

I

I

I

I

T

-

-

[

[]

[]

[]

[]

1

I

Z

E

PARAMETRIC TRANSONIC EVALUATION OF TYPE A VSTOL NACELLE DRAG

by

Jonah Ottensoser

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AVIATION AND SURFACE EFFECTS DEPARTMENT

DTNSRDC ASED-390

September 1977

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT GENTER

> BETHESDA MARYLAND 20084

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM NUMBER 2. GOVT ACCESSION NO. DTNSRDC ASED-390 EPORT & PERIOD COVERED S. TYPE OF 6 PARAMETRIC TRANSONIC EVALUATION OF TYPE A Final Jan- Aug 077 VSTOL NACELLE DRAG, PERFOR ING ORG. REPORT NU 10 Jonah Ottensoser PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK Program Element Aviation and Surface Effects Department 63258N Project W0590-SL David W. Taylor Naval Ship R&D Center Bethesda, Maryland 20084 Continued on 1. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Sept Code PMA 269 46 Washington, D.C. 20361 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited 1978 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) U 14 905 ,006 18. SUPPLEMENTARY NOTES ACCESSION FO 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 500 Type A VSTOL CONTRACTOR AND Nacelle Drag 10,0191720 Pylon Drag 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) \overrightarrow{P} A parametric evaluation of the zero lift drag characteristics attributable to the large nacelles found on some Type A VSTOL candidate aircraft was conducted in the 7- by 10-foot transonic wind tunnel of the David W. Taylor Naval Ship Research and Development Center. Mounting the nacelles in proximity to the wings and fuselage yields levels of interference drag three to four times the isolated drag which results in the nacelle interference drag producing approximately 50 percent of the total aircraft drag. Movement of the macelles away (Continued on reverse side) DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Ente 387 695

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Block 10 continued)

Task Area W0590-SL006 Work Unit 1660-870

(Block 20 continued)

From the wings either longitudinally or vertically tends to reduce drag. Except for the nacelles mounted forward of the wing, the nacelles have an adverse effect on lift. The particular wide nose body used proved to be highly unstable longitudinally although adding nacelles above or behind the wings tended to reduce this instability. Five pairs of axisymmetric nacelles, four pairs of pylons, three longitudinal and two vertical positions were investigated on a 10-percent scale, low (supercritical) wing model. Λ

DISTRIBUTION STATEMENT & Approved for public releases Detenileu zolimited

ACCESSION for White Section ITIS DOC Buff Section UNANNOUNCED JUSTIFICATION . 57 **DISTRIBUTION/AVAILABILITY CODES** Dist. Mtain and/or SPECIAL

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1.6.9

TABLE OF CONTENTS

I

I

Ī

1

0

0

[]

0

0

[]

0

0

																		Page
ABSTRACT .				•				•		•					•	•	•	1
ADMINISTRAT	IVE	INI	ORM	(AT)	ION		•									•		1
INTRODUCTIO	N		• •				•			•								1
APPARATUS													•	•	•		•	2
MODELS .						•						•	•	•		•		2
TEST PROGRA	M																	3
ANALYSIS									•									4
COMPARIS		OF 1	NACI	ELLI	ES	IN A	AND	ou	т оі	F W	ING	/FU	SEL	AGE				4
LONGITUI	DINA	L, 1	VERT	TIC	AL	AND	SP	ANW	ISE	NA	CEL	LE	VAR	IAT	ION			6
INCREMEN																		7
STANDARI	AE	ROD	YNA	IC	co	EFF	ICI	ENT	s									7
CONCLUSIONS	5.													•		•		7
REFERENCES		•																9
APPENDIX A	- T	YPE	A	VST	OL	NAC	ELL	ED	RAG	TU	NNE	LF	RUN	LOG		•		37
APPENDIX B	- F	INA	L TA	ABU	LAT	ED	DAT							que 660		to		

LIST OF FIGURES

١.

