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Growth ra tes of Rayleigh-Taylor modes, particularly those of long wavelength , are reduced at
fluid interfaces in inhomogeneous Iaaer drtven targets by the dens ity gradients occur ring natur ally as
a result of the acceleration. Growth rates can be reduced fu rther by interposing layers of inter-
mediate density at unstable interfaces between layers of high and low density , and by fabri cating
target layers with favorable densi ty gradients between dlscontlnuities . An approximate ciosed form
expression for the growth rate of fluid Instabilities in a multi-layered laser-driven target is presented.
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RAYLEIGH-TAYLOR INSTA3IL ITY IN A LAYERED LASER-DRIVEN IA.RCET

I. INTRODUCTION

The Rayleigh-Taylor 1 instability arises in the acceleration of

a f lu id by one of lower density. Al though this instability has not yet

been observed in a laser-driven plasma , it is expected to represent a

major obstacle to achieving laser-induced fusion for the following

reason. Necessary to induce a fusion reac tion in a spher ical pelle t

is a high compression of the pelle t. A pellet can be highly comp ressed
only if it retains sufficient syuxnetry during implosion. The Rayleigh-

Tay lor instabili ty can cause corrugations in the hydrodynamic flow to

grow nonlinearly to form bubbles and spikes .6

There are several surfaces in a laser-driven plasma at which the

growth of Ray leigh—Taylor instability is potentially large. One such
surface is the ablation layer separating the cold , high density fluid

from the hot , low density material blown off by the heat conducted

inwards fr om the region of laser energy deposi tion. Another such
surface is the critical surface , where deposition of laser momentum can

cause steep density gradients.3’4 If the laser target is inhotnogeneous,
consisting of s trata of d i f ferent  materials , then growth of the

ins t abil i ty can be large at any f luid interface where the acceleration

is direc ted towards the denser ma ter ial.

Several stabilizing mechanisms for the Rayleigh—Taylor instability

are well lcr wn~ Viscosity can reduce the growth rate of short wave-

length pe Aions , 5 as can heat flux.6 Convection of material

through ~ ie density gradient can hel p s tabi l ize  it .
Firepolishii~g ~.s another possible stabil izing mechanism whereby the

peaks of density corrugations at the ablation surface , being closer to

Note: Manuscript submitted August 10, 19~ 7 . 1



the heat source, ablate faster than the trou~hs. Because a shock

acceleration causes linear rather than exponential. growth of a

perturbation,~ a ser ies of shocks may give a su f f i c iently low growth

fac tor  to successful ly  implod e a pellet if excessive heating and burn-
through of the pellet can be avoided . A novel related pcssibility is

s tab i l iza t ion  of the ablation surface  by “ shaking ” it with  an

oscillating laser deposition3 in the same way that an inver ted  pendulum

can be stabilized by oscillating its base. Since gradual density

gradients are less unstable than steep gradients ,5 method s have been

proposed for reducing the density gradient at the ablation surface. ~

Although much research has been applied to the study of the Rayleigh-
Taylor instability in laser—driven plasinas, the results are as yet

inconclusive. Analytic models of the roles of relevant stabilizing

mechanisms are rare.7’1 The results of numerical si~ i1ation sti~~ies of

fluid instability in laser—fusion pellets are inconsistent and even

conflicting. ~.2’ i5

Most studies of Rayleigh-Taylor instability in laser-driven

targets have been concerned with homogeneous targets. Inhomogeneous

pellets have been considered candidates for laser fusion for some

time.Lô~~
$ However, recent claims from the Lebedev Physics

Institute2~~
21 suggest that certain inhomogeneous hollow pellets with

very thin shells of aspect ratio R/t~R ~ 100 can be imploded to yield

an energy gain of as much as IC3. The Lebedev shell design calls for

a high density material, such as lead or gold , to be sanLwiched between

low density deuterium—tritium fuel layers on the inside and a moderate

density ablator, such as plastic or beryllium, on the outside. In

this design the interface between the dense layer and the ablator is

unstable in the absence of stabilizing mechanisms. The Lebedev results ,

if valid , suggest that stabilizing mechanisms operate at this interface.
In this paper one possible stabilizing mechanism for material inter-

faces in laser-driven targets is presented .

