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Preface

This report is the summary of my studies in the area
of sparse matrices and the results of the programs which I
wrote. Although I coniined my analyses to Gaussian solution
schemes, 1 wrote the text so that = follow-on student can
easily apply some of my recommendations and procedures to
other sparse matrix techniques. i also detailed the think-~
ing which I used to build my algorithm; such an algorithm is
not widely used for sparse matrix solutions because of limi-
tations of many popular computers, But because of some
novel techniques which I used and the strong arithmetic capa-
bilities of the AFIT CDC 6600 Ccmputer, I feel that my algo-
rithm may be of great use to engineers and physicists.

I wish to acknowledge the guidance of my laboratory
sponsor, Capt. Carl E,., Oliver of the Air Force Weapons Lab,
who cffered this thesis topic to AFIT and who helped me to
clearly define the thesis objectives; one of Capt. Oliver's
co-workers, Mr, Mark Gatti, provided excellent and timely
snpport in part of the test phase of this project. I fur-
ther wish tc thank my thesis advisor, Prof. Bernard Kaplan,
whose vast experience in Numerical Analysis was a most valu-
able source in the formulation of my algcrithm. Finally, I

wish to acknowledge the cutstanding performance of my typist,

Mrs. Olivia Davis,

Michael F. Poore
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Computer ®rogram_Infcrmation

The following is a summary of the programs developed

by this student as part of this thesis.

The algorithms of

these programs are directly suited to the CDC 6600 Computer

at the Air Force Institute of Technology.

All of the programns are written in CDC FORTRAN Extended,

Version 4. Listings of these programs may be obtained from

the AFIT Computer Archive, AFIT/AD, Wright-Patterson AFB,

OH, 45433,

l. MFP - A Gaussian Elimination sparse matrix
solver with various strategic pivoting schemes.

2. MFPTH - A Gaussian Elimination sparse matrix
solver with a consecutively calculated pivoting

strategy.

3. MFPOFP - The same program as MFPTH except that
the user can chgoose either the computed pivoting
strategy or an a priori strategv depend.ng on
the circumstances of his particular problem,

4. GEBIT - This program represents the same
capabilities as MFPOP except that a new
packing scheme is used.

5. SMART - The same program as GEBIT except the
modular subroutines used in the prcgx..m devel-
opment are replaced by proyram statements

within the sparse solver itself,

This program

is the production mcdel of the Gaussian Eiiwmi-
nation algorithm developed in this thesis.

A user's guirde to the program SMART can be obtained from the

AFIT Physics Department.

vi
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Abstract

A comparison is made of the merits of three popular
algourithms for direct solutions of large, sparse matrices:
Gaussian Elimination, LU Decomposition, and Gauss-Jordan Re-
duction. The last two algorithms are used in exi-ting
sparse matrix solvers at the Air Force Weapons Lab, Kirt®.nd
AFB, NM. A mathematical theory discussion explains the al-
gorithms and predicts their performance for arbitrary and
strongly structured matrices. The performance comparison
involves a wide range of problems practicai to technical
study at the Weapons Lab. Particular emphbasis is placed on
solution accuracy and the efficient use of core space. The
same test problems are used to analyze the Gaussian Elimina-
tion algoritam programmed by this student. From a study of
the performa.ce of several Gaussian sclution strategies, a
new strategy is developed which offers the user a range of
options for his particular programming needs, The salient
points of this strategy include some stability features of
partiai pivoting and some array optimization similar to min~
imum row/minimum column pivoting. 7The final Gaussian Elimi-
nation program is enhanced by a new packing scheme which is
highly cuited for the CDC SU0O0 computer: many ajr -ays can be
compacted into a single array by subdividing the long com-
puter word structure. A final walitative comparison is
oresented from which an optimal solution method is proposed

and further study recommended.

vii




DIRBCT SOLUTIONS OF LARGE, SPARSE LINEAR SYSTEMS

I. ZInireduction

Backaround

Classical Linear Algebra defines a "linear system”™ as

one whose model can be represented by the matrix equation

Ax =D (1)

where A is an "n-by-n" system matrix, x is a coclusn vector
of sclutions, and b is a column vector of constants. A
“sparse” system iz understncd to be one whose non-gezo ele-
mente of the A matrix are few: no more than 5% (and typical-
1y less than 1%) of the total number of possible entries.
Sparse mairices are usually associated with systems whose
sise (¢ "rank”) is very large (about a thousand).

Large, sparse systems of equations come as a result of
work in many fields: physics, engincering, and business man-
agement. In ‘“echnical fields, a frequunt use of sparse
matrix techniguas is in the approximation of the sc'utions
of Z2.iferential equations. Frequently, the variables of
differential equations may not be saparable, or the geomsetry
of some probleam may not be described by simple, algebraic
functions; under these kinds of conditions, classical tech-
nigques for solving differential equations cannot be used; an
approximation method is necessary.

The fol)owing is an iliustration of how a system (which




happens to have a straightforward analytic solution) can be
solved by a finite difference technique which yields a
sparse matrix (Ref 113149, 233-261).

Given: A very long rod whose cross-section is a unit
square, and whose heat generation is uniform froa within,
Prodlea: To solve for the tespesrature distribution along
the x-axis for the indicated boundary conditions.

Solution: The governing partial diffarential equation
is

;% * ;;“! * 1 = o (2)

where "u” is a normalized temperature parameter. The
boundary conditions are

u(l,y) = O u(x,1) = 0
(3)
;—::-(O,y) s O %;l'(x,o) = O
The "exact® analytical solution is
uslae 32 . z (-I)M1 OO.hI(:ﬂ#ll('T/Z)X] (4)
w3  naC (2ne1)3 cosh[ (2n+1)n/2]

To approximate the partial differential equation, a
set of nodal points (Fig. 1) is defined in the region of
interest. The distance between adjacent points in the x
and y directions are Ax and Oy respectiveliy. The partial
differential equation is approximated in the following

MANSr
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us0

b(lo‘) -(204) '(334) 0(404) b
1{1,3) .(2,3) .(3,3) .(s,3) | u=0

1 (1,2) .(2,2) .(3,2) .(4,2) }

W%%].L *£

du o
oy

[ 4
NSNS NN NN N

—

Fig. 1. Nocal Point distribution (From Ref 11:1255)

About any node u(m,n),

adu = _‘m-l,n ~ 2uy n * Yayl,n

(s)
3 x® (Ax)?
and
¥y z Ya,n-1 ~ hnjn * U, nel (6)
3y? (ay)?

