 
I 

:

k

_ ;~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -----~~~--- -- ~~— - - — ~~-



RIPPLE COUNTER 51

***** DECLAR E INDCONST CLEAR ,CLOCK ,Q;

*****ASSUME /—CIEAR/Q (3).-8;

1 /~ CLEAR/Q( 3 ]’-0 ; (1)

*****ASSIJPIE /CLEARn4CIOCK/ (3]4(lrim.Q[33)u(vlnQ(3]); ;

2 /CLEARn4CLOCK/Q [3)( 1n’.Q(3])u(~’1nQ[3]); (2)

*****ASSEJIIE /CLEARn—4CLOCK /Q[33.Q(3];

3 /CLEARn—’CIOCK/Q [3] Q(33; (3)

*****ASSIJfIE / CLEAR/Q(2]’8;

4 / ...CLEAR/Q(2].0; (4)

• *****ASSIJME /CLEARn~Q(3]/Q( 2 ].(1n~’Q[2])u(’~.InQ[2));

5 /CLEAR n4Q[3)/Q[23.(1n~Q[2])u(w1nQ(2]) ; (5)

* * * * *A5S IJPIE ICLEARn-.w4Q[3)/Q[2)’.Q[2);

6 /CLEARn’4Q[33/Q[2]’-Q[23; (6)

*****ASSUME / .CLEAR/Qt 1)’-O ;

7 /~.CLEARIQ[ 1]’-8; (7)

*****ASSUPIE /CLEARn4Qt2]/Q( 1]’-(1n.~Q(1])u(..’1nQ(1]);

8 / C 1EARn 4 Q(2]I Q( 1) ’-(1n~Q(1 ] ) u ( . ’ 1nQ( 1 ] );  (8) •

*****ASSUME /CLEARn~dQ(2]/Q(1]~-Q(1];

9 ICLEARn ’4Q(2]IQ (1] Q(1]; (9)

*****ASSIJPIE /s. CLEARIQ( 0 ] ’8;  ;

10 /— CLEAR/Q( 0 ].-8; (18) •

*****ASSLJPIE ICIEARn4 Q(1]/Q( 8 ] .- (ln ’..Q ( 8] ) u ( w l n Q ( 8 ] ) ;  ; .

11 /CLEAR n I Q( 1 ) IQ (8 ] ’ ( l n ” Q( 0] )u ( . . l n Q (8] ) ;  (11) - 1

• *****ASSUPIE ICLEAR n.dQ(1]IQ(0].-Q[0];

12 /CLEARn—.4Q(l]/Q(8)Q(8]; (12)

*****AI (18 7); -

~~ 
13 /—CLEARIQ( 8 ]’O; A IwCLEAR/Q (1)4 ; (7 10) -

*****A I (13 4);

14 ( I— CIEARIQ (8] ’8;  A f’..CLEAR/Q(1]’4; )A /‘CLEAR/Q(2}..~ ; (4 7 18)

— —-.t 
-
~~T~ _____ 

—



52 RIPPLE COUNTER

* * * * *A j  (14 1);

15 ( (  I.- CLEAR/Q( 8 ] ’-O ; A I...CIEAR/Q[ 1] ’4 ; )A /wCLEAR/Q(2)’I; )A /wCLEAR/%
Q[3].-8; (1 4 7 18)

***** REWR ITE 15 BY ( P16);

16 /~CLEAR /((Q[ 8J&Q[1])&Q[2J)&Q(3].((0&0 )&8)&8; (1 4 7 18)

***** REWR ITE 16 BY CONCATENATE ;

17 /~CLEAR/Q(0:3).-( (0&0 )&8)&8 ; (1 4 7 10)

*****YE XI x ,y;

18 ( (~ n..y)u(~ Xny)):(X.y )

*****VE X6 x ,y;

19 (xey) (y.x)

*****SIJBSTR 19 IN 18;

20 ( ( x n -y ) u ( — x n y ) ) (y.x )

*****V I 28 x y;

21 Vx y .( (xn~y)u( .xny)):(y.x )

***** REWR ITE 2 BY REDUCE ;

22 /CIEARn4CLOCK/Q( 3)4-WQ[3); (2)

**ee*REWR ITE 5 BY REDUCE ;

23 /CLEARn4Q[3]/Q[ 2 ].-~.Q(2); (5)

*****REWR ITE 8 BY REDUCE ;

24 /C1EARn4Q[2)IQ[ 1].-.~Q( 1]; (8)

*****REWRIT( 11 BY REDUCE ;

25 /CLEARn4Q[1]IQ[83-sQ(8]; (11)

*****VE T1OBR x ,x ,y;

26 (x n (x ny ) )~((xnx)ny)

*****REWR IT E 26 BY REDUCE ;

27 (xn(xny)) :(xny )

*****VE C9B CIEARn4x ,a,-a;

28 /CLEARn4x/a.wa ; ~4a=(((CLEARn4x)n4s.a)U((an ’a)flt(CLEARn4X)))

*****REWRITE 28 bY REDUCEuTRANSu( TlIB,27) ;

~~~ ~~~~~~~~~~~~~~~~~~~~~~


r~~~
r

- RIPPLE COUNTER 53

29 /CLEARn4x/a.~ a; ~4as(an(CLEARn4x))

*****VE 176 a,CLEARn4x;

38 (an (CLEARn4x)):((CLEARnIx)na)

*****SU BSTR 30 IN 29;

• fC1EARn4x/a .~ a ; ~4a=((CLEAR n4x)na) -

***** REWRIT E 31 BY I T 1BB);

32 /CLEARn4x/a’wa ; ~4a~(CLEARn (4xna))

*****VI 32 x - a ;

33 Vx a.(ICIEARn 4x/a ’-—a ; ~4a=(CLEARn(4xna)))

*****VE 33 C LOCK ,Q(3);

• 34 ICLEARn4CLOCK/Q(3].~Q(3]; D4Q(33:(CLEARn(4CLOCKnQ(3]))
•

*****TA UT 4 Q[3]~ (CLEARn(4CLOCK nQ(3))) 22 ,34;

35 &Q (3J~(CLEARn(4CLOCKnQ[3])) (2)

*****VE 33 Q[3),Q[2];

36 ICLEARn4Q[3)/Q[2]~wQ (2); ~4Q [2]~(C1EARn(IQ(3]nQ(2]))

***e*TAUT 4Q[2]:(CLEARn(4Q[3]nQ(2])) 23,36;

37 4Q(2]~(CLEARn($Q(3)nQ(2])) (5)

*****SUBSTR 35 IN 37;

38 4Q[2)~(C1EARn((CLEARn(4C10CKnQ[3]))nQ[2])) (2 5)

***** REWRJTE 38 BY REDUCEu (1186 ,27);

39 4Q[2J~(CLEARn (4CLOCkn(Q[3]nQ[2J))) (2 5)

****eVE 33 Q(2),Q[1];

40 /CLEARniQ[2]/Q[1).~ Q(1]; ~8Q[1fr (CLEARn(4Q(2]nQ(1)))

***** TAUT 4Q(1]~(CLEA Rn(4 Q(2]nQ(1])) 24 ,40;

41 4Q[1):(CLEARn(IQ[2]nQ[l))) (8)

*****SUBSTR 39 IN 41;

42 LQ[1)=(CLEARn((CLEARn(4CLOCKA(QE3]flQ[2])))AQ[1])) (2 5 8)

• *****REWRITE 42 BY REDUCEu(T1AB ,27);

43 £Q(I):(CLEARn(4CLOCKfl(Q (3)ri(Q(2JflQ(1])))) (2 5 8)

*****SUBSTR 35 IN 23;

• ~~~~ •~~~~~~~~ •~~• .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ •

54 RIPPLE COUNTER

44 /CLEARn(C1EARn(4CLOCknQf3]))/Q(2]..~wQ(2]; (2 5)

***** REW RIT(44 BY (27) ;

45 /CIEARn(lCLOCKnQ[3J)/Q[2).~wQ(2); (2 5)

• *****SUBSTR 35 IN 6;

46 /CLEARn~ (CLEARn(8CLOCKnQ[3]))/Q[2]’Q(2); (2 6)

*e***REWRITE CLEARn~(CLEARn (4CLOCKnx)) BY REDUCEU(T1IA ,TI 4B);

47 (CLEARn ~(CLEARn (4C1OCKnx))) ((CLEAR n.w4CLOCk)U(CLEAR(PX))

*****REIiIRIT(/(CLEARn 4CLOCK)u(CLEARnvx)/a 1; BY (Nb);

48 /(CLEARn-4CLOCK)u(CIEARn..x)/a’a; •(/CLEARnweCLOCk/a~a; A /CLEARtwS
xla ’-a ;)

***** SUBSTR 47 IN 48;

49 /(CLEARr~-4CLOCK)u (CLEARn-,x)/a’-a; •(/CLEARn—4CLOCPZ/a’-a; A /CLEARn-~%x/a’-a ;) .

*****VE 1118 CIEARn— x ,4CLOCK ,a,a;

50 /C1EARn~xfa.~a; /(C1EARn.~x)n4CLOCK/a~a ;

***** REWR ITE 58 BY (I1OB);

51 /CLEARn—x /a’-a; ~ /CLEARn(wxn4CLOCK)/a’a;

*****VE 178 —x ,4CLOCK ;

52 (. .xn4CLOC K):(4CLOCKn~x)

*****SUBSTR 52 IN 51;

53 /CLEARn—x/a ’-a ; /CLEARn(4C1OCKn.vx)/a~a;
-

*****TAUT /(CLEARr~ 4CLOCK)u (CLEARns.x)/a~a; ~
(/CLEARns~ CLOCk /a’-a ; A IS

CLEAR n (4CIOCKn—x)/a.a;) 49,53;
54 /(CIEARn ..4CLOCK)u(CIEARn’.x)/a’a; ~

(ICLEARnv4ClOCkIa.a; A /CLEARn(%
4CIOCK n—x) /a’-a ;)

*****SUBST 47 IN 54;

55 /C LEARn’.(CLEARn(hCLOCKnx))/a ’a; ~
(/CLEARn.vICLOCK/a’a; A ICLEARn(4%

CLOCKn—x)/a’-a ;)

*****VI 55 x a;

56 Vx a.(/CLEARn .(CLEARn(4CLOCKnX))/a’a; ~(/CL(ARn.w4CLOCK/a’a; A /CLS
EARn(4CLOCK n.x) /a .a;))

*****V(56 Q(3],Q(23;

• . •, . ..~ • ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
- -

• - - • •

RIPPLE COUNTER 55

57 /C LEARn— (CLEAR n(4CLOCKnQ[3]))/Q (2 }’Q(2];
~~ (

/CLEARns4CLOCK/Q (2].-Q(%
2]; A /CIEARn(4CLOCKAA Q(3])/Q(2].Q(2];)

*****TAUT /CLEARn—4CLOCK/Q(23’Q(2]; A /CLEARn (4CLOCKn.Q[3])/Q(23.-Q(2]%
46,57;

58 ICLEARn.’v4CLOCK/Q(2)’0(2]; A /CLEARn(eCLOCKnwQ(3])/Q(2)’.Q(2]; (2 5
6)

*****AE 58:01;

• 59 /CIEARn...4CLOCK/Q(2] Q(2]; (2 6)

*****A E 58:02;

68 /CLEARn(4CLOCKn- Q[3])/Q[2}’-Q[2]; (2 6)

*****SUBSTR 39 IN 24;

61 /CLEARO (CLEARn(4CLOCKn(Q[3JnQ(2))))/Q(1]’-”Q(l); (2 5 8)

**a*A REWR ITE 61 BY f 27);

62 /CLEARn(4CL0CKn(Q[3)nQ(2)))/Q [1}’~ QE1]; (2 5 8)

*****SUBSTR 39 IN 9:

63 /CLEARn~(C LEARn(4C1OCKn(Q[3)flQ(2])))/QC1]’Q(1] (2 5 9)

*****VE 56 Q(3]nQ[2],Q(1];

64 /CLEARn..(CLEARO (4CIOCKn(Q (3]nQ[23)))/Q[1]’Q(l]; ‘(/CLEARnw4CLOCK/%
Q[1].-Q(1); A /C1EARn (4C10CKrps(Q(3]rIQ(2]))IQ(1]~Q(1J;)

*****fAIJT /CLEAR n—4CIOCK /Q(1].-Q(1]; A /CLEARn (4CIOCKnA.(Q(3]nQ[2]))/Q(%
1].-Q(1]; 63:64 ;

65 IC1EARn~ 4CLOCK /Q(1].Q(1]; A /CLEARn(4CLOCKnw(Q(3)nQ(2]))/Q(1]i.Q(1]%
(2 5 9)

*****A E 65:01;

66 ICLEARn~.4CL0CK /Q(1].Q(1]; (2 5 9)

*****A E 65:02 ;

67 /CLEARn(4CLOCKn.~(Q(3]nQ(2]))/Q(1}’Q(1]; (2 5 9)

*****SUBSTR 43 IN 25;

68 /CLEARn(CLEARn(4CL0CKn(Q(3]n(Q(2]nQ(1])))) IQ(0}’~ Q(0]; (2 5 8 11%

•

*****REW RITE 68 BY (27) ;
-

69 /CLEARn(4CLOCKn(Q(3]n(Q(2]AQ(1])))IQCI]” Q(I] (2 5 8 11)

*****SUBSTR 43 IN 12;

~~iitiiiu . - • ~~~~~~~~ ~~~~~~~~~~~~~~~~ - . - -~~~-- -- ..~~~~. ~~~~~~~~~~~~~~~~~

68 RIPPLE COUNTER

70 / CL E A R n ~.(C1EAR n(4CL0CKn(Q(3]fl(Q(2)flQ[1]))))/Q(8]4-Q(I]; (2 5 8 12%

*****VE 56 Q[3Jn(Q[2]nQfl]),Q[8);

71 /CLFARn~(CLEARn(4C1OCKn(Q(3]n(Q[2]nQ[l]))))/Q(0)Q(0); ‘(/CIEARn-’%L CE.OCK/Q[0]’-Q[8]; A /CLEARn(4CLOCKn. (Q(3]n(Q[2)nQ(1))))/Q(8].-Q[0];)

*****TA IIT /CLEARn~4CLOCK/Q[8]..Q(O]; A /CLEARn(4CLOCKn-..(Q(3]n(Q[2]nQ[1%])))IQ[0].-Q[0]; 70:71;

72 /C[EARn- 8CLOCK/Q[8J.-Q[8]; A /CLEARn (4CLOCKns4Qf3]n(Q(2)nQ[1))))/Q(%
0].-Q[O]; (2 5 8 12)

•
* * * * *A F 72:01;

73 /CLEARa...~CLOCK/Q[8J.-Q[e]; (2 5 8 12)

• I * * ***A E 72:02;

74 /CL EAR n(4C1OCKn~(Q[3]n(Q[2]nQ[1])))/Q[0]’-Q(8]; (2 5 8 12)

*****VE 113 CLEARn4CLOC K ,x ,a ,’~a ,a;

75 (/(CLEARnLCLOCK)r,xla .—a ; A /(CIEARn*CLOCK)n.’x/a’a;)• /CLEARnICLOC%
K/a’-(xn-.a)u(—xria);

***** REWR ITE 75 BY (21);

76 C / (CLEARn4C1OCK)nx/a -~a ; A /(CLEARn4CLOCK)r~x/a.-a; a /CLEARn4CLOC%
I(/a.-a.x ; -

-

***** REW RITE 76 BY (T 1BB) ;

77 (/C1EARn(4CL0CKnx)/e’-”~a; A /CLEARn(4CLOCKn~x)/e.-a ;)i /CLEARn4CIOc%
K /a.-a.x ;

*****V I 77 x a;

78 Vx a.((/CLEARn(ICLOCKnx)/a’—a ; A /CLEARn(’CLOCKn.~x)/a’a; a /CLEAR%
n4CLOCK /a.a•x ;)

*****AI (45 60);

79 /CLEARn(ICLOCKnQ[3])/Q[2)wQ[2]; A /CLEARn(4CLOCKn.Q[3))/Q[23’Q(2)%
- -

; (2 5 6)

***** REWR ITE 79 BY 1 78);

80 /CLEARn4CL0Ck /Q(2].~Q(2 JeQ(3]; (2 5 6)

*****A 1 (62 67);

81 /C IEA Rn(~ C1OCKn(Q(3]nQ(2]))/Q(1)~ Q(1]; A /CLEARn($CLOCKn.v(Q(3]nQ(%
2 1))/ Q [l].-Q(1]; (2 5 8 9)

e***aREWRITE 81 BY (78);

82 /CLEARn4CLOCK/Q (1}’Q[1].(Q(3]AQ(23); (2 5 8 9) —

