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ABSTRACT

In this report the topological and geometrical aspects of the circuit

layout problem are compared. A circuit layout procedure , based on topo-

logical factors, is presented. Whereas most circuit layout procedures are

concerned mainly with geometricalaspects, the method described in this

report att emp~~ to find a topologically feasible solution to the p roblem

first. From this topological layout, a physical layout is obtained in a

second phase. This method can be especially useful for problems where a

complete (100%) layout is mandatory .

INDEX TERMS: Circuit topology , computer—aided design , design automation,
integrated circuit layout , printed circuit layout, topological
layout.
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TOPOLOGICAL CIRCUIT LAYOUT

1. Introduction

In this paper the major characteristics of the topological and

the geometrical aspects of the circuit layout problem will be investigated .

Because of the inherent complexity of the circuit layout problem, most

solutions perform the placement of components first and then route the

connections independently. This may result in routing failures that

could have been prevented. The topological approach takes into consid-

eration the topological aspects of the circuit layout problem and can

result in more optimal layouts. Such a layout procedure will be presented

in section 6. This procedure is useful mainly for problems which cannot be

handled easily with the classical placement/routing methods. Such is

e.g. the case in the layout of integrated circuits, where components may

be of varying sizes and shapes and where the number of interconnection

layers is severely limited.

2. Geometrical versus Topological Aspects

The topological aspects of the circuit layout problem are related

to the relative positions of components, terminals and interconnections.

This includes the order in which the terminals of a component appear on its

physical boundary as well as the possibility of routing connections

over the area used by the component. The requirement that the extem~
nections have to appear on the outside boundary of the circuit in a pr~-

specified order is also a topological characteristic of the circuit layout

problem . Sometimes, the order of terminals is not completely imposed upon

the designer: e.g., the inputs of a three—input AND gate are interchangeable.

Assigning nets to logically equivalent pins is known as the pin assignment

problem. A good circuit layout procedure should perform this pin assignment

in function of an optimal layout.
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Sometimes several logically equivalent components (e .g.  NAN D gates)

are grouped together in a single physical component. Assigning groups

of nets to these logically equivalent subcomponents is known as the gate
assignment problem . Again , in a good layout procedure , this should be

done in function of the layout. The logical equivalence of terminals

and subcomponents influences the layout of the circuit topologically .
The geometrical ~~~ ects of the circuit layout problem are related to

parameters that can be measured . For layout problems one usually does

not use the ordinary Euclidian metric , but rather the so—called Manhattan

geometry , in which only vertical and horizontal line segments are allowed.

The size of individual components, the thickness of conductor lines and

the size of a printed circuit board or an integrated circuit chip are

examples of geometrical parameters.

An important geometrical characteristic is the concept of finite

wiring capacities. These occur when the number of connectors in a given

area is limited by geometrical considerations. Such is e.g. the case for

the number of wires one can route between two adjacent terminals of a com-

ponent.

Finite wiring capacities also occur when components can only be placed

in fixed locations of a printed circuit board. Such a restriction usually

results in a less—routeable board since topologically feasible connections

might be unrouteable due to geometrical constraints.

3. The Classical Approach

Most procedures for solving the circuit layout problem first position

the components thereby minimizing an objective function. This function should

be a measure of the quality of the final layout . Usually the total wirelength

is the parameter one tries to minimize. This tends to cluster together heavily

connected components and to shorten the longest wires , which are desirable

s ide—effe cts.  Once the placement is obtained , it is f rozen and the routi ng of

connections has to be performed within this fixed—componen t topology .

Gate assignment is usually done befo re the placement phase while pin

assignment is often deferred unti l  the interconnection routing phase.
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The routing of interconnections is frequently done sequentially using

algorithms such as Lee ’s [Le6ll or Rightower ’s [Hi69a]. Sequential routing

inherently raises the question of selecting the order in which interconnections

should be routed . This problem was studied by Abel [Ab721. In this study

it was concluded that router performance, measured in function of the ideal

total wirelength, is independent of the order in which the connections are

routed . This conclusion is valid only when the number of geometrical ob-

structions far exceeds the number of topological obstructions (the terms

geometrical and topological obstruction will be explained in more detail ,

later in this section) .
When finite wiring capacities are a limiting factor then geometrical

obstructions tend to be the main reason for routing failures. In printed

circuit board layout, routing completion is desirable but not essential.

In IC layout however, all connections must be routed completely. Since there

is no technological need for placing components in fixed locations , f inite

wiring capacities are not the main reason for routing failures.

Algorithms that allow some degree of parallellism in the routing phase

were proposed in [HS71] and [MS721, but these algorithms are applicable only

to a restricted class of problems. The cellular routing technique , pro-

posed by Hitchcock [Hi69bJ allows some flexibility in the relative position

by interconnections but the position of an interconnection with respect to

the already placed components is not determined in function of an optimal

layout .