By substituting Eqs (5) and (6) back intoc Eq (2), and allow-
ing Ax = Ay, the following equation results:

2
“VUnp-1,n “Ym,n-1 ¢ ‘“-,n "“-,n-ol “Unel,n * {&x) (7)

By snvoking characteristic symmetry of these approximations,
and noting that in this case Ax = 1/4, the sparse system
depicted in Fig. 2 is the result.
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It is important xo note that to sclve for only four
unknown nodes on the x-axis (as the problem stated), it
takes 16 equations. Far more rougher approximations yield
less accurate results; Fig. 3 demonstrates the effects of
an approximation with 4x = 1,0, 0.5, and the chosen 0.25 of
this example. Clearly, asz Ax gets smaller, the nodal solu-
tions are distributed more closely to the actual analytic
solution. As a coﬁsequence of shrinking the size of lx,
however, the number of equations increases very quickly.

Thus for a near-perfect approximation, a very large number
of 2quations is necessary (hence the development of laxge,
sparse matrices).

In the above example, the curve for Ax = 0.25 is indeed
very close to the "exact" solution (Fig. 3); this "good" ap-
proximation may suggest that only 16 equations are needed
for a reasonably accurate solution (as opposed to the 1000
equations suggested above). However, had the geometry been
more arbitrary, the nodal elements of 16 equations would have
not provided adequate detail at the boundary. Fig. 4 is pro-
posed as such an example. To attain a good approximation, a
vast increase in the rodal density is required. In any case,
the use of sparse matrix approximation for the problem of
Fig. 4 is much preferred to an analytic solution.

A frequent consequence of sparse matrix construction is
that the non-zero elemants are distributed in an predominant-
ly diagonal structure with flanking diagonals. The systc-
in PFig. 2 illustrites a tridiagonal core structurxe with two

L T Gy et
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(1 2) 2.4-) (3,2)

Fig. 4. Sample Problem with Odd Gecmetry

flanking diagonals each displaced three diagonals away froam
the main diagonal. These "banded" structures occur often in

physics and engineering problems.

Exoblen
Al though linear algebraic equaticns are theoretically

moxXe eagy to solve than differential equations, because of
the potentially vast number of equations, the system must be
solved in a digital computer; the problem is to handle the
characteristically large amounts of data as effectively as
- poseible. As an illustiration of the problem, a system of
size 1000 would require a millinn locations in the computer
core for data alone; since 500,000 locations is a typical
upper bound for most large computers, the entire A matrix
could not be atored. Therefors, packing routines must be
written which need to store ouly the non-sero values of Aj
in this case, a sparse matrix of sirze 1000 at 3% sparsity
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would need no more than 50,000 locations to pack the non-
‘zeros.

The actual solution method must also be chosen to main-
tain sparseness as much as possible as the program runs. A

result of the classical inversion solution,

x=al (8)

is that 5:1 is very dense and will demand core in excess of
that available.

Bven with an ideal packing scheme, one cannot assume
perfect algebraic accuracy in any computer; the conception
and growth of errors is a very important consideration in
tbe construction of the sparse matrix solver,

Another factor bearing on the problem is the growth of
the A matrix as it is computed; new non-zeros (called "fill-
in*) may be manifested and, in some circumstances, force the
data storage requirements beyond‘the limits allowed.

The pursuit of the solution to this problem is the
theme of this thesis.

Ibasis Obisctives
The following objectives were defined for this projcct.

as a yesult of the motivation of the utility of ginitc dif-
ference technigues and the guidelines of the problem state-
mant:

Copparison . of Bxisting Sparse Matrix Solvers. Iwo
sparse matrix algorithms, already in use at the Air Force
Neapons Laboratory, were to be compared. The desired

.. ! s o pe st 2 e e
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outcome was to find those classes of problems which each al-
gorithm solves the best. The programs compared are The Yale
Sparse Matrix Package by Sherman (Ref 14) and a program
called "SIMULT" by Key (Ref 9).

A _New Packing Scheme. A third spaxse matrix solver was
programmed as part of this thesis with which the existing
programs were compared. A new packing scheme was developed
in an effort to expleit the sparseness of the test matrices
and more efficiently use the allotted core storage.

The result of the accomplishment of these objectives
was a choice from the three programs of the "most desirable"

sparse matrix solver as a computational tool.

Stendazds

There were three significant measures of performance
readily available on the computer printouts; one oti.er crite-
rion was rather intangible, but nevertheless, important.
The criteria used in judging the sparse matrix solution
methods were

l. Accuracys

2. Core storage requirements;

3. Bxscution time;

4. 7The degree that a routine met the user's needs.
The fourth criterion was important in that the cutcome of
the thesis pertains to engineering problems and not to ma-
trices which are spawned by mere academic curiosity.

The performance of the sparse matrix routine developed
as part of this thesis was compared to the existing sparse




solverst: the solutions given by Shernan and Key's programs

were used as a "performance frame ol reference."

Scope
The analyses of this thesis were limited to the per-

formances of the three routines on strictly non-singular,
square arrays. The best particular solution for x was the
goal of each computer program as opposed to the eigenvalue
problen.

There are two basic methods «f spars? matrix solutions
iterative and direct; each of the programs under study was a
direct sparse matrix solver. Furthermore, the particular
dixect methods analyzed wexe the Gaussiap Elimination, the
LU Decomposition and the Gauss-Jordan Reduction algorithms,
These algorithms wexre tested against various structures of
general sparse matrices; the ramifications of special struc-

tures (such as symmetric) were not covered.

Aasumptions
The testing of the algorithms against the indicated

standards involved practical problems; therefore a certain
broad class of probiems made vp the bulk of the tests. The
example of Fig. 1 yielded a "well-conditioned" matrix (de-
fined in Chapter II) which was also diag-nally dominant and

bt iy b e <A 5

btanded. While it is invalid to assume that all practical

sparse matrices are simiiarly structured, it was assumed

that very badly conditioned, near-singular matrices would
( not generally need to be solved by these programs in

pac, e, SRRl
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practice.

It i¥ also important to assume that the computer into
which a future user may load any of these programs is the
same¢ make as that used to produce the performance data.
Naturally, this assumption implies the ability to duplicate
the results of this thesis; but the new packing scheme devel-
oped as part of this thesis relies heavily on the word atruc-
ture of the CDC 6600 Computer {(common to both AFIT and AFWL).
Any claims for performance based on tﬁe experimental data of
this thesis must be referred to the hardware superiority

which the CDC 6600 computer has over other makes.

Approach

Because of practical limitations, the Yale Sparse
Matrix Package program had to be run at Weapons Lab, while
SIMULT and the third algorithm were run at AFIT. To the
greatest extent practicable, however, the test matrices were
standardized so that the icsults of all three programs were
mutually mseaningful.

The programming at AFIT was budgeted $700 to complete
the project. To efficiently handle the test matrices, the
test data were stored on permanent disk files and read into
each sparse solver from a local program file insteacd of from
cards. (Naturally, the final production model reads all
data from cards.,) Some matrix tests were siaple, dense
matrices with known solutions; these tests were used to ver-

ify the operation of the packing schomss and tha solution
logic.