~~~ —----—--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . I__ -.
~_ 

~~~~~~~~~~~~~ -


RIPPLE COUNTER 57

*****V E T7B Q[3) ,Q[2];

83 (Q[3 }nQ[23) (Q[2]nQ(3))

***** S LJ BSTR 83 IN 82; -

84 /CLEARn4CIOCK/Q (1].~Q[1).(Q(2)nQ[3j); (2 5 8 9)

*****A1 (69 74) ;

85 / CLEAR n(~ CLOCK n(Q[3Jn(Q[2]nQ[1])))/Q [8]--Q[8]; A /CLEARn(4 CLOCK n— (%
Q[3J n(Q[2]nQ[1])))/ Q[0 J’-Q[8]; (2 5 8 11 12)

*****REWRITE 85 BY (78);

86 /CLEARn4CLOCK/Q [0].~Q[8).(Q(3]n(Q[2)nQ[1])); (2 5 8 11 12)

*****VE 17B Q[3],Q[2)nQ(1];

87 (Q[3]n(Q[2]nQ[1]))=((Q[2]nQ(1])nQ[3)) -

*****SIJBSJR 87 IN 86;

• 88 /CLEARn 4CLOCK/Q[0].-Q(0].((Q(2)nQ(13)nQ(33); (2 5 8 11 12)

***** VE 17B Q[2),Q[1) ;

89 (Q[2]nQ[1J)=(Q[1]nQ[2])

*****SUBS 1R 89 IN 88;

90 /CL[ARn4CLOCK/Q[B]’-Q(0].((Q[1]nQ[2])nQ[3]); (2 5 8 11 12)

*****AI (90 84);

91 /CLEARn 4C IOC K /Q[0)-Q[0].((Q[1]nQ[2))nQ(3]); A /CLEARn 4CLOCK/ Q[1]’-Q%
[lJ.(Q[2]nQ[3]) ; (2 5 8 9 11 12)

*****AI (91 88) ;

92 C /CLEARn’CLOCK/Q[0)’-Q[8].((Q(1]nQ[2])nQt3)); A /CLEARn4CLOCKIQ(1]~-%Q[1].(Q[2]nQ[3]);)A /CLEARn ICLOCK/Q[2)’-Q[2].Q[3]; (2 5 6 8 9 11 12)

*****A I (92 22);

93 ((/CLEARn 4CIOCK/Q[0)-Q[0].((Q[1]nQ(2])nQ[3]); A ICIEARn4CLOCK/Q(1]%
.-Q(1).(Q[2)nQ(3]);)A ICLEARn4CLOCK/Q[2)-Q(2).Q[3] ;)A /CLEARn4CLOCKIQ%

• (33.-~Q[3); (2 5 6 B 9 11 12)

***** REWR ITE 93 BY (116);

94 /C1 EAR n4CLOCK/((Q(8]&Q(1])&Q(2])&Q(3]~(((Q(8]S((Q(1]nQ[2])nQ(3]))&%
(Q[1].(Q[2]nQ(3))))&(Q(2].Q(3]))&~Q[3); (2 5 6 8 9 11 12)

***** RFW RITE 94 BY I A6) ;

95 /CL EAR nICLOCK/ ((Q [8]&Q(1])&Q(2])&Q[3].-(((Q(0]&Q(1])&Q(2])&Q(3])+1 ;%
(2 5 6 8 9 11 12) -

r i

———-—

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



TT ~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~

-- -—-

~~
:-

~~~~~~~ ~~~~~~~~~~~~~~ L 
1

58 RIPPLE COUNTER

*****REWRIJE 95 ØV CONCATENATE ;

96 /CLEARn$CLOCK !Qt0:3)’-Q[B:3]+ 1; (2 5 6 8 9 11 12)
• 

- 
*****AJ (7 3  6f~) ;

97 ICLEARn—4CLOCK/Q (8]’-Q[8]; A /CLEAR n—4CLOCK/Q[ 1]s-Q[I]; (2 5 8 9 1%
• 2 )

* * * * *A I  ( 9 7  59) ;

98 C /C IEAR n~ 4CLOCK/Q[ 8 J.4?[0); A /CLEAR n- .4CLOCK/Q[ 1]-Q(1]; )A /CLEARnA.%
4CLOCK/Q [ 2 ]4-Q[2]; (2 5 6 8 9 12)

* * * * *A I (98 3);

99 ( (  /CLEARn_4CLOCK /Q[0]1-Q(0]; A /CLEARn~4CLOCK/Q(1}’Q(1]; )A /CLEARn%
‘-~ CIOCK/Q[2]i-Q[2]; )A /CL EARn—4CLOCK/Q [ 3 ]’-Q[3]; (2 3 5 6 8 9 12)

***** REWR ITE 99 BY 1 116);

100 /CLEAR ri—4 CLOCK/ ((Q( 0 )&Qt 1])&Q[2])&Q(3]~-(( Q(0 ]&Q[ 1])&Q(2])&Q(3]; S
(2 3 5 6 8 9 12)

***** REWR ITE 100 BY CONCATENATE ;

101 /CLEARr—$CLOCKIQ (8:3]4-Q [0:3]; (2 3 5 6 8 9 12)

,. 
~~~~~~~~ -~~~~~P_~i —~~~~~~~~ -- _ i__~ _~~ - - -- ~—-.----—,-—--~-———----—--- — —. —~-~~--- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — •


- • • • - - - • --~~~- - -
. • - • -- ---~~~~~-•- • • - -— -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

59

• 12. 8-BIT MULTIPLIER

For our last example we have a multiplier circuit built using some MSI
components. The circuit diagram Is In Figure 12.1. The 8-bit operands are Inputs
X and V, and the 16-bit product will be in the Z register. When the LOAD signal is
low the control counter, DONE flIp-f lop, and high order bits of the Z register are
cleared. A downwards transition In the CLOCK at this time will put the X operand
into the W register and the V operand into the low order bits of the Z register.

The actual multiplication - sequence takes place while LOAD Is true. On
upwards transitions in CLOCK the counter Is inc remented . Downwards CLOCK
transitions control the adding and shifting operations. When the low order bit of
t h e  counter is true the contents of the overflow bit and the Z register will be 

-

shifted right. When it is false, the high order bits of the Z register will be set to
the sum of themselves and the W register if the least significant bit of the Z
register is true. The overflow bit is Intended to function as the most significant
bit in the Z register before shifting. After this shifting and adding goes on for 16 -

clock cycles, the transition from 16 to 0 in the counter will cause the DONE flag
to be set. The DONE flag will inhibit the clock pulses from changing the product in
the Z register.

/s LOAD/ OV&Z[0:7]i.8; (57)
/~LOAD / Q[8:3]..8; (48)
/— LOAD/ DONE.0; (58 )
/— LOADn4CLOCK/ W [8:7].-X[0:7]; (78 )
R LOADn4CLOCK/ Z(8:15)’ Y( 8 :73 ; (185)

/IOADatCIOCK/ Q[a:3].Q(8:3]+1; ( 186)
/LOADn4 (Q[8:3]~l5)/ DONE.1; (114)
/((LOADn&CLOCK)n..DONE )nQ(3]/ OV&Z(0:15]..8&OV&Z(0:14]; (162)
/((LOADn4CLOCK)n~DONE)n (~’Q(3]nZ[ 153)/OV&Z(0 :7).-carry(W[ 8 :7], Z[8:7] , 0)&(W( 0: 7]+Z(8:7]+0) ; (197)
/( (LOADn4CLOCK)n~DONE )n(~Q[3]niZ( 153)1ov&z(e:7J’-0&Z[0:7); ( 215)
/((LOA Dn4C1OCK)n— DONE)r~ Q(3)I Z(8:15]’-Z(8:15]; (227)

/...((4 LOADn~CLOCK)u (~ 1OA Dn4CLOCK))/W [8 :7]4-W (0:7] ; (235)
/LOAD n—tCLOCK/ Q(0:3].-Q[0:3]; (236 )
/LOA Dn_4 (QtO :3]*15)/ DONE’-DONE; (239 )
/LOAD n—(( 4CLOCKn.’DONE)U(sCLOCKfl4DONE))/

OV& Z[8:15)’-OV&Z(0:15); (268)

In the above goals the first group represents the load sequence, the second
group is the multiply sequence, and the last group has some of the more important

• feedback states. Although this proof Is 260 steps long most of it Is very
• straightforward. The first 61 steps were needed just to get the component

• definitions into the proof checker. Some of the goals were obtained In as l ittle as
one step. The second goai (step 40) was obtained directly from an Input
assumption.



— --- —-~~~

—
~~

• —~~

a ~~
- -- ,_ x —i

‘4
‘-

- •

~~~~~~
•
S

• $$ Q U — Lii
h

—
~~

z - : i~~~~~~~~- ii ~~
—

~~ H

H
I- -I

S In

U
d~~~~

th
•

I -
a

‘ ‘
~~~~

• 8 I

_____  
Lii

(~:)i—i
IL

-•

• ~~~~~~~~ a

:iiii ~ 
r r • -

~ *

~~ :- -~~~~;~~~~~~ _______________________________________________



• - - ~~~~~~~~~~~~~~~~~~~~~~~~ - •

8-BIT MULTIPLIER 61

*****OECLARE INDCONST IOAD ,CLOCK ,X ,Y ,Z ,W .S ,Q, LOADX ,LOADY ,DONE ;

***** DECLARE INDCONST A ,B ,C,D,E,G,I4,CLK ,OV;

*****ASSUM E LOADX --~( LOADuCLOCK);

1 LOADX~-— ( LOADuCLOCK); (1)

*****ASSUIIE LOADY.-s.LOAD;

2 LOADY.— LOAD ; (2)

*****ASSLIIIE /.~1/W [8:3).((8&8 )&8)&B;

3 /~ 1/W [0:3]4 -((8&0)&8)&0 ; (3)

*****ASSUIIE /1ntLOADX/W(8:3]’-X(8:3]; ; .

4 / IntLOA DX/W (0:31’-X (8:3] ; (4)

*****ASSLflIE /1n~ ?LOADX /W[8:3}’ W [B:3) ;

5 /1n~tLOADX/W[0:3}’-W[8:3]; (5) -

*****A SSUME /~.1/W[4:7]’-((8&0)&8)&0;

6 /~ 1/W[4:7)’-((8&0)&8)&8; (6)

*****ASSUME / lr,t LOADX/W [4:7j ’-X [4:73 ;

7 / 1rtLOADX / W(4: 7} ’ -X (4 :7] ;  (7)

- *****A55IJPIE /1n.~$LOADX /W [4:7) . W (4 :7]; ; 
-

8 /1n.’~tLOA DX/W[4:7 ]’44 (4:73 ; (8)

*****ASSEJME S[e:3]’(W[8:3]+Z(8:33)+E;

9 S(8:3]~-(W[8:3]+Z(8:3])+E; (9)

*****ASSUME D -carry(W [8:3] , Z(0:3] ,E) ;

10 D.-carry(W(8:3],2(0:3],E ) ;  (18)

*****ASSUPIE S[4 :7j ..(W[4 :7]+Z(4:7])+0 ;

11 S(4:7]’-(W[4:7]+Z(4:7))+e; (11)

*****ASSUME E.-carry(W(4:7],Z(4 :7] ,8);

12 E.-carry(W[4:7),Z[4 :7) ,0) ; (12)

F ~ *****ASSUIIE A.-~Q(33 ;

13 A’-—Q(3] ; (13)

*****ASSUME B’(DnA)nZ(lS];

~ 

~~~~~~~~~~ . . . . . ro.. .. .~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
—-‘~~~~~~~

‘ ‘-~~
-

~- • - . - . .JIIII~

• ---~~ -- ~~ . .-,~---- ---,---—~~--— ,------- --~~---- - — - .~~

62 8-BIT MULTIPLIER

14 B.- (DnA)ril[15]; (14)

*****A SSUME C.--~CLK ;

15 C’--.CLK ; (15)
-

****aASSIJIIE /—1/OV .1;

16 / — 1 /OV’-l; (16)

*****ASSI1ME / ln— LOAD/OV’-8 ;

17 /1n-~LOAD/OV’-0; (17)

*****ASSUME /(1nLOAD)ntC/OV~-B;

18 /(1nLOAD)ntC/OV’-B ; (18)

*****A SSUME /(1nLOAD)n—IC/OV’-OV ;

19 /(1nLOAD)n-~tC/OV~-OV ; (19)

*****ASStIME /—LOAD/Z[O:3].-((0&0)&0)&8;

20 /‘.LOAD/Z[O:3] .- ((0&0)&O)&0 ; (20)

*****ASSUtIE /(LOADn4CLK)nQf3]/Z[0:3]’~OV&Z(8:2];

21 /(LOADn4CLK)nQ[3]/Z[8:3)’-OV&Z[8:2]; (21)

*****ASSUME /((LOADn4CLK)n ~Q[3])nZ[15]/Z(8:3)’-S[8:3);

22 ,((LOAD n4CLK\n~Q(3])nZ[15]/Z [0:3j ’-S(B:3] ; (22)

*****ASSIJfIE /((LOADn4CLK)n.’~Q[3J)n..’Z[15]/Z[0:3].-Z(8:3];

23 /((LOADn4CLK)n~Q[3])n~Z(15]/Z(8:3]’-Z[0:3]; ~23)

*****AsSEJIIE /LOADn~4CLK/Z[$:3].Z(0:3];

•
- 24 /LOADn—4CLK/Z(0:3)’-Z[0:3]; (24)

*****ASSUME /~LOAD/Z(4:7).-((B&8)&0)&8;

25 /~LOA0/Z[4:7]’-((8&8)&0)&0; (25)

*****ASS IJ IIE / (1OA&,,4CLK)nQt3]/Z (4 :73~Z(3]&Z(4:63;

26 /(LOADn4CLK)nQ(3]/Z(4:7].-Z(3)&Z[4:6]; (26)

*****ASSUIIE /((LOADn4CLK)n~.Q(3])nZ[15]/Z(4:7)’St4:7);

27 / ((LOADn 4 CL K) n~Q[3]) .nZ[15] /Z[4:7)’-S[4:7] ; (27)

*****A SSUME /((LOADa4CLK)n~..Q(3])n~Z(15]/Z(4:?].Z(4:7]; ;

28 / ((LOAD n4CL K)n~.Q[3])n- .Z(15]/Z(4:7}’ Z(4:7]; (28)