In the classical approach, both the topological and the geometrical

aspects of the circuit layout problem are not fully taken into account. In

the routing phase it may be impossible to route a connection in a given

routing plane. This failure may be cuased by one of the following:

1) Congestion: An interconnection cannot be routed because of

because of limited wiring capacities (geometrical obstruction).

2) Topological obstruction: some connections may be routed in

topologically different ways. However, choosing a particular

topological embedding may reduce the ability to route other con—

sections. This problem is illustrated in Fig. 1, where four

components, labeled A, B, C and D connected by two nets {2,7}
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and {l,3,4,5,6,8}. The layout shown in Fig. 1(a) shows the pos-

sibility of embedding both nets in the same plane. In Fig. 1(b)

the net {l ,3,4 ,5 ,6 ,8} has been embedded d i f fe ren t ly ,  thereby

making it impossible to embed {2 ,7} in the same plane .
3) Inherent non—planarity: No embedding in the plane exists. This

only occurs when no interconnections are allowed under or over

the area used by components.

The classical approach has proven successful in the layout of multi—

layer printed circuit boards with a regular structure. When multiple

interconnection layers are available and when a given interconnection can

be realized in more than one layer (through the use of vias), then the

occurrence of topological obstructions is not of a critical nature. Further-

more, total completion of all interconnections, although desirable, is not

essential for printed circuit boards.

However, for problems with components of varying size and shape and

one or two layers of interconnections the classical approach has often failed

to produce satisfactory solutions, especially when 100% routing completion

is desired.

4. The Topological Approach

The main concern in solving the circuit layout problem is to embed the

connections in one or more planes, such that no two connections intersect.

This criterion shows a striking similarity with the planarity concept in graph

theory: a graph is planar if it can be embedded in the plane such that no

two edges Intersect.
The topological approach is based on graph—theoretical concepts and

first constructs a graph model for the circuit. This graph represents the

topological aspects of the circuit as faithfully as possible, while neglecting

all geometrical information. This graph then is embedded in one or more planes.

If some of the connections remain unembedded , one attempts to route them by

making use of technological properties that could not be modelled by the graph.

The final step consists of transforming the topological layout into a physical

layout , that takes into account the geometrical properties.
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Fig. 1 Influence of Topological Obstruction Caused by

Wiring Order.
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In this approach , the topological parameters are considered at all

stages , while the geometrical information is used onl y in the last phase

of the layout .
Although several attempts were made to solve the circuit layout pro-

blem using graph—theoretical methods, working systems have appeared only

recently.

Topological methods for laying out one—sided printed circuits were first

proposed by Kodres [Ko6l] and Weissman [We62]. Methods for the layout of

thin film RC circuits were mentioned by Sinden [Si66] and Bedrosian [Be67].

Weinberg [We68] discusses graph—theoretical concepts such as planarity and

isomorphism, that are useful for solving circuit layout problem. Akers

and Hadlock [A11691 describe a layout method for IC’s based on a graph—

theoretical method . Akers, Geyer and Roberts EAG7O} continue this approach

and also describe a method to transform the topological embedding into a

physical layout, which takes into account the actual dimensions of the com-

ponents. A good survey of the topological approach to the circuit layout

problem is given by Kodres [Ko69].

Working systems for the layout of integrated circuits, based on a graph—

theoretical approach are described by Yoshida and Nakagawa [YN69], Engl and Mlynski
[EN69ab, EM731, Fletcher [F172], Klamet [Kl73], and Sugiyama [Su74]. An

ef fort to justify theoretically the models used is given by Engi and Nlynski

[EM72abc, EM75] and by Vanlier and Otten [VO731.

A serious objection to topological layout methods is that they usually

do not take into account any geometrical parameters, such as the number of

wires one can route between two adjacent pins of a component or the capacity

of a routing channel. As was indicated in [VL74], it is possible to take some

finite capacities into account in a graph—theoretical model.

Some interesting results on transforming a topological embedding into a

physical layout were reported by Zibert and Saal [Zi74], [ZS74].

Many existing systems for topological IC layout are limited to small—

scale circuits. Because of the inadequacy of the models and algorithms

employed , they often rely heavily on interaction for obtaining a final 
layout.6
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5. Graph Models for the Circuit Layout Problem

In [Va76] elaborate graph models are developed for the problem . These

models are based on the concept of partially oriented graph (P. 0. graph).

In a P. 0. graph , certain vertices (called oriented vertices) ahve an

associated function that maps the set of neighboring vertices into itself.

A P. 0. graph is planar when it can be embedded in the plane such that for every

oriented vertex the order in which its neighbors appear satisfies the function

associated with that oriented vertex.

In the graph model so constructed nets are represented by star sub—

graphs (with the center being a non—oriented vertex) while components are

represented by P.O. subgraphs.

