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NOTATION

f The results in this report are reduced to standard aerodynamic force

and moment coefficients and are presented in the stability axis system.
All moments are referenced to the balance center located at the quarter
chord of the mean aerodynamic chord (27.40 in. (0.696 m) aft of the nose)
and 2.25 in. (0.057 m) above the lower surface of the fuselage. Angles of
attack are relative to the fuselage.

B Designation for fuselag;

BW Designation for fuselage and wing

b Wing span, 4.77 ft (1.45 m)

C Lift/qs

Cy Pitching Moment/qsc

|
!
|
|
I N
|
I
]

Cp Pressure coefficient, (P-Po)/q
c Reference chord, 0.671 ft (0.205 m)
c Mean aerodynamic chord, 0.74 ft (0.226 m)
i D Incremental nacelle drag (e.g., BHP1N1 - BWPl)
* D° Isolated nacelle drag (e.g., BP4N1 - BPa)
: d Maximum nacelle external diameter
h Minimum height from nacelle outer surface to wing upper surface

LA Nacelle position aft of wing (see Figure 1)

LF Nacelle position forward of wing (see Figure 1)

w Nacelle position over wing (see Figure 1)




ACp

Nacelle length

Mach number

Designation for nacelles (see Figure 2)
Local static pressure

Free-stream static pressure
Designation for pylons (see Figure 2)
Free-stream dynamic pressure, psf (N/m?)

Reynolds number

Wing area 3.196 ft2 (0.2969 m?) 1

Raised nacelle position above wing (see Figure 1)
Distance along nacelle length
Angle of attack

Incremental drag

vi




ABSTRACT

A parametric evaluation of the zero lift drag characteris-
tics attributable to the large nacelles found on some Type A
VSTOL candidate aircraft was conducted in the 7- by 10-foot
transonic wind tunnel of the David W. Taylor Naval Ship Research
and Development Center. Mounting the nacelles in proximity to
the wings and fuselage yields levels of interference drag three
to four times the isolated drag which results in the nacelle
interference drag producing approximately 50 percent of the
total aircraft drag. Movement of the nacelles away from the
wings either longitudinally or vertically tends to reduce drag.
Except for the nacelles mounted forward of the wing, the nacelles
have an adverse effect on lift. The particular wide nose body
used proved to be highly unstable longitudinally, although
adding nacelles above or behind the wings tended to reduce this
instability. Five pairs of axisymmetric nacelles, four pairs
of pylons, and three longitudinal and two vertical positions
were investigated on a 10~percent scale, low (supercritical)
wing model.

ADMINISTRATIVE INFORMATION
This work was undertaken by the Aircraft Division of the Aviation and
Surface Effects Department at the David W. Taylor Naval Ship Research and
Development Center (DTNSRDC) at the request of the Naval Air Systems Com-
mand (NAVAIR PMA-269) in support of the NAVAIR 53013 Type A VSTOL evalua-
tion program. The program was funded under Task Area W0520-SL006.

INTRODUCTION
NAVAIR 53013 has been involved for some time with the competitive
evaluation of Type A VSTOL aircraft. Some of these aircraft are typified
by large engine nacelles whose drag plays a significant role in the over-
all performance of the vehicle. Consequently, NAVAIR requested that an
experimental program be performed in the DTNSRDC 7- by 10-foot transonic
tunnel to parametrically evaluate the zero lift drag characteristics of
these (unpowered) nacelles. The information thus generated would be used

as part of the NAVAIR empirical data base for the VSTOL evaluation pro-

gram.




APPARATUS

The 7- by 10-foot transonic wind tunnel at DTNSRDC is of the closed-
circuit type that is capable of continuous operation in a Mach number
range from 0.20 to approximately 1.15. A six-component internal balance
was used to measure forces and moments., Because of balance load limits,
two such balances were used: TSB-6 for most wing-off configurations and
TSB-24 for most wing-on configurations. The external geometry of both
balances is identical. Each balance was used in conjunction with Adapter
29, Adapter 26, and Sting 4 and then connected to the tunnel support sys-
tem. A dangleometer was mounted internally to the model to measure angle
of attack.

The starboard nacelle of each pair had four static pressure taps 90
degrees apart from each other and 4.5 in. aft of the leading edge. These
pressures were recorded on four separate transducers, and although these
data were not used in this evaluation, they are included in the tabulated
data of Appendix B for potential interest. Separate transducers were also
used to measure cavity pressure for axial force corrections and for the
five total and one static probe in the drag rake used to measure nacelle
internal drag. The balance and transducer signals were processed by a
Beckman Model 4040C analog to digital converter and recorded and processed
on a Hewlett-Packard Model 2100 minicomputer.