*****ASSUME /LOADn.~4CLK/Z (4:7) . Z(4:7] ; ;

•
—-- . - :.~~~~~~~ rT— ~~~ ~ -- ~ ~~~~~~~~~~~~~~~~~~~~~~~ —— -


~~~~~~~~~-~~~r~~~~~ r- -~ - ~~— 

8-BIT MULTIPLIER 63

29 /LOADri..~4C1K /Z [4 :7]4 -Z(4:7 ] ;  (29 )

*****ASSIJtIE /~..1/Z[8: 11].-((8&0)&0)&0 ;

30 /~ 1/Z [8: 11].- ((0&0)&8)&8 ; (38 )

*****A SSUME /(1n4CLK )nQ[3)/Z(8:11].Z(7]&Z(8:18];

31 l( 1n4CLK)nQ[3]/Z[8: 11)’-Z(7]&Z[8 :18]; (31)

*****ASS(JIIE I((1n4CIK )n—Q(3])nLOADY/Z(8:11)-Y(8:3];

32 / ( ( 1n4 CLK)n .~Q[3])nLOADY /Z(8: 11].-Y[8:3J ; (32)

*****ASSUME /((1n4CIK)n-.’Q(3))n-..LOADY/Z(8:113’Z[8:11);

33 IC ( 1n4CLK)n~wQ[3))n..~LOADY/Z(8:11]~Z( 8: 13]; (33)

*****ASSIJPIE /1n~4CLK/Z[8:11]’-Z(8:11);

34 /1n..4CLK,~Z[8:11].-Z[8:11]; (34)

*****ASSUME /‘~1IZ[12 :15).-((8&0)&8)&0;

35 I—1/Z[12:153’-((0&0)&0)&0; (35)

*****A55(JME I( n4CLK)nQ[3] IZ(12: 15]’-Z[11]&Z( 12:14];

36 /(In4CLK)nQ(3]IZ[12:15].Z(11)&Z(12:14]; (36)

*****AS5IJIIE /( ( In4CLK)nvQ[3))nLOADYIZ( 12: 15]’-Y(4:7];

37 / ((1n4CL K)n~Q(3])nLOADYlZ(12:15]’-Y(4:7); (37)

*****ASSIJME / ( (  1n4CLK )n.~Q(3])n~L0ADY/Z( 12:15). Z( 12:15];

38 / ( ( 1n4CLK)n~Q[3))n~LOADY/Z( 12: 15j ’-Z( 12:15]; (38)

***a*ASS IJME /ln— .LCLK/Z[ 12:15) .-Z( 12:15];

39 / 1n~ 4CLK /Z( 12:15] . Z[12 :15] ; (39 )

*****A5SUIIE /.~LOAD/Q [8:3).((0&0)&0)&0;

40 /—LOADIQ[8:3]’-((8&8)&0)&0; (40)

*****A 5SIJME /(LOADn.~1)ntCLOCK/Q (8:3]’((1&1)&1)&1;

41 I(LOADn~1)ntC 1OCK/Q(0:3]’-((1&1)&1)&1; (41)

*****ASSUME /(LOADn—1)n-~tCLOCK /Q(8:3]’-Q(0:3];

42 /(LOADn~1)n.—tCLOCKIQ[0:3].-Q(8:3]; (42)

*****ASSUME /(((LOADn1)nl)nl)ntCLOCK/Q(8:3)’-Q[8:3]+1; ;

43 /( ((LOADn 1)nl)nl)ntCLOCK/Q [0 :3]-Q(8:3]+1; (43)

— ~~~~~~~~ -~~~~~~~~~~~ —~~~~~~~ ~~~~~~~~~~~~~~



r - -

64 8-BIT MULTIPLIER

*****ASSUtIE / (LOADn 1)n~((1n1)ntCL0CK )/Q[8;3)’-Q(8:3]; ;

44 /(LOADn1)n~((1n1)ntCL 0CK)/Q(0:3)Q(8:3]; (44)

*****ASSIJIIE l4’-Q[8:3)*15;-

45 H~-Q(8:3]..15; (45)

*****ASSUME G vH;

46 ~i-wH ; (46)

*****ASSUME / ...1/DONE’-l;-

47 /.‘I/DONE’-I ; (47)

*****A SSUME /ln—LOAD/DONE’-0 ;

48 /ln—LOAD/DONE’-O ; (48)

*****ASSUME /(1nLOAD)ntG/DONE4-1;

49 /( 1nLOAD)ntG/DONE’-l ; (49)

*****A5SIJME IC 1nLOAD)n ~.’tG/DONEi-DONE ;

50 /(1nLOAD)n-~tG /QONE.-DONE ; (58 )
• *****ASSIJIIE CLK~-CLOCKuDONE ; ;

51 CIK.-CLOCKuDONE ; (51)

*****AI (20 25);

52 /— LOAD/Z[8:3) .((8&0)&0)&8 ; A I’.LOAD/Z(4:7 ]’(C8&0)&8 )&8 ; (28 25)

*****REWRIJE 52 BY ( 116);

53 /-.~LOAD/Z[O :3]&Z[4:7].-(((0&8)&8)&8)&((C0&8)&8)&8); (28 25)

*****REWR ITE 53 BY CON CATENATE ;

54 /-.LOAD/Z[8:7].-(((8&0)&e)&0)&(((e&8)&8)&0); (28 25)

- 
• 

*****REWRITE 17 BY REDUCE ;

• 55 /-‘LOAD/OV.-O ; (17)

*****AI (55 54);

56 / ‘..LOAD/OV ’4; A /.~LOAD /Z[8:7 ] ..(C(8&8 )& 0)& 8)&((( 8& 8 )&8 )&0) ; (17 20%
‘~~ 

25)

***** REWR ITE 56 BY ( 116); 
- 

-

‘ 57 /.LOAD/OV&Z(8:7].-0&((((8&8)&8)&0)&(((8&8)&8)&e)); (17 20 25)

***e*REWRITE 48 BY REDUCE ;



. -r ---

• • - -

8-BIT MULTIPLIER 65

58 /-.LOAD/DONE’-B ; (48)

*****VE 112 LOADX ,— (LOADuCLOCK);

59 LOADX’-~ ( LOA Du CLOC K ) ; ~LOADX:’.(LOADuCL0CK)
-

• 
*****TAIJ T LOADX =~ ( LQADuCLOCK ) 1,59;

60 LOA0X:.~( L0ADuCLOCK ) (1 )

*****REWRITE 4 BY REDUCE ;

61 /tLOADX/W[8:33’-X (0:3); (4)

*****REWRITE 7 BY REDUCE ;
-• 62 ItLOADX/W[4 :7] .-X[4:7 ]; (7)

*****AI (61 62);

• 63 /tLOADX/W [8:3)”-X (8:33; A /tLOADX/W [4:7]..X(4 :7]; (4 7)

• *****REWRITE 63 BY ( 116);

64 ftLOADX/W[O:3]&W[4:7]’-X[8:33&Xt4:7]; (4 7)

***** REWRIT E 64 BY CONCATENATE ;

65 /tLOADX/W[0:7]’-X(8:7]; (4 7)

*****SIJBSTR 68 IN 65;

66 /t— .(LOADuCLOCK)/W [8:7] ’ X [0:7] ; (1 4 7)

*****REWRITE 56 BY I TI4A};

67 / f( .~LOADn.~CL0CK)/W ~9:7).X(0:7); (1 4 7)

*****REWRITE 67 BY TRANS ;

68 /(4LOADn..’CLOCK)u(...IOAOn4CLOCK)/W(8:?]4X(8:7); (1 4 7)

*****REWR IT E 68 BY ( 115);

69 /4 LOADn~CLOCK /W [B:7)’-X (0 :7] ; A /‘.‘IOADn4CLOCK/W( 0:7] .-X(8:7] ; (1 4%
7)

p *****A E 69:02 ;

70 /~LOADn4CLOCK/W (0:7]~X( 8:7]; 
- 

(1 4 7 )

*****VE P12 IOP1DY,’..LOAD ;

71 LOADY’—LOAD ; DLOADY ’~1OAD

*****TAUT LOADY ’..LOAD 2,71;

72 LOAOY =..,LOAD (2 )



- - - ~~~~~-- -- -

66 8-BIT MULTIPLIER

***** REWR ITE 32 BY REDUCE ;

73 / (4CLKn—Q(3])n IOADY/Z[8: 11]’-Y(0:3] ; (32 )

*****REWR IT( 37 BY REDUCE ;

74 /(4 CLKn~Q(3])n10ADY/Z(12 :15)’-Y[4 :7]; (37)

*****A I (7 3 74 ) ;

75 / (4C 1Kn~Q[3])nLOADY/Z[8:113. Y[8:3J ; A /(4CLKn~Q(3))nLOAOY/Z( 12:15)%
.-Y(4:7); (32 37)

*****REWRJTE 75 BY 1 116);

76 / (4C1K n~Q[3j)nLOADY/Z(8:11)&Z( 12:15).-Y(8:3]&Yt4 7J (32 37)

*****REWRITE 76 BY CONCATENATE ;

• 77 /(~ CLK n~Q[3])nLOADY/Z(8:15]’-Y(8:7); (32 37)

*****SUBSTR 72 IN 77;

78 f (4 CL Kn~Q(33)n~&OAD/Z[8:15]~Y(0:71; (2 32 37)

*****VE 116 ~1OAD,Q[8:2],(8&0)&0,Q(3],0;

79 C /—LOAD/Q(8:2].-(8&0)&0; A /ivLOAD/Q(3]i-0 ; a /iL0AD/Q(8:2]&Q(3]~ (( 8%

***** REWR ITE 79 BY CONCATENATE ;

80 ( /‘.~LOAD/Q[8 :2].(0&O)&8; A I..LOAD/Q(3]’-8 ; )a /~.LOADIQ(0:3)-((0&0 )&8%

*****SUB5T 80 IN 40;

81 /A L0AD/Q(0:2]~ ( 0&8)&8 ; A /~.LOAD/Q[3].8; (48)

*****AE 81:02 ;

82 /— LOAD/Q( 3 ].-0 ; (40)

*****VE N u B  -.LOAD ,Q(3),0;

- ,  83 / ..LOAD/Q[3 ].-8; .(..LOADn....Q(3]):(~4LOADr~ e)

*****TAUT ( LOADn [3))s( ,LOADn~4) 82:83 ;

84 (_LOADA...Qt3]):(.wlOADn.8 ) (48 )
• : ***a*REWRJTE 84 BY REDUCE;

85 (~ LOADn.’.’Q(3]):—LOAD (48)

‘ ***** REW RIT E 78 BY ( T 186};

86 /4CLkn(~..Q[3]nsLOAD)/Z(8:15}u-Y(8:7]; (2 32 37)

• ~~~~~~~~__ u~~_. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- 
~‘.~—~ •. -- -—- . - ———-— - — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- __ •_l~~~I 
—

8-BIT MULTIPLIER 67

• *****VE T78 ~Q[3),~
..1OAD;

87 (~Q[3Jn.~LOAD)= (~..LOADn ..Q[3])

*****SUBSTR 87 IN 86;

88 /4 CL Kn(.~LOADn~Q[3])/Z(8:15]. Y(0:7]; (2 32 37)

*****SUBSJR 85 IN 88;

89 f4CLKn~.LOAD/Z(8:I5]~Y[8:7]; (2 32 37 40)

*****VE 178 4CLK ,’~1OAD ;

90 (~ CLKn-’LOAD) (-’LOADn4C1K)

• *****SUBSTR 90 IN 89;

91 /~ LOADn1CLK/Z[8: 15]-Y[8 :7); (2 32 37 40)

*****VE 112 CLK ,CIOCKuDONE ;

92 CIKe-CLOCKuDONE ; ,CLK (CLOCKUDONE)

• * **** TAUT CLK:(CLOCKUDONE) 51,92;

93 CLK =(CLOCKUDONE) (51)

*****SIJBSTR 93 IN 91;

94 /...LOAITh4(CIOCKuDONE)/Z(8:15)-Y(0:7]; (2 32 37 48 51)

***** REWR ITE 94 BY TRANS ;

95 /-~LOADn(C4CLOCKn..DONE)u(~.CLOCKn4DONE))/Z[8:15J’-Y[0:73; (2 32 37 5
48 51) . -

*****REWRITE 95 BY (lilA);

96 /(...LOADn(4CLOCKn~DONE))u(.’LOADn(’wCLOCKn4DONE))/Z(8:15J’-Y(0:7]; (%
2 32 37 40 5.1)

***** REWR IT E 96 BY (P15);

97 /~ LOADn(4CLOCKn—DON E)/Z[8:15]’-Y(0:7] ; A / wLOADn(...CLOCKn400NE)IZ(8:%
15}’-Y(8:7) ; (2 32 37 48 51)

*****AE 97:0 1;

98 /....LOAOn(4CLOCKn’~DONE)/Z(8:l5]’-Y[8:7]; (2 32 37 40 51)

*****VE 17B sCLOCK ,~ DONE;

99 (4CLOCKn~DONE):(~ DONEn4CLOCK)

*****SlJBSTR 99 IN 98;

100 / ...LOADn(’.DONEn4CLOCK)/Z(8:15]’-Y(0:7]; (2 32 37 40 51)

L . —

—

—

— — — — J—- • _
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -  zv-uJ~~~~ . It



r” ~~~~ 

- - -

~~~

----r— -.—----- - . -

~~

- ------ -

~~

-- -
~~~ 

•
~~~~~~

. • • .•
~~~~~~~~~~~~~~~~~~~~~~~~~~

•
~~~~~~~~~~~~~~~~~~~

68 3-BiT MULTIPLIER

***** REWRJTE 100 BY I T 1BBR) ;

181 / (.LOADn- DONE)n4CLOCK/Z[8:15]’- Y[l:7); (2 32 37 48 51)

*****VE NUB ‘.LOAD ,00NE ,0;

182 /—LOAD/DONE.-0 ; ~(—LOADn~.’DONE)a(~LOADfl”8)

*****IAUT (_LOADn ~DONE):(~ LOADflwB) 58,182 ;

103 (-.LOADn~DONE):(...LOADn~0) (48)

***** REWR IT E 183 BY REDUCE ;
-

104 (~ LOAD n~DONE):~LOAD (48)

*****SIJBSTR 184 IN 181;

105 /-.~LOADn4CLOCK /Z [8:15] .-Y(0:7]; (2 32 37 40 48 51)

***** REWRITE 43 BY REDUCE ;

106 /LOADntCLOCK/Q(0:3]-Q(8:3]+1; (43)

*****VE 112 ll,Q[0:3]N15;

187 H4-Q[8:3)—15; ~H:(Q[0:3]i.15)

*****IAUT H=(Q[8:3)4.15) 45,107;

108 H CQ[8:3)H15) (45)

*****VE P12 6 ,- i-I; -

ie~ G’-—H ; ~G~—H

***** TAUT 8 H 46 ,189;

110 G=~ I-I (46)

*****SUBSIR 108 IN 118;

111 G=-(Q(8:3] ..15) (45 46)

*****REWRITE 49 BY REDUCE ;

112 /LOADntG/DONE’-l ; (49)

*****SUBSTR 111 IN 112;

• 113 /LOADnt~ (Q(8:3]*15)/DONE.-1; (45 46 49)

***** REWR ITE 113 BY TRANS ;

1 14 /LOADn4(Q(0:3).l5)/OONE~1; (45 46 49)

