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RAYLEIGH-TAYLOR INSTABILITY IN A LAYERED LASER-DRIVEN TARGET

I, INTRODUCTION

The Rayleigh-Taylorl instability arises in the acceleration of
a fluid by one of lower density, Although this instability has not yet
been observed in a laser-driven plasma, it is expected to represent a
major obstacle to achieving laser-induced fusion for the following
reason, Necessary to induce a fusion reaction in a spherical pellet
is a high compression of the pellet. A pellet can be highly compressed
only if it retains sufficient symmetry during implosion, The Rayleigh=-
Taylor instability can cause corrugations in the hydrodynamic flow to

grow nonlinearly to form bubbles and spikes.2

There are several surfaces in a laser-driven plasma at which the
growth of Rayleigh-Taylor instability is potentially large, One such
surface is the ablation layer separating the cold, high density fluid
from the hot, low density material blown off by the heat conducted
inwards from the region of laser energy deposition, Another such
surface is the critical surface, where deposition of laser momentum can

cause steep density gradients.a’4

If the laser target is inhomogeneous,
consisting of strata of different materials, then growth of the
instability can be large at any fluid interface where the acceleration

is directed towards the denser material,

Several stabilizing mechanisms for the Rayleigh-Taylor instability
are well krown, Viscosity can reduce the growth rate of short wave-

S as can heat flux.® Convection of material

length pe *+ions,
through . # 3e density gradient can help stabilize it,”
Firepolishinug .s another possible stabilizing mechanism whereby the

peaks of density corrugations at the ablation surface, being closer to

Note: Manuscript submitted August 10, 197 7.
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the heat source, ablate faster than the croughs.v Because a shock
acceleration causes linear rather than exponential growth of a
perturbation,8 a series of shocks may give a sufficiently low growth
factor to successfully implode a pellet if excessive heating and burn-
through of the pellet can be avoided, A novel related possibility is
stabilization of the ablation surface by ''shaking'" it with an
oscillating laser deposition® in the same way that an inverted pendulum
can be stabilized by oscillating its base, Since gradual density
gradients are less unstable than steep gradients,s methods have been

proposed for reducing the density gradient at the ablation surface, *“

Although much research has been applied to the study of the Rayleigh=-
Taylor instability in laser-driven plasmas, the results are as yet
inconclusive, Analytic models of the roles of relevant stabilizing
mechanisms are rare,”’’ The results of numerical simulation stuties of
fluid instability in laser-fusion pellets are inconsistent and even

conflicting, 2713

Most studies of Rayleigh-Taylor instability in laser-driven
targets have been concerned with homogeneous targets, Inhomogeneous
pellets have been considered candidates for laser fusion for some
time, *°”*°® However, recent claims from the Lebedev Physics

Institute®- 2%

suggest that certain inhomogeneous hollow pellets with

very thin shells of aspect ratio R/AR = 100 can be imploded to yield

an energy gain of as much as 102, The Lebedev shell design calls for

a high density material, such as lead or gold, to be sancwiched between

low density deuterium=-tritium fuel layers on the inside and a moderate \
density ablator, such as plastic or beryllium, on the outside, In

this design the interface between the dense layer and the ablator is

unstable in the absence of stabilizing mechanisms, The Lebedev results,

if valid, suggest that stabilizing mechanisms operate at this interface,

In this paper one possible stabilizing mechanism for material inter-

faces in laser-driven targets is presented,

In an earlier paper* a global model of a flat laser-driven target

was presented, This model is extended in the next section to include
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inhomogeneous slabs, and provide the basic, unperturbed state from
which the linear instability analysis of Section III proceeds, The
result of the instability analysis is that density gradients
established in a slab by acceleration reduce the growth rate of the
Rayleigh-Taylor instability at an unstable discontinuity in the
unablated material, The reduced growth rate is calculated, In
Section IV the calculation of growth rate is generalized to apply to
any number of layers in a laser-driven slab, and it is suggested that
further reduction of instability can be achieved by interposing layers
of intermediate density between the ablator and high-density layer,

