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SUMMARY •.~ .____— ..

~~~~The solution of problems of f l ight dynamics requires the aerodynamic
forces, which are called into play , to be expressed in a suitable form. In this

context a suitable form is one which adequately reflects the nature of the motion

being considered and is, at the same time, convenient for the solution of the

equations of motion. In the opening sections of this paper formulation in terms

of aerodynamic deriva tives , and generalizations thereof , are considered. There

follows a brief discussion in broad and simple physical terms of how the various
motion variables give rise to forces and moments, which within a linearized
framework are expressible as force or moment derivatives, specifically for an
aeroplane. A

Paper to be presented as a contribution to a course of lectures on
“Aerodynamic inputs for problems in aircraft dynam ics” at the von Karman
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1 INTRODUCTION

In setting up a mathematical model for the calculation of the dynamics of

an aircraf t, it is necessary to rela te the aerodynamic forces to the state vari-
ables, that is, those motion and other variables necessary to specify the flight

condition. For conditions of steady flight, or condi tions of equilibr ium, the
problem presents no inherent difficulty since these conditions can be assumed to

have persisted for a long time. This renders the forces fully determinate in
terms of the reduced set of variables, which specif y the steady state. Unsteady

motion, on the other hand , presents real difficulties and there is no argument

by which , a priori , we can circumvent the fac t tha t, strictly speaking, the
aerodynamic forces and moments acting on an aircraft during unsteady motion are

‘f unctionals ’, that is, they depend on the whole set of values of the state

parameters , past and present.

To a large extent the above d i f f iculty has been ignored in the past

development of the subj ect of fl ight dynamics and the formulation of the aero-
dynamic forces and moments has proceeded along essentially intuitive lines of

1-3
reasoning. Early this century Bryan introduced a formulation in terms of

• linearized aerodynamic deriva tives, which expressed the aerodynamic force or
moment as the sum of the steady-state value and linear terms in the instantaneous

values of the disturbance (or perturbation) velocities and motivator angles.

Some terms in the first derivative of some of the quantities were added as time

went on. This process replaces the ‘functional’ by a function, in other words,

if A be a typical aerodynamic reaction, then in free air (away from the Earth
or other large object) we may express the process mathematically as follows , see

Fig 1,
A = A [u,v,w,p,q,r,F~,ri,r], the functional

~ A(u,v,w ,p ,q, r,F~,Ti,C ,~r ,4,F ,iI,i)

~ A + A u ’ + A v ’ + e u v

where the suffix e refers to equilibrium conditions of steady flight, for
-‘ example, with U

e 
and w * 0, V

e 
0, p = q — r 0, ~ — C — 0 but Ti 

~e
The justL ‘n for the continued use of these ‘quasi-steady ’ aerodynamic

derivativ - ‘f the development of more generalized formulations stemming

from the ori6i. ~i linearized form is to be found in the fact that seemingly they
have described adequately aircraf t behaviour in mos t condi tions of practical

L ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~ - - — ~~~~~~~~~~~~~~~~ —- -
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interest. Furthermore they have received a certain degree of validation

through wind-tunnel testing. Nonetheless it must be emphasised that certain

aspects of the concept of derivatives lacks rigour. More recently, Tobak5 haB
tried to introduce that rigour by star ting with the proposition tha t the force
or moment is a functional. lie derives an integral form for an aerodynamic

coefficient C
k
(t) , where k may be X, Y, Z or £ , m , n , which contains

judicial responses in a functional form. The subsequent development of his

formulation hinges on “replacing the functionals by appropriate functions,

whose dependence on the past is denoted by a limited number of parameters

• rather than by continuous functions”. We cannot go into the details of his

analysis here, but we note that he emerges with formulations akin to those

discussed later . However a point worth making is that the analysis is
restricted to motions reproducible in a wind tunnel, namely , a rectilinear

f l ight path with constant resultant velocity.

Even if we accept the derivative formulation with all its defects there

remain fairly formidable aerodynamic problems in the calculation of the various

quantities, so defined . These will be discussed in their context in later

sections of this paper . Furthermore there is, and as far as can be foreseen

always will be, a need to have available methods suited to the various stages

of the design procedure. There is a willingness to sacrifice some accuracy in

the interest of ease of application and generality for those methods to be

used during the early stages of design . However, the main aim of this intro-

ductory paper is to give in broad qualitative terms an account of the source of

the various contributions to the forces and moments acting on an aeroplane in

unsteady flight . We shall not be concerned with methods of estimation , per se.

In order to achieve the maximum convenience and generality it is customary
• to resort to a non-dimensional form for all the aerodynamic quantities involved .

In this way the major effects of speed , size and air density are accounted for

automatically. It is unfortunate that schemes for forming these non-dimensional
• quantities have not evolved in an organized and logic fashion . The result is

that the newcomer to the subject is faced with inconsistencies which he finds

difficult to comprehend and resolve . In what follows, the rela tionship between
the coefficients and derivatives in the system most commonly used in the United
States and that embodied in the documents issued by the International Standards

Organisa tion are explained and detailed . Additionally the corresponding
relationship between the latter and the earlier British scheme of notation is

also considered . 
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The use of the coefficient form is essentially in tended for trea ting the
forces and moments generated by the relative motion of the aircraft and the

ambient air and for this reason the divisors contain the kinetic pressure, ¾pV
2
,

as a factor. For other forces, even aerodynamic ones such as the thrust of an

engine such divisors are not entirely satisfactory but, since in the dynamic

studies it is necessary to be consistent, are used . There is, however , a draw-
back in this practice as it can be misleading in the process of forming the aero-

dynamic derivatives in their non-dimensional (or normalized) form. We have to

draw a clear distinction between what might be termed coefficient derivatives

and ‘coefficients of derivatives ’, which is one way of describing the usual non-

dimensional aerodynamic derivatives.

• 2 CONCEPT OF AN AERODYNAMIC DERIVATIVE AND ITS USES

We have already mentioned in broad terms the concept of a derivative of a

force or moment. The reduction of this to its normalized (or non-dimensional)

form also needs consideration. Let us return to the equation previously given
• for a typical aerodynamic reaction in the special case of motion well away from

another body tha t can introduce an interference effec t, such as the Earth. We

can, without loss of generality, confine our attention to a motion in the longi-
tudinal plane alone, in which case we are concerned with two forces (X ,Z) and

one moment (N). These are expressible, within the assumption of small perturba-

tion , in the forms,

X — X[u,w,q,n) ~ X (u ,w ,n) + X u ’ + X w ’ + X q ’ + X n ’ ,

z = z[u,w,q,nJ Ze
(U
e~
W
e~

f le
) + Z

u
u ’ + Z

~
w’ + Z

q
q ’ + Z~n ’ + Z~~’

and

M = M[u,v,q, T1J ~ M (u ,w ,T i )  + M
~

t1’ + M
e
w’ + M

q
q ’ + M

fl
fl ’ + M.~i’

In these equations the quantities are dimensional , al though it is significan t

that a meri t of the new ISO notation (see also Ref 4) is tha t the corresponding
equations in normalized form have the same form exactly . Hereafter we shall

emphas3.se the difference by either adding the superscript 0 or the subscript

‘ord ’, when we wish to denote a dimensional quantity. The plain symbols are

then the aero-normalized derivatives of the ISO system, for example , X ,X ,u’,w’.

As a basis for this normalizing process we choose divisors formed in the

same consistent manner as a system of units derived from three fundamental

devisors ,

H
- ~~~-
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(1) for lengths , 
~~ 

(a length defined by a significant geometric
feature)

• (2) for velocities, the resultant velocity in the datum flight condi tion,
(resultant of Ue and W

e 
in above example) and

• (3) for forces , i~ c V Sj
\ ee /ord

From this choice of divisors it follows , for example , that

H z
H = e

e 
~Pe

V
~
S 
ord

and

Z
q
q ’ = 

(~
Pe

V
~S)

— 

Z
q 

____

½ P V S 2. \ v )e e  0 ord e ord

with , of course,
(q’2.