***** REWR ITE /LOADn(xn4(CLOCKuDONE))/a .-y ; 5Y TRANS;

115 /LOADn(xnl(CLOCKuDONE))/a’-y ; a /LOADn (xn((4CLOCKn’40IiI)u(~ CLOCKA4%

II

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~

- •- • - -
~~~~~~~~~~~~~~~~~~~~



8-BIT MULTIPLIER 69

DONE))) /a.-y ;

*****REWR I TE 115 BY ( l i lA ) ;

116 /LOADn (xn4(CIOCKuDONE))/e’y; • I(LOADn(xn(4CLOCKn..~DONE)))u(LOADn (%xn( .CIOCKn400NE))) /a’-y ;

***** REWR ITE 116 BY 1 P15);

117 /1OADn(xn~ (CLOC KuOONE)) /a’-y ; r( /LOADn(xn( 4CLOCKn— DONE))/a.-y ; A It
LOADn(xn (—CLOC Kn4 DONE)) /a’-y ; )

**** *VE T7B x 4(CLOCKuDONE ):

118 (xn4 (CLOC KuDON E))=(4 (CLO CKUDONE)nx)

****aSlJBSTR 118 IN 117;

119 JLOADn(4(CLOCKuDONE)nx)/a’-y ; a( /LOADn(xn( ’C1OCKn~.’DONE))Ia.-y ; A IS
LOADn(xn (i~.CLOCKn4DONE))Ia.-y ; )

*****VE T7B x ,4CLOCKn~DONE ;

120 (x n(4CLOC Kn~DONE)) =((4CLOCKflvDONE)flX )

*****SIJBSTR 120 IN 119;

121 /LOAD n(4(CLOCK uDONE)nx )/a’~y; ‘C /LOADn((4CIOCKn—DONE)nx)/a’-y ; A It
LOADn(xn(— CLOC Kn400NE)) /a’-y ; ) 

S

.

*****SUBST 93 IN 121;

122 /LOAOn( 4CUZnx)fa’-y; ‘I lio n &CiOCKnvDONE)nx)/a.-y ; A /LOADn(xn(%
• .

~CLOCKn4DONE))/a.~y; ) (51)

***** REWR ITE 122 BY { T 1B BR);

123 / (LOADn4CLK)nx/a.-y ; •( / ((LOADn4C LOCK)i~.’DONE)nx /a’-y; A /((LOADnx)%
n—CLOCK)n IDONE /a.-y; ) (51)

*****VI 123 x a y;

124 Vx a y.( I(LOADn4CLK )nx/e.y; ‘C /((LOADn4CLOCK)n’ DONE)nx/a”y ; A 1(5
(LOAD nx)n~.CLOCK)n4DONE1a’-y ; )) (51) -

*****AI (21 26);

125 / (LOADn4CLK )nQ(3]/Z (8:3]4-OV&Z[8:2] ; A /(IOADn4CLK )nQ(3]/Z(4:7] . Z(%
3]&Z(4 :6] ; (21 26)

*****REWR ITE 125 BY 1 116);

• 126 /(LOADn4CLK)nQ[3JIZ(0:3]&Z(4:7]-(OV&Z(8:2])&(Z(3]&Z(4:6J); (21 5
26)

*****REWRITE 126 BY ( D5);

127 / (LOADn4C IK)nQ(3]/Z (8:3]&Z(4:7)-OV&(Z(8:2]&(Z(3]&Z(4:6])); (21 5
26)

-‘

~

-— ‘———----— • —‘~ --~~ —-- - ~~~~~~~~~~ ~~~~~~~~~ ~~~ .. ~ ~~~~ - • • - • ____________



-~~~~~~~~ — - - •  •-

70 8-BIT MULTIPLIER

*****R[WR IJ ( 127 BY CONCATENATE ;
• 128 I(LOADn4CLK)nQ(3]/Z[8:73’-OV&Z($:b) ; (21 26)

*****AI  (31 36);

129 /( In4C LK)nQ[3]/Z[8: Ii]’-Z( 7 )&Z(8:18); A /(ln8CLk)nQ(3)/Z( 12 15)’-Z[ %
11IJ&Z[ 12:14]; (31 36)

*****RE WRITE 129 BY ( P16) ;

• 130 / (j r i~CL K)nQ[3]/Z[8:11J&Z[l2 :15]~-(Z (7] Z[8:18])&(Z(11]&Z(12:14]); S
(31 36)

*****REWRITE 130 BY REDUCE;

• 131 /sCLK nQ(3)/Z(8:11)&Z[ 12:15]. (Z(7]&Z(8:10])&(Z(i1]&Z( 12:143); (3%
1 36)

*****REWRIJE 131 BY CONCATENATE ;
• 

• 

132 RCL.KnQ[3]/Z(8:15 )’-Z(7:14] ; (31 36)

*****V [  1110 LCLKnQ(33, IOAD ,Z(8:15], Z(7:i4] ;

133 /4CLKnQ[331Z (8:15)’-Z[7:14); /(4CLKnQ[33)nLOA D/Z(8:15J.Z[7:143; S

*****TA IJ T / (~ CLKnQ(3])n1OADIZ(8:i5)’-Z(7:l4]; 132:133 ;

134 1C4CIKnQ[3))nLOAD /Z[8:15]’-Z(7:14]; (31 36)

*****VE T7B 4CLK nQ[3LLOAD ;

135 ((4CLKnQ[3])nLOAD) (IOADO (4CLKnQ[3]))

*****SUBSTR 135 IN 134 ;

136 /LOADn(4CIKnQ[3])/Z[8:15]’-Z(7:14); (31 36)

***** REWR ITE 136 BY ( TJO BR} ;

137 /(LOAD~~CLK)nQ(3)/Z(8:I5].-Z[7:l4]; (31 36)

*****A I (128 137);

138 /(LOADn4CLK )nQ(3)/Z[8:7]’-OV&Z(0:6]; A I(LOAOn$CLk)nQ(3)IZ(8:15)-Z%
(7:14]; (21 26 31 36)

***e* REWR JTE 138 BY ( P16);

139 / (LOADn4CLK)nQf3]/Z(8:7]&Z(8: 15].- (OV&Z(S:6])&Z(7:14] ; (21 26 31%
36)

*****REIJRITE 139 BY I 05);

140 /(LOADn4CLK)nQ[3)/Z(0:7]&Z(8:15]’-OV&(Z(0:6]&Z(7:14]); (21 26 31%
36)

- .-— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ • - •~~~~~~~~~~~~~~~~ •-—-~~~~~~~~~~~~~ — •-- • • • • . .. _ t~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


8-BIT MULTIPLIER 71

*****REWR IT E 140 BY CONCATENATE ;

- . 141 /(LOADnICLK)nQ(3]/Z(0:15]’-OV&Z(S:14]; (21 26 31 36) -

*****REWRITE 18 BY REDUCE ;

142 /LOADntC /OV.-B; (18)

*****VE 112 C ,—CLK ;

143 C4-—CLK ; ~C~-.CLK
-

*****TAUT C= .,CLK 15,143;

144 C~~CLK (15)

*****SLJBSTR 144 IN 142;

145 /LOADnt—CLK/OV.-B ; (15 18)

*****REWRITE 145 BY TRANS;

146 /LOADn4CLK/OV~B; (15 18)

*****VE P12 B ,CDnA)nZ(15];

147 B..(DnA)riZ(l5]; ~Bs((DnA)nZ(15))

*****TAUT Bz((DnA)nZ(15]) 14,147;

148 B:((DnA)nZ(151) (14)

• *****SIJBSTR 148 IN 146;

149 /LOADn4CLK/OV’-(DnA)nZ(lS]; (14 15 18)

*****VE 112 A ,...Q[3];

150 A.-.~Q(3]; ~Aa.~Q(3]

*****TAUT Aa Q(3] 13,158;

351 AswQ[3] (13)

*****SUBSTR 151 IN 149;

152 /LOADn4CLKIOV.(Dn~.Q(3))nZ(15); (13 14 15 18)

*****VE T7B D,~’Q(3);

153 (Dn.wQ(3]) (wQ[3]nD)

*****SUBSTR 153 IN 152;

154 ILOADn4CLK IOV.(~Q[3]nD)nZ(15]; (13 14 15 18)

•
- *****REWRIT(154 BY I 1108);

• - - -----

• • - •
- - .

—
• -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



72 8-BIT MULTIPLIER

155 / LOADn4CLK/OV ’-—Q[3]n(DnZ[ 15]); (13 14 15 18)

e****VE 1110 LOADn4CIK ,Q( 3], OV ,.vQ(3]n(DnZ(15]);

156 /LOADn4CLK /OV.--~Q[3]n(Dn2[15]); ~ / (LOADn4CLK )nQ(3]IOV.~ Q(3]n(DnZ(%
15));

*****TAIiT I( LOADn4CLK)nQ[3]/OV.--.Q[3]n(DnZ[ 15]); 155: 156;

157 /(LOADn4CLK )nQ(3]/OV~- vQ[3]n(DnZ(15)); (13 14 35 18)

*****REWRJTE 157 BY 1 P18);

158 /(IOADn4CLK )nQ(3]IOVi-8 ; (13 14 15 18)

*****AJ (158 141);

159 /(LOADn4CLK)nQ(3)IOV’-8 ; A /(LOADneCLK )nQ(3]/Z(8:15].OV&Z(0:14]; S
(13 14 15 18 2 1 26 3 1 36)

*****REWRITE 159 BY ( 116);

160 /(LOA Dn4CLK)nQ[33/OV&Z(8:15] .-8&(OV&Z[8:14]) ; (13 14 15 18 21 26%
31 36)

***** REWRI IE 168 BY { 124);

• 161 /((LOADn4CLOCK )n—DONE )nQ[3)/OV&Z[0:15)~-0&(OV&Z(8:14]); A I((LOADn%Q[3])n ..CLOC K)n400 NE /OV&Z[8 :15] .-8&COV&Z(8:14]); (13 14 15 18 21 26 31%
36 51)

*****AE 161:01;

162 / ( ( L O A D n ~C1OCK)n-~DONE)nQ(3]/OV&Z(8:15].-0&(OV&Z(8:14]); (13 14 1%
5 18 21 26 31 36 51)

*****AI (9 11);

163 S[0 :3] .-(W[ 8:33+Z[0:3J)+E ; AS(4:7].- (W (4 :73+Z(4 :7))+0 ; (9 11)

*****REWRIT[ 163 BY 1 116);

164 s[e:3]&S[4:7]’-((W[0:3]+Z(8:3])+E)&((W[4:7]+Z(4:7])+8); (9 11)

***** REWR ITE 164 BY CONCATENATE ;

165 S[0:73 .- ((W [0 :33+Z[0 :3))+E)& ((W[4 :7)+Z(4:7))+0); (9 11)

*****VE 112 E,carry(W[4:7 ] , Z[4 :7] , 8) ;

166 E’-carry(W( 4~7], Z[4 :7], 0) ;  ~E=ca rry(W[4 :7], Z(4:7], 8)

***** TA IJT E=carry(W (4: 7] , l(4:7],0) 12,166 ;

167 E~ carry(W (4:7 ] , Z(4:7 ] , 0) (12)

*****5Ij 85IR 167 IN 165;

168 S[0 :7] .- ( (W[ 0 :3] +Z(e:3] )+carry (W(4 :7] , Z(4 :7], 0))&( C W(4: 7]+Z(4:7])+8%



r ~ ~~~~~~~~~~~~~~~~~~~
• 8-BIT MULTIPLIER 7~3

• ) ;  (9 11 12)

*****VE A4 W ,Z ,8,8,3,7;

169 ( ( (W[ 0 :3) +Z [9 :3 ) ) +carry(W ( suc(3) :7), Z( suc(3):7] , 8))&((W ( suc (3)
Z [ s u c( 3 )  :7])+0)):((W (0:7)+Z (0:7))+8 )

*****sIpipLIFY

178 ( ( (W[ B :3 ] +Z[8 :3])+carry(W(4: 7], Z(4:7], 8))&( (W (4: 7)+Z(4:7 ])+0))s((W%
[8 :7]+Z[8 :7]) +O)

*****S UBSTR 170 IN 168 ;

171 S[0 :7] . (W[ 8 :7) +Z(B:7])+0 ; (9 11 12)

*****VE 112 S(0 :7] , (W[ 8 :7]+Z[0:7])+6 ;

172 S[8:7]’-(W(8:7]+Z[0:7])+0; ‘S[0:7]~((W(0:7]+Z(0:7])+8)

*****TAUT S[0:7]~((W [8:7]+Z(8 :7] ) +0) 171:172 ;

173 S[8 :7J ((W[ 8 :7)+Z[ 0 :7) ) +8) (9 11 12)

*****A I (22 27);

174 I((LOADn4CLK )n-’Q(3])nZ[15]/Z[0:3]’-S(8:3); A / ((LOADn4CLK)n.vQ(3])n%
Z(15]IZ(4:7)’-S(4:71; (22 27)

*****REWRITE 174 BY 1 P16);

175 /((LOADn4CLK )n—Q(3))nZ(15]/Z(0:3)&Z(4:7].-S(0:3]&S(4:7]; (22 27)

***** REW RITE 175 BY CONCATENATE ;

176 /((LOADn4CLK)n-.-Q(3])nZ(15]/Z[8:7j’-S(8:7]; (22 27)

*****SUBSTR 173 IN 176;

177 / ((LOAD n4CLK)n— Q[3])n~[1S] /Z[8:7].- (W(0 :7]+Z(0 :7])+8 ; (9 11 12 2%
2 27)

*****VE 112 D,carry(W[ 0:3] , Z(0 :3], E ) ;

178 D.-carry(W(0:3),Z(8:3],E) ;  ~D=carry(W (B:3],Z(8:3],E)

***a*TAUT D~carry(W (8:3],Z(0:3],E) 10,178;
179 D:carry(W(0:3),Z[0:3],E) (10)

*****SIJBSTR 167 IN 179;

180 Dacarry(W(0:3],Z[8:3], carry(W[4:7 ], Z(4:7],0))  ( 10 12)

a****VE A2 W ,Z,B,0,3,7; -

181 carry(W(0:3),Z(8:3],carry(W ( suc(3) :7], Z(suc( 3) :7], 0)):carry(W(0:7]%
,Z(0:7],0)

• ~~~~~ •~j— — --
~~~~~