Į

l

*

Page

1	Schematic of the Model	10
2	Nacelle and Pylon Contours	11
3	Typical Configuration Installed in the 7- by 10-Foot Transo Wind Tunnel	
4	Reynolds Number Effect	14
5	Incremental Nacelle Drag	15
6	Comparison of Nacelle Drag on Shortest Pylon with Wing On	17
7	Comparison of Nacelle Drag on Longest Pylon with Wing Off	19
8	Comparison of Nacelle Drag on Shortest Pylon with Wing Off.	20
9	Theoretical Nacelle Outer Surface Pressure Coefficient Distribution	21
10	Incremental Nacelle Drag with Intermediate Length Pylon	22
11	Drag Ratio versus Nondimensional Minimum Nacelle Height abo Wing	
12	Effect of Longitudinal Nacelle Movement on Drag with Wing O	m 24
13	Effect of Vertical Nacelle Movement on Drag with Wing On	26
14	Effect of Spanwise Nacelle Movement on Drag with Wing Off	27
15	Incremental Drag for Spanwise Nacelle Movement with Wing Of	f 28
16	Effect of Spanwise Nacelle Movement on Drag with Wing On	29
17	Incremental Pylon Drag	31
18	Basic Aerodynamic Coefficients at a Mach Number of 0.6 with Wing Off	
19	Basic Aerodynamic Coefficients at a Mach Number of 0.6 with Wing On	

NOTATION

The results in this report are reduced to standard aerodynamic force and moment coefficients and are presented in the stability axis system. All moments are referenced to the balance center located at the quarter chord of the mean aerodynamic chord (27.40 in. (0.696 m) aft of the nose) and 2.25 in. (0.057 m) above the lower surface of the fuselage. Angles of attack are relative to the fuselage.

В	Designation for fuselage
BW	Designation for fuselage and wing
ъ	Wing span, 4.77 ft (1.45 m)
c _D	Drag/qs
C ^L	Lift/qs
C _M	Pitching Moment/qsc
C _P	Pressure coefficient, (P-P _o)/q
c	Reference chord, 0.671 ft (0.205 m)
ē	Mean aerodynamic chord, 0.74 ft (0.226 m)
D	Incremental nacelle drag (e.g., $BWP_1N_1 - BWP_1$)
D _o	Isolated nacelle drag (e.g., $BP_4N_1 - BP_4$)
d	Maximum nacelle external diameter
h	Minimum height from nacelle outer surface to wing upper surface
LA	Nacelle position aft of wing (see Figure 1)
LF	Nacelle position forward of wing (see Figure 1)
LW	Nacelle position over wing (see Figure 1)

v

[]

1	Nacelle length
м	Mach number
N1-N5	Designation for nacelles (see Figure 2)
P	Local static pressure
Po	Free-stream static pressure
P1-P4	Designation for pylons (see Figure 2)
q	Free-stream dynamic pressure, psf (N/m^2)
Re	Reynolds number
S	Wing area 3.196 ft^2 (0.2969 m^2)
UW	Raised nacelle position above wing (see Figure 1)
x	Distance along nacelle length
α	Angle of attack
∆C _D	Incremental drag

Û

ABSTRACT

A parametric evaluation of the zero lift drag characteristics attributable to the large nacelles found on some Type A VSTOL candidate aircraft was conducted in the 7- by 10-foot transonic wind tunnel of the David W. Taylor Naval Ship Research and Development Center. Mounting the nacelles in proximity to the wings and fuselage yields levels of interference drag three to four times the isolated drag which results in the nacelle interference drag producing approximately 50 percent of the total aircraft drag. Movement of the nacelles away from the wings either longitudinally or vertically tends to reduce drag. Except for the nacelles mounted forward of the wing, the nacelles have an adverse effect on lift. The particular wide nose body used proved to be highly unstable longitudinally, although adding nacelles above or behind the wings tended to reduce this instability. Five pairs of axisymmetric nacelles, four pairs of pylons, and three longitudinal and two vertical positions were investigated on a 10-percent scale, low (supercritical) wing model.

ADMINISTRATIVE INFORMATION

This work was undertaken by the Aircraft Division of the Aviation and Surface Effects Department at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) at the request of the Naval Air Systems Command (NAVAIR PMA-269) in support of the NAVAIR 53013 Type A VSTOL evaluation program. The program was funded under Task Area W0590-SL006.