11
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The standard test matrices were all of size 100; this
size was large enough to represerit a "sparse” system solu-
tion, but not tco large as to prohibit execution on the core-
limi ted INTERCOM terminals. (The final variations of the
thesis computer work were scaled up to handle larger sizes
once the essential comparisons and tests wexe accomplished.)

Once the basic logic of ¢he new asparse solver was veri-
fied, modifications were applied to test various configura-
tions of solution strategy a3z suggested in the Matchematical
Theory (Chapter I1). Finally, once an optininun algorithm
was found, a new packing scheme was incorporated as well as
other modifications to make the program execute more effi-

ciently.

Ihggis Preview

The text of this report contains the mathematical
theory required to understand and complete the prxoject, the
descriptions of three phases of tests, the method for choos-
ing the optimal program, and a section of conclusions and
recommendations suggested by the thesis work.




IX. Mathematical Theory

To understand the criteria for choosing the best Gaus-
slan sparse matrix algorithm, it is necessary to first con-
sider the algebraic principles used for linear systems as if
they were applied to an ideal problem: "perfect” mathemati-
cal accuracy and no computational limitations. Thée next
consideration is the effect ¢f the creation and propagation
of ¢crrors as thie mathematical ideals are constrained by
practical limitations. Finally, the scope of the problem to
be solved shouuld be considered to decide if a particularly
involved solution tecinique is xeally required.

The aathematizal theory discussed will therefore cover
tha thres principal Gausaian solution methods, the causes of
errors, some strategies which .ttempt to minimige the ef-
fects of coie errs, and the need for scaling based on the
context of the provlem to ve solved. A summary will include
some qua.itative predictions for the Gaussian aigorithms
undor comparison,

Gauasian Solutions to Linear Svitems

Three algorithms used to solve Eq (1) are the Gaussian
Blimination, the LU Decomposition, and the Gauss-Jordan
Reduction.

Gausaisn Rlimination. All of the three solution
schemes have their roots in Gaussian Elimination. In the
basic form, Gaussian Blimination is a series of n forward




oparations which transforms A into an upper-triangular ma-
trix U whose main diagonal elements are unity; then in the
back aclution, x is computed. The terminology used to de-

scribe the Gaussian forward process is as follows:

a3j = an original element of A.

a}?’- the value of a5 computed during the

k-th operation.

ujj » an element of Y; or, aig).

bj = an original element of Db.

k
bi )- the value of b; computed during the
k-th operation.

*
h; = the finul value for b;.
The forward operation transformz Bq (1) into
ux = b (9)

The following is an erample of the nomenclature which
describes an intexmediate step in the forward process:

~ - [~ » ™)
1 U2 u13 upg - - - “mw r’q b:
0 1 uzz uUgq - - - U2n x2 b;

o o |.,@ RCOREN ] i w$?)

- (10)

(2 2) 2 2

c o |al3 agd-- - a2 x| |08?)

( (2) (2) ~ (2) (2)

AR e *ma | |*n] |Pn
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The sub-matrix enclosed by the heavy line is referred
to as the "k-th derived set"; in the preceding example, the
second operation has just been done. The ar2a to the left
of the diagonal and to the left of the sub-matrix is strict-
ly zero; the area to the right of the diagunal and above the
sub-natrix is the partial set of elements of U, The com-

puter algorithm for the k-th derived set is

, k=l,2 n-1
(k‘l) p&peeoe
agk) = a(K—l) - 235_—— (¥-1) jmk+l n
lJ i.} (k-l) [ ] akJ J dee o
akk i.k'fl..oo.ﬂ (11)
= 1 i-k-l'zgoon
and
(k-1)
bik) = bik-l) - :b-k-"'—- . aj(.ll:-l igk"'l’oooon
(k-1
Axx
12
(ie-1) (12)
- i imk
(k-1)
Mrex
™ (k-1) . . . .
e term Ak is the diagonal or "pivot" element used in

the k-th operation. The back solution of Eq (9) is the fol-

lowing computer algorithms

xi = b, i=sn
(13)

= b; - g uij . Xj 1'“‘1'0001

13




The preceding applies to a dense matrix; for a sparse
matrix, however, for tl 'se elements, AP.;) » which are zero,
no time-consuming arithmetic 'opof'ation is necessary. Fur-

tharmore, the case may arise in which ‘11;-1) ig zero but

a};) is computed to be non-zero. This manifestation is
called "fill-in."” Additionally, A zero may appear on the
diagonal; appropriate row or column interxrchanges can be used
to prevent a division by zero. In fact, the proper choice
of a‘(‘:-l) may be dictated by many criteria. The sparse
Gaussian Elimination and a study of piveting strategies is
programmed by the student as part of this thesis.

LU Decomposition. The LU Decomposition method makes
use of the "LU Theores” (Ref 7:127) which states that the ma-
trix A can be factered into two unique matrices, L and Us L
is a lower-triangular matrix, and U is an upper-triangular
matrix whose diagonal elements are unity. The utility of
this thecream is that | ard U can be determined without ref-
erence to the constant vector, b. Therefore, once A is fac-
tored, any set of vectors h will yield inedinte"uniquo
solutions for the corresr nding set of x.

The factorization of A into [ and | represents two tri-
angular systems (Ref 7:129):

Ux = y (14)

Ly = b (15)

To use a computer algorithm to factor j and to solve Bqs C#4)
and (15), one can use the following procedure:

16




Ax = b (Given) (1)
Premultiplication of b by a n-by-n identity matrix gives

ax = JIb (16)
Instead of involving b in any of the derived sets, as in
Bq (13, the algoriths should apply arithmetic operations to
the identity matrix: aultiplication of a row by a scalar
should be carried thrxough the row of ], and =anipulation of
elements through row addition should creat¢ new elements be-
yond the diagonal of J. As a result, the matrix I will be
transformed into a general matrix G. It can be proved that
G is a lowar triangular matrix. Therefore, Eq (16) becomes

Ux =Gb (17)
Premultiplication of both sides of Bq (17) by G ! yields

¢ lux = (g le)p (18)
which further reduces to
glux = I = b (19)
By uniqueness of the LU Theorem, one therefore concludes
that
¢l= L (20)
Thus the computer algorithm really solves Eq (16) as
ux = L'n (21)

When b is antered into the computation, Eqs (14) and (15)
becoxs

2 -y (22)
and
g =L (23)
17




yw Eqs (22) and (23) reduce to a re-statement of Eq (9) since y

is identical to gf. The factorization of A and the solution

for y is the same as the forward Gaussian Elimination pro-
1 cess; the back solutions in both Gaussian Elimination and LU
Decomposition represent the same procedure.,
Any techniques which aid the forward process of Gaussi-

f an Blimination (such as row and column interchanges) can be
userd with LU Decomposition. In theory, therefore, Gaussian
Elimination and LU Decomposition give the same results if
the same pivoting strategy is used.