An analytic expression for the growth rate of a perturbation in a
multi-layered target is derived, To illustrate the stabilizing effect
of intermediate-density layers, an example is presented in which the
reduced growth rate is calculated as a function of the width of an

intermediate layer,

II. BASIC STATE

The system of 2-D fluid equations to be used in the following
instability analysis consists of the continuity equation

at iL (ovy) = i? (ovy) . (1)

momentum equations

Sz(ovx)=-;>’;(P+pV§)-—(va)+os @
ft-(avy)a-%(rwv;)-i(p v 3)

energy equation

E_o.drE+ny +al-ZlE Wy +al vy O

at




and the equation of state

P= pT/m . (5)

Here v‘i + vy? is the velocity of avolume element of mass density o,

temperature T in energy units, pressure P, ion massm, and local energy

density E = (3P + pvi + pv;)/2. Following Spitzer,23 we take the heat
flux to be
K, % Ko .5
o AT ) 12 AT
g W T —33‘ > qy = B T ‘;y - 6)

with Z the atomic number, and Ko considered constant, its weak

temperature, density, and Z dependence ignored,

In a reference frame accelerating with the fluid such that the
ablation front is at rest in this frame, the effective gravity in the
positive x direction is constant g, In this accelerating reference
frame the temperature and density profiles of a slab appear stationary
(except near the ends of the slab), and a steady state model provides
a good description of the slab over times short compared to vm‘x/g,
in which i is the supersonic fluid velocity occurring at the outer

edge of the ablation,*

In Reference 4 the fluid equations were used to formulate a global
steady state model of a slab accelerated by a laser; the acceler?tion
and boundaries of the slab were determined self consistently., A
portion of a typical slab satisfying the steady state fluid equat ions
is shown in Fig, 1. This slab consists of two fluids, with fluid I
having a greater ion mass, atomic number, and density than fluid II,

The ablation layer, occurring in fluid II, is that region to the right
of the surface of maximum density at x = X, containing the steep

density gradient, To the left of the ablation layer, the gentle
pressure and density gradients are described by the approximate analytic

solutions to the steady state fluid equations®




P~P(x) [1+ p(xa)sx/P(xa)I

p =~ p(x,) [1 + 30(x,)8x/5P(x,)] R

v, v(xa) ri - 50(x.)gx/51’(xa)] S w0

K
e, -
~ 5mgz'l‘(x.),qyao.

W%

If we transform to a frame of reference at rest with respect to
the fluid interface at x = C, the density and pressure profiles are no

longer steady. In this new reference frame
P~ Pi M+ pig(x + vit)/Pij

~ r 3
o~ py 1 + )pig(x + vit)/SPil

()

v~ vi(-Bpigx/SPI) 2 vy =0

(SITS)

o I S
~ - 214
I migZTi ,qygk,.

The index i has the value 1 or 2 depending on whether the quantity
is evaluated to the left or right of the fluid interface respectively,

Since the heat flux is a small constgnt, and the fluid quantities

g -

satisfy an adiabatic gas law, Pp~ =~ P it may be supposed that

P; »
heat conduction will be of negligible im;ortance in a consideration of
instability at the cold fluid interface, However, the energy

equation (4) does yield information on the nature of the contact
discontinuity at x =0, At the discontinuity v, = v, of course,

Equation (2) implies Pl = P2, and the energy equation implies continuous

heat flux across the discontinuity, so that the rgtio of temperatures

at a contact discontinuity is '1‘2/'1‘l = (mlz?_/mozl) /s , and the ratio of

|




densities in the guasi-scaady state is p_ /p = (T /m )/ (T /m) =
i % S
(m,/m ) (Z/Z)

In the rest frame of the interface, the fluids I and II appear
to be slowly compressed towards the interface on a characteristic
time scale T /m gv , For time scales much shorter than this, the

solution to the fluid equations may be written

p~P [1+p.8x/P;],p=~p,; [1+3p8x/50], v ~v, =0, ©)