In an earl ier paper4 a global model of a flat laser-driven target

was presented . This model is extended in the next section to include 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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inhomogeneous slabs , and prov ide the bas ic, unperturbed state from
t . which the linear instability analysis of Section III proceeds. The

result of the instability analysis is tha t density gradients

established in a slab by acceleration reduce the growth rate of the

Ray leigh-Tay lor instabil i ty at an unstable discontinuity in the

unablated material. The reduced growth rate is calculated . In

Section IV the calculation of growth rate is generalized to apply to

any number of layers in a laser-driven slab , and it is suggested tha t

further reduc tion of ins tab il ity can be ach ieved by interposing layers

of intermediate density between the ablator and high-density layer .
An analytic expression for the growth rate of a perturbation in a

multi-layered target is derived. To illustrate the stabilizing effect

of intermediate-density layers, an example is presented in which the

reduced growth rate is calculated as a function of the width of an

intermediate layer.

II. BASIC STATE

The system of 2-D fluid equations to be used in the following

instability analysis consists of the continuity equation

- —
~~~~~~~~~

( )— ‘~~~(ov ) 
(1)

~x Ov ,~ ~j y y

momentum equations

~~ (pv~
) = - (P + pv~) - ~j  (P”x”y

) ~ og 
(2)

~~ (ov~) = - (P + p v )  - ~~~ (pv~v~) , (3)

energy equa tion

- C(E + P)vx + q - (E +P)v + q~~ ~ 
pgv ( Li. )

3



and the equation of state

P = ~~ T/m . (5)

Here v~~c + v~,9 is the velocity of a voluine element of mess density ~~~,

temperature T in energy units, press ure P, ion massm , and loc a energy

density E = (3P + Dv~ + ~v )/2. Following Spitzer,23 we take the heat

flux to be

K 
~6~~ T K 

~2~~T
~~~=~~~T

T 
~~

— 
, (6)

with Z the atomic number, and K considered constant, its weak

tempera ture, densi ty, and Z dependence ignored.

In a reference frame accelerating with the fluid such that the

ablation front is at rest in this frame, the effective gravity in the

positive x direction is constant g. In this accelera ting re feren ce

frame the temperature and density profiles of a slab appear stationary

(except near the ends of the slab), and a steady state model provides

a good description of the slab over times short compared to

in wh ich vm~~ 
is the supersonic fluid velocity occurring at the outer

edge of the ablation.4

In Refe rence 1~ the fluid equations were used to formula te a global

steady state model of a slab accelerated by a laser ; the acceleration

and boundaries of the slab were de termined self consistently. A

portion of a typical slab satisfying the steady state fluid equations

is shown in Fig. 1. This slab consists of two fluids, with fluid I

having a greater ion mass, atomic number, and dens ity than fluid II.
The ablation layer, occurr ing in fluid II, is that region to the right

of the surface of maximum density at x = X
e 

containing the steep

dens ity grad ien t. To the lef t of the abla tion laye r, the gentle

pressure and density grad ients are described by the approximate analytic

solutions to the steady state fluid equa tions4

~~~~~~~~~~~ —. _ - - -
~ 

— - . .
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P P(Xa) ~~ 
+

P ~ 
3(X~) ~~ 

+ 3o(x~)gx/5P (x~)
(7)

v
~ 

v(xa) ~~ 
- 5o(x~)gx/5P(x~) , v ,, = 1.

q~, zO .

If we transform to a frame of reference at rest with respect to

the fluid interface at x = L , the density and pressure profiles are no

longer steady . In this new re ference frame

p ~ p~, 
rj  . p~g(x + v~ t)/P~~ 

-

o 
~~ ~

l + 3Q ig (x + vit)/5Pt
’

(~)
v ~ v~ (~ 3P~ gx/5P1) v~, = 0

2 . K ~a ~~~~ -
— 0

The index i has the value 1 or 2 depending on whether the quantity

is evaluated to the left or right of the fluid interface respectively.

Since the heat flux is a small cons tant, and the fluid quantities
5/3

satisfy an adiabatic gas law, Pp 
~ 

P~p~ , it may be supposed rha t

heat conduction will be of negligible importance in a consideration of

ins tability at the cold fluid interface, However, the energy

equation (~4.) does yield information on the nature of the contact

discontinuity at x = 0. At the discon tinuity v , = v2 of course.

Equation (2) implies P1 = P2, and the energy equation i’nplies continuous

heat flux across the discontinuity , so tha t the ra tio of tempera tures
2~

at a contact discontinuity is T /T = (m Z /m Z ) ~ , and the ratio of
2 1 1 2 2 ] .
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dens ities in the quasi—steady state is a_ /p = (I Its ) / (T  /m ,) =7L . 1 1 2 —

(m2 /m , ) ‘~ (Z , / Z )  ‘5.

In the rest frame of the interface, the fluids I and II appear

to be slowly compressed towards the interface on a characteristic

t ime scale T,/m,gv . For time scales much shorter than this , the

solution to the fluid equations may be written

~ 
l’i :1 + p~gx/P~~ , p ~ P~ :‘ + 3~~gx/SP~~, ~~~ ~ V

y 
C. (9)

Thus over reasonable time scales the fluids I and II can be treated
as incompressible. Equa tions (9) will be used as the basic ,
unperturbed state from which the stability analysis of the following

section will proceed.

III. STABILITY ANALYSIS OF THE FLUID INTERFACE

Since the effects of heat conduction across the cold fluid interface

in the unabla ted fluid are to be neglec ted , another equation is needed

to close the system of fluid equations (1-3). We shall assume the

per turba tions are incompress ible , adding the equation

~v ~v
(Ic)

Since the bas ic state in (9) is independent of t and y, the

perturbed quantities, after a Fourier decomposition , are propor tional

to exp (vt + iky), in which k is the wave number in the y direction ,
and y is the growth rate to be determined. Then linear izing the

equations (1-3) and (10) yields the following equation for 6v, the

perturbed velocity in the x direction5

(p ~v) - k2p âv  = ~ r (~~) 5v (11)

0



— 
~~~~~~~~~~~~~~