In the context of computer operations, he LU Decompo-
sition of A can be stored for future use for any number of

particular solutions for x given any b. These subsequent

- ——

soluticons represent a considerable savings in computer time.
Howaever, extra space must be provided to store 1 as it grows
into G. For a “one-time"” solution of Eq (1) the LU Decom-
position algorithm may not be appropriate.

The LU Decomposition sparse matrix soiver is used by

Sherman (Ref 14) in the Yale Sparse Matrix Fackage (YSHP).

Gauss-Jordan Reduction. The Gauss-Jordan Reduction be-
3 : gins with the same matrxix setup as in Gaussian Elimination..

T8... substantial difference is that in the k-th operation,
all elements above and below the diagonal {in the k-th col-
: umn) are eliminated. The computer algorithm for the sub-
matrix of A and the computation of the elements of b are the
sane as Eqs (11 and (12) except that the range of the index i
¢ is from 1 to n (Ref 131400,401)., The geomatry of the k-th

18
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derived set, therefore, is not a shrinking square sub-matrix
which ;ollapses about the diagonal (Eq [10]) but rather a rec-
tangular sub-matrix whose width collapses from left to right.
The following is the nomenclature for the second derived set

of Gauss-Jordan Reduction:

[ I 1 f‘ - -
1 o | aig) a 4) - - a{ﬁ) ’ x) [ F;§2)

' .
o 1 | ag) aéi) - - aéﬁ) xy b‘f)
| { - (24)
o o0 | agg) a;i) - - ;2) X4 bgz)
[ ] L ) ! L L ] ;‘ [ ] L ]

" g

(2) (2) G&) (2)

o ol -
N | 2n3 2%n4 nn_J Lxh_ | n

To the left of the dotted line, an identity matrix, I, is
taking shape. Thus, only on¢ forward pass of n operations
is needed to solve for %

Ix = b (25)

(The constant vector, b*, in BEq [25] is not the same final
constant vector in Bq [9].) It may first seem that Gauss-
Jordan Reduction is the most efficient way to deal with i(in-
eax systems; however, for a dense matrix, Gauss-Jordan Reduc-
tion requirec almost SO% more arithmetic operatiohs than
Gaussian Elimination (Ref 13:401).

A Gausgs-Jordan algorithes usually takes less spkce in a
computer than any Gaussian Blimination program. But in the
solution of some problems by Gauss-Jordan Reduction, the
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exponents of the computed data tend to grows this growth, in
a large system, becoes intolerable even in the best digital
computer. Pivoting strategies can be applied to Gauss-Jor-
dan Reductionj; however, the effects of a particular pivoting
strategy are often different in the Gauss-Jordan algorithm
as compared to Gaussian Elimination. John Key's computer

program "SIMULT" uses the Gauss-Jordan algorithm (Ref 9).

Exrors in Solution Svstems

The most important consideration in the solution of a
sparse system is that it represents an approximation of some
physical system. But to propcrly analyze the errors spawned
in the sparse computer solution, it is assumed that the un-
certainties in the given elements ajj and bj are zero before
the operation begins. (The uncertainty of an arbitrary
quantity, u, will be asnnotated as "8u.")

The kinds of erroxs which have a direct bearing on the
solution cf sparse systems are round-off arror, truncation
error, instability, and fill-in proliferation.

Round-off Exrxorg. In a typical digital computer, the
product or quotient of a multiplicative operation appears in
a double-length accumulator. Before the contents of that .
accumulator are stored in a data location, the lower order
digits are rounded off. For floating point numbers in the
2DC 6600 computer, the mantissa of a number can be computed

with accuracy up to 14 decimal places provided no other
error is introduced.




Iruncation Exrror. Before two numbers can be added in a
computer, the smaller number must be right-shifted so that
the exponents are normalized. If two numbers whose expo-
nents differed greatly were added, the lower significant
digits of the smaller number would be lost; the accuracy
once contained in the lost digits would not be carrxied over
into the sum,

One may infer into the discussion of round-off and trun-~
cation exrrors that the smallest algebraic error in a solu-
tion scheme may be obtained by minimizing the number of mul-
tiplicative and additive operations.

Ipstabjility. The "instability"” in the solution of a
system is a qualitntive»qeasure of how algebraic errors have
grown to the detrin;;t wf the final answer. The following
example shows that errors from unstable sysiems result from
the type of algoritha used and not the computer itself.

z = -;— (the algorithm) (26)
If x = 1,0 and §x = O, then what are z and 8z if there are
two values of vy and 8y ?
Case I: y; = 0,0100, §y; = 0,0001 (27.)
2 = 100, and 8§z = 2,00C2
Case IIs y, = 1.000, {8y, = 0.001

(28)
2 sl, and 82 = 0,002

In Casge I, z might be stored as 97.9998 {about a 2% error),
and in Case II, z might be stored as 0,998 (only a 0.2% er-
ror). Even though 3y, was larger than 8y,, division by the




smaller number (yl) amplified the exrxor much more than divi-
sion by the larger number (yz). Even though truncation and
14

round-off errors themselves are on the order of 10 " ', if a
small number were used as the pivot element, the result ...
computation could contain a substantial net error, In this
regard, the algoxithm of BEq {26) would be deemed xelatively
unstable if it chose y; and relatively stable if it chose y,.
Accordingly, an algorithm which actively seeks the larger
nunbers for pivot elements is said to be more stable than an
algorithm which ignores the relative sizes of possible pivot
elements,

X Fill- E + In a large sparse matrix,
it is important to store only the non-zero elements of Aj; 1if
a £fill-in value is calculated, there must be room available
to store the new aig) « A little fill-in i3 nnrmally accepti-
able, but a large amount may exceed the storage capability
of a digital computer. More importantly, with the prolifer-
ation of fill-in, the algorithm is faced with many mora
arithmetic operations (resnlting in more algebraic uncer-
tainty). Worse yet, in some problems, the fill-in values
are relatively small numbers, and the possibility exists
that this kind of fill-in may become pivot elements. Further
erxors due to instability may result. Thus a choice of piv-
ot elemsnts which uinimizes fill-in may reduce errxor growth.

Many pivoting strategies have been developed which at-

»

tempt to resolve these types of errors.




Pivetipng Strategies

A pivoting strategy is a part of a computer algorithm
which chooses an element aig-l) to be the new aiz-l) {the
pivot element) based on some desired cutcome. A demonstra-
tion for the need for strategic pivoting is found in Appen-
dix A. The following are three examples of the most com-
wmonly used strategies for general matrices.

Plagona) Pivoting. Diagonal Pivoting strategy is real-
ly no scrategy at all. Each of the n operations chooses the
diagonal element for the k~th pivot without regard for the
resultis of any previous operation. Hence, instability is

possible. Moreover, if a zero were on the diagonal, the

computer operation would halt abruptly.