MODELS

The 10-percent Type A VSTOL fuselage was constructed of wood with a
thin covering of fiberglass. All other components of this model were con-
structed of aluminum. The inboard 5~percent span of the wing was a con-
ventional unswept airfoil shape followed by a 26-degree sweep supercriti-
cal airfoil. Figure 1 shows a schematic of the model with pertinent di-
mensions.

The nacelles were axisymmetric bodies of revolution mounted on pylons
without relative incidence to the fuselage with N1 chosen as the baseline
nacelle. Mass flow ratios through the nacelle based on high-lite (en-

trance) and exit areas averaged 0.53 for nacelles N1, N2 and N3, 0.65 for




nacelle N4, and 0.42 for nacelle N5. The pylon was constant chord NACA
64A012 airfoil in cross section with variations in span length for Pl
through P4. Figure 2 shows pertinent details of the nacelles and pylons.
Contoured wooden filler blocks were used to smoothly fill in fuselage gaps
as the nacelles were varied longitudinally and vertically. Figure 3 shows

a typical wing-on configuration installed in the tunnel. No longitudinal
or vertical tail surfaces were evaluated during this program.

Transition grit (#120 carborundum particles) was used on the wings,
fuselage, nacelles, and pylons throughout the test program. The location
and size of the grit were determined by the procedure outlined in Ref. 1.
A 1/8-in. (0.32-cm) wide band of grit was placed 10 percent of the fuse-
lage length aft of the nose and at a constant 10-percent chord on the
upper and lower surfaces of the wing and pylons. A similar band of grit
was placed on the inner and outer surfaces of the nacelles 10 percent of

the nacelle length back from the leading edge.

TEST PROGRAM

The majority of the wing-off data, as indicated in Appendix A, were
run under settling chamber vented (SCV) conditions at Mach numbers from
0.50 to 0.85. This corresponds to a dynamic pressure range of 300
(14,364) to 660 psf (31,600 N/mz) and a Reynolds number per foot variation
of 3 to 4.1 million. With the addition of the wing, the normal front gage
of the balance became overloaded. The initial balance TSB-6 was changed
for TSB-24, and the test was continued under evacuated conditions. The
Mach number range for wing-on data was 0.30 to 0.65 which corresponds to a
dynamic pressure range of 80 (4,070) to 310 psf (14,843 N/mz) and a Rey-
nolds number per foot variation of 1.3 to 2.3 million. The effect of a
Reynolds number on drag for the two different tunnel conditions, however,
did not present a problem in the data analysis because data compared be-
tween the two tunnel conditions was of the incremental type (e.g., BHNlPl
- BWP1 compared with BNIP1 - BPl) where Reynolds number variation should
have almost no effect.

A wake rake with one static and five total probes was used to survey

the exit plane of the nacelles at zero degrees angle of attack for mea-




surement of nacelle internal drag. (Ref. 2 indicates that nacelle inter-
nal drag remains constant from -4 to 4 deg angle of attack.) The inter-
nal profile drag was so low (i.e., the ratio of total pressure in the na-
celle exit plane to the free-stream total pressure was 1.0 over 95 percent
of the exit plane) that no measureable difference between the internal
drag of the various nacelles was discernible. Consequently, internal drag
of these nacelles was assumed to be small and approximately equal for all
the nacelles, and no correction for internal drag was applied to the data
presented in this report. (Theoretical estimates indicate the internal
drag coefficieat per nacelle to be on the order of 0.0010. These esti-
mates were obtained by considering the internal wetted area of the na-
celles as an equivalent flat plate and then applying the data of Ref. 3.)

The angle of attack range, within the constraints of model fouling,
was -4 to 9 deg. for Mach number 0.5 or less and -4 to 4 deg. for higher
Mach numbers. For all configurations the angle of sideslip was zero.
Fuselage cavity pressure was measured by two probes taped to either side
of the sting at the fuselage exit plane. These two pressures were then

averaged, and the average was appropriately applied to adjust the axial

force to zero base drag.