with the jump conditions

~v1~~~~v and

~v) - 
~~~~~~~~~ ~v) iu~~~~~- (p 2 - o )~ v (12)

If x and the width of the fluid I, as illustrated in Fig. I, are

much greater than k ’, then the fluids can be treated as •ssentiallly

semi—infinite . In that case the solution of (II) tha t satisfies the

boundary cond itions of vanishing ~v at is

a exp(- u~cx) x � C

=

b exp (+ ukx) x � 0

The jump conditions (12) require the constants a and b to be

equal, and give the following relation for the positive constant u.

(13)

But the basic state of (9) and the equation (11) imply a dispers ion

rela tion for ~ in fluid II of

5 p g  / 3 p g 2
\

= 0 - . (l-~)

The constant u. can be eliminated from (13) and (114) to give the

growth rate y of perturbations at the fluid interface as

v2
~~~~~T~~~~~+8 (::::;) l5

in which 3 a (30 g/5P k)/(p lp — I) .

_______________________________ 
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The constant  $ is proportional to ~~ density gradient on eitla r

side of the f lu id  interface , and reduces the growth of the instab i li ty

there. Thus the density gradient caused by the accelerati on of the

slab inhibits the instability caused by the acceleration,

IV. APPLICATION TO LASER-FUS ION PELLET DES iGN

The theory developed in the pr e_ ed ing sections has important

imp li ations for  the design of layered laser-driven targets , regardless
of their geometry . In this section the calculations of the preceding

sections will be generalized to apply to any number of stratified

fluids. The growth rates found for a planar geometry may be applied to

an imploding spherical shell as well by the prescription k — (1 +

where R is the radius and 1~ is the degree of a spherical harmonic itt

a decomposition of the Rayleigh-Taylor perturbation. The correspondence

is valid until spherical convergence effects near the origin can no

longer be neglec ted, that is, until (dR/dt)2 << Rd2R/dt~ is no longer
satisfied.24

An important laser-fusion pellet design that has been receiving

considerable attention lately involves a hollow deuterium-tritium

pellet surrounded by a high-densi y, high-Z shell and a moderately

dense material on the outside acting as an ablator. Very thin shells

having this design have been claimed to have been imploded stably

in numerical experiments~~~
22 using laser energ ies of 1C 5-lC5 3 and

long pulsewidths of l0~~-l0~~ s.

The dense layer between the ablator and fuel serves several

functions. It shields the fuel from preheat by supertherma]. electrons

and x-rays and also from heat conduction, so that the fuel can be

maintained on a low adiabat after the initial shocks pass through.
Moreover , the shocks are reduced in strength by the density step from