Gaussian Partial Row Pivotipng. The Partial Row strate-
gy goes through the rows consecutively; the largest element
(k-1)

in the pivot row 1s’ae1§cted as the new a,, « A column
interchange in the A matrix and a re-arrangement of the com-
ponents of X are necessary tn get the pivot element onto the
diagonal. The advantages of Partial kow pivoting are that
such an algorithm can handle any non-singular matrix, even
if a zero were to appear on the diagonal, and that numerical
stability is enhanced by use of the largest element. There
1;, of course, the requirement for extra programming for the
column manipulation.

Gavasian Full Pivoting. The Full Pivoting strategy
searches the entire submatrix of A for the element with the

largest absolute value. In this case, a set of row and
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column interchanges may be necessary. Full Pivoting is con-
sidersd to be the most accurate pivot scheme for dense ma-
trices; however, not only must additional programming be
done for row interchanges, but considerable execution time
will be spent searching the remaining submatrix to find the
largest value.

The preceding pivoting schemes are those which are
classically associated with dense matrices; while pivoting
for stability is a good idea, complete disregard for other
factors common to sparse matrices can lead to massive errors.
Popular sparse pivoting strategies axe generally classified
as "a priori" or "local" strategies.

A Priori Strategy. An a priori scheme is one in which
the overall strategy for the selection of pivotiny has been
decided for the entire forward process before any operations
are done. The most common usage of an a prioxi pivoting
strategy is the case where a system is so vast that it can-
not complately reside in the computer core and must be
stored on tape or disk. The rows are permuted so that they
appear in increasing size. The pivot can be chosen as the
first non-zerxo element of the row (likely to be the diagonal
element), A priori schemes can be used fo:r some special
cases where the entire zrray does reside in cors:

local Stxategies. A local pivoting strategy checks the
piesent status of the remaining sub-matrix of A before the
k-th operation; the pivot element is chosen according to the
dictates of the strategy. Local strategiss axe better than !




a priori strategies in preserving sparsity or operation
count (Ref 6:1505). The following examples are some of the

more popular local strategies.

1. Magkowitz's Stiategy. The Markowitz procedure ‘

chooses the pivot element as that element aig-l) for which

the product of the number of non-zeros in the column and the
number of non-zeros in the row is a minimum., To scan a
large submatrix for the appropriate pivot element would take
considerable time. This scheme is meant to minimize the
number of arithmetic operations and immediate fill-in. At
no time, however, is the absolute value of the pivot consid-
ered for numerical stability.

2. Minimum Row/Mipimum Columpn. A scheme which is

( slightly less effective than the Markowitz strategy but more
simple is the Minimum Row/Minimum Column technique. The as-
signment of aﬁt’l) is given to that element in the smallest
<olumn of the smallest row in the remaining submatxix.
Again, no checks are made for numerical stability.

3. Minimum Row/Maximum Elgment. A scheme similar to
Gaussian Partial Pivoting, the Minimum Row/Maximum Element
technique seeks the largest element of the smallest row in
the remaining submatrix., A comproaise has been made between
the number of computations and stability.

There are many other local pivoting stratecies (Ref 43
92,93) which have been tested; as with these and all c¢f the

previously discussed strategies, a dilemma arises. Ideally,
O it would be desirable to minimize fill-in, maximize stability, D




and compute the minimum number of calculations as necessary;
however, these three criteria are not all mutually exclusive
of each other. For example, the Markowitz strategy pivots
for computational reduction without regard to stability;
Full Pivoting acts to stabilize without regard to the amount

of calculation or fill-in. Figure 5 shows a philosophical

view of the dilemma, If
Max __
the "cost" of one criter- Stability
ion were linked with the R
length of the "line"
joining the criterion and
Min Min
the actual strategy used, Congptation R R Fiil-
in
attempting to shorten one ]
Strategy
line (to improve perform-

Fig. S. Pivoting Dilcmma
ance in that respect)

would stretch out the other two, and hence the "cost" would
increase. The "cost" would be measured in a rise in comput-
er time or performance daegradation.

« Once any scheme is

programmed, it may be of intarest to ccmpute the scalar re-

sidual error as a performance value. An algorithm would com-

pute this value as the average error per equation, R, in the

follming manner:

R 1 g abs(b b
n iml

where, if x. is the calculated solution, then

' 2
bi. - j&l ‘1,‘, . (Xj)c (30)




It is the total effcct of the errors which gives rise
t0 R; when discussing the theoretical upper bounds on the
exrors, it is helpful to define an error matrix, §A as that
matrix which, when added to A, yields the computed value of
Xc as if ideal computation took pliace.

(& +5A) = B (31)

There is ro doubt that, in general, the choice of pivoting
strategy has ar important effect on the size of §A or, more
pracisely, the Euclidian Norm of jA. The Euclidian Norm of
any matrix, M, is defined as (Ref 13417)s

1/2
n n 2
norm(M) = [ 2 2 my 5 (32)

iml j=l

James Bunch adds a2 new wrinkle to the pivoting dilemma for
Gausgsian Elimination:

The error matrix [HA] arising from performing the
elimination process in finite precision depends on

the fill-in occurring during the elimination. We
could 3zeek an_ordering of equations sc that the bound
on [norm (5A)] is minimized. This would pot be equiv-
alent to the seeking of an ordering %o minimize fill-
in. Indeed, we see that minimizing fill-in helps to
keep the bound on [norm (5?)] from becoming too large.
The problem is even mnre difficult if we need to pivot
for stability (Ref 23873).

Bunch suggests that the structure of the matrix has a great
deal infiuence on the net error., For example, if the a pri-
ori pivoting strateys mentioned on page 24 wexre used with a
tightly banded, diagonally dominant matrix, one woculd expect
very good accuracy and little fill-in., By the structure of
the matrix, the chosen pivot element will be from the set of
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large numbers on the diagonal, and there will be relatively
few piaces within the band structure to allow fill-in. But
the same scheme with an arbitrary matvix would not be nearly
as guccessful, In fact, the derivation by Bunch considers
the upper bounds for norm (6A) in the case of banded ma-
trices; for very widely banded matrices or unbanded matrices,
the minirization of fill-in may e overshadowed by numerical
ingtability. In any cas®, the structure of the system to be
solved and the desired performance influence the choice of
pivoting strategy.

Structure and pivoting have their own peculiar effects
on Gauss-~Jordan Reduction. The strict error analysis of
Gauss-Jordan Reducticn is difficult; in Gaussian Elimination,
the study of error can be represented by Eq (31} in that the
system (A + 8A) represents a "neighboring™ system of A. In
other words, the resulting computed solution, x., lies in a
*"neighborhood” of the true solutiorn X as specified by Eq (1).
But in Gauss-Jordan Reduction, it is difficult to prove that
Bc is always in a neighborhood of x (Ref 12:21); in the con-
text of Bg (31), the system actually solved is not strictly
a neighboxring system ¢f A. The problems associated with
Gauss-Jordan Reduction result from failure to control the
growth of ths elements above the diagonal.