The advantages of this model are :

1) No special constraints have to be imposed on the planarity testing

and graph embedding algorithms .
2) Under certain conditions, it is possible to model physical equivalence

of terminals as well as logical equivalence of terminals and sub—

components, such that these properties can be used for achieving an

optimal layout.

A simple circuit and its P .O . graph model are shown in Fig . 2 and 3.

A disadvan tage of this model is that it does not pe rmit connections to be

routed under (or over) the area used by a component, during the initial topo-

logical layout. However, since routing in this area is severely constrained

by geometrical considerations, this disadvantage is not of a serious nature .

Moreover , the routing of connections under (or over) the area, used by a com-

ponent can be done topologically , while respecting finite wiring capacities ,

once a preliminary topological layout is obtained. A method for doing this

was presented in [VL74].

The restriction of not allowing wires to be routed under or over the area

occupied by components in the initial P.O. graph model was motivated by the

following . Suppose that there were no constraints caused by finite wiring

capacities (and that wires can be routed under or over the area occupied

by components) then all interconnections can be laid out in a single layer since

a collection of trees is always planar. From such a layout one could derive

a layout that respec ts the finite wiring capacities between the terminals
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of some component by deleting interconnections. The problem with such

an approach is that the relative position of the remaining wires w.r .t

other wires and components may be far from optimal a:ter some of the wires

are deleted. Furthermore , this approach requires the components to be placed

before the routing phase. On the other hand , by initially not allowing wires

to be routed under or over the area occupied by components , one can find a

maximal planar layout while still satisfying all constraints imposed by

finite wiring capacities. By allowing a limited number of wires over or

under the component after the initial topological layout , this layout can

be improved .

6. A Layout Procedure

The first step in a topological layout procedure consists of constructing

a P.O. graph model of the circuit , as described in [Va76]. Next a maximal

planar subgraph is found and embedded in the plane . Since no algorithm is

known for efficiently finding an optimal solution , a suboptimal solution

is obtained in time 0(n2), where n is the number of vertices in the P.O.

graph model .

The basis for this procedure is an algorithm for testing the planarity

of P.O. graphs in linear time. This algorithm is based on Tarjan’s planari ty

testing algorithm. In order to construct a maximal planar subgraph , one

starts with a known planar subgraph . In this case all edges belonging to

component models plus a number of ed ges to make the subgraph connec ted will

always y ield a planar subgraph. Starting from this planar subgraph , one can

add ne t edges one at a time if this addition leaves the remaining graph planar.

This results in a list of faces of the embedded P.O. subgraph pius a

l ist of edges that were deleted from the original P.O. graph in order to

make it planar. It should be obvious that the only edges that may be de-

leted from the P.O. graph model are those that represent nets.

The rema ining P.O. subgraph , embedded in the plane , prov ides in forma tion

on the relative position of components , terminals and interconnections in

th e first layer.

After a maximal planar subgraph has been embedded in the p lane, components

are sti ll repr ese nted by sometimes comp lica ted graph models , while some net

10
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edges may have been deleted . In the further  t ransformat ions  of the c i rcui t
layout graph , these complicated component models are no longer needed . There-
fore it is desirable to replace these component models by simple circuits.

This results in performing gate and pin assignment.

Because of the restrictions inherent to the graph model (e.g. no con-

nections allowed over the area of a component), some connections that were

feasible may not have been embedded . It is possible to embed some of these

connections topologically, using a technique proposed in [VL74]. This then

yields a new list of faces of the P.O. graph plus a new list of non—embedded

edges. From this maximal P.O. subgraph a preliminary physical layout is

obtained for the first layer of interconnections . The P.O. subgraph really

specifies the relative positions of components and terminals and can be

used to place the componen ts and route the interconnections it represents

without routing failures. In order to avoid failures due to geometrical
obs truc tions , it is necessary to provide for a large enough area.

In the case of printed circuit boards, where components have to be

placed in predetermined fixed locaticns , this may be difficult. This is due

to the fact that the spaces between components have finite wiring capacities .

If this is the case , it may be necessary to remove some topologically feasible
interconnections in order not to exceed the wiring capacities . In the case of

regular prin ted circuit boards the geometrical obstructions are of ten the

main cause for rou ting failures. In such cases the topological approach will

yield far—from—optimal results. However , when there are no restrictions on

where componen ts can be p laced , then geometrical obstructions are far less

important.

The algorithm for deriving a preliminary physical layout from the topolog ical

layout takes into account the following constraints:

— vertices and edges, representing a component are embedded such that

the geometrical characteristics of this component are respected.

— the edges representing nets have to be embedded as sequences of vertical

and horizontal line segments.

— the external connections have to be placed on the periphery of the

circuit in prescribed physical locations.

11

a 

- - • —  — —.. —
~~~~~~~
-.