-=
~~~~~~

-
~~~~~~-~~ ~- ~~~~~~~~~~ ~~~L ,•~~ .. - - • • , • -


-
•

•

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. •. .• -
~~~~~~

74
- 8-BIT MULTIPLIER

*~ ***SJMpLJFy

182 carry(W[e :3]’, Z(0 :3),carry(W(4 :7), Z(4 :7],e))~carry(W(0:7],Z(e:7],8)%

*****SUBSTR 182 IN 180;

183 D~carry(W[0 :7] , Z [0 :7}, 0) (10 12)

*****R[WRITE 152 BY I T iO B);

184 /LOA Dn4CLKIOV~-Dn(.vQ(3]nZ(15]); (13 14 15 18)

*****VE T7B 0;

185 Vy .(Dny) :(ynD)

*****REWRITE 184 BY 1 185);

186 /LOADn4CLK/OV.-(~Q[3)nZ(15J)nD; (13 14 15 18)

*****VE P118 LOADn4C1K ,vQ(3]nZ(15],OV,(’~Q(3]flZ(15])flD;
187 /LOADn4CIK/OV’-(-.Q(3)nZ(15])nD; ~ / (LOADn4CLK)n(Q[3]nZ(15])/OV.-(mv%
Q[3]nZ[15])n D ;

*****TAIJT /(LOADn4CLK)n(—Q[3]nZ[15])/OVi-(-.Q(3)flZ[15])AD; 186:187;

188 I(LOADn4CLK)n (.~Q(3]nZ[15]) IOV.- (~.Q(3]nZt15])nD ; (13 14 15 18)

• ***** REWR ITE 188 BY 1 117); -

189 / (LOAD n4C LK)n(— Q(3]nZ(15])/OV~-D; (13 14 15 18)

*****REWRITE 189 BY I T1B BR) ;

190 /((LOADn4CLK)n—Q(3])nZ(15]IOV.D; (13 14 15 18)

*****SIJBSTR 183 IN 190;

191 /((LOADnsCLK)n~Q(3])nZ(15]/OV..carry(W(8:7],Z(8:7],8) ; (10 12 13%
14 15 18)

*****A I (191 177);

192 /((LOADn4CLK)n~Qt3])nZ(15]/OV.-carry(W(0:7],Z(0:7],8); A
F((LOAOn4t

CLK)n-~Q(3])nZ[15]IZ(0:7]’-(W[0:7]+Z(0:7])+0; (9 10 11 12 13 14 15 18 S
22 27)

*****REWRITE 192 BY 1 P16);

193 /CCLOADn4CLK)n .~’Q(3))nZ(15]/OV&Z(8:7)-carry(W(0:7],Z(0:7],8)&((W(8%
: 7] +Z [0 :7])+ 8) ; (9 18 11 12 13 14 15 18 22 27)

aV E 1108 LOADn4CLK ;

194 Vy z .(((LOADn4CLK)ny)nz)=((LOADn4CLK)n (ynz))

*****REWRITE 193 BY (194);

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
• - 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- . .-. •

- - • -- , ..
~~~~



8-BIT MULTIPLIER

195 /(LOADn4CLK)n (—Q[3)nZ[ 15))~OV&Z(0:7)i-carry(W[0:7),Z( 0:7) ,0)&( (W[0%
:‘1+7(0:71)+0); (9 10 11 32 13 14 15 18 22 27)

*****REWRITE 195 BY ( 124);

196 I( (LOADn~CiOCK)n—DONE)n(—Q(3)nZ(15])/OV&Z(8:7]4-carry(W (0:7],Z[8:7%),0)&( (W[ 8 :7 ) +Z(0 :7] )+8);  A I((LOADn(..’Q(3)nZ(15]))n- .CLOCK-)n400NE/OV&Z[%
0 :7] .-carry(W[ 0 :7] , Z[0:7] , 8) &((W( 0:7J +Z(0:7])+0); (9 10 11 12 13 14 1%
5 18 22 27 51)

*****A E 196:01;

197 /C (LOADn4C1OCK )n.~DONE)n(—Q[3)nZ( 15))/OV&Z(0:7).-carry(W(0:7],Z(0:7%J, 8)&((W[ 0:7]+Z[8:7] )+0);  (9 18 11 12 13 14 15 18 22 27 51)

*****AI (23 28);

198 I( ( LOADn1CLK )n-~Q[3J) r~—Z[ 15) /Z[8:3).i[0:3); A IC ( LOADn4CLK )n—Q(3))%
n- .Z[ 15]IZ[4 :7J ’-Z[4:7);  (23 28)

**** aR EW RIT E 198 BY ( 116); 
-

199 / ((1OA Dn4CLK ) n-~Q[3))n—Zt 15]/Z[0 :3)&Z[4:7] .i(8 :3]&Z(4:7]; (23 28%

***** REVR JTE-19 9 BY CONCATENATE ;

200 /(( LOADn4C1K)n~Q[3])n..~Z( 15) /Z [0:7] .-Z(8:7] ; (23 28)

*****VE P118 LOADn4CLK ,—Qt3)n-~Z(1 5) ,OV ,(’.’Q(3]nZ(15])nD;
-

• 201 /LOADn4CLK/OV.- (~’Q[3]nZ(15])nD ; D /(LOAOn4CLK)n(- .’Q[3]n.’Z( 15])IOV’-(%
-

• 
- — Q[3]r ,Z(15J)nO;

*****TAUT /(LOADr4CLK)n(—Q[3)n—Z[15])/0V4-(—Q(3)nZ[15))nD; 186,281;

282 /(LOA Dn4 CL K)n(— Q[3]n—Z[15J)fOV ~- (— Q(3]nZ(15))nD ; (13 14 15 18)

*****REWRITE 282 BY ( T 1OSR);

203 /((LOADn4CIK)n—Q(3])n-.7(15]/OV.-(’..Q(3]nZ(15))nD; (33 14 15 18)

*****VE T7B -~Q[3], Z(15] ;

204 (~..Q[3)nZ( 15])=(Z( 15]n...Q(3])

***** SUBST R 284 IN 283;

205 / ((LOAD r~4C LK)n.~Q(3])n’vZ(15)/OV..( Z(15]n#wQ(3))nD; (13 14 15 18)

*****VE 1188 Z[ 15);

286 Vy z.((Z(15]ny)nz):(Z[15]n(ynz))

• ***** REWRJT E 205 BY ( 286);

207 /((LOADn4CLK)n~’Q[3))n~’Z(15]/OV.Z(15Jn(~Q( 3]nD); (13 14 15 18)

~~~~~~~~~~

~~~
--

~~~~
-- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ — - •

.~ —~~
—

- — ‘
~~~ 5~~ ’~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

76 8-BIT MULTIPLIER

• *****VE 118 (LOADnICLK)r Q[3],OV ,..’Z[15],’-Q[3)fl0

208 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I /((LOADn4CLK)S
n~Q[3])n-’Z[ 15]/OV’-8 ;

***** REWRITE 288 BY REDUCE ;
• 209 / (( LOADn~C1K )n..Q[3))n~Z(15]IOV.-Z(15)fl(~vQ(3)flD); I /((LOADn4CLK)n-i%

Q[3))n-~Z[ 15]/OV.-8 ;

***** TA UT / ((LOA Dn4 CL K)n.— Q[3))fl—Z[ 15]/OV~-8; 207 ,209;

210 /((LOADn4CLK )n-’Q[3))n—Z(15)/OV -0; (13 14 15 18)

*****A I (218 288);

2 11 /((LO AD nSC LK)n— Q[3])n—Z[15]/OV’-B ; A I((LOADn4CLK)n~Q[3])n.vZ[15]/Z%
[0 :7] ’ -Z [ 0 :7) ;  (13 14 15 18 23 28)

*****REWRITE 211 BY I 116);

2 12 /((LOADn4CLK)n~’Q[3J)n—Z[1S)/OV&Z[8:7]’-0&Z[$:7]; (13 14 15 18 23%
28)

*****REWRITE 212 BY ( 194);

213 /(LOA Dn4CLK)n(- .Q[3)n..’Z[ 15))/OV&Z [0:7)4-8&Z[0:7); (13 14 15 18 23%
28)

***** REWR IT E 213 BY ( 124);

214 /( (LOADn4CLOCK)n~DONE )n(*.Q(3]n-.Z(15])/OV&Z(0:7]’-0&Z(8:7]; A / ((1O%
AD n (~ Q[3]n ~2[ 15])) n~.CLOCK)n4DONE /OV&Z(0:7]’-0&Z(0:7]; (13 14 15 18 23%
28 51)

*****AE 214:01;

215 /((LO~Dn4CLOCK)n~DONE)n(’..Q(3]n.~Z(15])/OV&Z[0:7]’-8&Z(0:7]; , (13 1%
4 15 18 23 28 51)

***** REWR ITE 33 BY REDUCE ;

216 /(4CL Kn—Q[3))n.~iOADY /Z(8: 11]~-Z(8:11]; (33 )

***** REWR ITE 38 BY REDUCE;

217 /(4 C IKn—Q[3])n— LOA DY /Z[12 :15]’-Z( 12 :15] ; (38 )

* * * * *A I  (216 2 17 ) ;

218 / (&C LKn— Q [3] )n~.LOADY /Z[8:11]’-Z(8:11]; A /(&C1iCn~Q(3))n~LOADY/Z[12%
:15].-Z[ 12:15]; (33 38) -

*****REWRITE 218 BY ( 116);
• 

- 

219 /(4CLKn~Q(3])rF-4.OADY/Z[8:11]&Z(12:15]4-Z[8:11]&Z[12:15]; (33 38)

***** REWR ITE 219 BY CONCATENAT E;

- t  • • - - - - .



• • - -- -- -

8-BIT MULTIPLIER 77

228 /(4CLKn-’Q[3J)n.~LOADY/Z(8:15].2(8:15]; (33 38)

*****SUJ3STR 72 IN 220;

221 /(4CLKn..Q[3])n——IOAD/Z(8:15].-Z(8:15]; (2 33 38)

*****RE WR I TE 221 BY REDUCE ;

222 / (4 CLKn — Q [3]) n LOAD /Z[8:15]’-Z(8:15); (2 33 38)

*****VE T?B 4CIKn—Q [33,LOAD ;

223 ((4CLKn-.Q[3))nLOAD )~(LÔADn(4CLKn.’wQ[3]))

*****SIJBSTR 223 IN 222;

224 /LOADn(4CLKn—Q (3))/Z(8:15)i-Z(8:15]; (2 33 38)

*****REWRITE 224 BY ( T 1BBR) ;

225 /(LOADn4CLK )n—Q[3)/Z(8:15)-Z[8:15]; (2 33 38)

*****RE WR I T E 22 5 BY 1 1 2 4 ) ;

226 /((LO A Dn4 C LOC K)n~DONE) n’~Q[3)/Z[8:15J’-Z(8:15); A / ((LOADn..~Q[3))n’.~C%
LOCK)n400NE /Z [8: 15] ’-Z(B :lS]; (2 33 38 51)

*****AE 226:01;

227 /((LOADn4CLOCK)n-’DONE)n~’Q[3]/Z[8:15]4-Z(8:15]; (2 33 38 51)

*****REW RITE 5 BY REDUCE ;

228 /~ tLOADX/W [0:3].-W [O:33; (5)

*****REWRJJE 8 BY REDUCE;

229 /-~?LOADX/W [4:7)~-W[4:7]; (8)

*****A I  (228 229);

238 /— t LOADX/W [B:3) ’ W (0 :3); A /.wtLOADX/W(4:7).-W (4:7]; (5 8)

****aREWRIIE 238 BY 1 116) ;

231 /—tLOADX/W[0:3]&W[4:7)~’W(0:3]&W(4:7]; (5 8)

*****RE WR I TE 231 BY CONCATENATE ;

232 /.~tLOADX/W[ 0:7J~-W[0:7]; (5 8)

****aSUBSTR 68 IN 232 ;

233 /~ t.~(LOAD uCLOCK)/W (B:73.-W [0:7J; ( 1 5  8)

a** a* REW RITE 233 BY I T 14A ) ; ,

234 I—$C-.LOADn-..’CLOCK)/W[6:?].-W(l:7]; (1 5 8)

—
~~~ - ~L__~~ — ~~~~~~~~~~~~~~~ :~. ~~ •~~ -



~~~ tu•~
-, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-•-— -— -.-- —•-.

~—•~
—- —-•--,——- -—-- —-- •-- •-—----- - ~~ • -•--• - — - --•——-•-- •——•---- •- • ---

___________ • - _____________ _____ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

78 8-BIT MULTIPLIER

***** R[WR I1 [234 BY TRANS ;

235 /~ ((4LOADn ~C1OCK)u(~ LOADn4CLOCK))/W [0:7J’-W (0:7]; (1 5 8)

*****REWRJJE 44 BY REDUCE ;

236 /LOADn~tCLOCK/Q[0:3J.-Q[8:3); (44)

*****REWRJTE 50 BY -REDUCE;

237 / LOADn’~tG/DONE.-DONE ; (50)

*****SUBSJR 111 IN 237;
‘4

238 /LOADn-~t— (Q[0:3)..15)/OONE’-DONE; (45 46 50)

*****REWRITE 238 BY TRANS ;

239 /LOADr~ 4(Q[0:3]..15)/DONE.-DUNE; (45 46 50)

*****A I (24 29);

248 /LOADn~4CLK/Z[8:3]~Z[0:3]; A / LOADn~4CLK /Z(4: 7]~Z(4:7) ; (24 29)

*****REWRITE 240 BY 1 116);

241 /LOADn.~4CLK /Z(8:3)&Z[4:7)’-Z(0:3]&Z(4:7]; (24 29)

***** REW RITE 241 BY CONCATENATE ;

242 / LOADn —4 C LK/ Z [0:7)~-Z [0:7] ; (24 29)

*****AI (34 39);

243 f1n~.4CLK fZ[8:11].-Z(8:1l]; A /ln~.’1CLk/Z(12:15]i-Z(l2:l5]; (34 39)

*****R [WRITE 243 BY (116);

244 /ln..4CLK /Z [8:11]&Z[12:15].-Z[8:11]&Z[12: 15]; (34 39)

*****REWRITE 244 BY CONCATENATE ;

245 /1n~ 4CLK /Z[8:15]4-Z(8:15);- (34 39)

*****REWRITE 245 BY REDUCE ;
-

246 /—4CLK/Z (8:15]’-Z[8:15J; (34 39)

*****VE 1110 -~ CLK ,LOAD ,Z[8:15],Z(8:15];

247 /—4CLK/Z[8:15)’-Z(8:15]; ~ /~4CLKnLOAD/Z[8:15].-Z(8:15];

*****TAUT /~ 4CLKnLOAD/Z[8:15).Z(8:15); 246:247;

248 /-.-4CIKnLOAD/Z(8: 15] .-Z(8:15); (34 39)

*****VE 17B ~4CLK ,LOAD ;

249 (~~4CLKnLOAD)~ (LOADn-4CLK)

• ~~~~~~~~~ -~~~~~~ -- - .‘ _ ~~ . ~~~ t_ t ~~~. ~~~~~~~

• 8-BIT MULTIPLIER 79

*****SUBST R 249 IN 248;

250 /LOAD nw$CLK/ l(8:15]-Z(8: 15]; (34 39)

*****AI (242 258);

251 /LOADn-~4CLK /Z[8:7].-Z[I:7); A /LOADn.v4CIK/l[B:15)’-Z(8:15]; (24 2%
9 34 39)

• ***** REWR IT E 251 BY (P16);

252 / LOADn..4CLK/Z(8:7]&Z(8:15].-Z(0:7]&Z[8: 15] ; (24 29 34 39)

***** REWR IT E 252 BY CONCAT ENATE ;

253 /LOADn—ICIK/Z[O:15].-Z(8:15]; (24 29 34 39)

***** REWR ITE 19 BY REDUCE ;
-

254 /LOADn—?C/OV.-OV ; (19)

*****SLJBSTR 144 IN 254 ;

255 /LOADn~?-~CLK /OV~-OV ; (15 19)

***** REWR IT E 255 BY TRANS ;

256 /1OADn~ 4CLK /OV’-OV ; (15 19)

*****AI (256 253);

257 /LOADn~4CLK/OV.-OV; A ILOAOn..ICLK/Z (8:153.-Z[O:15); , (15 19 24 29 5
34 39)

*****REWR ITE 257 BY (P16);

2 58 / LOADn~.4CLK IOV&Z(d:15]-OV&Z(e :15] ; (15 19 24 29 34 39)

*****SUBSTR -93 IN 258 ;

259 /LOADn.4(CLOCKuDONE)/OV&Z(0:15].-OV&Z(8:15]; (15 19 24 29 34 39 5
51) -

***** REW RI-TE 259 BY TRANS ;

260 /LOADn-’((4CLOCKn’~DONE)u(~CLOCKn4DONE))/OV&Z(8:15].-OV&Z(8:15]; (5
15 19 24 29 34 39 51)

~~

•
-
~~

~

H

-- —
~~~~~~~ -‘- .‘~ ~~~ •~~~~~ t~~~~~~~~~ ’4~~~~~~ p- 

~~~~~~~~~~~~~~~~~~~~ 
-

80 1
13. CONCLUSIONS

This thesis has demonstrated how theorem proving can be applied to showing
the cortect ness of digital circuit designs. Using the FOL proof checker may, at
first glance , appear to be an awkward and expensive process in terms of
computer use. This is especially true for simple circuits. The correctness of the
4-bit binary counters could have been determined by any digital simulator In
about 16 cycles.