INTRODUCTION

NAVAIR 53013 has been involved for some time with the competitive evaluation of Type A VSTOL aircraft. Some of these aircraft are typified by large engine nacelles whose drag plays a significant role in the overall performance of the vehicle. Consequently, NAVAIR requested that an experimental program be performed in the DTNSRDC 7- by 10-foot transonic tunnel to parametrically evaluate the zero lift drag characteristics of these (unpowered) nacelles. The information thus generated would be used as part of the NAVAIR empirical data base for the VSTOL evaluation program.

APPARATUS

The 7- by 10-foot transonic wind tunnel at DTNSRDC is of the closedcircuit type that is capable of continuous operation in a Mach number range from 0.20 to approximately 1.15. A six-component internal balance was used to measure forces and moments. Because of balance load limits, two such balances were used: TSB-6 for most wing-off configurations and TSB-24 for most wing-on configurations. The external geometry of both balances is identical. Each balance was used in conjunction with Adapter 29, Adapter 26, and Sting 4 and then connected to the tunnel support system. A dangleometer was mounted internally to the model to measure angle of attack.

The starboard nacelle of each pair had four static pressure taps 90 degrees apart from each other and 4.5 in. aft of the leading edge. These pressures were recorded on four separate transducers, and although these data were not used in this evaluation, they are included in the tabulated data of Appendix B for potential interest. Separate transducers were also used to measure cavity pressure for axial force corrections and for the five total and one static probe in the drag rake used to measure nacelle internal drag. The balance and transducer signals were processed by a Beckman Model 4040C analog to digital converter and recorded and processed on a Hewlett-Packard Model 2100 minicomputer.

MODELS

The 10-percent Type A VSTOL fuselage was constructed of wood with a thin covering of fiberglass. All other components of this model were constructed of aluminum. The inboard 5-percent span of the wing was a conventional unswept airfoil shape followed by a 26-degree sweep supercritical airfoil. Figure 1 shows a schematic of the model with pertinent dimensions.

The nacelles were axisymmetric bodies of revolution mounted on pylons without relative incidence to the fuselage with N1 chosen as the baseline nacelle. Mass flow ratios through the nacelle based on high-lite (entrance) and exit areas averaged 0.53 for nacelles N1, N2 and N3, 0.65 for

nacelle N4, and 0.42 for nacelle N5. The pylon was constant chord NACA 64A012 airfoil in cross section with variations in span length for P1 through P4. Figure 2 shows pertinent details of the nacelles and pylons. Contoured wooden filler blocks were used to smoothly fill in fuselage gaps as the nacelles were varied longitudinally and vertically. Figure 3 shows a typical wing-on configuration installed in the tunnel. No longitudinal or vertical tail surfaces were evaluated during this program.

Transition grit (#120 carborundum particles) was used on the wings, fuselage, nacelles, and pylons throughout the test program. The location and size of the grit were determined by the procedure outlined in Ref. 1. A 1/8-in. (0.32-cm) wide band of grit was placed 10 percent of the fuselage length aft of the nose and at a constant 10-percent chord on the upper and lower surfaces of the wing and pylons. A similar band of grit was placed on the inner and outer surfaces of the nacelles 10 percent of the nacelle length back from the leading edge.

TEST PROGRAM

The majority of the wing-off data, as indicated in Appendix A, were run under settling chamber vented (SCV) conditions at Mach numbers from 0.50 to 0.85. This corresponds to a dynamic pressure range of 300 (14,364) to 660 psf (31,600 N/m²) and a Reynolds number per foot variation of 3 to 4.1 million. With the addition of the wing, the normal front gage of the balance became overloaded. The initial balance TSB-6 was changed for TSB-24, and the test was continued under evacuated conditions. The Mach number range for wing-on data was 0.30 to 0.65 which corresponds to a dynamic pressure range of 80 (4,070) to 310 psf (14,843 N/m²) and a Reynolds number per foot variation of 1.3 to 2.3 million. The effect of a Reynolds number on drag for the two different tunnel conditions, however, did not present a problem in the data analysis because data compared between the two tunnel conditions was of the incremental type (e.g., BWN_1P_1 - BWP_1 compared with $BN_1P_1 - BP_1$) where Reynolds number variation should have almost no effect.