The Gauss-Jordan algoritha can be seen as a combination
of above and below diagonal elimination which yields the
Identity matrix in By (25). The below-diagonal eiimination
is identical tc Gaussian Bliminaticn, and thus the errors
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from these computations are limited to those which arise
from Gaussian Elimination. As for the above-diagonal elim-
ination, no guarantee can be made for any system which ig-
nores stability; but even with Partial Row pivoting, the
growth of the above-diagonal elements may be arbitrarily
large (Ref 12:121), It is known that positive definite and
diagonally dominant A matrices are stable with Gauss-Jordan
Reduction with Partial Row pivoting; but in the comparison
phase of this thesis, it should be emphasized that Key's
"SIMULT® prngram uses Minimum Row/Minimum Column pivoting

which is still subject to numerical instability.

Scaling Lineax Svstemg
Algoritlus for scaling are used to improve the "condi-
tion® of some systems; the relative condition of a system
i refers to two factors: 1) the relative magnitudes of neigh-
boring elements both before and during elimination, and ‘
2) the uncertainty with which each of the original a5 and
b; were approximated. (Heretofore, 5‘1j and §b; were as-
sumed to be zero.) If A is "well-conditioned,” then the in-
herent arrors 6&{3) and 6b§°) will not be amplified; but in
an "ill-conditioned” system even a small error is likely to
grow past acceptable limits (Ref 13:1396,397).

For exampla, the situation may arise when b, is meas-
ured in milliwatts and by is measured in killowatts; the
corresponding a)j and az4 will necessarily be out of propor-

( . tion. No pivoting strategy alone could be stable enocugh to

handle this aort of problem. However, the rows and columns
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of A can be scaled to a more workable size relationship such
as a row or column norm (Ref 15:10).

To bring neighboring rows into line, each column should
be divided by that column element with the largest absolute
value; the matrix which scales A this way is a diagonal ma-
trix, D,, whose elements are the reciprocals of those maxi-
mum column elements. To maintain equivalence of Eq (1),

postmultiplication by D! is required:
A21D5= b (33)

Then, to align the columns, a row scaling is required; the
row element with the largest absolute value is divided into
the row and corresponding b;. The scaling matrix is another
diagonal matrix, QQ, whose elements are the reciprocals of
these row scales. The solution x of EqQ (1) is the same as

that of the following (Ref 15:1l1):

D,ADD x = DD (34)

Bq (34) reduces to the final form of
a'x' = b (3s)
where x = 9;15 (36)

A' = DAD, (37)
and ' = P (38)

Since Qﬁ and 22 are diagonal matrices, their storage re-

quirements are only n locations each for the diagonals, and
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their inverses are easily calculated.

For a program which is designed to be an all-encompas-
sing sparse matxix solver, a scaling algorithm should be an
integral part. However, if problems are limited to those
with well-conditioned systems, »caling need not be used. In
fact, scaling would require extra multiplications for each
non-zero, and the computer search for the scaling elements
would be time-consuming (even if simple).

Therefore, if some regard is paid to numerical stabili-
ty in the solution algorithm, and if the scope of the prob-
lems to be solved is reasonably constrained, no scaling al-

gorithm is really needed.

Ibsozry Sunpazv and Predictions
Based on the preceding discussionrs, some predictions
for the Gaussian sparse solvers can be made as a result of
the mathematical theory. Short analyses of pentadiagonal .
and arbitrary matrices will be discussed for Gaussian Elimi-
nation and Gauss-Jordan Reduction, (Gaussian Elim.nation
and LU Decomposition will be classified together since they
are arithmetically similar.) |
Pantadiagonal Case. A diagonally dominant, pentadiag-' |
onal matrix is a common problem to solve in nuclear physics.
With this structure, almost any a priori or locai pivoting
strategy in Gaussian Blimination will choose pivots consec-
utively on the diagonal. The notable exception may be Full
Pivoting for which no guarantees can be made. Also, in the
Minisum Row/Minimum Column scheme, it is possible that two

b} |
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or more rows have the smallest size (rows one and n, for ex-
ample); but most algorithms usually have "tie breaking"
rules which choose the first element to meet the criteria of
the strategy as the pivoc. In this pentadiagonal case,
there should be no (ill-in and the accuracy should be very
good.

On the othes hand, the Gauss-Jordan Reduction with the
Minimum Row/Minimum Column pivoting strategy will fill in
greatly with a pentadiagonal matrix. (This strategy is that
of the SIMULT program to be compared in this thesis.) The
fill-in of at least two values per row (in columns four and
five) will occur in all but the first twe and last two de-
rived sets (Fig. 6). Furthermoure, these fill-in values will
have been calculated using previous fill-in, And lastly,
the final pivot operations will be in columns four and five
and thus ave bound to yield significant errors.

Axbisrary Cagse. Gaussian Elimination will show a wide
range oi performance with different pivoting schemes. For
example, Full Pivoting could easily choose a pivot in the
largest row and create vast amounts of fill-in. Even Mini-
sum Rov/Minimun Column could "junpi around the matrix for a.
proper pivot; as a result, even though immediate fill-in is
localized and small in amount, it would, in fact, remain to
bs used repeatedly, Thus fill-in could enter into many cal-
culations and perhups even become a pivot later on.

Conversely, in Key's Gauss-Jordan Reduction, not only
will the immediate fill-in be minimiged, but also the fill-in
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is likely to be eliminated soon afier its creation; thus
even with large amounts of fill-in, the errors are less
likely to cascade az badly as in Gaussian Elimination.

Therefore, it is predicted that Key's progrars will out~
perform Gaussian Elimination on very unstructured matrices,
while Gausegian Elimination proves to be more effective on
more structured systems. At some "degree" of randomness,
both performances should be comparable. Also, in the study
of Gaussian Elimination with pivoting, good accuracy may be
attained by strategies which either eliminate fill-in short-
ly after its inception or localize fill-in so that'it is not
involved with 0o many subsequent calculationc;_this claim
should hold true even in cases with large amounﬁs of fill-in.
Finally, the type of problem which the user ha; ity mind will
be the guiding force in choosing the alg rithm and pivot

strategy.




I11. Compprigsopns of the Gaugsiap Solvers

The testing of three major Gausszian algorithms was done
on CDC 6600 computers at the Air Force Weapons Lab (AFWL)
and the Air Force Institute of Technology (AFIT). Standard
main programs were used for all three algorithms to accom-
plish the following functi is: packing the sparse matrix
into an appropriate form, executing and timing the particular
Gaussian algorithm, computing an average scalar residual
error, and printing out the solution.