Thus over reasonable time scales the fluids I and II can be treated

as incompressible, Equations (9) will be used as the basic,

unperturbed state from which the stability analysis of the following
section will proceed,

ITI. STABILITY ANALYSIS OF THE FLUID INTERFACE

Since the effects of heat conduction across the cold fluid interface
in the unablated fluid are to be neglected, another equation is needed
to close the system of fluid equations (1-3)., We shall assume the

perturbations are incompressible, adding the equation

Av v
D e O .
3x 2 3y b )

Since the basic state in (2) is independent of t and y, the
perturbed quantities, after a Fourier decomposition, are proportional
to exp (vt + iky), in which k is the wave number in the y direction,
and v is the growth rate to be determined, Then linearizing the
equations (1-3) and (10) yields the following equation for &v, the
perturbed velocity in the x direction®

(p = sv) - kZpsv -5-2-( %) v (11)




with the jump conditions

v, = Av and
1 2

4 By 7 A
pz(dx 5v)2 °v.(dx sv) =Sz (pz o;)évz (12)

RE X, and the width of the fluid I, as illustrated in Fig, 1, are
much greater than k™', then the fluids can be treated as essentiallly
semi-infinite, In that case the solution of (11) that satisfies the

boundary conditions of vanishing 5v at = = is

a exp(--ukx) x20
v =

b exp(+ ukx) x <0

The jump conditions (12) require the constants a and b to be

equal, and give the following relation for the positive constant u

_k Py pz)
o

But the basic state of (9) and the equation (11) imply a dispersion
relation for y in fluid II of

3 3928 30282 "
“'?5;?“" 1+5-§z— =0 - (1+)

The constant u can be eliminated from (13) and (l4) to give the

growth rate v of perturbations at the flﬁid interface as

0. =,
Ve —ki ( T i
(1 +83)% +5 Py TP
% | in which 8 = (5p 8/5P k)/(o /p_ = 1).




The constant 8 is proportional to the density gradient on either

side of the fluid interface, and reduces the growth of the instabilicy
there, Thus the density gradient caused by the acceleration of the
slab inhibits the instability caused by the acceleration,

IV, APPLICATION TO LASER-FUSION PELLET DESIGN

The theory developed in the preceding sections has important
implications for the design of layered laser-driven targets, regardless
of their geometry, In this section the calculations of the preceding
sections will be generalized to apply to any number of stratified
fluids, The growth rates found for a planar geometry may be applied to
an imploding spherical shell as well by the prescription k = (. + #)/R,
where R is the radius and 4 is the degree of a spherical harmonic in
a decomposition of the Rayleigh-Taylor perturbation, The correspondence
is valid until spherical convergence effects near the origin can no
longer be neglected, that is, until (dR/dt)2 << Rd®R/dt® is no longer

satisfied,24

An important laser-fusion pellet design that has been receiving
considerable attention lately involves a hollow deuterium=tritium
pellet surrounded by a high-density, high-Z shell and a moderately
dense material on the outside acting as an ablator, Very thin shells
having this design have been claimed to have been imploded stably

20=22

in numerical experiments using laser energies of 105-1¢% J and

long pulsewidths of 107°-1077 s,

The dense layer between the ablator and fuel serves several
functions, It shields the fuel from preheat by superthermal electrons
and x-rays and also from heat conduction, so that the fuel can be
maintained on a low adiabat after the initial shocks pass through,
Moreover, the shocks are reduced in strength by the density step from

dense layer to fuel, The reduced thermal conduction also prevents

shell burn-through at higher energy densities,




A fluid is susceptible to Rayleigh-Taylor instability whereever
the acceleration is in the same direction as a density gradient, For
the pellets discussed above, growth of the perturbation is potentially
greatest at the ablation surface and at the interface between the
ablator and dense shell, The treatment in this paper of instability
in the latter case suggests that the growth rate might be reduced if
the jump in density from ablator to dense shell were accomplished in
several steps in density rather than just one, That is, the simple,
linear analysis of this paper suggests a pellet shell design
consisting of a layer of D~T fuel frozen onto the inner surface of
a very dense material such as uranium (which might be caused to
generate additional energy by fission). Surrounding the densest layer
would be layers of successively decreasing density ending with the
relatively low density ablator on the outside. A target of this
general configuration is shown schematically in Fig, 2,