A wake rake with one static and five total probes was used to survey the exit plane of the nacelles at zero degrees angle of attack for measurement of nacelle internal drag. (Ref. 2 indicates that nacelle internal drag remains constant from -4 to 4 deg angle of attack.) The internal profile drag was so low (i.e., the ratio of total pressure in the nacelle exit plane to the free-stream total pressure was 1.0 over 95 percent of the exit plane) that no measureable difference between the internal drag of the various nacelles was discernible. Consequently, internal drag of these nacelles was assumed to be small and approximately equal for all the nacelles, and no correction for internal drag was applied to the data presented in this report. (Theoretical estimates indicate the internal drag coefficient per nacelle to be on the order of 0.0010. These estimates were obtained by considering the internal wetted area of the nacelles as an equivalent flat plate and then applying the data of Ref. 3.)

The angle of attack range, within the constraints of model fouling, was -4 to 9 deg. for Mach number 0.5 or less and -4 to 4 deg. for higher Mach numbers. For all configurations the angle of sideslip was zero. Fuselage cavity pressure was measured by two probes taped to either side of the sting at the fuselage exit plane. These two pressures were then averaged, and the average was appropriately applied to adjust the axial force to zero base drag.

ANALYSIS

COMPARISON OF NACELLES IN AND OUT OF WING/FUSELAGE VICINITY

The most significant information contained in this report is the tremendous amount of interference drag generated by the nacelles in proximity to the wing as shown in Figure 5. Moving the nacelles into the vicinity of the fuselage, as shown by a comparison of ΔC_D between the nacelles on P1 and the nacelles on P4 in Figure 5, also produces a substantial amount of interference drag. Movement into the vicinity of the fuselage approximately doubled the drag and this drag level is then approximately doubled again in the vicinity of the wing. Nacelle interference drag tends to double or triple the body-wing drag and, as shown in Figure 6, generates even more drag as a very early drag rise develops at Mach numbers greater than 0.50.

Incremental drag values presented in Figure 5 are obtained by subtracting the drag of the nacelle-off configuration from the appropriate nacelle-on configurations. Wing-off data used to obtain these increments are presented in Figures 7 and 8; the wing-on data are presented in Figure 6.

An examination of individual nacelle drag (Figure 5), as measured by mounting the nacelles on the longest pylon with the wings off, indicates that the basic nacelle (N1) has a reasonable drag level but a surprisingly early drag rise. Decreasing the high-lite radius by 25 percent (N5) substantially decreases drag, while shortening the nacelle (N4) or thickening the external countour (N2) increase drag about equally. Thinning the external contour (N3) relative to the basic nacelle (N1) produces the largest increase in drag but also produces the largest drag rise Mach number. The high drag level of N3 may be due to leading edge separation on this nacelle. The theoretical pressure coefficients for N3 are more negative than for the other nacelles, as shown in Figure 9. The data of Figure 9 were obtained by considering potential flow about nacelle cross sections in conjunction with the method of conformal transformations as described in Ref. 4. Interestingly enough, as discussed later, this trend reverses in proximity to the wing.

Further analysis of Figure 5 indicates that the relative drag levels change with the nacelles approaching the fuselage or wing. The governing factor appears to be the relative amount of nacelle surface area in proximity to the wing or fuselage. Thus, the shortest nacelle (N4) has a lower drag than N1 in the vicinity of the wing and fuselage. Also, the thinnest nacelle (N3), which had the highest isolated drag, has the lowest drag in the vicinity of the wing because it is furthest from the wing. The same drastic increase for nacelles in proximity to the wing occurs even with the nacelles mounted outboard of the fuselage (P3), as shown in Figure 10.

A curve of drag ratio to nondimensional minimum nacelle height above the wing at a Mach number of 0.5 is presented in Figure 11. The drag ratio is defined as the ratio of the incremental nacelle drag as installed on a body/wing configuration divided by the particular isolated nacelle drag. The curve is general for all nacelles except N3, which was excluded because of possible local separation in the isolated case. As mentioned above, the data in Figure 11 show that nacelle interference drag tends to increase as the nacelle approaches the wing. While the curve is general, caution should be used in applying it to other nacelles in that fuselage proximity or other local conditions could alter the data. It should also be pointed out that t is curve is only valid below the sharp drag rise associated with these nacelles.