The comparisons of these programs contain a capsule
description of each sparse solver, the initial testing pro-
cedure, and a summary which suggests the dirxection of further
study.

Capsyle Descriptions of Gaussian Programs

The names of the programs under study are the Yale
Sparse Matxix Package (YSMP), by Sherman; the "SIMULT® pro-
gram, by John E. Key; and the "MFP" gtudy by this student,

YSMP. While §hcrnn's YSMP program contains many
FORTRAN subroutines for solying various special types of
sparse matrices (symmetric, for exampla), only those sub-
routines needed for general spasse matrices were compared.
The YSMP uses an a priori pivoting scheme for LU Decomposi-

tion; a permutation array is generated to order both the rows
and the columns of A for pivoting (Ref 1#115). The packing
scheme is similar to that suggestad by Gustavson




(Ref 8:43,44); oﬁly the non-zero elements of A are packed,
and a row and column pointer table computes the "address" of
the desired ajj for future computation.

SIMULT. Xey's SIMULT program uses Gauss-Jordan Reduc-
tion.rith Minimum Row/Minimum Column pivoting. The calling
program must supply an important data value called "ZTEST";
during the calculations, if the magnitude of a result is com-
puted to be less than ZTEST, it is automatically set tc zero.
The packing scheme uses a compressed, iwo-dimensional FORIRAN
array for A; the maximum number of allowed non-zeros per row
is determined by the user. (Key recommends no more than 20
10 30 elements per row as adequate to handle fill-in.) A
similariy structured two-dimensional pointer array stores the
*J* column coordinates of the corresponding A values
(Ref ¢110).

MFP. The MFP program is a study of Gaussian Elimination
with various pivot strategies. The packing scheme is identi-
cal to that used in YSMP. The following variations used the
indicated pivot strategies in the course of the algorithm
construction and the initial testing:

MFP1 Diagonal

Row Partial Pivoting
Gaussian Full Pivotin)
Minimum Row/Minimum Column

Minimum Row/Maximum Element.

g
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Instead of re-shuffling the rows and columpns for pivoting,
the program stored the order of row and column pivot coerdi-
nates into twv arrays called IPIV and JPIV, These arrays

M‘-’ = . -
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were then passed to the back solution subroutine to properly
compute x. The resulting matrix U may not have appeared to
be upper-triangular; but if the row and column interchanges
were done as prescribed by IPIV and JPIV, U would have indeed
appeared as upper-triangular. (Appendix B contains the flow
charts for the most important subroutines in MFP,)

Iesting Procedures

The criteria for the initial testing of the three Gauss-
ian sparse solvers were the required program space, the or-
ders of magnitude of the scalar residual errors, and the exe-
cution time for four standard matrix problems.

Program space. Table I contains a summary of Appendix C;
this comparisor lists the storage space required for the
Gaussian algerithms excluding the main programs and the FOR-
TRAN system routines. All of the variations of MFP are in-
cluded. |

Table 1
Bssential Programming Space for Sparse Solvers

Program Langth (Octal): Program Data
YSMP 2134 20207
SIMULT $32 17662
WPl - Diagonal 757 16666
MFP2 - Partial 763 16666
MP3 - Full 1034 16666
MFP4 - Min Row/Min Col. 1335 16666
MPS - Min Row/Max Ele. 1145 16666




The data storage requirements were set as that space neces-
sary to solve any 100-by-100 system at 5% cparsity.

Standard Test Results. Four test matrices (Appendix D)
were run in each configuration; all tests of YSMP were done
at AFWL and tests of SIMULT and MFP were done at AFIT, The
average scalar residual error was calculated in each routine
as in Eq (29), and the "TIMER" function (Ref 1l0) provided the :
time required to execute only that portion of the programs
that called the Gaussian solvers. As a result, each Gauss-
ian solver was examined truly independently. The first
phase of the comparison is listed in Table II.

Table 11
Initial Comparisons of Sparse Solvers

Test
Matrix YSMP SIMULT* WMFP1 MRFP2 MFP3 MFP4 MFPS

” '
Brrors 10-14 10%13 j0-14 10-14 10-1 10-14 10-14
Time: 0.12 0.28 0.48 0.48 2.67 1.31 0.58

@2
Brrors 10° failed 1o0*%1 10+l 10+11 10*1 10+2
Times O0.11 0.47 0.65 0.93 0.55 0,74
#3

Brrors 10-8 10-3 10-8 10-8 103 10°8 10-8
Time: O0.11 0.33 0.47 0.60 1.2¢ 0.55 1.32

“ .
Brrors 1014 10+38 10-14¢ 10-14 10-14 10-14 j0-14
Times 0.06 0.26 0.29 0.29 0.68 0.88 0.37

Brror calculated as in Bq (29). .
Time measured in seconds. ‘
*ZIBST for SIMULT runs = 10-10,
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The first phase of testing confirmed two important aspects
of the theory section:

1. LU Decomposition and Gaussian Elimination can
yield comparable accuracy.

2. The Gauss-Jordan Reduction in SIMULT performed
poorly for very structured matrices.

Test matrix #2 is a near-singular matrix; both YSMP and MFP
solved it, although badly. But SIMULT determined the matrix
to be singular; this is due to one or more critical elements
being computed to be less than ZIEST, As a result, some im-
portant non-zero data was cast aside resulting in a singu-
Jarity, In any case, test matrix #2 was a bad test, and no
© ‘her er~=aclusions should be drawn from its results.

As predicted, LU Decomposition and Gaussian Elimination
always gave the same order of accuracy (except for the Gauss-
ian Full Pivoting). Interestingly, all of the pivot strate-
gies of MFP (except for Full Pivoting) chose pivot elements
consecutivelv ~n the diagonals. It appears that the YSMP
pProuwiiy chose the diagonal; most a priori strategies would
choose the diagonal for a pentadiagonal matrix. Additional-
ly, the actual lues of the errors came very close to those
of MFP which w.d use the diagonal. There is, however, a dis-
parity in the time criterion.

The LU Decomposition should have taken more time than
Gaussian Elimination; but a check of the program structures
would explain part of this disparity. Most of the repeated

operations of the MFP pivot subrcutines are containad in

other individual subroutines; each call to a FORTRAN




subroutine requires more time than a simple "GO TO __"
statement. The call to subroutire causes a transfer of con-
trol from the calling program to the computer's operating
system in order tno find the subroutine, execute it, and re-
turn to the calling program, The pivot subroutines in MFP
must frequently use some external programs called FETCH,
DELETE, ROWDIV, and STORE which manipulate data in the com-
pacted form of the sparse matrix (Appendix B). YSMP, on the
other hand, is built so that all of the necessary programming
for a specified step is contained within the entire subrou-
tine (Ref 14:18):

SORDER
NSRORD

Computes minimum ordering.
Re-orders A given the ordering
from SORDER.