ANALYSIS

COMPARISON OF NACELLES IN AND OUT OF WING/FUSELAGE VICINITY

The most significant information contained in this report is the tre-
mendous amount of interference drag generated by the nacelles in proximity
to the wing as shown in Figure 5. Moving the nacelles into the vicinity
of the fuselage, as shown by a comparison of ACD between the nacelles on
Pl and the nacelles on P4 in Figure 5, also produces a substantial amount
of interference drag. Movement into the vicinity of the fuselage approxi-
mately doubled the drag and this drag level is then approximately doubled
again in the vicinity of the wing. Nacelle interference drag tends to
double or triple the body-wing drag and, as shown in Figure 6, generates

even more drag as a very early drag rise develops at Mach numbers greater
than 0.50.




Incremental drag values presented in Figure 5 are obtained by sub-
tracting the drag of the nacelle-off configuration from the appropriate
nacelle-on configurations. Wing-off data used to obtain these increments

are presented in Figures 7 and 8; the wing-on data are presented in Fig-

ure 6.

An examination of individual nacelle drag (Figure 5), as measured by
mounting the nacelles on the longest pylon with the wings off, indicates
that the basic nacelle (N1) has a reasonable drag level but a surprisingly
early drag rise. Decreasing the high-lite radius by 25 percent (N5) sub-
stantially decreases drag, while shortening the nacelle (N4) or thickening
the external countour (N2) increase drag about equally. Thinning the ex-
ternal contour (N3) relative to the basic nacelle (N1) produces the larg-
est increase in drag but also produces the largest drag rise Mach number.
The high drag level of N3 may be due to leading edge separation on this

nacelle. The theoretical pressure coefficients for N3 are more negative

than for the other nacelles, as shown in Figure 9. The data of Figure 9

were obtained by considering potential flow about nacelle cross sections

in conjunction with the method of conformal transformations as described

in Ref. 4. Interestingly enough, as discussed later, this trend reverses
in proximity to the wing.

Further analysis of Figure 5 indicates that the relative drag levels
change with the nacelles approaching the fuselage or wing. The governing
factor appears to be the relative amount of nacelle surface area in proxi-
mity to the wing or fuselage. Thus, the shortest nacelle (N4) has a lower
drag than N1 in the vicinity of the wing and fuselage. Also, the thinnest
nacelle (N3), which had the highest isolated drag, has the lowest drag in
the vicinity of the wing because it is furthest from the wing. The same l
drastic increase for nacelles in proximity to the wing occurs even with
the nacelles mounted outboard of the fuselage (P3), as shown in Figure 10C.

A curve of drag ratio to nondimensional minimum nacelle height above
the wing at a Mach number of 0.5 is presented in Figure 11. The drag
ratio is defined as the ratio of the incremental nacelle drag as installed

on a body/wing configuration divided by the particular isolated nacelle

drag. The curve is general for all nacelles except N3, which was excluded




because of pcssible local separation in the isolated case. As mentioned
above, the data in Figure 11 show that nacelle interference drag tends to
increase as the nacelle approaches the wing. While the curve is general,
caution should be used in applying it to other nacelles in that ruselage
proximity or other local conditions could alter the data. It should also
be pointed out that t 4s curve is only valid below the sharp drag rise
associated with these nacelles,

An attempt was made to develop a curve similar to Figure 11 for the
effect of fuselage proximity on nacelle drag. However, this effect is not
as pronounced as wing proximity; therefore in combination with local ef~-

fects, no similar curve was developed.

LONGITUDINAL, VERTICAL, AND SPANWISE NACELLE VARIATION

Movement of the nacelle forward or aft of the wing substantially re-
duces the nacelle interference drag. Of the two movements, movement aft
of the wing provides the greatest benefit; see Figure 12.

Vertical movement up and away from the wing reduces the interference
drag, as shown in Figure 13. The effect of spanwise movement of the na-
celles with wing off is shown in Figure 14, and the incremental drag for
this effect is shown in Figure 15. Movement away from the fuselage de-
creases overall drag till pylon drag begins to play a significant role, at
which point drag increases; see Figure 14. However, from an incremental
drag viewpoint, as shown in Figure 15, the nacelle drag continuously de-
creases with spanwise movement.

Figure 16 shows the effect on drag of spanwise movement of the na-
celle for wing-on configurations. For the N1 nacelle the drag is "lowest"
in proximity to the fuselage and increases as the distance from the fuse-
lage increases. However, the opposite variation in drag occurs for the N2
nacelle. Conflicting trends also occur for spanwise variation of the N1
nacelle forward of the wing compared to aft of the wing.