An attempt was made to develop a curve similar to Figure 11 for the effect of fuselage proximity on nacelle drag. However, this effect is not as pronounced as wing proximity; therefore in combination with local effects, no similar curve was developed.

LONGITUDINAL, VERTICAL, AND SPANWISE NACELLE VARIATION

Movement of the nacelle forward or aft of the wing substantially reduces the nacelle interference drag. Of the two movements, movement aft of the wing provides the greatest benefit; see Figure 12.

Vertical movement up and away from the wing reduces the interference drag, as shown in Figure 13. The effect of spanwise movement of the nacelles with wing off is shown in Figure 14, and the incremental drag for this effect is shown in Figure 15. Movement away from the fuselage decreases overall drag till pylon drag begins to play a significant role, at which point drag increases; see Figure 14. However, from an incremental drag viewpoint, as shown in Figure 15, the nacelle drag continuously decreases with spanwise movement.

Figure 16 shows the effect on drag of spanwise movement of the nacelle for wing-on configurations. For the N1 nacelle the drag is "lowest" in proximity to the fuselage and increases as the distance from the fuselage increases. However, the opposite variation in drag occurs for the N2 nacelle. Conflicting trends also occur for spanwise variation of the N1 nacelle forward of the wing compared to aft of the wing.

A possible explanation for these anomalies may be that the interference drag of the nacelle reaches a maximum with the nacelles in some proximity to the fuselage, but decreases with spanwise movement in either direction from this maximum. Thus the N1 nacelle on the P1 pylon has a

smaller minimum distance to the fuselage (because of fuselage contour) than the N2 nacelle on the same P1 pylon and therefore may be on the decreasing part of the drag versus spanwise position curve. This theory is somewhat substantiated by data in Figure 13 which show that for the N1 nacelle moved closer to the fuselage by using the LA pylon in the LW position, the drag also decreases.

INCREMENTAL PYLON DRAG

Incremental pylon drag is presented in Figure 17. Not only is there a detrimental drag interference between nacelle and wing, but this same effect holds true for the pylon and wing.

STANDARD AERODYNAMIC COEFFICIENTS

Curves of C_L versus α , C_L versus C_D , and C_M versus α for some typical body/nacelle and body/wing/nacelle configurations, respectively, are presented in Figures 18 and 19. Of significance in Figure 18 is the longitudinal destabilizing effect of the wide nose body. This effect carries through even with the wings on, as shown in Figure 19; but nacelles mounted over and aft of the wing improve the stability, although they tend to make the pitching moment more negative. Also of significance in the figure is the penalty in lift incurred when the nacelles are mounted above or aft of the wing.

CONCLUSIONS

The following conclusions have been drawn from analysis of the data:

 Nacelles in proximity to the wing and fuselage yield an incremental drag level three to four times the isolated nacelle drag, producing approximately 50 percent of the total aircraft drag.

2. Movement away from the fuselage/wing combination longitudinally or vertically tends to reduce interference drag, with movement aft of the wing yielding the greatest benefit.

3. The installation of nacelles results in drag rise Mach numbers as low as 0.5.

4. Pylons also produce a significant amount of interference drag.

5. In general, the installation of nacelles has an adverse effect on lift.

6. The wide nose body was longitudinally unstable. The addition of nacelles tended to reduce this instability while producing a more negative pitching moment.

1

]

1

]

0

0

0

0

1

7. There is some evidence from this evaluation indicating that nacelles very close to the fuselage (buried nacelles) tend to reduce interference drag. Further investigation of this area is warranted.

REFERENCES

1. Braslow, A.L. and E.C. Knox, "Simplified Methods for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers from 0 to 5," National Advisory Committee for Aeronautics Tech Note 4363 (Sep 1958).

2. Snyder, R.C. and A.N. Heck, "High Subsonic Velocity Wind Tunnel Test of an Unpowered, Lift/Cruise Fan, V/STOL Aircraft Model," McDonnell-Douglas Corporation Report MDC A2688 (Dec 1974).