0\
C’ 

“
~~~~~ord

• This example illustrates the meaning of the expression ‘coefficient of a

deriva tive ’, since this is precisely what the first of the bracketed terms for

Z
q
q ’ is. It is perhaps helpful to set out in full the divisors most commonly

needed and this is done in Table 1.

It is implicit in the form of the expressions given above for the forces
and moments that the aerodynamic deriva tive formula tion is app licable only to
the calculation of small perturbation motion of an aircraft. However, it may

be no ted here tha t this refers more spec i f ically to changes in the variables
involved in the aerodynamic terms rather than others occurring within the
dynamics. In other words the aircraft motions that may justifiably be calcu-

lated on this basis can involve appreciable changes in some state variables ,

• for example , the attitude angles. The derivative form for the aerodynamic
forces and moments is par ticularl y well suited to the considera tion of the
stability (in the linearized sense) of a given steady state.

• —-~~- --~~~~~ -- - -  ~~~~~~~ -----•
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It may be remarked here that the derivatives used in the USA are also

essentially of the above type , but there is in this case an inconsistency in

the unit of force used to reduce a force and a moment to their respective

normalized forms . For the force the divisor is as above (½p V2S) but for
2 e e  ord

the moment it is e’~e~~ord~O 
(a representative length). This usage can be

traced back to the early days of aviation when it was the practice to use the

factor pV
2 in forming all coefficients and lift drag and pitching moment

coefficients had the following forms,

L D M
k = —

, k = — and k =
L pv 2s D pV 2S m pV 2S2. 0

The forms resulting from the retention of this earlier practice for the moments

is open to another interpretation since the choice made for the representative

(or characteristic) length is ~ /2 for the longitudinal quantities and b/2

semi-span, for the lateral quantities.

Thus, for example, we may write

1 2 / 2=\
‘ p V S — ’  = ‘~~p V S c ’\e e 2/ e e  /ord ord

when the second variant of the expression can be interpreted as using c for

in the ISO notation. This stratagem merely shifts the inconsistency to
0

the normalized variab les , such as , f -i-—) and the time unit , , which

= 
‘ e/ord 

—

with = c/2 would not conform with = E - Nevertheless the two sets of

derivatives are easily related one to the other . To illustrate this we have to

digress a little and look at the well-known present-day versions of the aero-
• dynamic coefficients. These are defined as follows :

= , = and C
m 

= 

(
~

p
~~

S
~~~ rd

for the longitudinal forces and moment and

_ _  

I L  \ I N  \ HC 1 I , C = 1  and C 1 IY \½PV
2S “~rd \~ pV 2Sb 

~~rd \ ½pV 2 Sb 
~ rd

for the lateral force and moments, almost universally and in particular in the

USA . We should remark here that the International standard does not lay down
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any chosen length for . However, if the choice is made of adopting L
~ 

=

for longitudinal quantities and = b for the lateral quantities, we note
that the normalized forces and moments have a form analogous to the coefficients.

Now the product of a derivative and its associated normalized variable repre-

sents the contribution of that state variable to the force or moment exp~essed

in its normalized form. If we express this fact mathematically we have, for
example ,

(t~M) , = C a ’ = C -v-- to f i r s t  orderdue to w m m va a e

M I ,t~M w 1W
2 ~p V S ~~p V Sc e e  e

e e  ord ord
ord

= M w ’ , by definition

which y ields

C = M
m w• a

App lication of the same argument to the contribution of q ’ results  in

~~~~due to q ’ 
= C

m (
~

)
ord

t~M 
— 

M
g \t 2 2 1

~ p V S c  ½p V Sc , ‘ e
\ e e  e e  / ordord ord

M
qC” 

, by definition

so that

Cm
q 

= 2M
q

4 Likewise,

A ~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
• • --
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1 =~~
/ ~ (à c \ 

_ _ _ _ _

to a 
— “rn. ½V ) — 

2 =a ~ e, 
J~p V Sc

ord e e  ord

M. \ ( . ,_
— 

w Iw ~~ -- I— - M.w
w

~p Sce ord e ord

so that

C = 2M.
m. wa

Other quantities can be similarly related . Table 2 attempts to set out the

more or less complete set of relationships necessary to convert from results in

one system of notation to the other. The remarks about the derivatives Cy~
and C~ should be noted. Also given in Table 2 are the factors to be applied

if the semispan, b/2 , is used in place of b for

3 CONCEPT OF A COEFFICIENT DERIVATIVE AND ITS USES

It not infrequently happens that a problem in flight dynamics involves

large perturbations of one or more of the state variables . In particular there
is a class of problems wherein the speed varies substantially. For such prob-

lems it is preferable to exclude the speed from the expansion of the aerodynamic

forces and moments by using what we shall te rm coefficient derivatives , that is,

partial derivatives of the appropriate aerodynamic coefficient with respect to

F a variable. Thus typically we have,

x = 
~Pv 2sc

~ 
: C~ = C

X
e 

+ C
~ aa ’ ÷ C~~8’ + C

~~~C” + . . .

M = ½pV 2s~c : C = C + C a ’ + C ~~
‘ + C q ’ + . . .m m me ma m~ mq

where the multipliers of C and C are dimensional quantities , p being

the current value of the air density and V the current value of the resultant

velocity. In the expansions of the coefficients the primed quantities are aero-

normalized perturbation variables. Thus, see Fig 2,

a’ = a - a where tan a w/u

= = ~~~-1 (
~
) ,

= 

(
~~~)ord 

etc.,

I
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if suffix e refers to a symmetrical flight condition . It should be noted

that in this treatment of the forces and moments the current value of the

resultant velocity, V , is used in the definitions and that all the coefficient

derivatives are functions of the current Mach number, M = V/a - This is in

contrast to those of section 2 which are functions of the datum flight Mach

number , N = V ía . On this account the coefficient derivatives or derivatives
e e e

• of coefficients should not be confused with the usual aerodynamic derivatives

used in the USA, which as we have discussed are essentially of a different type

in spite ot the similarity in notation.

It is possible to deduce the relationships between the derivatives of

section 2 and those of the present section
4. For a general datum flight condi-

tion these relationships are complicated , but they simplify considerably when

• the datum flight condition takes the more usual form of steady, symmetric recti-

linear flight. Then for an arbitrary set of body axes we have, for example,

I
Z = ~2C + M (— ~~

) + R (—~ 
) ‘

~i cos a - (C ) sin a
u I Ze e \~M ‘e 

e \3R /eJ e Za e e

• 
= 

{~
c
ze 

÷ M
e (

~~~
) 