On the other hand, tu e theorem proving approach becomes much more
attractive when verifying complex circuits made up of MSI and LSI components.
lo oxha ustively simulate the 8-bit multiplier would have required 216 (85,536)
multiplications at one load cycle and 16 clock cycles each. if we wanted to
verify a 16-bit multiplier of similar design using simulation It would take 232

(4 ,294 ,967,296) multiplications with one load cycle and 32 clock cycles each.
Proving the correctness of a 16-bit multlpiier using FOL might require twice as
many stcps as for the 8-bit unit, and possibly far less if certain quantifiers are
properly manipulated.

After working with the FOL ver ifier for a short period It becomes surprisingly
easy to use. There are a many features that could be added to the current
system to make proofs of correct ness for hardware much more concise.
Automatic boolean minimization would help. Even better would be a subroutine
similar the FOL tautology mechanIsm that can compare two boolean expressions
and determine if they are equivalent or If one ImplIes the other.

A considerable amount of work will have to be done to get the races and
hazards information into the proof checker. It may be reasonable to develop
some axioms that indicate under what conditions a circuit will be free of these
problems. Another approach would be to Include stat istIcal Informat ion on
component delays in the circuit description and attempt to determine the
probability of a race or hazard. Some additional study of the properties of non-
transitions is also needed.

Other improvements In hardware verification hinge on the adaptation of
program verification techniques. It would be nice to be able to make assertions
about what a device will do as a result of a sequence of Input transitions. On an
aigoriti-irnic level it is much easier to defIne processes using a procedural regIster
transfer language- Therefore , it would be advantageous to develop a verifier

• based on a procedural register transfer language. - Finally, there Is the need to
interface the language presented here with a microprogram verification system.
This would make It possible for the user to prove the correctness of a
microprogram In conjunction with a specific digital device.

~~~~~~~~~~~



r 
-

- 81

14. REFERENCES

14.1 References on design verification

[1] Ahdaii,S.K. “On proving sequential machine designs.”, IEEE Trans. Computers ,
vol. C-20, no. 4, Dec. 1971, pp. 1563-1566.

[2] Capiener ,H.D. and Janku,J.A. “Improved modeling of computer hardware
systems.”, Computer Design, vol. 12, no. 8, Aug. 1973, pp. 59-64.

[3] Hoehne,H. and Piloty,R. “DesIgn verification at the register transfer language
level.”, IEEE Trans. Computers, vol. C-24, no. 9, Sept. 1975, pp. 861-867.

[4J Losleben ,P. “Design validation In hierarchical systems.”, Proc. 12th Design
Automation Conf., Boston , June 1975, pp. 431-438.

[5] Roth,J.P. “Verification of hardware desIgns at high level.”, IBM Research Rept.
RC 5613, Sept. 1975, 7 pp.

[6] Wagner ,T.J. “Verification of hardware designs thru symbolic manipulation.,”,
Proc. Symp. Design Automation and Microprocessors , Palo Alto, Ca., Feb. 1977, pp.
50-53.

• 14.2 References on design languages

[7] Baray,M.B. and Su,S.Y.H. “A digital system modelling philosophy and design
language.”, Proc. 8th Design Automation Workshop, Atlantic City, June 1971, pp.
1-22.

[8] Barbacci ,M.R. “A comparison of register transfer languages for describing
computers and digital systems,”, Carnegie-Mellon Univ., Dept. of Computer
Science Rept., March 1973,42 pp.

[9] Barbacci ,M.R. and Siewiorek ,D.P. “Some aspects of the symbolIc manipulation
of computer descriptions.”, Carnegie-Mellon Univ., Dept. of Computer Science
Rept., July 197 4, 25 pp.

[10] Bednar ,G.M. and Tracey,~J.H. “An asynchronous circuit design language
(ACDL). ”, IEEE Trans. Computers, vol. C-23, no. 9, Sept. 1974, pp. 971-978.

[11) Bell,C.G. and Neweii,A. “The PMS and ISP descriptive systems for computer
st ructures. ”, Proc. Spring Joint Computer Conf., May 1970, pp. 351-374.

[12) BeII,C.G. and Newell,A. “Computer structures: readings and examples.”, New
York: McGraw Hill, 1970, 868 pp.

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- , : •, . , .

~~~
- .  



F - --- - ,---~ —~~~.—t_ _--__-~~..-~ - - ~-~~~~~ .---- -

82 REFERENCES

[1 3] Binqhani,H.W. “Use of API in microprogrammable machine modeling.”, Proc.
ACM SIGPLAN Symp. Languages for Systems Implementation, Lafayette, lad., Oct.
1971 , pp. 105-109.

[14 ] Bogo,G.; Guyot ,A.; Lux ,A.; Mermet ,J. and Payan,C. “Cassandre and the
computer aided logical systems design.”, Proc. m t .  Federation of Information
Processing 1971 , Ljubljana , Yugoslavia, Aug. 1971 , pp. 1056-1065.

[1 5] Borrione,0, “LASCAR: A language for simulation of computer architecture,”.
Proc. 1975 m t .  Symp. Computer Hardware Description Languages and their
Applications , New York, Sept. 1975, pp. 143-162.

[1 6] Breuer,M .A . “D igi tal system design au tomat ion: lan guages , simulation, and
data base,”, Woodland Hills , Ca.: Computer Science Press , 1975, 41 7 pp.

• [17] Cht,,Y. “An Algol-like computer design language.”, Comm. ACM, vol. 8, no. 10,
Oct. 1965, pp. 607-615.

[18] Chu,Y. “Introducing the computer design language.”, Digest IEEE Computer
Society Conf., Sept. 1972, pp. 215-218.

• [1 9] Chu,Y. “Computer organization end microprogramming.”, Enguewood Cliffs,
N.J.: Prentice-Hall, 1972, 533 pp.

[20] Chu ,Y. “IntroducIng CDL.”, Computer , vol. 7, no. 12, Dec. 1974, pp. 31-33.

[21] Cral i,R.F. “A formal design language for digital systems.”, Computer Design,
vol. 13, no. 11 , Nov. 1974, pp. 103-108.

[22] Darringer ,J.A. “The description , simulation, and automatic Implementation of
digital computer processors.”, Carnegie-Mellon Univ., Dept. of Computer Science,
Ph.D. thesis , May 1969, 328 pp.

[23) Dietn:eyer ,D.L. “Introducing DDL.”, Computer , vol. 7, no. 12, Dec. 1974, pp.
34-38.

[24] Duley,J.R. and Dietmeyer ,D.L. “A digital system design language (DOL).”, IEEE
Trans. Computers , vol. C-i 7, no.9, Sept. 1968, pp. 850-860.

• [25] Flgueroa ,M.A. “Analysis of languages for the design of digital computers.”,
Univ. of Illinois, Urbana , Coordinated Science Lab., Masters thesis, May 1973, 133
P1).

• [26] Franta ,W.R. and Giloi,W.K. “APL*DS: A hardware description language for
design and simulation,”. Proc. 1975 Int. Symp. Computer Hardware Description

• Languages and their Applications, New York , Sept. 1976, pp. 45-52.

(27] Friedman,T.D. and Liu,C.H. -“The design of a design language.” Proc. Nat.
Electronics Coni., vol. 26, Dec. 1970, pp. 89-93.

- ~~~~~~~~~ ~•~~~~~~~~ r — ~--u------ . ------—-------~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ :~~~ ., - -



REFERENCES 83

(28] Giloi,W.K. and Lieblg,H. “A formalism for description and synthesIs of logical
algorithms and their hardware Implementation.”, IEEE Trans. Computers , vol. C-23 ,
no. 9, Sept. 1974, pp. 897-906.

(29] Goerke,W. and Hoffman,H.J. “Simulation of switching circuits by SSM-a new
hardware simulation language ,”. Proc. 1975 Int. Symp. Computer Hardware

• Description Languages and their ApplIcations, New York, Sept. 1975, pp. 126-
133.

[30] HiII.F.J. and Peterson,G.R. “Digital systems: hardware organization and
design.”, New York: John Wiley and Sons, 1973, 481 pp.

[31 ] Hill ,F.J. “Introducing AHPL.”, Computer , vol. 7, no. 12, Dec. 1974, pp. 28-30.

t32 ] H1II,F.J. “Updating AHPL.”, Proc. 1975 Int. Symp. Computer Hardware
Description Languages and their Applications, New York , Sept. 1976, pp. 22-29.

(33] Lee,J.A.N.; Macock ,D.; Marks ,P. and Wesse lkamper ,T.C. “The requirements
for effective hardware description languages.”, Virginia Polytechnic Institute and
State Univ.. Dept. of Computer Science, Rept. CS 75011 -R, June 1975, 42 pp.

[34] Marczynski ,R.W ,; Pulczyn,W.T. and Sochackl,J.M. “OSM Microprogrammed
hardware structure descrIption language.”, Proc. 1975 Int. Symp. Computer
Hardware Description Languages and their Applications, New York , Sept. 1975,
pp. 172-178.

[35] Parnas ,D.L. “A language for describing the function of synchronous
systems.”, Comm. ACM, vol. 9, no. 2, Feb. 1966, pp. 72-76.

[36] Parnas,D.L. “More on simulation languages and design methodology for
computer systems.”, Proc. Spring Joint Computer Conf., May 1969, pp. 739-743.

[37J Parnas,D.L. and Darringer,J.A. “SODAS and a methodology for system
design.”, Proc. Fall Joint Computer Conf., Nov. 1967, pp. 449-479.

[38] Patil ,S.S. and Dennis,J.B. “The description and realization of digital
systems.”, Digest IEEE Computer Society Conf., Sept. 1972, pp. 223-226.

(39] Potash,H. “A digital control design system”, Univ. of California, Los Angeles,
Dept. of Electrical Engineering, Ph.D. thesis, May 1969, 248 pp.

[40J Proctor ,R.M. “A logic design translator experiment demonstratIng
relationships of language to systems and logic design.”, IEEE Trans. Electronic
Computers, vol. C-13, no. 4, Aug. 1964, pp. 422-430.

(41] Rammig,F.J. “DIGITEST Ii: An Integrated structural and behavioral language.”,
Proc. 1975 Int. Symp. Computer Hardwar e Description Languages and their
Applications , New York , Sept. 1975, pp. 38-44.

• [42] Reed,i.S. “Symbolic design techniques applied to a generalized computer.”,
Computer , Vol. 5, no. 3, May/June 1972, pp. 47-52.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~•


1~~~
- . - • -•—--

~~

-

~~~~~~~~~~~~

-- •

• 84 REFERENCES

[43] Rose ,C.W.; Bradshaw ,F.T. and Katzke,S.W. “The LOGOS representation
system. ”, Digest IEEE Computer Society Conf., Sept. 1972, pp. 187-190.

[44] Schlaeppi,H.P. “A formal language for describing machine logic, t iming , and
• 

, sequencing (LOTIS).”, IEEE Trans. Electronic Computers, Vol. EC-13, no. 4, Aug.
1 994 . pp. 439-448. -

[46] Schorr ,H. “Computer-aided digital system design and analysis using a
register transfer language.”, IEEE Trans. Electronic Computers, vol. EC-13 , no. 6,
Dec. 1964, pp. 730-737.

[46] Siewiorek ,D. “Introducing ISP.”, Computer, vol. 7, no. 12, Dec. 1974, pp. 39-
41.

[47] Siewiorek,D. “Introducing PMS.”, Computer, vol. 7, no. 12, Dec. 1974, pp.
42-44.

[48] Sm ith ,D.R. “Computer structure language (CSL).”, Proc. 1975 m t .  Symp.
Computer Hardware Description Languages and theIr Applications, New York, Sept.
1975 , pp. 153-160.

[49 ] Stabl er ,E.P. “System description languages.”, IEEE Trans. Computers, vol. C-
19, no. 12, Dec. 1970, pp. 1160- 1173.

[50] SU,S.Y.H. and Carberry,R.L. “DesIgn automation languages.”, Proc. 5th HawaiI
m t .  Conf. on System Sciences , Honolulu , Jan. 1972, pp. 184-187.

(51] Su,S.Y.H. “A survey of computer hardware description languages In the
USA.”, Comput er, vol. 7, no. 12, Dec. 1974, pp. 45-51.

• [52] Whitney,G.E. and Tulloss,R.E. “The Best language: a language for use in
• simulation of digital computers.”, Digest IEEE Computer Society Conf., Sept. 1972,

pp. 211-214.

14.3 References on transitions

[53] Betancourt ,R. and McCluskey,E.J. “Analysis of sequential circuits using
clocked flip-flops.”, Stanford Univ., Digital Systems Lab., Technical Note no. 82,
Aug. 1975, 40 pp.

[54] Betancourt ,R. “Analysis of sequential circuits using clocked flip-flops.”,
Stanford Univ., Dept. of Electrical Engineering, Ph.D. thesis, Oct. 1976, 109 pp.

(55] Gschwind,H.W. and McCluskey,E.J. “Design of digital computers.”, (2nd
revised edition), New York: SprInger-Verlag, 1975, 585 pp. •

(56) Morrls ,R.L. and MliIer ,J.R. “Designing with TTL integrated circuits.”, New York:
McGraw Hill , Texas inst ruments E lectronIcs Ser ies, 1971, 322 pp.

L1~..~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J



~. •~ __ 
— 

• REFERENCES 85

[57] Smith,J.R. and Roth,C.H. “Analysis and synthesis of asynchronous sequential
networks using edge-sensitive flip-flops.”, IEEE Trans. Computers, vol. C-20, no.

• 8, Aug. 1971 ,’pp. 847-856.

[58] Taiantsev ,A.D• “On the analysis and synthesis of certain electrIcal circuits
by means of special logical operators.”, Automation and Remote Control, vol. 20,
no. 7, July 1959, pp. 874-883.

14.4 References on races and hazards

(59] Beister,J. “A unified approach to combinational hazards.”, IEEE Trans.
Computers , vol. C-23, no. 6, June 1974, pp. 566-675.

• [60] Bredson,J.G. “On multiple input change hazard-free combinational switching
circuits without feedback. ”, 14th Annual Symp. Switching Automata Theory, Iowa
City, Oct. 1973, pp. 56-63.

[61] Caldwel$,S.H. “Switching circuits and logical design.”, New York: John Wiley
and Sons , 1958, 686 pp.

[62) Chewning ,D.R. and Bredt,T.H. “Hazards In asynchronous systems.”, Stanf ord
Univ., Stanford Electronics Labs., Rept. no. TR-52, Sept. 1972, 24 pp.

[63] Eichelberger,E.B. “Hazard detection In combinational and sequential
switching circuits.”, IBM J. Research and Development, vol. 9, no. 2, March 1965,
PP. 90-99.