3. Clutter, D.W., "Charts for Determining Skin-Friction Coefficients on Smooth and Rough Flat Plates at Mach Numbers up to 5.0 with and without Head Transfer," Douglas Aircraft Company Report ES 29074 (Apr 1959).

4. More, E. and J. Ottensoser, "A Computer Program for the Prediction of Theoretical Pressure Distributions over General Airfoil Sections by Theodorsens' Method of Conformal Transformation," NSRDC Report ASED-118 (May 1969).

Figure 1 - Schematic of the Model

Â.

16.8

Figure 3 - Typical Configuration Installed in the 7- by 10- Foot Transonic Wind Tunnel

(Date)

Figure 5 - Incremental Nacelle Drag

Figure 5b - C_L=0.05

Figure 7 - Comparison of Nacelle Drag on Longest Pylon with Wing Off

Port-

Figure 9 - Theoretical Nacelle Outer Surface Pressure Coefficent Distribution

ALL ON Pl

C BW + N1, FWD(LF) D BW + N1, WING(LW) \diamondsuit BW + N1, AFT(LA) \triangle BW + N2, WING(LW) \heartsuit BW + N2, AFT(LA) 常見

1

1

ter al

Trans

オート

1

The

Sal

Figure 12a - $C_L = 0$

Figure 12 - Effect of Longitudinal Nacelle Movement on Drag with Wing On

Figure 12b - $C_{L} = 0.05$

Figure 13 - Effect of Vertical Nacelle Movement on Drag with Wing On

0

1

U

1

0

1

-

-

Port.

i

ALL WITH N1 IN LW POSITION Re/ft x 10^{-6} = 3.1 to 3.8

Figure 17 - Incremental Pylon Drag

I

[]

[]

0

Figure 18b - C_M versus α

Figure 19b - C_L versus C_D

Figure 19c - C_{M} versus α

36

1

I

APPENDIX A

TYPE A V/STOL NACELLE DRAG TUNNEL

RUN LOG

.85 COMMENTS	See Note 1						30	39		56				See Note 3			See Note 2					Remin of 151	
.825								.,		.,		78	87	96	105				128	136	146	154	4
80							31	40	48	57	69	11	86	95 9	104 10			6					3 164
. 775 .	KE		NACELLE SHAKE															119	127	135	145	153	163
	NACELLE SHAKE		ELLE				32	41	49	58	68	76	85	94	103			118	126	134	144	152	162
. 75	CELLI	H	NACI				33	42	50	59	67	75	84	93	102	HAKE	NF	117	125	133	143	151	191
.725	NA	SHAKE	13	18		26	34	43	51	60	99	74	83	92	101	- MODEL SHAKE	OVERLOAD NF	116	124	132	142	150	160
. 65 . 7	4	NACELLE	12	17		25	35	44	52	61	65	73	82	16	100	- MO		115	123	131	141	149	159
9.	e	2	10	16	21	24	29	38	47	55	64	72	81	06	66	108	BALANCE	114	122	130	140	148	158
s.	2	9	9/11	15	20	23	28	37	46	54	63	11	80	89	98	107	110	113	121	129	139	147	157
.4																	-	-		-	-	-	-
CALIBRUN Tot Stat	ı	•	•	•	1	•	•	1	•	1	•	•	•	•	•	1	•	1	1	2	e	1	ı
	1	•	1	1	ı	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	ı	•	4	5
NACELLE #	1	2	e	5	4	0		0	3	4	1	1	1	1	1	1		1	1	4	4	4	2
PYLON SPAN	4	4	4	4	4	4	ONE	1	1	1	1	2	1	I	1	1	NG	3	3	1	1	1	I
PYLON.	ΓM	L W	ΓM	T M	L W 4	ГM	BODY AL	КΊ	ΓM	LW 1	T M	ΓM	N N	M N	LA	LF	BODY WI	ГM	нт	КΊ	ΓM	ΓM	L W
JJ0/ u 0	off	:	:		э.	=		=	=	=	=				:		NO	OFF	OFF	OFF	OFF	=	
CONF NO.	I	2	3	4	5	9	1	8	6	10	11	12	13	14	15	16	17	18	18	18	19	19	20

tioned traces town town town town town

-

1

[]