+ B
e (

~~~
)} sin a + 

~~Za~e 
cos a ~

z = (C )
q Zq e

Z. = (C .) cos a if 9~ = £ = ~ (say),w Zae e 1 0

Z
fl = (Cz )

where the suffix e indicates that the quantities are evaluated at the datum

condition.

Similar relationships exist for the moment derivatives except that the

right-hand sides are multiplied by an additional factor, , which can be
set equal to unity if = = E (say). For aerodynamic body axes, a = 0

(Fig 3) and the relationships simplify even further. In addition in that case

we can introduce the lift and drag coefficients into the expressions on the

right-hand sides (cf section 5.1). If a dependence of C~ upon the accelera-

tion V had been assumed , the expression for Z. would have contained a term

in Cz;;~ 
, but it is normal practice to ignore this term just as we have

previously ignored terms involving derivatives with respect to ü in the small

perturbarion expressions for forces and moments given in section 2. 
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4 ALTERNATIVE FORMU LATIONS OF AERODYNAMIC FORCES AND MOMENTS FOR OTHER
• MOTIONS

We have already remarked in the introduction that further generalizations

are needed and according to Tobak5 are justified . One such generalization is

that in which , in addition to substantial changes in the velocity , the changes

in the angles of attack and sideslip are sufficiently large as to render the

previous formulations of the aerodynamic terms unacceptable. We then incorporate

within the first term of the expressions for a force or a moment coefficient the

effect of the above two angles as a function . The combination of instantaneous

values of the velocity and angles of incidence define a possible steady state ,

so that we may regard the expressions for the aerodynamic force or moment as

representing a disturbance about the said steady state.

• In this way we arrive at the formulation illustrated by the following >

C
x 

= C
~

(a ,
~~

) + C~~
(a ,~~

)fl ’ + C~ q
(a~~ )~~

t +

and

C = C (a ,~~) + C (a ,~~)n ’ + C (a ,8) q ’ +m m inn mq

By virtue of what we have already stated the first terms in such formulat ions

are obtained from so-called ‘static ’ tests or calculations . Just as it is

sometimes necessary to elaborate this formulation further by including the

effect of the motivators (the effect of n in above examples) likewise as a

function , it may also be permissible on occasion to omit the sideslip angle

from all but the f i r s t  term. The theoretical arguments advanced by Tobak can

take us no fu r ther  than say ing that s t r ic t ly the derivatives must be determined

with reference to the state defined by both angles of inc idence. On the other

hand too few experiments have been made to allow of a more general statement on

empirical grounds.

In dynamic problems which involve high rates of rotation , such as departure

conditions , spin entry and established spin motions , further modification of the

formulation of the aerodynamic terms is necessary . Again Tobak has put forward

arguments in support of a specific form for this case , but we may approach the

question from a slightly different angle. If we wish to introduce an angular

velocity into the first term of a more general expression than those quoted

above , this angular velocity must clear ly be about the instantaneous direction

of the velocity , or along the tangent to the flight path , see Fig 2.
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Let us denote the angular velocity by w and take as our examples two

coefficients which will be strongly affected by the presence of the angular

• velocity . Two such coefficients are those for the side-force and the rolling

moment. These are now written ,

C~ = C~(a~~ > w) + C~(a > B>C ) + C~~,p ’ + Cyr r ’ +

and

• C~ 
= C

~
(a ,8, CA)) + C~ (a ,8,~~) + C2(a ,~~,C) + Ca p ’ + C

a
r’ +

By choosing w such that it has a component p , equal to the current rate of

• rotation about the x-axis , along that axis we obtain what is, in effect , Tobak ’s

• proposed formulation5. This would imply that the yaw-rate derivatives are to be

determined (experimentally or theoretically) from motions involving oscillations

about the coning motion defined by a, ~ and w = p sec a , see Fig 2. It is,

however, necessary to note that the above choice for w is not the only one

possible. In any case it is desirable that any formulation of the aerodynamic

terms be validated by tests involving motion of the most general kind . It is

to be hoped that further light may be cast on the matter by an investigation ,

presently being undertaken, into the motion of free-flight models during post-

stall gyrations , spin entry conditions and in established spins of both the

steep and f l a t  type .

5 ON HOW THE FORCES AND MOMENTS ARISE

In this section the aim is to describe in the broadest , and hopefully

simplest possible , terms the nature of each contribution to the overall forces

and moments and to identify those components of an aeroplane which make signifi-

cant contributions to the individual derivatives.

It is desirable to work in some specified system of axes and the aero-

dynamic-body axes are chosen for their convenience and general nature . A

definition of this axis system is not amiss, so we note that aerodynamic-body

axes are such that in the datum flight condition the x-axis is parallel to the

projection on to the plane of symmetry of the velocity of the origin of the

axes (usually the centre of gravity of the aeroplane). The x-axis is positive

towards the nose of the aeroplane > the z-axis is parallel to the plane of

symmetry, posi t ive ventral l y .  The y-axis is positive to starboard : when the

centre of gravity lies in the plane of symmetry , the latter is the zx-plane ,

see Fig 3.
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The choice of axes made here does not imp ly that these axes are the most

suitable for all aircraft configurations or for all experimental techniques.

It, therefore, sometimes becomes necessary to be able to convert the ~alues of

the aerodynamic derivatives with respect to one system of axes to those appropri-

ate to another system of axes. This matter is discussed in section 6.

To avoid undue complexity we have previously excluded from the discussion

any effect location of the aircraft (that is, the position of its centre of

gravity and its attitude angles or orientation) may have on the aerodynamic

forces acting upon it. This is not always permissible. For example , the

proximity of an aeroplane to the ground (Earth’s surface) as during landing and

take-off introduces changes. Six parameters govern these effects , namely, x0,

y0, zc~
; V , ê, •, of which the first three define the position of the aeroplane’s

centre of gravity with respect to an Earth-fixed system of axes and the second

trio the aeroplane ’s orientation relative to these axes. Since it is usually

sufficient to simplif y to a flat Earth the first trio may be replaced by h

the height of the centre of gravity above the ground . Wind-tunnel test results

as well as those from theory have indicated that some of the derivatives already

discussed are subject to considerable modification . However, some care needs to

be exercised in interpreting results of this sort as they not infrequently refer

to a constrained flight condition . In the usual wind-tunnel test the centre of

gravity remains fixed , that is, no change in flight path occurs . Orientation

of the aeroplane with respect to the incident flow becomes indistinguishable

from orientation with respect to the Earth. To illustrate this point it is

convenient to refer the motion to a suitable body axis system, see Fig 3, for

example, with the x-axis aligned with the no-lift line of the aeroplane. In

Fig 4 two special motions of the aeroplane are shown, one in which the attitude

in pitch is zero (or constant) and the angle of attack varies the other in which

the angle of attack is zero whilst the attitude changes . These and the more

general motion shown in Fig 5a may be contrasted with the flight conditions

usually examined theoretically and experimentally , Fig 5b. Whether or not these

are significant derivatives with respect to the attitude angle ~ has yet to be

determined . Similar remarks apply to the other two attitude angles, ~‘ and •.

The same diagrams serve to illustrate the essential difference between the

aerodynamic forces arising from the rate of pitch , q and those due to the rate

of change of the angle of attack, & . Again there is parallel to be drawn for

the rate of yaw, r and the rate of change of sideslip angle, 8

hiI_L A ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ • • •~~~~~~~~~ • ~~~• ~~~~~~~~~~ •~... ~~~~~•



‘

~~~~~T~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

• 

e
• 1710

5.1 The longitudinal X-force derivatives , X and X
u w

The derivative X represents the contribution to the force along the

x-axis due to unit incremental velocity along the x-axis, so that X U ’ is the

incremental force due to u ’ . Likewise X v ’ is the corresponding increment

in force due to w ’ . Since lift and drag coefficient data are more familiar

and generally more readily available , we shall express these derivatives X~
and X in terms of derivatives of these coefficients.