dense layer to fuel. The reduced ther mal cond uction also preven ts
shell burn-through at higher energy densities.

- ~~~~~~~~~~~ —‘- -— -~~ —-~~~~~~~~~ -~~ ~~~~~~~~~~~~~~~~ ~~~ -- ~~~~~~~~~~



A f lu id  LS susceptible to Rayleigh-Taylor instability whereever

the iccelera t ion  is in the same direc tion as a dens i ty  gradient . For
the pellets discussed above, growth of the perturbation is potentially

greatest at the ablation surface and at the interface between the

ablator and dense shell . The treatment in this paper of instability

in the latter case suggests that the growth rate might be reduced if

the j ump in density from ablator to dense shell were accomplished in

several steps in density rather than just one. That is, the simple ,

linear analysis of this paper suggests a pellet shell design

consisting of a layer of D—T fuel frozen onto the inner surface of

a very dense material such as uranium (which might be caused to

generate additional energy by fission). Surround ing the densest layer
would be layers of successively decreasing density ending with the

relatively low density ablator on the outside. A target of this

general configuration is shown schematically in Fig. 2.

For such a configuration much of the analysis presented in

preceding sections can be used , but the boundary conditions need to

be rec onsid ered . Suppose the laser target consists of n layers. For’

the purposes of this analysis, the ablator from its cold , left interface

to its surface of max imum density may be considered a layer . This
presumes a decoupling of possible instability at the ablation surface

with instabilities in the cold f luid . Let the maximum density of the
~th layer at its right Interface be denoted 

~~~~~ 

and the jump in density
at that interface be denoted ~~~ , with ~~~~~ . <C for all but the interface.3 .3
of the shell with the fuel . Also let P~ denote the (continuous)

pressure of the interface between layers j and j  -
~~ I , and d be the

width of the j layer. If the Mach number and ~~gd~ /P~ are both
much less than I in all the layers, then the unperturbed density in

the j th layer increases linearly with  a grad ient 3p~ g/5P~.

The veloc ity perturbation in the ~th layer satisfies the equation

+ 
~j~

1- 
~~~
- - k2 (1 + ~~. 0j5

2 /P 12]  ~v c . (l~ )

I
-—-——-- —.——-—-- . ---——— - ..

~
—

~~~~~~
-
~~~~

-—-—--———.— - -- —---~.-—-- —- . . — — — .  -. —-.- - - -——--- — - . — — - - - ——. - - — -- — — - — ~~~~~~~~~~ —~ —“
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The general solution in the ~~~ layer is

= aj exp (4kx) 
+ b~ exp(u kx)

in which a and b . are constants to be determined from boundaryj I -
conditions , and and U

j 
are the positive and negative roots o~ the

indicial equation of (16)

a + 1CP
J

k )

2 

+ 

~~~~~~~~~ 
(
~~ 

- I)] - iCP k~~~ 
(l~ )

The two boundary conditions at each interface, namely continuity of

~v and of p (d~v/dx) - gk
2p6v/v2, together with one boundary condition

on the left of the target and one on the right represent the 2n

conditions that completely determine 2n-l constants (one of the 2n

constants a. and b~ is arbitrary) and the growth rate ~~.

By app lying the two boundary conditions at each interface, the
velocity perturbation in the ablator (n

th layer) can be related to

the velocity perturbation in the fuel layer (first layer) by

( :)= ~~~~~~ M
_2) ...~~1)(b

) 
(Ia)

The 2x2 matr ix ~~~ has elements

( j )  + + +M 1 = Qj  exPr(u.~ - u.~4.1)kx~ J

~~~ a~ expr(u -

= (I - a~~) exp (ui~ 
-

= (I — cz ) expr (t.1 -

U

_ _ _ _  
_________ 

_ _ _  _ _ _ _



in which

+ (sk/v
2
)~~~ - (~~~~ 

+ 
~~~~~~~~~~~~~~ 

+ 
~~ j~~~~ +l -

+ (gk/v 2)Ap~ — (P j  + ~~~~~~~~~~~~~~ + —

and x
3 

is the position of the interface between layers j and j+l.

The ratios b/a and a~/b~ are fixed by right and left boundary

conditions; a can be chosen arbitarily; and (18) then represents

two equations in the two unknowns b and v. As a simple example,

consider the two—layer problem of the previous section. For this
case n = 2, and the boundary conditions imply b = a = C. Then

(l\ 1 2
the two equations from (18) are C = M’ ‘a and b = a . The growth

2 1
rate in (15) then follows after finding u~ = -u .

The formal solution of the many-layer problem is subject to the

same limitations of validity as the two—layer problem. However the

formal solution presented in this section allows for any choice of

boundary conditions at the rear face of the target and the ablation

surface, and is therefore applicable to a target containing layers

thinner than a perturbation wavelength as well as thicker.