For such a configuration much of the analysis presented in
preceding sections can be used, but the boundary conditions need to
be reconsidered, Suppose the laser target consists of n layers, For'
the purposes of this analysis, the ablator from its cold, left interface
to its surface of maximum density may be considered a layer. This
presumes a decoupling of possible instability at the ablation surface
with instabilities in the cold fluid., Let the maximum density of the
jth layer at its right interface bedenotedpj, and the jump in density
at that interface be denoted Apj, with Apj < (O for all but the interface
of the shell with the fuel, Also let Pj denote the (continuous)
pressure of the interface between layers j and j + 1, and dj be the

width of the jth layér. 1f the Mach number and pjgdj/Pj are both

much less than 1 in all the layers, then the unperturbed density in
the jth layer increases linearly with a gradient Bpig/SPj.
The velocity perturbation in the jth layer satisfies the equation

2 Jp.8
[ad;? +5—Pi— a“; - k2 (1 +55- pjszlevz)] Av = 0, (18)
j




The general solution in the jth layer is

+ ~
5v = a, exp(u.kx) + b, exp(u.kx)
j j i j
in which aj and b, are constants to be determined from boundary
conditions, and uj and u} are the positive and negative roots of the

indicial equation of (16)

. [ 30,8 \° 30,8 4o * 30,8 i
“j’*L(“'ijk) +Sij (5?'1) ‘1cpjk . (17

The two boundary conditions at each interface, namely continuity of
v and of p(dév/dx) - gkapév/vz, together with one boundary condition
on the left of the target and one on the right represent the 2n
conditions that completely determine 2n-1 constants (one of the 2n

constants aj and bj is arbitrary) and the growth rate +.

By applying the two boundary conditions at each interface, the
velocity perturbation in the ablator (nth layer) can be related to
the velocity perturbation in the fuel layer (first layer) by

a I - a

n h A

The 2x2 matrix M(j) has elements

Mif) = a; expr(u; - u;+1)kxj]
MY = o] ewl(u] - uj,piex,]
Mg) = (1l - a;) exp[(u; - u3+1)kxj3
Méi) = (1 - a'j') eXP['(u; - u;+1)kxj3

10




I in which

e
=

+ 2 - - + - -
ay = Eajuj + (gk/V )Apj - (oj + Aoj)uj,‘,l.ll':(oj + Anj)(u-j+1 - uj+1).

. = - 3 A
ay = Tojuy + (gk/v9)lo; - Py * 80 us /TGy + 800005y = gy

and xj is the position of the interface between layers j and j+1,

The ratios bl/al and an/bn are fixed by right and left boundary
conditions; a can be chosen arbitarily; and (18) then represents
two equations in the two unknowns bn and v, As a simple example,
consider the two-layer problem of the previous section, For this
case n = 2, and the boundary condicio?:)imply bl = 82 = C, Then

a_ and b2 - The growth

11
rate in (15) then follows after finding u{ = -u;.

the two equations from (18) are O = M

The formal solution of the many-layer problem is subject to the

same limitations of validity as the two-layer problem, However the

formal solution presented in this section allows.for any choice of
boundary conditions at the rear face of the target and the ablation
surface, and is therefore applicable to a target containing layers

thinner than a perturbation wavelength as well as thicker,

To illustrate the stabilizing effect of interposing layers of
intermediate density batween layers of high and low density we
present the following example, Consider two semi-infinite media of
uniform densities e, and P, separated by a layer of uniform density
o, and width d, This configuration is shown by the dashed lines in
Fig. 3a, The growth rate is found from (18) in the zero-density-
gradient limit to be

ad (1-8) (r=1) (0-1)

gk = (r-s)o - {(r-s)zwz-(l-s)(r-lt(l-+rs)(m-1)2 +(r-+s)(m2-1)]?§

WP




in which r = p /o , s = °=/°2’ and » = exp(2kd),

For slabs of uniform density, the optimal reduction in growth occurs
when the intermediate density is the geometric mean of the upper and
lower densities, or rs = 1, 1In that case the growth rate can be reduced
by a factor of as much as (r® + 1%/ (x + 1), depending on the inter=-
mediate slab width, The growth rate is plotted versus intermediate

slab width as a dashed curve in Fig, 3b for the case o, = 292 = bp_.