V

We may write X = ½PV
2SC~ (M ,R > aITiI q>~ ) as the dimensional form of the

X-force > from which we have the derivative

k = 

~~~
)e 

= 
~~
PVSc

~ ~~ 
÷ ~pV

2
S ~ ~ 

~~ord 1e
• where y represents each of the parameters within the brackets for the function

and the subscript e denotes that the whole is evaluated at datum

conditions. Now in general

2 2 2 2V = u +v  4w

wtan a = —

U

N = !, R =
a p

• where we have for ease of writing omitted the superscript 0 or suffix ord

For small  perturbations in u, v, w and in a these can be written, for the

chosen axes ,
V = V + u ’ = ue

w e
• a = cx = —

• U

V + u ’
• eN = and R = — ( V  + u )a p e

whence

2 V V
u e

and
V(—I = — a’ - — , which are zeroV

I
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in the datum flight conditions. Evaluation of the derivative in its normalized

form now gives

= 
(¾P:~eS 

= 2C
X
e 

+ N (
~~~)e 

+ R 
(~~)e

ord

By virtue of the fact that to first order in a’ we may write C~ = - C
L
a - C

D >

the above expression can be expressed in terms of the drag coefficient , thus,

X = - 2C
De 

- N 
(
~~~
)e 

- R 
(
~~~)e

The third term, which represents the effect of the Reynolds number, is often
ignored, since it is assumed that either the estimation or measurement of the

drag has been made at a representative scale. In deriving this result for X
u

we have restricted our attention to airframe aerodynamic forces, which

necessitates a separate treatment of the thrust contribution to the X-force.

This course is advisable since the introduction of a thrust coefficient can be

inconvenient and even misleading . If T represent the thrust and ‘T 
the

• inclination of the thrust line to the x-axis, we have components of thrust along
• the x-axis and z-axis of xT 

= T cos ‘T 
and zT 

= T sin ‘T respectively. The

contribution of the thrust to X can be written

= 

~~~~~~~~~~~~~~~~~ 
(
~~~)e}or~ 

= 

[~~~e~ 
(
~~)e]ord

It is clearly zero in gliding flight since then T = 0 , otherwise we require
to know the dependence of the engine thrust on the aeroplane speed . For examp le ,

if the horsepower of the engine is constant , TV = constant , so that
1~T~~ T . . . .

= - — , which is a reasonable approximation in the case of a piston-
~uU ie
engined aeroplane with variable-pitch propellors. There is much less dependence

• 
of thrust on speed for jet or rocket engines .

• In general

= xA + x T

T 
(ac \

= X - 2CDe 
- M
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where the Reynolds number term has been ignored . By app lication of the same

basic relationship of force and coefficient and evaluating the derivative in a

similar way we have

xA (C ,)v Xa e

which by virtue of the relationship between 
~~ 

C
L 

and C
D 

can be rewritten

x = xA 
= C - ( C  ,)

w w L Dcx ee

Estimates of the derivatives involved in the above expressions for X and XU
• can usually be obtained from generalized data and are also available from wind-

tunnel test data obtained at an early stage in the design procedure .

• 5.2 The 2-force derivatives, 2 , 2 and Z
u w

• The following results are readily obtained by applying arguments on the

lines of those of section 5.1.

• A - - (~ C
L

s
\Z — - 2C~ Me \~W)e e

T 
— 

~~~~~~~ ‘T (2~T~— 

½ p V S \ ~u)e e  e

which when combined yield

f~c \
z = zT _ 2 c  - M

U u L e \aM /e e

of which the first term is usually so small that it is ignored.

4 For the derivative with respect to w’ we have,

f~c \
z~ = 

% i
)
e

C1)
e

where this time the second term is usually small compared with the first term.

As for the X force derivatives the information on the lift and drag

coeff ic ients  is so basic to the design of the aeroplane that the evaluation of

the Z force derivatives also presents no problems .
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The deriva tive Z
q 

is associated with the angular velocity of the aircraft

in pitch . We have already seen that motions can be imagined in which there is

rotation in pitch without change in the angle of attack as well as motion in
• which the angle of attack varies without any rotation. Accordingly q and ~

are variables with their separate effects  just  as 8 and a are. Reference

to Figs 6 and 7 shows that the effect of the rotation rate q about the y-axis

is equivalent to a decrease in the effective angle of attack of those portions

of the aircraft ’s body and wing lying forward of the y-axis and an increase in

• the effective local angle of attack of the tail and those portions of the wing

and body behind the y-axis. Within the assumptions of linearized theory there

is a strict equivalence in the load distribution of the cambered wing in recti-

linear f l ight and the rotating wing. The pressure distribution is proportional

to q/V for the contributions from the wing, body and tailplane. The integral

of these pressure distributions g ives the overall force and hence its derivative

Z~ . A simple, but approximate, expression for the tailplane contribution can

be obtained by ~gnoring the effect of the additional downwash induced by the

additional l i f t  distribution on the wing due to the rate of rotation , q - We

further replace the distribution of local effective incremental angle of attack

over the tailplane by a mean value, -i-— . Here i
T 

is the tail-arm and is
e

usually taken as equal to the distance from the centre of gravity to the aero-

• dynamic centre of the tailplane, see Fig 7.

• The mean kinetic pressure over the tailplane is affected by the wing wake

associated with the combined a and q loadings . Let the ratio of this mean

to free-stream kinetic pressure be Qq 
then we have approximately,

2 
____( z )  , = - ½ p V Q S a  It due to q e e q t lt\ V~

which y ields

(Z
q
)
t 

— - Qq 
a
1~

The distribution of effective angle of attack due to the pitch rate also

produces a contribution to the rotary derivative Z
q 

from the body and the

wing. That of the body can be estimated using slender-body theory or one of

the more refined theoretical methods. Strictly speaking allowance should be

made for the mutual interference of wing and body , but this is seldom done ,

because of the more dominating effect of the tailplane. Likewise the cancelling
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• e f f ec t s  of reduction of effective angle of attack of tha t par t of the wing

forward of the centre of gravity and increase in effective angle of attack of

• those parts aft of the centre of gravity tend to make the wing contribution

small , except for highly-swept wings. However , there is no inherent difficulty

in applying any of the available lifting surface theories to the calculation of

• the derivative Z
q 

for a wing alone. It is usually accepted that simple
• summation is adequate for yielding the value of the derivative for the complete

aircraft. This view is further justified by the fact that this particular

derivative is of little importance in the dynamics of most aeroplanes, apart

perhaps for those having very small values of the relative density parameter,

• p 1

• 5.3 Moment due to change in velocity component along x-axis -

Just as we expressed the force derivatives X and Z in terms of the
U u

more familiar lift and drag coefficients so we may express the moment deriva-

tive , M , in terms of a derivative of Cm , at any rate as far as the contribu-
tion from the airframe forces is concerned . Accordingly we write

MA = ½pV
2
S
~
Cm

(M ,R,a,fl,q,à)

as an equation for the dimensional moment in terms of its coefficient.

From the above relationship we again obtain on differentiation the

dimensional derivative

= 
(
~~~
)e 

= 
[{PVS~

Cm ~~ r + ½pV
2

S~ ~ 
~~~~ ~~~

}orJ

• where as before y represents each of the parameters within the bracket for

the function C and the subscripts ‘ord ’ and e denote dimensional value and

datum conditions respectively . Evaluation of this expression using the •

rela tionships given in section 5.1 yields

MA 2C + (M~~~~~+ R ~~~~) 
.

If the thrust line passes above the centre of gravi ty there will be another
contribution to N . Since the moment arm, d , is usually small in terms of

the mean chord the contribution is usually small. We have

• ————I •~~~~~~~~~~~~—• ~ -- •  ••-• -— ——- • ~~~—•-- —• - —  •---- •~~
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= - d

and so

T 1 fd\ f~TM = - _ _ _ _

• U ½~ V S \c) ~e~~U
• e e  / ‘ e

In the absence of compressibility and Reynolds number effects, N 0 for a

rigid aircraf t in gliding flight.

5.4 Moment derivative due to the change in velocity component along the
z-axis - Mw

We can once more approach the estimation of the moment derivative due to

the velocity component perturbation , w’ via a rela tionship between it and
a derivative of the moment coefficient. It is unnecessary to repeat the argu-

ment in detail (of 5.2) and we content ourselves with merely quoting the result

Iac \ IaC \
I i n i  I Dl

M
~~~~~~~~~VT) ~~~e e

In an analysis of the pitching moment produced by changes in the angle of attack

it is customary to reduce the system of forces acting on the wing/body combina-

tion to a moment N
0 

about an axis through the aerodynamic centre and forces

(lif t ) and D
0 

(drag) passing through this point . For simplicity we shall

~ 

~• ignore the small terms arising from the drag force and the thrust. It then

follows that if L
~ 

is the lift on the tailplane the pitching moment about an

axis through the centre of gravity can be written ,

N = N~ + L0 (h - h
0

)~ - Lt Ii 
- (1~ - h

0
)~~

where h~ denotes the position of centre of gravity on the mean aerodynamic
chord ,

the position of the aerodynamic centre,

and £ the distance between the aerodynamic centre of wing-body combination
• a.c and that of the tailpiane .