~~~~~~~~—- - - -.~~~~~~~~~~~~~~~~~~~~~ ~~~——~~~~ . - - -~~~~~~~~ .--



The basic outline of this algorithm is as follows.

1) Find the inside face of the graph [Start by labeling all faces ad-

jacent to the peripheral circuit with a 1. Then , label with a 2

all faces not yet labeled that are adjacent to those with a label

1. Continue to do this until all faces are labeled. Select one

of the faces with the highest label as the inside face.]

2) Embed the peripheral circuit as a rectangle with the external con-

nections placed in the prescribed locations.

3) Break down the face into chains of one of the following types:

a) already embedded chains.

b) component periphery chains.

c) net (interconnection) chains.

4) Let the plane be divided into a number of squares, called “slots”,

large enough to contain the largest component. Place each of the

components, for which there is a type b chain in the current face,

in to a slot and embed the circuit, representing this component.

5) Consider each of the net chains: if no part of the net has been

embedded so far, find an interconnection path that satisfies the

prescribed orientation of the face. If a part of the net has been

embedded , find an interconnection between the start—vertex of the
*chain and all vertices and pseudo—vertices of the net embedded so

far. Select the shortest of the paths so obtained.

6) If all faces have been embedded , stop; else, find the face, ad-

jacent to the faces already embedded , that is the closest to the

inside face. Go to 2.

While routing the net—chains , it is important that they be embedded in a

well specified order , such that the physical embedding corresponds to the

topological embedding. The algorithm, used for routing these net—chains,

is based on a line—searching algorithm by Rightower [11169]. Its advantages

*A pseudo—vertex is a point on the physical embedding of an edge, where two

orthogonal line segments join.

12
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• are fast execution and minimal storage requirements , while its disadvan tage

is that it does not always find a path . The reason for the routing algorithm

t.o fail is that the routing is performed on a f ini te  resolution grid.  By

routing one connection, one might block the only available path for a con—

• nection to be routed later. A careful implementation reduces this blocking

to a minimum.

Hightower’s algorithm is well suited for this problem. In a normal

routing problem, the algorithm requires sorting and searching lists of

already embedded vertical and horizontal line segments. These lists normally

grow with the number of interconnections routed , making the algorithm less

efficient while the routing proceeds. In this case, however , the drawing

grows from the inside out. At any given stage, there is a periperal circuit

of the drawing, corresponding to the sum modulo 2 of all faces embedded at

that t ime . All connections already routed , that are on the inside of the

periperal circuit, need not be searched since any new connection being routed

can interact only with the current periperal circuit. This property improves

the speed of the routing algorithm, especially for large problems.

The steps described so far, allow us to place the components and to route

the connections in the first layer. For the second (and subsequent) layer(s)

this procedure has to be repeated until all connections are routed . For each

layer a new P.O. graph model is constructed. This model represents all the

components and all the connections not embedded so far. From this P.O. graph

a maximal planar subgraph is then derived.

After the preliminary physical layout of the first layer, the positions

of the components are fixed with regard to each other. Therefore, for the second

and subsequent layers, an additional step is required to check whether the

topological layout, obtained for these layers is compatible with the place-

ment of the components.

This is accomplished as follows. Once the components are placed , all ter-

minals have fixed location. This defines a cellular structure on the board.

This cellular structure can be represented by a graph. With each edge of the

graph is associated a wire routing capacity between two physically adjacent

terminals. The maximal planar P.O. subgraph is then mapped onto this cellular

13



structure graph and if necessary edges of the P.O. subgraph may be deleted

in order to obtain a topological layout satisfying the prior placement of

• the components.

Fig. 2 shows a circuit consisting of NAND gates, implementing a full—

adder circuit. This circuit is to be implemented using 3 components , each
• containing three identical NAND gates . In this example , the gates have

been a priori assigned to one of the components (A, B or C). The 3 gates

in each component are logically equivalent (e.g. A1, A
2
, and A3

). The

P .O. graph model for this circuit is shown in Fig. 3. The maximal planar

subgraph for this circuit is shown in Fig . 4 and the corresponding pre-

liminary physical layout is given in Fig. 5. The P.O. graph model for the

rest of the circuit is shown in Fig, 6. Since this graph is planar, 2 layers

will be sufficient here. Finally , Fig . 7 shows the mapping of the planar
• P .O.  graph of the second layer onto the cellular structure graph.

From this preliminary physical layout, a final layout has to be derived.

Usually, the area allocated for realizing the circuit in this procedure, is far

too large and the final step consists of squeezing together the preliminary

layout. In its current implementation the algorithm places components with a

pre—determined orientation. As can be seen from the example the layout could

be improved if component B were rotated . This is necessary for a final lay—

out . Some work on this has been done by Zibert and Saal [Zi741, [ZS74].
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