[64] i-iatrison,R.A. and Olson ,D.J. “Race analysis of dlgitai systems wIthout logic
simulation.”, Proc. 8th DesIgn-Automation Workshop, Atlantic City, June 1971, pp.
82-94.

(65] Hil l ,F.J. and Peterson,G.R. “Introduction to switching theory and logical
design• ”, New York: John Wiley end Sons, 1968, 212 pp.

[66] Huffman,0.A. “The design and use of hazard-free switching networks.”, J.
ACM, vol. 4, no. 1, Jan. 1957, pp. 47-62.

[67] Langdon,G.G. “Analysis of asynchronous circuits under different delay
assum pt ions.”, IEEE Trans. Computers , vol. C-i? , no. 12, Dec. 1968, pp. 1131-
1143.

• [68) McCiuskey,E.J. ‘ Transients In combinational logic circuits.”, in “Redundancy
• teelmiques for computing systems.”, Wiicox,R.H. and Mann,W.C. editors,

Washington: Spartan books, 1962, pp. 9-46.

[69] McCluskey,E.J. “Introduction to the theory of switching circuits.”, New York:
McGraw Hill, 1965, 318 pp.



~~ -- .- .••—~~~---~~, — ~~- -- - _ _ _

86 REFERENCES

[70] McGhee,R.B. “Some aids to the detection of hazards In combinational
switching circuits.”, IEEE Trans. Computers, vol. C-18, no. 6, June 1969, pp. 561-
566.

[71] Meisel ,W.S. and Kashee ,R.S. “Hazards in asynchronous sequentIal circuits.”,
III E Trans. Computers, vol. C-18, no. 8, Aug. 1969, pp. 752-759.

[7;’] Muller ,D.E. “Treatment of transition signals in electronic switching circuIts by
aiclebraic methods.”, IRE Trans. Elect. Computers, vol. EC-8, no. 3, Sept. 1959, pp.
401. , -

[73] Iley.C. “Algebra finds logic circuit glitches.”, Electronic Design, vol. 22, no. 4,
Feb. 1974, pp. 90-92.

[74] Unqer ,S.H. “Hazards and delays In asynchronous sequential switching
circuits.”, IRE Trans. Circuit Theory, vol. CT-6, no. 1, 1959, pp. 12-25.

[75] Unqer,S.H. “Asynchronous sequential switching circuits.”, New York: John
Wiley and Sons, 1969, 290 pp.

[76] Yoeli,M. and Rinon,S. “Application of ternary algebra to the study of static
hazards.”, Journal ACM , vol. 11 , no. 1, Jan. 1964, pp. 84-97.

14.5 References on microprogram verification

[77] Birman ,A. “Corre.ctness in desIgn: the S-machine experiment.”, IBM Research
Rept. AC 4193, Jan. 1973, 53 pp.

[78] Birman ,A. “On proving correctness of microprograms.”, IBM J. Research and
Development , vol. 1 4, no. 3, May 1914, pp. 250-266.

[79] Birnian,A. end Jóyner,W.H. “MVS - A system for microprogram validation - part
1: the skeleton.”, IBM Research Rept. AC 4923, July 1974, 26 pp.

[801 BourIclus ,W.G. “Procedure for testing microprograms.”, IBM Research Rept.
RC 4905, June 1974, 19 pp.

[81] Carter,W.C. “Experiments In proving design correctness for microprogram
controlled computers.”, Digest m t .  Symp. Fault Tolerant Computing, Champaign.
June 1974 , pp. 5.22-5.27.

[82] Leeman,G.B.; Certer ,W.C. and Birman,A. “Some techniques for mIcroprogram
validation.”, IBM Research Rept. AC 4616, AprIl 1974, 5 pp.

[83] Leeman,G.B. “Some problems In certifying mlcroprogrems.”, IEEE Trans.
Computers , vol. C-24 , no. 5, May 1975, pp. 545-553.

~~~~~~~~
-
~~~

• .
- -  

-~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .• - -  - ~~~~~~~ -•~~• --



REFERENCES 87

[84] Patterson,D.A. “Strum: structured microprogram development system for
correct firmware.”, IEEE Trans. Computers, vol. C-25, no. 10, Oct. 1976, pp. 974-
985.

[85] Ramamoorthy,C.V. and Shankar,K.S. “Automatic testing for the correctness
and equivalence ol loopfree microprograms.”, IEEE Trans. Computers , vol. C-23,
no. 8, Aug. 1974, Pp. 768-782.

14.6 FOL references

[86] Aiello,M. and Weyhrauch,R.W. “Checking proofs in the metamathematics of
first order logic.”, Stanford Univ., Computer Science Dept., Artificial Intelligence
Lab. Memo AIM-222, Aug. 1974, 51 pp.

[87] Weyhrauch ,R.W. and Thomas,A.J. “FOL: a proof checker for first-order
loqic.”, Stanford Univ., Computer Science Dept., Artificial Intelligence Lab. Memo
A1M-235, Sept. 1974, 56 pp.

[88] Filman,R.E. and Weyhrauch ,R.W. “An FOL primer.”, Stanford Univ., Computer
Science Dept., Artificial Intelligence Lab. Memo AIM-288, Sept. 1976, 34 pp.

[89] Weyhrauch,R.W. “A users manual for FOL.”, Stanford Univ., Computer Science
Dept., Artificial Intelligence Lab. Memo AIM-277, (to appear), 68 pp.

I -~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~



- 

8: 

- 

~~~

- - — - -

Appendix A, BNF LANGUAGE DESCRIPTION

<letter)
A I B IC I . ..~ Z I ‘ I

<di git)
: : B I 1$2 13 14 15 16 17 18 19

<transition>
: :~

<unary_oper>
::: -. 1—

<binar y oper>

<arith re~ation)
-

<ident itier>
::~ < ‘et ter)

< ident lfier><letter>
<identifier)<digit)

<constant >
:~ <digit)
:= <constant><d igit>

<statement >
(var>’-(ex p>;
/<cond_exp>/<var> -<exp>;

<cond_exp)
:: <ident ifier>

<identif ler) [<exp>]
<identif ier) [<exp> ,<exp>]
<transiti on><cond_exp>

:: <unary_oper ><cond exp>
= <cond exp)<b nary_operXcond_oxp)

<exp><arIth_relatlon> (exp>

<exp)
: : <constant)
: : <var)

= (unary_oper>(exp>
•~ : : = <exp><blnary_oper><exp>

(exp><ar ith _relatlon><exp)
<exp>&<exp>

: : (<exp))
(<cond_exp>)

— BEST AVAILABLE WPY

— —~- - - -~~~~~~~~ -- - - - - -- ~~
~~~~~~

- .- 

~~j .
___ _ __ 

AppendIx A 89

<var >
::= <identifier>
: <ldentlfler> (<exp>]

‘ ::= <identifler)(<exp> ,<exp>)
: := <ldentif ler)(<co nstant>:<con$tant>)
(identlfler> ((const.nt>: (Constant>,<eXp>]

::=  <var>&<var>
<identifier>[a<exp>3

::= <identlfier>[*<exp> ,<exp>] -

: := <ident lfler>[<exp> ,*<exp>]
:= <ldentlf ler>[<constant>:<constant>,*(eXp>]

BEST AV~-U :~Eft~ CC~- Y

- -~~ -— ——— --—- --—

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,;

~~~~~~ ~~~~~~~~~ — . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- —-i-

90

Appendix B. LIST OF IRANSFORMATIONS

11. -,13 1
-.1 0

L’ . Xv i 1
XAO $

1 3. XvO X
X A 1  X

P1. XvX X
XA X~~~X

• 15 . -.(-.X) X

1 6 .  Xv - ,X~~~ 1

11 . XvY YvX
XAY~~~ YAX

TB . XV (XAY) X 
-

XA (XVY) X

19. (XV-IY)AY XAY
(XA- ,Y)vY XvY 

-

11 8. (XvYsvZ Xv(YvZ )
(XAY)AZ XA(YAZ )

111 . X,’~(YvZ ) (XAV)v(XAZ)
Xv(YAZ) (XvY)A (XvZ)

112 . (XvY)A(-,XvZ)A (YvZ ) (XvY)A (-.Xvi)
(XAY)v(-.XAZ)v(YAZ) E (XAY)v(-~X~Z)

113. (XvY)A (-,XvZ) £ (X~Z)v(-.X,~Y)

114 . -,(XvY)
-.(XAV) ! -~Xv-~Y

Xi. (Xp ~-,Y)v(-~XAY) ‘ X.Y

X2 . X~0 ~ X

X3. Xel

X4. X e X s O

x5. Xø-.,X 1

X6. XCV Y.X

;; ~~~ 
CO

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ —•~~- •~ - —


Appendix B 91

Dl. A(l] • A(1:1]

02. A(1:J] I A(1:J,8]

03. A(l:J,s]&AL1+1:k,s] • A(i:k,s]
where i�j<k

04. -1A(l:J,s]&-1A[J+1:k ,s) I t&l:k,s)
where 1�J<k

05. (X&Y)&Z • X&(Y&Z)

06. (X[l:J]AY(1 :J])&(X(J+1:k]i~Y(J+1:k]) • X(i:k]AY(1:k]where i�j<k

07. (X(l:J]vY(l:j])&(X(j+1:kJvY(J+1:k]) • X[l:kJvY(1:k]
where l�j<k

08. (X(1:J].Y(l:j])&(X(j+1:kJ.Y(j+1:k]) I X(l:k].Y(l:k]
where l�j<k

09. IX/ A[Y(1:J],s).-Z;
I

IXA (Y(i:j) n)I A(n ,s]..Z ;

Dl8. lxi A(s,Y(1:j]].-Z;

1XA (Y(i:J):n)i A(s,n].Z;

Dli. A(Y(1:,j),s] I
(A[e,sJA (Y(l:J] e))v(A(1,s]A(Y(I:J]:1))V...V
(A(n,s)A(Y(1:j):n))
when A(Y(l:j),s] Is used In an expression

012. A(s Y[I:j]] a
(A(s,8]A(Y[l:jJ~O))v(A(s,1]A(Y(I:J]:1))V. ..v(A(s,n]A (Y(I:j]~n))
when A(s ,Y[i:J]] Is used in en expression

Al. X(I]AY(1]v(X(1]vY(1])ACI a cerry(X(13,Y(I],CI)
X(i]AY(1]v(X(1]vY[I])Acarry(X(I+1:J],Y(I+1:J],CI) i
carry(X(I:j],Y[I:j],CI)

A2. carry(X(I:J],Y(1,j],carry(X(J+1:k],Y(J+I ,k],CI) I
cerry(X(I:k),Y(I:k),CI)
where 1�J<k

A3. (X(I J.Y(I].CARRY(X[I+1:J],Y(I+1:i],CI)&
(X(1+1].Y(I+IJ.CARRY(X(I+2:J],Y(I+2:J],CI)&...&
(X(J].Y(j].CI) i X(I:J]+Y(I:J]+CI

A4. (X(i:J3.Y(1:J]+CARRY(X(j+1 ,k], Y(J+i k],CI))&
(X[j+1:k].Y(J+1:k]+CI) • X(1:k)+Y[I:k]+CI
where 1�j<k

BEST AVAIL4E~LE COrY
_ _ _ _ _

- —- --

92 Appendix B

A5. XE i:j]+-.Y[i:j]+i X [i:JJ-Y (1:j] (for 2’s complement)
X[I :jj+-~Y[I :j]+O a X[:jJ-Y[I :J] (for l’s complement)

A6 . X[i]i~(X[1+l)A ...AX[j])&X[i.i].(X[I+2]A...AX[J])&...&.IX(j]
a X~ i :jJ+)

A7. -~X[iJi~V t i J X[i]~Y [iJ

A8 . (X [i]~Y~i})A (X(I+1]~Y[I+1))A...A(X(J3:Y(J]) I X(1:,j].Y(I:33

A9. (X[i:j]:Y[i:J])A (X[j+1:k]:Y[j+1:k)) I X[I:k]rY[I:k]
w here i�j<k

Alo. -.(X[i:j]~Y[i:j]) a X[I:j]�Y(I:j]

All. X[i]A-1Y[1J a X [i])Y[i]

Al?. (X[iJ>Y [IJ)v((X[i J=Y[i])AX (I+1)>Y(I+i])v...v
((X[i:j-1]:Y [i:j—i])AX[j)>Y[jJ) I X [i:J]>Y[I:J]

A 13. (X[i:J]>Y[i:j))v((X[i:j]~V[I:j])AX[j+1:k]>Y (j+1:k))
a X [i:k])Y [i:k]
where i�j<k

A 14 . Y [i :~~} >X [i :j] E X [i : j) <Y(i : j]

A 15 . ~(X[i:j]>Y [~~:j]) • X[I:J]�Y[i:j]

A16. .~(Y[I:j))X[I:j]) I X (I :J] � Y (i : j)

Ml. A’-Y; a fi/ A .Y;

112 . /1/ A.-Y; , (A a Y)

P13 . /WA-.X/ A -Y;
/WA X/ A’-Z;

/W/ A’-(-1XAY)v(XAZ);

P14 . /X/ A.-...Y...;

/X
~
-
~
Y/ A... .0...;

115. 1XvV/ A.-Z ;

I’,’, A.-Z;

M6. /X/ A..V; (note: A end V must be the same
1X1 B.-Z; length , same for B and Z)

• I
/Xi A&B .-V&Z ;

BEST AVAII.AB~E COPY

- -.-
,, ~

,-‘—.‘—,
~
.
~~~

——.—.—•—.--.
~~~~~~ -~~~~ .—- ~-~—,-----.. . .~~~~

Appendix B 93

117. 1X/ A.~...Y..., ;
*

and (X~Y)
I

1XI A.-... I.. . ;

118. IX/ A.. .-,Y...;
and (X~V)I

P49. /X/ A~ ...8...;iYi B.~Z;
and (X~Y)

/X/ A’- ...Z . . .; -

1110. IX/ A ’Z ;

/XAY/ A.Z;

1111. /X/ A.Y;

XAA I XA Y;
XA-~A I

F l . 1XI A(*Y(I:j],s].Z;
I

1X A (Y (I : j] ’ f l) I A(n,s)..Z;

F2 . fxt A(s ,*Y(t:JJJ. Z;

/X~(YCI:J]~n)/ A(s,n]..Z;

.F3. lX i A (*Y[I:JJ,s)..A(*fll:J),sJ;
I

IX A (Y (I : J) øn) / A(n ,s]’ A(n,s];

F4. IX 1 A(s,*Y(I:J]]..A(s,*Y(I:JJ];
I

/ X A (Y(I : J J $ n) / A fs ,n]. A[s, n);

Cl. t a b
t i l O

‘a’.4 1 1 0

• C2. ?XA 4X I B

C3. tXA ’Y . $
?XA 4Y IO
4XA tY I I
IXA 4Y IS

J

~
— -- — — -

94 Append~x B

C4. tX. tY a tX vty
tX.4y a tXv LY
LX.tY I LXvtY
LX cLY a LXvLV

C5 . t ? X tX
t i x a LX
LIX a tX
LL X a LX

c(~. t-,X LX
4-.X a tX

Cl . t (XAY) a (tXAY)v(XAtY)

~(XAY) I (LXAY)v(XA4Y)

C8. t (XvY) a (tXA-,Y)v(-1XAtY)
1 (XvY) I (LXA .,Y)v(- ,XA 4Y)

C9. IXI A.-Y;

tA a (XAIY)V(-IAAYA?X)
LA a (XA 4 Y)v (AA - ,YAtX)

REST AVAILABLE COPY

Li. H
-.~~~~~~ -=~~~ ~~

- -

r -