But the total lift L = + L
t 

, so that

• N = N + L (h - h )~~ - L i
0 0 t a.c

4

A — • - - • -•••--- •— • .\_a~ ~~~~ ••~~~~ ~~~~~~~~ • • • ~~~~~~~ - I
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Now

L
t 

— 
a~

)
~

2Staltu t eff

where a
~ eff 

= a (1 - +

Hence

/SL \
C = C + ( h - h ) c  - Q  ( t a .c~~~ a

in m 0 L a~ = i lt t eff• 0 ~~~S c i

and

(

~~~~~~

) 

= (h - h
0
) ~~ - a

i~
Q (S

t
:
a.c) (‘ -

Here we have made the usual assumption that the aerodynamic centre position is

insensitive to variation in the angle of attack in accord with the findings of

linearized theory.

• The estimation of the derivative M , which determines the increment inw
pitching moment due to a perturbation velocity , w’ , thus reduces to the
estimation of the aerodynamic centre of the wing-body combination, the rate of

change of the lift coefficient with angle of attack together with the downwash

at the tailplane and the lift coefficient derivative for the tailpiane, a
1~

This last should strictly take account of interf erence between the tailplane and
the rear bod y of the aircraft .

5.5 Rotary damping in pitch or the moment derivative, M
g

We have already demonstrated that the rate of pitch can be treated as
equivalent to an incremental change in the angle of attack of various parts of

the airframe. The forces associated with these incremental angles of attack

(a longitudinal camber) give rise to moments about the y-axis and hence a

derivative M .
q

In dimensional form the moment due to the tailplane is

( M )  — ( z )  £t due to q t due to q t

which by virtue of the relationship between the Z-force and q previously

~~ A • • . .  • •  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — •~~~—— — • .— —~~~~~~~~
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given , can be expressed in derivative form as

S i 2
(M q

)
t 

_ Q

q
~~~~

•
~~~;~~~~

I a

it

In contrast to what happens in the case of the force derivative the moment due

to an elementary area of the wing ahead of the y-axis adds to that contributed

by an elementary area aft of the y-axis, so that the wing contribution to M
q

can be important, particularly so for highly swept wings. Similar remarks

apply to the contribution of the body and these contributions can be estimated

on the same basis as outlined in the discussion of 2q
5.6 The ~i or acceleration derivatives

In the sense that the derivatives we have thus far discussed can be

identified with forces and moments acting during a steady motion (a given angle

of attack or angular velocity) they differ from those that arise from a changing

component of velocity along the z-axis , or - To differentiate them they are

often termed quasi-steady.

• Consider what happens to the pressure distribution over a wing under

conditions of varying angle of attack. It takes time to adjust and so differs

from the pressure distributions associated with the sequence of angles of

attack. The changing conditions are usually accounted for by introducing an

• acceleration derivative into the force and moment formulation.

It can be demonstrated that this procedure is not wholly satisfactory,
• in general. In particular if the angle of attack of a three-dimensional wing

is suddenly changed from zero to a fi’ ,alue , the lift generated will vary

and, apart from a very short interval o.. time in the case of subsonic flow, is

below (or lags behind) the asymptotic value , which is reached in a finite time

supersonically, but after a theoretically infinite time subsonically. Again if
-
~~ we consider a motion in which q = 0 and ~ = constant it can be shown that

the lift associated with the changing angle of attack is, according to linear-

ized theory, as shown in Fig 9.

A more usual approach to the determination of the ~ deriva tives is via

the aerodynamics of wings (or complete aeroplanes) in oscillatory flow retaining

only first order terms in the frequency parameter . In experiments with oscillat-

ing models the derivatives N and N. are obtained in combination as the sum
q w

(N + ii.) , but either a theoretically determined value of M (or a separate
q w q

Li~~_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



22 Ac
1710

steady test) enables the M~ derivative to be isolated . The same oscillatory

• theory can be used , in principle , to evaluate the tailplane contribution to the

derivative N. - However, some insight can be obtained by an approximate

approach , which accounts for the lags in the arrival at the tailplane of the

downwash due to the loading associated with the angle of attack.

Convection of the vorticity downstream implies that under changing angle-

of-attack conditions the change in circulation around the wing is felt at the

tailplane after a time lapse of 9
~t

/Ve , or the instantaneous downwash at the
tail is that which corresponds not to the current angle of attack, a(t) but

to - . Th: a:sociated change in downwash is then, approximately,

aa V
e

= - , the change in effective angle
of attack of the tail piane.

This generates a force and a pitching moment which can be written

= -

and 

M
t 

= - 

~~~~~~~~~~~~~~~ .

From which the contributions to the derivatives are easily obtained . They are >

- Qaa
1t 

~~~~ (a t)

and
S i 2 ,

t t i 3 t
— - 

~a
alt ~~iSc e

• 5 .7 Control derivatives - Z and M

Deflection of the tailp iane , or part of it (elevator)> with respect to

the remainder of the aircraft produces a change in circulation around the tail-

plane and a force. This force is the source of the derivative Z
n 

and by the

moment it generates around the y-axis, the deriva tive M
1~ 

. We have already

~~ ~~~~~~—-—
~~~~—--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~



- —;: ~~~ ~~~~~~~~~~~~~~

— “

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

------• .--

~ 

-,~~~~~~~~~~~~~~~ -~~~~—-- ..- -----.---•.-—p- •I- - •- -
~~ 

—••• •“~~1~~

• • • — • ~~~~~~ . _ _ L~~~~~ • • • •~~~~~~~~~~~~~~~~ . I _~~~~~~~~~~~~~~ ___ _ __~~ ____________________________

Ac 23
1710

introduced the tailplane derivative a
lt 

. More generally we can write

(- c2
)~ = a

1~
a
~ 

+ a
2~~

1i

so that we have

Z = - Q -
~~~

. a
2~ 

; M = - Q -
~~~ ~~~~~ 

a~~

For tailless aircraft the pitch motivator is usually a flap at the wing trailing

edge, termed the elevon.

In this case we have for the wing,

(- C2 ) = a1
a + a

2
ri and Z = - a

2

The moment involves a moment arm, which in this case is not easily approximated ,

but can be obtained from a suitable lifting surface theory .

6 ON HOW THE LATERAL FORCES AND MOMENTS ARISE

In linearized studies of the dynamics of an aeroplane during asymmetric

f l ight  the forces and moments are represented by the following derivatives ,

Sidesli p deriva tives Y , L , Nv v v
Rotary derivatives L , N , L , Np p r r
Acceleration derivatives L. and N.

v V

together with

four motivator derivatives , L~, N~ and L
C > N

C
• • 6.1 Sideforce derivative - Y

This derivative is analogous to Z , but in this case there is no large
• aerodynamic surface like the wing involved . When an aeroplane is in sideslip

components of it are at an angle of incidence to the velocity vector (or to the

relative incident flow), see Fig 2. It can be readily appreciated that the main

contributors to the sideforce derivative are the fin and the fuselage. The

f i r st of these is a ‘lif ting ’-surface , which can be accorded an ‘effective lift

coefficient deriva tive ’, a
1f 

in the same way as we introduce a
1~ 

in

section 5. By following the same line of argument we can easily obtain the

resul t , see Fig 12.