-

18

I

I

1

I

F - 2

the second

Number of Street of Street

.85 CONFIGNTS						See Note 2		Run 213 M=.67	Run 220 M=.625			See Note 3				See Note 2										
.825		172	181	191	200		204			226																
° .		171	180	190	199		205			227																
.775		170	179	189	198		206			228																
.75		169	178	188	197		207			229																
.725		168	177	187	196		208	213		230																
۲.		167	176	186	195		209	4 215	9 220	231	-	3		5	-			5	~	80		0	.9	~		
. 65								214	219		237	243	249	255	261		270	276	282	288	294	300	306	312	318	
.5 .6		165 166	174 175	184 185	193 194	202 203	211 210	217 216	222 221	233 232	239 238	245 244	251 250	257 256	263 262	268	272 271	278 277	284 283	290 289	296 295	302 301	308 307	314 313	320 319	
4.		-	-	Г	-	7	2	2	223 2	234 2	240 2	246 2	252 2	258 2	264 2	267 2	273 2	279 2	285 2	291 2	297 2	303 3	309 3	315 3	321 3	
ε.									224 2	235 2	241 2	247 2	253 2	259 2	265 2	266 2	274 2	280 2	286 2	292 2	298 2	304 3	310 3	316 3	322 3	
RUN	Stat	9	ı	1	•	•	•	1	•	1	1	ı	1	ı	1	-	,	1	1	,		ı	i	,	1	
CALIBRUN	Tot	•	1	1	ı	•	•	1	ı	1	1	1	,	ı	1	ı	1	1	ı	•	ı		1	ı	ı	
NACELLE	#	5	1	1	0	1		l	1	1	1	ı	2	en	1	ı	1	1	4	1	5	1	2	1	1	
NOTAd	SPAN	1	LONE	1	e	ING		1	1	1	1	1	1	1	1	ING	2	3	1	3	1	2	3	3	3	
NOTAJ	POS.	T W	BODY ALONE	ΓM	L W	BODY WING	T M	ΓM	N N	ΓM	LA	U W C	L W	МΊ	LF	BODY WING	LF	LF	ΓM	LA	I. W	LA	L W	ΓM	N N	
SNIM	On/Off OFF	OFF	OFF		=	NU	=	:	=	=	:	-		-	=	=		=	-	=	=	:	:	=		
CONF	NO.	20	21	22	23	24	24	25	26	27	28	29	30	31	32	24	33	34	35	36	37	38	39	40	41	

7.5

		nin saa			a nod									 Sector Sector
COMMENTS					See Note 1									
.85														
. 825								5						
					348	359		or for s. W pyld						
.17.						360		ept f xcept ition the L						
.75						361 3		s, exc psf. psf,e f cond td of elage.						
. 725						362		itions 1400 1400 at SCV instes e fuse						
.7	4	0	9	8	352	363	9	igurations were run at SCV conditions, except for 368 which were run evacuated to 1400 psf. gurations were run evacuated to 1400 psf, except for 266,267 and 268 which were run at SCV conditions. ons were run with the LA pylon instead of the LW py. nacelles 0.46 in. closer to the fuselage.						
.6 .65	325 324	331 330	337 336	343 342		365 364	372 373	at S(evacuation evacu						
. 5.	326 3	332 3	338	344 3	355	366	371	e run run 8 whi 11th t in.						
. 4	8 327	4 333	0 339	6 345		8 367	9 370	ns wer h were s were and 26 run w s 0.46						
ы. 	328	334	340	346	357	368	369	whic whic ation 267 were celle						
CALIBRUN Tot Stat	1 1	1 1	1	1 1	1 1	1 1	1 1	All wing-off configurations were run at SCV conditions, except for Runs 348 through 368 which were run evacuated to 1400 psf. All wing-on configurations were run evacuated to 1400 psf,except for Runs 110,202,203,266,267 and 268 which were run at SCV conditions. These configurations were run with the LA pylon instead of the LW pylon which brought the nacelles 0.46 in. closer to the fuselage.						
								All wing-off conf Runs 348 through All wing-on confi Runs 110,202,203, These configurati which brought the						
NACELLE	1	1	2	1	1	2	3	l wing ns 348 l wing ns 110 sse co ich br						
PYLON SPAN	2	1	1	3	1	e	3	ä ä H						
PYLON POS.	ГЧ	ГЧ	LA	LW	ΓW	LW	LW	Note Note Note		•				
WING On/Off														
	NO	:	:	=	OFF	OFF	•							
CONF NO.	42	43	44	45	46	47	48	· ·						