A possible explanation for these anomalies may be that the interfer-
ence drag of the' nacelle reaches a maximum with the nacelles in some prox-

imity to the fuselage, but decreases with spanwise movement in either di-~

rection from this maximum. Thus the N1 nacelle on the Pl pylon has a




smaller minimum distance to the fuselage (because of fuselage contour)
than the N2 nacelle on the same Pl pylon and therefore may be on the de-
creasing part of the drag versus spanwise position curve. This theory is
somewhat substantiated by data in Figure 13 which show that for the N1
nacelle moved closer to the fuselage by using the LA pylon in the LW posi-

tion, the drag also decreases.

INCREMENTAL PYLON DRAG
Incremental pylon drag is presented in Figure 17. Not only is there
a detrimental drag interference between nacelle and wing, but this same

effect holds true for the pylon and wing.

STANDARD AERODYNAMIC COEFFICIENTS

Curves of CL versus o, CL versus CD’ and CM versus a for some typical |
body/nacelle and body/wing/nacelle configurations, respectively, are pre-
sented in Figures 18 and 19. Of significance in Figure 18 is the longi-
tudinal destabilizing effect of the wide nose body. This effect carries
through even with the wings on, as shown in Figure 19; but nacelles mount-
ed over and aft of the wing improve the stability, although they tend to
make the pitching moment more negative. Also of significance in the fig-

ure is the penalty in lift incurred when the nacelles are mounted above or

aft of the wing.

CONCLUSIONS

The following conclusions have been drawn from analysis of the data:

1. Nacelles in proximity to the wing and fuselage yield an incremen-
tal drag level three to four times the isolated nacelle drag, producing
approximately 50 percent of the total aircraft drag.

2. Movement away from the fuselage/wing combination longitudinally
or vertically tends to reduce interference drag, with movement aft of the
wing yielding the greatest benefit.

3. The installation of nacelles results in drag rise Mach numbers as
low as 0.5.

4. Pylons also produce a significant amount of interference drag.
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5. 1In general, the installation of nacelles has an adverse effect on
lift.

6. The wide nose body was longitudinally unstable. The addition of
nacelles tended to reduce this instability while producing a more negative

pitching moment.
7. There is some evidence from this evaluation indicating that na-

celles very close to the fuselage (buried nacelles) tend to reduce inter-

ference drag. Further investigation of this area is warranted.
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Figure 12 - Effect of Longitudinal Nacelle Movement on Drag with Wing On

24

- —

o e—

-~

o B Q-

ey ray




C, = 0.05

L

25

L ALL ON P1
Re/ft x 107° = 1,29 to 2.26 G BW + N1,FWD(LF)
., [ BW + N1,WING(LW)
I O BW + N1,AFT(LA)
A BW + N2,WING(LW)
)3 7 BW + N2,AFT(LA) ;
0.07 | |
/‘“/ ”
N2,LW
0.06
N1,LW
|
t
0.05 !
74 b
2 A
N1,LF ;
! N1,LA i
| ; / '
! |
0.0k - :
. N2,LA !
SRS A T
0.3 0.4 0.5 0.6 0.7
MACH NUMBER
Figure 12b - C. = 0,05




HIEWNN- HOVIN

®0°Q

¢0°0

Lo*C

9Z°C 03 6C°T

uo BUTM UITM FBIQ UO JUSWSAON STTI0BN TBOTIIIA JO 3093JF - €T 2an8td

9°0

MI‘Ed +
MOEd +
(NOTAd VT HIIM) MN‘Td +

3
4

_0T X 33/°¥

YIGWON HOVA

+

+ 4+ + +

26




O.o3

%

0.02

0.0L -

9.03

0.02

o.ol

'P1
|
, pb
| P2

=T

N\

O B+ N1+Pl
O B + N1 + P2
OB+ NL+P3
A B+ N1+ Ph4
% _ 3.1 to0 3.8
- CL = 0,05 Re/ft x 10 = 3. 3-
Loy, ply —
q P2
4
P3
0.5 0.6 0.7 0.8
MACH NUMBER

Figure 14 - Effect of Spanwise Nacelle Movement on Drag with Wing Off

27




ALL WITH N1 IN LW POSITION

5 Relft x 10°° = 9.1 to 3.8

0.02
J CL =0
P1

3 AGD P3
i 0.01 Zoe
; / P4
|
i

0.0

0.4 0.5 0.6 0.7

MACH NUMBER

Figure 15 - Incremental Drag for Spanwise Nacelle Movement with Wing Off
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APPENDIX A

TYPE A V/STOL NACELLE DRAG TUNNEL

RUN LOG
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