A • - • • I• • •-——~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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vf 
= - Q~a1f (

i -

where a is the sidewash induced at the fin by the asymmetric loading distribu-

tion present over the wing-fuselage combination. Q~ is a relative kinetic

pressure factor , which except in unusual circumstances , large angle of attack

or fin immersed in a propeller slipstream , does not differ radically from unity.

6.2 Rolling and yawing moments due to sideslip - L and N

Three geometric features of the wing influence the rolling moment acting

on an aircraft in sideslipping motion . These are its dihedral angle , its posi-
tion on the body section (hi gh, mid or low wing) and its sweep angle. We

consider these in turn.

To examine the effect of dihedral it is convenient to restrict our

attention to a planar wing (see Fig 10), in which the port and starboard portions

of the wing are inclined at a small constant angle , r , to the plane containing

the root chord and the y-axis.

As can be seen from the diagram , Fig 10, the velocity normal to the star-

board panel is w
0 

+ vi’ , whilst that of the port panel is w
0 

- vF . This
antisymmetric change in the effective angle of attack produces a load distribu-

tion giving a negative rolling moment proportional to yr , hence a contribution
to the derivative L proportional to the dihedral angle.

To explain the way the wing position on the body affects L we use the

concepts of slender-bod y theory. This reduces to a consideration of the two-

dimensional flow associated with the cross-flow component of velocity alone ,

that is, the component v , when cx
c 

= 0 . Fig 11 illustrates the flow around

the body and this shows that the body induces velocities which enhance the

dihedral effect when the wing is set high on the body. On the other hand a low

wing will diminish the dihedral effect.

-
• 

Any attempt at calculating the rolling moment due to sideslip for a swept

-• wing with zero dihedral presents a number of problems . Nevertheless , the natur~
of the rolling moment associated with sweep can be appreciated using simple

physical arguments. Sideslip (see Fig 12) effectively decreases the sweepback
of the starboard panel and increases the sweepback of the port resulting in an

increase of lift on the starboard side ~r’d decrease on the port side so giving

A • I~~~~~~~~~~~~ •-•-— -~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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rise to a rolling moment . Further insight into the form of the rolling moment

can be obtained if we consider a large aspect ratio wing of constant chord and

sweepback, A , see Fig 12.

Suppose V~ represents the component of V
e 

normal to the leading edge

and V
t 

the component of Ve 
parallel to the leading edge of the wing . Then

V = V cos (A - B) and V = V sin (A - B)
n e t e

at some point of the starboard panel. Only the former component produces a

lift and on an elementary strip, PQ , this is ~
p V2a a c 5s,where a is

1 e n n n n  n
the lift coefficient derivative of the ‘normal’ section and C ôs are as

n
marked in the diagram.

The velocity normal to the wing panel is

w = c c V  = u c z  = V a
e e

where the angles of attack are measured relative to the no-lift line . Only the

velocity component V produces a lifting force and the lift on an elementary

strip normal to the wing leading edge is

= 
~
p v2a a c 6sc n n  n f l

= ~~~~~~~~~~~~ , see Fig 12.

But

V = V (cos A + B sin A) to first order in B
n e

so that

6L = 

~~e~
’
~~n 

(cos A + B sin A)acóy

= 
~~e

S/
~~
U + $ tan A)ac6y

where a is lift coefficient derivative for ‘normal’ section and a is the
n

corresponding quantity for a streamwise section .

Since a corresponding section on the port wing experiences a decrease in

the lift due to B , a rolling moment is produced which is proportional to -aB
Hence this particular contribution to the rolling moment due to sideslip cannot

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___
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be expressed as a linear derivative L
~ 

except when the angle of attack remains

unchanged , as, of course , is the case within the linearized lateral motion . 
•

The moment about the x-axis of the fin sideforce due to sideslip makes

another contribution to the derivative L . If -z denote the z-coordinate
v fv

• of the aerodynamic centre of the load on the fin arising from the sideslipping

motion and Y
f 

the sideforce , the rolling moment is ?
f
Z
f 

, see Fig 12. By

virtue of the relationships already quoted for Y we then have

L
f 

= - 81f Q (1 - 

~~~~ 

sf z f 
-

The same sideforce also produces a yawing moment and this involves the

fin arm, i
f in place of ~~Z

f 
. It is easily shown that

I ~ S i
, aO~ f fNvf 

= alf QV ~l 
- -

~
-
~j  

—

~~~~

—

This positive contribution to the of the aircraft is opposed by an often

large, negative contribution from the body. Inviscid flow theory and , in

particular , slender-body theory accounts for such a contribution , but as these

theories do not give rise to a sideforce the moment is also in error .

6.j Rolling and yawing moment derivatives due to the rate of roll - L and N

Suppose the aircraft rolls with rate of roll , p , about the aerodynamic-
body axis, Ox , as shown in Fig 13. This motion clearly induces a downward

velocity equal to py for all points of the section of the starboard wing at a

distance y from the plane of symmetry . In the presence of the forward velo-
• city V

e 
this downward velocity can be interpreted as equivalent to an increase

in the local angle of attack of PY/V e~ 
see Fig 13. There is an equivalent

decrease in the angle of attack of the corresponding section of the port wing .

• We , therefore , can regard a rolling velocity as equivalent to an antisymmetric

• twist , which increase in magnitude to a maximum at the wing tips . There is an
• associated antisyinmetric loading and a rol l ing moment proportional to p

This is the source of the wing contribution to L . Smaller contributions
p

come from the tail surfaces. That due to the tailpiane is the result of the

antisymmetric twist equivalent of the rolling and the changes this effectively

produces in the tail plane angle of attack.

-• ~~~~~~~~~~~~ • • • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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As for other fin contributions the L can be estimated on the basis ofpf
a mean, effective change in the angle of incidence of the fin. This can be
approximated 88

• 
. 

~~j~~
’
~ aa 

= ___
• V \~V J  a(P)J 

V lb a
(P)j

which gives rise to a sideforce , see Fig 13,

- 

~P V Q a lf óP
b{P 

- ____

• From which we can derive the fin contribution to the rolling moment derivative
as 

L f 
= - Q a

1~ 

sf z
f { zf 

- ____

Associated with the asymmetric loading that gives rise to the derivative L
are ‘~hanges in the forces induced in the xy-plane and these produce a yawing
moment proportional to the rate of roll and hence a derivative , N

Again there is a fin contribution and this can easily be shown to be
given by the relationship,

S i Iz
i f  •‘._tE - _____N

f Q a
1f Sb b

¼”
In both the expression for L and N the distance z represents thepf p f f p
distance between the x-axis the aerodynamic centre of the fin loading due to p
that is, due to a linear twist increasing towards the fin tip.

6.4 Rolling and yawing moment derivatives due to rate of yaw, L
r and Nr

When an aircraft experiences a rate of yaw a section of the wing on the
starboard side at a distance y from the plane of symmetry has a velocity
parallel to the x-axis of V

e 
- ry , whilst the corresponding section of the

port side has an increased velocity, V
e 

+ ry (Fig 14). This asymmetric
velocity increment decreases the forces on the starboard wing and increases

•L4- ‘ I - I-
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those acting on the port wing . The resulting moments are proportional to the

rate of yaw and account for the wing contributions to L
r and N

r

There is a significant contribution to L
r from the fin. A rate of yaw

r produces an effective increment in the fin angle of incidence , see Fig 14 of

rb {if 3a

V 1b  
+ 

a(P)
which gives rise to a sideforce on the fin of

~~f~due to r 
= ~P V

2
S~Q a 1~ 

+ :(p)}
and in turn yields a derivative contribution ,

S z  2.
L

f 
= Qr

8lf 
ffr 

~~~~~~~~ 

+ 
~~~~b)

Since we are concerned with a mean angle of incidence z ~ zfr fv

There is an even larger contribution to N
r which can be easily shown

to be given approximately by the relationship,

S i  Ii
N
rf ~~r

81f + 

(
1,)

There is a body contribution to N
r which is analogous to its contribution

to M
q

6.5 Lateral and directional control derivatives

The forces and moments acting on an aircraft due to deflection of its

lateral and directional motivators depend upon the form these motivators take .