To illustrate the stabilizing effect of interposing layers of

intermediste density be tween layers of high and low density we

present the following example. Consider two semi-infinite media of

uniform densities p . and p separated by a layer of uniform density

arid width d. This configuration is shown by the dashed lines in

Fig. 3a. The growth rate is found from (18) in the zero-density-

grad ient limit to be

( l -s) ( r- l) (~ -l)
gk (r s)~ — f ( r — s ) 2cp2 — ( l — s ) (r_ 1 ((l + r s) ( m— l ) 2 ~~~~~~~~~~~~~~~~~

11
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in which r a p / s , s a p / s , and -- — exp(2kd) .

For slabs of un i form da ts i t y ,  the optimal reduction in growth occurs

when the intermediate density is the geometric mean of the upper and

lower densities , or rs = I. In that case the growth rate can be reduced

by a factor of as much as (r2 + l)~ /(r + 1), depending on the inter-

mediate slab width. The growth rate is plotted versus intermediate

slab width as a dashed curve in Fig. 3b for the case 0 1 = =

But now suppose that the density gradients caused by the

acceleration are high. For example let d In~/dx = k for x <0 , Then

the growth rate for the configuration shown by the solid curve in

Fig. 5a is given by the solid curve in Fig. 3b.

Several features of Fig. 3 should be noted. Most important is

that a layer of intermediate density reduces the growth rate at an

unstable fluid interface. The stabilizing effect of the intermediate

layer saturates at a width greater than about k ’ as expected , since

treating slabs of width greater than about k 1 as semi-infinite is

known to be a good approximation. The density gradients established

in the fluid by the acceleration stabilize the fluid interfaces even

further , and intermed iate—density layers are even more effective in

reducing the growth rate when the density gradient in the unablated

fluid is high. The density gradient in steady state , 3p 2g/5P, is high

for fluids of high density and low temperature.

This example illustrates the effectiveness of intermediate—

density layers and natural acceleration-induced density gradients in

reducing the Rayleigh-Taylor instability at material interfaces in

laser-driven targets.

The stabilizing effect of the density gradients can be enhanced

by creating steeper artifical density gradients in the basic state of

the slab on either side of material discontinuities. This can be

accomplished b y creating the layers wi th  continuous b lends of n-i~ ter ials
ra ther  than of one mater ial  only. In pract ice such inhomogeneous layers

12
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might be fabricated by condensing two gases onto the pellet surface

simultaneously at controlled rates. The growth rate of the
ins tab ility of such an inhomogeneous pelle t can be calcula ted by
replacing the logarithmic density gradient 3o g/5P itt (16) and

(17) by the appropria te values , and following the ante procedure as

before .

V. CONC L USI ONS

Growth of the Rayleigh—Taylor instability, part icularly long

wavelength perturbations, at a fluid interface in a laser-driven

target is inhibited naturally by the density gradients produced by

the acceleration of the fluid. Within certain limits of validity ,

the growth rate for any number of stratified layers of materials in

a laser-driven target has been expressed in closed form. It is found

that interposing a layer of intermediate density reduces the instability

fur ther , and mos t effec tively if the intermediate density is the
geometr ic mea n of the high and low dens ities. Even grea ter advan tage
can be ga ined by fabr ica ting the targe t layers with favorable dens ity
gradients between the discontinuities.

It is important to understand the roles of stabilizing mechanisms

at fl uid interfaces , because inhomogeneous laser targets offer many

advan tages and presen t good prospects for successful laser-induced
fusion schemes.

I wish to thank S. E. Bodner and D. L. Book for valuable

comments and advice.
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rig. 1 — Quasi.steady density profile of inhomogeneous laser.driven target ~accelerating rest frame of ablation surface at x5. Fluid Il ls accelerating den-
set fluid I to left. Upper and lower densities at contact discontinuity are p1
and p2.
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Fig. 2 — Schematic quasi.steady density profile of layered , inhomogeneous ,
laser~driven target consisting of n strata of distinct fluids. Jump in density
from layer ito j+1 is ~~~
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Fig. 3 — (a) Solid curve is density profile of two ‘semi.inflnite ’ layers separated by
intermediate layer of width d; density gradients are produced by acceleration of
system to lef t.  Dashed curve is same configuration in limit of zero density gra-
dients. (b) Rayleigh-Taylor growth rates in units (kg) 1/2 versus intermed iate slab
width in units 1C~ of the corresponding density configurations in (a) for the case
Pi — ~P2 

— 4p3. Solid curve gives growth rate for the mode k — d lnp 1/dx; dashed
curve corresponds to the large wavenumber (uniform density) limit.
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