But now suppose that the density gradients caused by the
acceleration are high, For example let d Znp/dx = k for x < U, Then
the growth rate for the configuration shown by the solid curve in

Fig. 5a is given by the solid curve in Fig, 3b,

Several features of Fig, 3 should be noted, Most important is
that a layer of intermediate density reduces the growth rate at an
unstable fluid interface, The stabilizing effect of the intermediate
layer saturates at a width greater than about k™ * as expected, since
treating slabs of width greater than about k ' as semi-infinite is
known to be a good approximation, The density gradients established
in the fluid by the acceleration stabilize the fluid interfaces even
further, and intermediate-density layers are even more effective in
reducing the growth rate when the density gradient in the unablated
fluid is high, The density gradient in steady state, szgISP, is high
for fluids of high density and low temperature,

This example illustrates the effectiveness of intermediate=-
density layers and natural acceleration-induced density gradients in
reducing the Rayleigh-Taylor instability at material interfaces in

laser-driven targets,

The stabilizing effect of the density gradients can be enhanced
by creating steeper artifical density gradients in the basic state of
the slab on either side of material discontinuities, This can be
accomplished by creating the layers with continuous blends of materials

rather than of one material only, 1In practice such inhomogeneous layers

12




might be fabricated by condensing two gases onto the pellet surface
simultaneously at controlled rates, The growth rate of the
instability of such an inhomogeneous pellet can be calculated by
replacing the logarithmic density gradient Sojg/SP in (16) and
(17) by the appropriate values, and following the ;ame procedure as

! before,
\' CONCLUSIONS

Growth of the Rayleigh-Taylor instability, particularly long
wavelength perturbations, at a fluid interface in a laser=-driven
! target is inhibited naturally by the density gradients produced by
the acceleration of the fluid, Within certain limits of validity,
the growth rate for any number of stratified layers of materials in
a laser-driven target has been expressed in closed form, It is found

that interposing a layer of intermediate density reduces the instability

further, and most effectively if the intermediate deniity is the
geometric mean of the high and low densities, Even greater advantage
can be gained by fabricating the target layers with favorable density
gradients between the disco;tinuities.

It is important to understand the roles of stabilizing mechanisms
at fluid interfaces, because inhomogeneous laser targets offer many
advantages and present good prospects for successful laser-induced

fusion schemes.

I wish to thank S, E, Bodner and D, L, Book for valuable

comments and advice,
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Fig. 1 — Quasi-steady density profile of inhomogeneous laser-driven target in
accelerating rest frame of ablation surface at x,. Fluid II is accelerating den-
ser fluid I to left. Upper and lower densities at contact discontinuity are P
and Pa.
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Fig. 2 — Schematic quasi-steady density profile of layered, inhomogeneous,

laser-driven target consisting of n strata of distinct fluids. Jump in density
from layer j to j+1 is Apj.
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Fig. 3 — (a) Solid curve is density profile of two ‘semi-infinite’ layers separated by
intermediate layer of width d; density gradients are produced by acceleration of
system to left. Dashed curve is same configuration in limit of zero density gra-
dients. (b) Rayleigh-Taylor growth rates in units (kg)l/2 versus intermediate slab
width in units k™1 of the corresponding density configurations in (a) for the case
p1 = 209 = 4pg3. Solid curve gives growth rate for the mode k = d Inp,/dx; dashed
curve corresponds to the large wavenumber (uniform density) limit.