To illustrate the derivatives involved we consider the common flap type

motivators , that is, ailerons and rudders.

Deflection of a tr~ i1ing-edge flap alters the local circulation around

the aerofoil. This effect extends the span of motivator and beyond . In general

forces and moments are produced by the resulting changes in loading distribution .

— - I—----•~~~~~--~~~~~—
II • -— - - -~~~~~~~~ • •~~~~~
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For the conventiona l aileron layout (see Fig 15) the downgoing starboard ail eron
increases the lift on the outer portions of the starboard wing, whilst on the
port side the upgoing aileron decreases local lift . A negative rolling moment

is thus produced and associated with the induced effects of the asynnnetrical

loading and yawing moment. Both these moments are proportional to the mean

angle according to linearized theory . The yawing moment is usually positive
(that is, in the adverse yaw sense). The moments are represented by L~~ ’ and

for an increment F ’ in the aileron angle.

Deflection of the rudder to port (positive sense) results in a positive

sideforce and hence a yawing moment (the primary function of the rudder) in the

negative sense. The rate of change of this moment with the rudder angle , C
defines the derivative N

C 
. Because the aerodynamic centre of the loading on

the fin is generally off the x-axis a rolling moment is produced at the same

• time as the yawing moment.

We may take Z
~ 

to be approximately equal to Z
v 

if the chord-ratio of

the rudder does not vary much across the fin.

Corresponding to the fin effective lift coefficient slope> a1f, there is
a rudder parameter 8

2f 
and so we may easily deduce the results

S
f
i 
fN = - f l  a

C ‘
~ct Sb 2f

and
Sf Z f

= 

~cg Sb 
a2f

7 FORCE AND MOMENT DERIVATIVES FOR DIFFERENT SYSTEMS OF AXES

We have already remarked that a set of derivatives is particular to the

choice of axis system. It is frequently necessary to convert the values of

derivatives to correspond to a new choice of axes. The most common requirement

is to convert from one body system to another body system having parallel y-axis

Let the two systems of axes be Oxyz and 0
1
x
1y1

z
1 

. Further let the origin

0~ have coordinates h ,0,k relative to 0 , in the system Oxyz , whilst 0

has coordinates -h1, 0,-k1 relative to 0
1 

in the system 0
1
x
1
y
1
z
1 

(see

Fig 16). Then, if we write c = cos e and a sin e , where e is the angle

between 0
1
x
1 

and Ox , which is taken as posi tive if clockwise ro tation about

the y-axis through this angle brings Ox to a position parallel to 0
1
x
1

~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~•~~~ --
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The following relationships then apply ,

h1 
ch - sk ; h — ch

1 
+ sk

1

• k1 
= ck + ab ; k — ck1 

- sh
1

and for the angular velocity components,

p1 
cp - sr ; p = cp1 

+ sr
1

= q ;  q = q1

r1 
= cr + sp ; r cr

1 
- sp1

If we define u, v, w as the components of the velocity of 0 along the axes

x, y and z whilst u1, v1, w1 ar e the components in the 0
1
x
1y1

z
1 

axis

system of the velocity of O
i 

, the following further relationships are easily
established ,

• u1 
= cii - sw + k

1
q ; u — cu

1 
+ sw1 

- kq

= v - kp + hr ; v — v1 + k
1
p
1 

- h
1
r
1

w1 
= cw + su - h

1
q ; u — cw1 

- su
1 

+ hq

When the same system of forc es is reduced to a force through 0 and a moment

about an axis through 0 or to a force and moment centred on 01 
, the follow-

ing relationships exist between the components,

X
1 

= cX - sZ ; L1 
cL - sN + k1Y •

= Y ;  M
1 

- M + h Z - k X

Z1 
= cZ + aX ; N 1 cN + aL - h1Y .

Partial differentiation of these equations gives the following conversion

equations,

X’ — c
2
X - sc(X + Z ) + ~2z ,
u w u w

c
2Z + sc (X - Z ) - s2X ,

u1 
u u w w

— c2X + sc (X - Z )  - s2Z ~

IL
~~~~~ •~~~~~~~~_~~~~~~.•~~• — _

_I__
~u~

____I____ ._____ .__ .••.I__ I
~--•_•

~•—4 •II •I_ • . • . I _ • I I • • I •_ _ . _ . _ II I • ~~~•_ I•. —I-•-•----- I 
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V — c22 + ac(X + Z ) + s2X
V

1 
W V U U

= cM - aM + h (cZ - sZ ) + k (sX - cX )
U

1 
u w u w w u

= cM + sM + h ( cZ + sZ ) - k( sX + cX )
• V

1 
w u w u u w

= N + h (Z + N ) - k(X + M ) + h2Z - hk(Z + x ) +
q1 

q q w q U w u w u

Y’ = Y
I

I 

V
1 

V

L’ = cL -sN + k Y
V V V l v

N’ = cN +sL - h Y
• • v1 v v l v

I
I L ’ = c2L + k ~k Y + c(L + Y )

~
. 4- staN - c(L + N ) - k (Y + N )~p1 p l~~ l v  v p~~ (r  r p l r  v j

L’ = c2L + c(k Y - h L ) - h k Y  + s.th N 4 - k y  - a N  + c(L - N )r r l r  l v  l l v  ~~l v  l p  p p r

N’ = c2N + c(k N - h Y ) - h k Y  + s{h Y + k L  -sL + c(L - N )~p p l v  i p l i v  i r  l v  r p r ~

N’ = c2N + h ~h Y - c (Y + N )
~

. + s-~sL + c(L ~ N ) - h (L + y )
• r r l ( lv  r v j  ~~ p r p l v  p ’

These transformation relationships cover the effect of changing the centre of

gravity position (h * 0, k * 0, 2. = 0) as well as the change from one body-axis

system to another having a common origin, for examp le , from aero-body axes to a

body axes. As such they serve to illustrate the point already made about the

complicated nature of the relationship between aero-normalized derivatives and

coefficient derivatives for a general body system of axes .

8 CONCLUDING REMARK S

Notwithstanding the undoubted success that has attended the use of aero-

dynamic derivative formulations of -the forces and moments in a variety of flight

dynamic problems, it is as well to remind ourselves that it is incorrect to

assume that this is always the case. For example, rapid movement of controls
• (motivators) as gust alleviating devices wi thin an ‘active control’ system may

require the truly unsteady nature of the aerodynamic phenomenon to be represented

more exactly . Nevertheless , other requirements place a greater emphasis on the

developmen t of formula tions valid for large disturbance motion.

To meet this latter need experimental work is in progress using free-

f light models and on the extension of the angle-of-attack range of wind-tunnel

hlIA -~~~--- -- - --- ~~~~~~~~~~~~~~~~~• • • • • . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I oscillatory tests. In addition rotary rigs are being developed . In our efforts
in this direction we should not forget that the above more fundamental question
remains unanswered , namely, under what conditions , specified quantitatively, is
the customary derivative formulation justified .

A • - ~~~~• • - - •_- — -~~~-~~ - — — ---- -
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Table 1

I - DIVISORS FOR FORMING NORMALIZED QUANTITIES

Quantity Example Aero-normalizing divisor

Length

Time

Linear veloci ty w V
e

Linear acceleration 4

Angular velocity q V /i
0

Force Z ~p V
2
S

Moment M ~
p v2sic c  0

Force derivatives
with respect to:

linear velocity Z ~
p V Sw e e

linear acceleration Z. ½~ St
angular displacement Z~ ½ p V

2
S

angular veloci ty Z
q ~

Pe
V
e
Si
o

Moment derivatives
with respect to:

linear velocity N ~p V Si-~~~ w c e O
linear acceleration N. ~

p St2w e O
. 2

angular disp lacement N~ ½P e
V
e

SL
0

angular velocity M
q ½Pe

V
e
Si
~

The value of £
~ 

can be chosen to suit the needs of the
problem being studied . It is not unusual to choose L~
the aerodynamic mean chord for the longitudinal derivatives

L

and £0 — b for the lateral derivatives .

I :  I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I-
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Table 2

Mul tiply ing factor to obtain

( 1) US aymbol* (2 )  ISO symbol (1) from (2)**

with L
1~~~~,

L
2

b &
2

— b/2