~~~~~

‘

~~~~~~~~ 

- - ______

95

AppendIx C. TRANSITIONS THRU HAZARDS

STATIC 1 HAZARD

1. t(XAY v -~XAZ)

t (XA Y)A .i(. .X #Z) v t(.,XAZ)A-~(X#~Y) ~
(tXA Y v XMY)A(X v -~Z) v (LXA Z v -,XI’ tZ)A(.IX v -.Y) a

(tXA YAX)v (tXAYA-,Z)v(XAtY)v(XAtVA-iZ)v
(4XAZA..,X)v(4XAZA- ,Y)v(uXMZ)v(.~XA tZA.iV)

(tX AV)v (tXAYA-,Z)v(XAtV)V(LXA.tXAZ)v(LXA..,YAZ)v(-IXAtZ)

STATIC 1 HAZARD WITH CONSENSUS GATE ADDED

2. t(XA Y v .XA Z v YAZ) a

t (XAY)A- ,(.~X # Z) A ..(YAZ) v
t(-~XAZ)A-’(XAY)A ’(YAZ) Va

t (XA Y)A(X v -,Z)A (-iY v -1Z) V
t(-,XA Z)A (-~X v -,Y)A(-,Y v .~Z) V
?(VAZ)A(-IX v -Y)A(X v ..Z)

(tXA Y v XAt Y)A (X#%- ~Y v -~Z) V
(L X A Z V -~XAt Z) A (-XA -.Z V ‘iV) V
(tYA Z V VAtZ)A(- ,XA -,Z V XA -uY) =

(tXAYA-.Z)v(XA tVA-IY)v(XA tYA.Z)v
(4XA..YAZ)v(At ZA-iZ)v(-~XA-iYAtZ)V
(XA tYA-,YAZ)V (.sXAYAtZA-,Z) *

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

STATIC 0 HAZARD

3. t(( X v Y)A(- ,X v Z ) )  a

t (X v Y)A(- i X v Z) v t(-~X V Z )A( X v Y)

(t X,~~V v .X#ltV)A( -IX v Z) v (LXA-,Z V XAt Z)A(X V Y)

(tX YA.1X)v(tXA-.YAZ)v(-,XAtY)v(-iXAtYAZ)v
(4XA -,ZAX)V(4XA..,ZAY)V(XAtZ)V(XA tZAY)

(t Xv-~XA-,Y )v( tXA -,VAZ )v( .,XAtY)v( êXAXA-~Z )v( $XAYA-iZ )v( XAt Z)

3bI c4vAi~.;~L: co~

- - 
______________ i- --  -~~— -- ~-



- . -~~ -~~~~ --~~* -  rW~~~~~ r~~~~~~~ - -

90 Appendix C

S

STATIC 8 HAZARD WITH CONSENSUS GATE ADDED

4. t ((X v Y)A(-,X v Z)A(Y V Z) )  =

t (X v Y)A (-~X v Z)A(Y v Z) vt ( -~X v Z)A(X v Y)A(Y v Z) V
t (Y V Z ) A ( X  v Y)A( -~X v Z) a

( IX A- ’Y v .,XAtY)A(-IXAY v Z) v
(4XA ~ Z v XAtZ)A(XA Z v Y) V
(sYA-.7 v -~YAtZ)A (XAZ v -iX,~Y )=

(tXA .,YAZ)v(-tXA tYAV)v( ,XA tVAZ)v
(LXAYAZ)v(XAtZ AZ )v(XAYAtZ)v
(-,XAtVAYA ,Z )v(XA.,YAtZAZ)

( tX A- ~YAZ )v(-iXA t YA Y)v (- iX AtVA Z)v( 4 XA VAZ )v(XAtZAZ )V(XAYAt Z)

S

B}.M AV.AII.ABLE COVf

-- - _ -~~~~~~ s_ 
- -- ~~~~~~~~~~~~,--- -~~~~~~~~~~ -—---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



—~~~~~—-~~~~- — - ~~~~~~~~~~ -- - - --—
~~~~~~~~~----

97

AppendIx 0. FOL DECLARATIONS AND AXIOMS

DECLARE PREDCONST 8001 1;
DECLARE PREDCONST F(B 001,BOO1,B0O1);
DECLARE INDVAR a ,b ,c,d,e,f,g,h ,I,j,k, l,m ,n,o,p,q,r,s,t,u,v,w,x,y,z;
DECLARE OPCONST ~(BO0L) BOOL R’-850];
DECLARE OPCONST t(BOOL):BOOL R.758];
DECLARE OPCONST 4(BOOL):BOOL R.-750];
DECLARE OPCONST &(BOOL,BOOL) BOOL (1.600,R.650];
DECLARE OPCONST +(BOOL,BOOL) BOOL (1.580 ,R~55 8] ;
DECLARE OPCONST -(BOOL,B0OL)800L (1.580,R.550];
DECLARE OPCONST ..(BOOL,BOOL)aBOOL (1.-480 ,R.-450];
DECLARE OPCONST •(BOO1,BOOL):B001 (L.-400,R.458];
DECLARE OPCONST)(BOOL,BOO1)=BOOL (L.400 ,R~450);
DECLARE OPCONST <(BOOL 800L)4001 (L.480 ,R.450];
DECLARE OPCONST � (BOOL ,BOOL):BOO1 (L.480,R.4503;
DECLARE OPCONST �(BOOL,BOOL)=BOOL (L.-480,R.450];
DE CLARE OP CONST n (BOOL ,BOOL) BOOL (L’-380,R~350];DECLARE OPCONST u(BOOL ,BOOL)BOOI [L.-280,R.258];
DECLARE OPCONST •(BOOL,800L)=BOOL (1.-280,R.-250);
DECLARE OPCONST carry(BOOL,BOOL,BOOL) BOOL;
DECLARE OPCONST sü b (800L,NA TNUPI ,NATNUM):BOOL;
DECLARE OPCONST suc(NATNUM) NATNUM ;
REPRESENT (NATNUII) AS NATNUMREP;
ATTACH suc TO (LAMBDA (X) (ADD 1 X));
AXIOM h A : .8=1;;
AXIOM T 1B : ~1:0;;• AXIOM T2A : Vx. xul=1 Vx. luxal;;
AXIOM T2B : Vx. xn8~8 Vx. OnxaB;;
AXIOM T3A: Vx. xu8~x Vx. 8ux~x ; ;

• AXIOM T38: Vx. xnl=x Yx. lnx *x;;
AXIOM T4A : Vx. xux x ; ;
AXIOM T4B: Vx. xnx=x;;
AXIOM T5 : Vx . .~(.x) x;,;
AXIOM T6A: Vx. xu.x l Vx. .xux:1;;
AXIOM T6B: Vx. xn.x:8 Vx. ...xnx O;;
RED UCE~LOGICtREE u (T1A ,T1B ,T2A ,T2B ,T3A,T3B,T4A,T4B,T5 ,T6A,T6B) ;

AXIOM T7B: Vx y. xny=ynx;;
AXIOM T1OB : Vx y z. (xny)nzaxn(ynz);;
AXIOM TIGBR : Yx y z. xn(yñz):(xny)nz;;
AXIOM T11A: Vx y z. xn(yuz) (xny)u(xnz);;
AXIOM T14A : Vx y. —(xuy)a..xn.y;;
AXIOM T 14B : Vx y. .(xny):..~xu..y;;

AXIOM Xl : Vx y. xn.yu.xny:xey;;
• - AXIOM X6: Vx y. x.y=y .x ;;

AXIOM D3: Vx I J k. sub(x,I,j)&sub(x,suc(j),k)aSub(x,I,k) ; ;
AXIOM D5: Vx y z. (x&y)&z *x&(y&z);;
AXIOM A2 : V x y c l .jk .

• carry(sub(x , I ,j) , sub(y, I ,j) ,carry(sub(x,suc(J),k) , sub(y,suc(j) ,k),c)) .
carry(sub(x ,1,k),sub(y,I,k) , c) ; ;
AXIOII A4 : Vx y c l j k .
(sub (x , I , j)+sub(y, I. j)+carry(sub(x, suc(j),k) , sub(y,suc(J),k) , c))&
(sub(x,suc(j) , k)+sub(y,suc(j) , k)+c) (sub(x ,1,k)+sub(y,I,k) +c) ; ;
AXIOM A6: Vw x y z. (w.(xnynz))&(x•(ynz))&(y z)&(i.z)uw&x&y&z+1;;

B~Si Ac;’~:J~ L~ LOP’~

- ~~~~~ ~~~~~~~~~~~~~~~~ ~~ —-—- -~ ~~~~~~~~~~ : ~~~ ~~LL-

~
-•--*--—

~
- -----—- — — -

~~
- — —-~——— - -—-•,•— - --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__ _ ___* --~-----—- ~..- -_,•-—* -,---~—•-•~~---_—. -._- — —,~.—. ‘• — - —.--~~—-- -- .—

98 Appendix D

AX iOM P12: Vx y. (F(1 ,x,y):(xay));;
AXIOM P13: Vw x a y z. (F(wnx ,e,y)AF(wfl.vx,a,z)IF(w,e,xflyI~i’XflZ));j
AXIOM M5: Vx y a z .  (F(xuy , a , z) IF(x ,a ,z)AF (y , e ,z ) ) ; ;
AXIOM M6: Vx a y b z. (F(x,a,y)AF(x,b,z)IF(x,e&b,y&z));;
AXIOM M7: Vx a y z. (F(xny,a,ynz)IF(xny,a,z));;
AXIOM MB: Vx a y z. (F(xny ,a ,—ynz)IF(xny,a,S));;
AXIOM MlO : Vx y a z. (F(x,a,z)~F(xny.e,z));;AXIOM M 1A: Yx a y. (F(x,a,y)~(xna xny));;
AXIOM 11118: Vx a y. (F(x,a,y)D(xn~a):(xn..y));;

AX iOM CIA: tO=8 ;;
AXIOM C I R:  t1 9;;
AXIOM C1C: 48 8;;
AXIOM CiD: L 1 8 ; ;
AXIOM C3A: Yx y. txnty=8;;
AXIOM C3B: Vx y. txn4y O;;
AXIOM C3C : Vx y. Lxnty:8;;
AXIOM C3D: Vx y. Lxn4y:ø;;
AXIOM C5A : Vx. ftx=tx ;;
AXIOM C5B : Vx . tix=4x ;;
AXiOM C5C : Vx. Ltx :tx; ;
AXI OM C5D : Vx. 44x:Lx;;
AXiOM C6A: Vx. t.x:-Ix; ;
AXiOM C6B: Vx. 4—x=tx;;
AXIOM C 7A : Vx y . t(xny):(txny)u(xnty);;
AXIOM C78: Vx y. 3(xny) (Lxny)u(XflLy);;
AXIOM C8A: Vx y. t (xuy) (txn~y)u(.xnty);;
AXIOM C8B : Vx y. 4(xuy) (Lxn..y)U(.Xfl4y);;
1RANS.-LOGICTREE u(CIA ,C1B ,C1C ,C1D ,C3A,C36,C3C.C3D,C5A.C5B,C5C,C5D,
C6A ,C6B ,C7A ,C7B ,C8A ,C8B) ;

AXIOM CQA: Vx a y. (F(x ,a,y)~(ta:(xnty)u(..anyntx)));;
AXIOM C9B : Vx a y. (F(x,a,y)~(4a:(xn4y)u(an.yntx)fl;;

AXIOM CON : Vx I j. (su b(x,I ,8)&sub(x,1,j)asub(x,I,j))
Vx I ,j. sub(x ,I,1)&sub(x,2,J) sub(x,I,j)
Vx I j. sub(x,I ,2)&sub(x,3,j)~sub(x,I,.J)
Vx I j. (sub(x,i ,3)&sub(X ,4,j)asub(X,I,J)
Vx I j . (sub(x ,I 4)&sub(x,5,.j):sub(x,I,j),
Vx I j. (su b(x,i ,5)&sub(X ,6,J) sUb(X,I,J))
Vx I j. (sub(x,i ,6)&sub(x,7,j)—sub(x ,I,j))
Vx I J. (sub(x,I ,7)&sub(x,8,j):sub(x,I,J))
Vx I ,j. (sub(x ,i ,8)&sub(x,9,j) sub(x,1,J))
Yx I J. (sub(x,I ,9)&sub(x,18,j)—sub(x,I,J))
Vx I j. (sub(x,1 ,18)&sub(x,1l ,j)sub(X,I,J))
Vx I j. (sub(x,I ,11)&sub(x,12,J)sub (x ,I,i))
Vx I j. (sub(x,I ,12)&sub(x,13.j)=sub(x,I,j))
Vx I j. (sub(x,I ,13)&sub(x,14,J) sUb(X,I,.J))
Yx I .j . (sub(x ,I,l4)&sub(x,15,J)usub(x,1,j));;

CONCATENATE .-LOGICTREE u(CON};

*7 —. - -,- -e~~rtflr-,—-- • - —~~~~~tfli~~’~~~~~ -4a- ————_ — rnrntn rt ;nr . ~~~~~ t•1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•~~~~-—-~•- .~ _.—-_—----— -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — - __________________________

- 99

S

- AppendIx E. COMPONENT DEFINITIONS

CombInatIona l devices

Q’-~ (X vY ) ;  (7482)
Q~-~X;  (74 84)
Q.-XAY ; (7488)
Q~XAVAZ ; (7411)
Q’-XvV ; ( 7432)

Type 0 flip-flop (7474)

I-SI Q.-l;
/SA-’Ri Q.-O;
/SARAtC/ Q’-D;
1SARA-,tC/ Q..Q;
/ -.Ri Q’ -’-I;
IR1 Q’ .-,Q;
Ed ge triggered JK (74103)

l~R/ Q’-0 ;
1RA4C1 Qu-(JA-~Q)v(-ikAQ);. 

- - -

iRA-~4Ci Q’-Q;
4-bit binary counter (74161)

• /~RESE1i Q(8:3].0;1RESETA-.iLOADAtCOUNT/ Q(8 :3].DATA(0:3];
/RESETA -iLOADA-utCOUNT/ Q[8:3).Q(I:3];

• /RESETALOADAENBPAENBTAtCOUNTI Q(0:3].Q(0:3]+1;
/RESETAIOADA-,(ENBPAENBTAtCOUNT)/ Q(S:3}u Q[0:3); •

CRY.(Q(0:3]IS);

Quad type-D flip-flop (74175)

i-1RESET/ Q(8:3].-0;
1RESETAtC1 Q(0:3].-D(0:3];
iRESETA-~tCi Q(8:3).Q[8:3);

4-bit shift register (74179)

i-~C1EAR / Q(8:3].0;/CLEARALCLOCKASHIFT1 Q(8:3].SERIAL&Q(0:2];
r /CIEARAICIOCKA-.SHIFTALOAD1 Q(0:3).DATA(0:3];

• 
/CLEARA4C1OCKA-~SHIFTA-’1OADi Q(8:3].Q[0:3);/CLEARA .4CIOCK / Q(0:3J~QC8:3];

4-bit binary adder (74283)

SUM(8:3].A(0:3]+B(0:33+CI;
CO.-CARRY(A(0:3],B(0:3],CI) ;

BISI A~IA~..~t~LL L(J~ ~
‘

I ,

- ----—-- —

L .~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - - ~~~~~~~~~~~~~~~ - - ~~ — -