SUPPLEMENTARY

INFORMATION

and an appropriate the second s

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER HEADQUARTERS BETHESDA, MARYLAND 20084

ANNAPOLIS LABORATORY ANNAPOLIS, MD 21402 CARDEROCK LABORATORY BETHESDA, MD 20084 IN REPLY REFER TO:

166:JHN 5214

2 5 JAN 1978

From: Commander, David W. Taylor Naval Ship R&D Center To: Distribution List

Subj: DTNSRDC Report ASED-390; forwarding of errata to

Encl: (1) DD Form 1473 for DTNSRDC ASED-390

1. DTNSRDC Report ASED-390 has been recently sent under separate cover. Pertinent information was omitted from DD form 1473 and a correct form (enclosure (1)) is forwarded for insertion in the report.

> J. H. NICHOLS By direction

REPORT DOCUMENTATION PAG	E READ INSTRUCTIONS BEFORE COMPLETING FORM
	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
DTNSRDC ASED-390	
TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
PARAMETRIC TRANSONIC EVALUATION OF TY VSTOL NACELLE DRAG	PE A Final (Jan - Aug 1977) 5. PERFORMING ORG. REPORT NUMBER
. AUTHOR(+)	S. CONTRACT OR GRANT NUMBER(*)
Jonah Ottensoser	and the second
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Aviation and Surface Effects Departme	
David W. Taylor Naval Ship R&D Center	Project W0590-SL
Bethesda, Maryland 20084	(Continued on reverse side)
1. CONTROLLING OFFICE NAME AND ADDRESS	
Naval Air Systems Command Code PMA 269	September 1977
Washington, D.C. 20361 (4. MONITORING AGENCY NAME & ADDRESS(If different from	46
	Controlling Office) 15. SECURITY CLASS. (of this report)
Naval Air Systems Command AIR 320, AIR 5301	UNCLASSIFIED
Washington, D.C. 20361	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	JONEDUEL
6. DISTRIBUTION STATEMENT (of this Report)	
APPROVED FOR PUBLIC RELEASE:	
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 7. DISTRIBUTION STATEMENT (of the abstract entered in Bio	ock 20, 11 different from Report)
DISTRIBUTION UNLIMITED	ock 20, 11 dillerent from Report)
DISTRIBUTION UNLIMITED 7. DISTRIBUTION STATEMENT (of the abstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and iden	
DISTRIBUTION UNLIMITED 7. DISTRIBUTION STATEMENT (of the abstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide if necessary and iden Type A VSTOL	
DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and iden	
DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the obstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and iden Type A VSTOL Nacelle Drag Pylon Drag	ntify by block number)
DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the obstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde II necessary and iden Type A VSTOL Nacelle Drag Pylon Drag 20. ABSTRACT (Continue on reverse elde II necessary and iden A parametric evaluation of the z to the large nacelles found on some Ty ducted in the 7- by 10-foot transonic Ship Research and Development Center. wings and fuselage yields levels of in isolated drag which results in the nac	nilly by block number) ero lift drag characteristics attributab pe A VSTOL candidate aircraft was con- wind tunnel of the David W. Taylor Naval Mounting the nacelles in proximity to t terference drag three to four times the elle interference drag producing approx- ft drag. Movement of the nacelles away
DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the obstract entered in Bio 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde II necessary and iden Type A VSTOL Nacelle Drag Pylon Drag 20. ABSTRACT (Continue on reverse elde II necessary and iden A parametric evaluation of the z to the large nacelles found on some Ty ducted in the 7- by 10-foot transonic Ship Research and Development Center. wings and fuselage yields levels of in isolated drag which results in the nac	nilly by block number) ero lift drag characteristics attributab pe A VSTOL candidate aircraft was con- wind tunnel of the David W. Taylor Naval Mounting the nacelles in proximity to t terference drag three to four times the elle interference drag producing approx-

[]

A STATE OF A

,