~~~~ C~6 
X~

C7~ CZcx 
]L, Z,,~, 1

Cy.~ 
CZ Zu

C~~ M1~
Cmq 

C~~ Mq M
4 

2

CZq 
Zq

CY6 Cy~ ~~
CYB 

Y 1

• Ct6 
C~6 

L~
C.t6 

C~8 L
~ 

N~ 1 ½
Ct~ Cfl B 

L N

i - I - I 

C C Y Y 1
3 Y

p 
1r 

r

C C L N 2
£ n p p

C C L N ½L n rr r
C C L. N.

£~ n~ v v

* In this table it has been assumed that CXu 
and C~ are the

non-dimensional fo rms of k.~ and but this is not always
the interpretation. For example , Etkin in Ref 3, uses these as
the equivalent of the second term in the expressions for X.~ and
zu

f~c \  fac \
X — 2C

X
e 

+ L~
-_

~ ) Z — 2C
z 

+ 

~~~~)e

** Characteristic length (t0) of Table 1 taken as equal to £~ for
• longitudinal derivatives and equal to £2 for the lateral

derivatives.

-
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Table 3

(1) ISO s bol (2) Old British symbol Multiply ing fac tor to
ym (R & M 1801) obtain (1) from (2)

X Z x zU U U

Y y
V v

X Z x z 2w w w w
X Z x z
n Ti Ti Ti

X Z x z
q q q q

X. Z. x. z. 22.
w V w w t

M N in in 2.
U V U V 1

N m
Ti Ti

Y Y y y
p r p r

Y.

L N 2. n —

V V V V 2.
2

L
~ 

N~ n~
L
~ 

N
C ‘

~C

NI I
~ q q 2

- M. \
N. m . = — ‘  2w w 2 j  2.pSt , 1t /ord

L N 2. n
p p p b

2
L N 2. n —
r r r r

• L. N. 2.. r i .  2
V V V V

In forming the multi plying factor it has been assumed that the
normalized derivatives in column (1) are obtained using as
characteristic length £0 = for longitudinal and tO = 2.2
for la teral quantities. Furthermore the practice of using the
tail-arm i~ was not always followed , so a check on the defini-
tion is advisable before using the factors.

A • • • —~~~~~~~~~~~~~~~~~~~~~~~~—•---- - -~~~~~~~~~~~~~~~~~~~~~- • - - - - ~~~~~~~~~~~~~~~~~~~~
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LIST OF SYMBOLS

a1 rate of change of lift coefficient with angle of attack for a lifting
surface, eg wing

a1f value of a1 for the fin of an aeroplane
a
1~ 

value of a1 for the tail plane of an aeroplane
b wing span

aerodynamic mean chord of the wing

CD drag coefficient = D/½pV2S

C
L 

lift coefficient = L/½pV2S

C~ rolling moment coefficient = L/½pV
2Sb

C pitching moment coefficient = M/½pV Sc

C yawing moment coefficient = N/½pV2Sb

C~ coefficient of component of force along x-axis X/½pV
2
S

C coefficient of component of force along y-axis = Y/½pV2S
coefficient of component of force along z-axis — Z/½pV S

D drag force

h height above g:~ound of CC of aeroplane

inclination of thrust line to x-axis

h position of CG as fr action of ~ from the lead ing edge of mean chord
h, k 1
h k ~ displacements of the origins of two systems of body azes (section 7)
1’ ii

general representative length used in normalization of moments etc.

£ 11 
~
. particular representative lengths

2 J
tail arm - distance from the wing-body aerodynamic centre to tailplane
aerodynamic centre

fin arm - distance from CC to fin a.c

tailplane arm - distance CC to tailplane a.c

L or £ rolling moment (moment about x-axis)
L gero-normalized derivative of rolling moment with respect to rate of

roll , p
Lr 

aero-normalized derivative of rolling moment with respect to rate of
yaw , r

.l~
aero-normalized derivative of rolling moment with respect to sideslip
veloc ity, v

aero-normalized derivative of rolling moment with respect to aileron
ang le , ~

1. aero-normalized derivative of rolling moment with respect to rudder
ang le , ~

A I I
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LIST OF SYMBOLS (continued )

M Mach number

M pitching moment (moment about y-axis)
M aero-normalized derivative of pitching moment with respect to rate ofq pitch

M aero-normalized derivative of pitching moment with respect tou 
velocity u

N aero-normalized derivative of pitching moment with respect to
velocity w

M. aero-normalized derivative of pitching moment with respect to rate of
change of w

N yawing moment (moment about z-axis)

N aero-normalized derivative of yawing moment with respect to the rate
of roll , p

N aero-normalized derivative of yawing moment with respect to the rater of yaw , r

N aero-normalized derivative of yawing moment with respect to the side-
slip velocity , v

N aero-normalized derivative of yawing moment with respect to aileron
angle, ~

N aero-normalized derivative of yawing moment with respect to rudder
C angle , C

p rate of roll , angular velocity component about x-axis

q rate of pitch , angular velocity component about y-axis

r rate of yaw, angular velocity component about z-axis

Q (with subscript), relative kinetic pressure

S wing area (more generally a :eference area)

Sf 
fin area

tailpiane area

t time

T thrust force

u component of V along x-axis

v component of V along y-axis

w component of V along z-axis

V resultant velocity of aeroplane

x, y, z coordinates in the system of axes

z (wi th subscript) fin arm with respect to x-axis

X component of force along x-axis

x aero-normalized derivative of X-force with respect to the rate of
q pitch , q

I ___ ___
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LIST OF SYMBOLS (concluded)

~ aero-normalized derivative of X-force with respect to the velocity, u

X aero-nor>nalized derivative of X-force with respect to the velocity , w

Y component of force along y-axis

Y aero-normalized derivative of Y-force with respect to the rate of roll , p

y aero-nortnalized derivative of Y-force with respect to the rate of yaw > r

Y aero-norinalized derivative of Y-force with respect to the sideslip
~ velocity , v

Z component of force  along z-axis

Z
q 

aero-normalized derivative of Z-force with respect to the rate of pitch , q

Z
u 

aero-normalized derivative of Z-force with respect to the velocity, u

Z aero-normalized derivative of Z-force with respect to the velocity, w

Z aero-normalized derivative of Z-force with respect to the pitch motivator
~ angle , i~

ci angle of attack

angle of attack of a body x-axis with respect to equilibrium flight path

angle of attack of some datum line , eg no lift line

~ angle of sideslip

‘i’ angle of climb

dihedral angle

c downwash angle

fl elevator angle

n
~ 

tailp lane setting angle

A sweep angle

~ aileron angle

~ air density
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