_ SSFAC - Computes the symbolic factor-
( ization of the re-ordered A
matrix,

Computes the numeric factor-
ization of A, given its sym-
bolic factorization.

Solves Eq (1) given the LU
factorization of 2.

NSNFAC

NSBSLV

None of these subroutines needs to communicate with any
othexs; they merely must be executed in a prescribed se-
quence. Finally, an a priori pivot scheme is basically
faster than a local pivoter when dealing with pentadiagonal
or tridiagonal matrices, Of course, the core usage is

larger than MFP because of these speed capabilities,

d ag for t
One of the important advantages of MFP is that it was

easy to build and test new pivoting schemes by using the
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same modularized subprograms for routine operations. There-
fore, the relative merits of particular Gaussian Elimination
pivot strategies could be easily evaluated, Also, factors
such as fill-in and number of deletions could be used to
check the effective use of data storage available, Since
SIMULT similarly offered fill-in and deletion monitoring,
the Gauss-Jordan algorithm by Key was included in all tests
of the MFP variations,

Therefore, the objectives of the next phase were to
compare SIMULT and MFP with more arbitrary matrices to find
the "performance crossover point" {as suggested by the Math-
ematical Theory) and to find the optimum version of MFP
which not only performs well but meets a prospective user's

needs,
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The initial test phase confirmed the programming logic
for the three major Gaussian algorithms using standard test
matrices; the next phase used matrices which were arbitrary
both in value and structure. The range of structures in-
cluded some systems which are typical problems in physics
and engineering. Thus, the tests results and the choice of
an optimum pivot strategy for Gaussian Elimination come as a
result of the solutions of practical problems.

The discuscion of the intermediate test phase includes
a description of the te¢st matrices, an analysis of the re-
sults with respect to the mathematical theozy, and the pro-
cess by which the final version of the MFP program (Gaussian
Elimination) was developed.

Inzsrmediate Test Matgices

All of the next eight test matrices started with ran-
domly-generated numbers in a tridiagonal structure. About
358 of any particular set of numbars were negative. The
last five matrices contained an additional 2% non-zero
structure whose values were randomly generated; the coor-
dinates for these extra values were also randomly detexrmined.
This additional structure was contained within bandwidthe
whick normally ranged frxom +5 to +15 diagonals from the main
disgonal. The last matrix, however, had its ex*ra non-zero
stiusture scattered throughout the entirg available array.




These test matrices were used to exercise the varia-
tions of the Gaussian Blimination program (MFP) and the
Gauss-Jordan Reduction program (SIMULT). The diagonal pivot
atrategy, MFPl, was not used in the intsrmediate phase; as
the mathematical theory pointed out, diagonal pivoting strat-
egy is really no strategy at all, and the chance exists that
a zero would be found on a diagonal location. (The orxiginal .
purpose of MFPl was merely to be the basic framework fum;mhe ﬁ
other pivoting strategies.) .

The enumeration of the test matrices and~hheir results

with SIMULT and four variations of MFP are contained in
Appendix E.

Analveis of the Results

The data which was available from the MFP gtrategies
and the SIMULT program established three performance crite-
rias the order of magnitude of the error (as calculated ac- .
cording to Eq [29]), the number of times in which a fill-in
value was manifested, and the execution time for the Gauuss-
ian algorithnm,

BExor Magnitudes. The most consistint performance was
achieved by the Gaussian Partial Pivoting strategy (MFP2)
with an error magnitude on the order of 10712 or less
{Table IXI). With Minimum Row/Minimum Column (MFP4), Mini-
mum Row/Maximum Element (MFPS), and SIMULT, the error magni-
tudes were functions of the degree of "scatter" of the extra
non-geros: MFP4 and MFPS (which were meant to reduce local
£ill-in) did work well with the more tightly banded matrices,
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Table IIIX
BError Magnitudes for Intermediate Tests

e SIMULT  M'P2 MFP3 MFP4 MFPS
*s 10-2 1014  j0-1 10-14  10-14
#®6 104 1644 1071 10714 jo-14
®7 101 10713 0%l 10713 10-13
es 108 10°12 00 1071 1071
*9 10~° 10012 00 10° 10°
#10 10-8 10-13 100 10%4 10*1
#11 10710 30713 00 failed  10°
02 10711 j0-13 o¥ 10*! 16°

but did poorly with increasing disorder in the extra non-
zerc structure; SIMULT, on the other handﬁ clearly improv-Jd
from 102 to 10~1! with more arlitrary l"fi‘:fl.tctu?l. These ob-
serxvations cClearly con!.'i:s;rnd the predicticns made in the
Mathematical Thecry. The fallure of MFP4 with test matrix #11
was due %o a coaputer diagnostic which stated that an *infi-
nite operand” had been chosen. Since Minimum Row/Minimuas
Column pivots without regard to stability, this result is
not surprising. As for Full Pivoting (MFP3), the exror mag-
nitudes were generally poor; this performance came chiefly
as a result of axcess fill-in,

Fll-in. With the exception of test matrix #12 (the
least organised structure), Full Pivoting always created the

mogt fill-in; furthermore, the fill-in excess was generally




two or three times as much for the other Gaussian Elimina-

tion strategies (Table IV).

Table 1V
Fill-in Tabulations for Intermediate Tests

Test

Matrix SIMULT MFP2 MFP3 MFP4 MFP5
¢S5 97 59 232 o 39
¢ 6 97 61 233 o) 61
&7 97 58 218 o 58
#8 336 291 1149 207 249
¢9 987 699 2002 792 629
#10 871 930 2153 951 932
#11 1247 1044 2129 failed 717
2 2168 4038 3815 2117 1713

for tightly-banded matrices, the strategies which piv-
oted for fill-in minimization did, in fact, fill in fewer
values than the rest of the strategies; however, for more
scattered structures, the reduction in local fill-in made
little difference: that same local fill-in did coswe into
play in many more calculations to manifest further fill-in; )
and, as with the "infinite operand" case, some va.lucs did
bacome subsequent, unstable pivot eslements.

There was a feature in the main program whick would
list the pivot orxdering. The MFP4 and MFPS programs often
*jumped® around the matrix in successive pivots: row 1, then

row 1003 row 3, then row 89, for exaiple. As a result, the
¥
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fill-in lingered for many calculations and contributed to
errors many more times than did the fill-in *:om the Partial
Pivoting. For example, in the case of test matrix #12, in
which Gaussian Partial Pivoting registered the greatest
amount of fill-in, the new non-zeros were localized about
the pivot elements, often eliminated scon after creation,
and thus were not involved in as many subsequent calcula-
tions. This observation is in direct agreement with the
Mathematical Theory.

Execution Time. The slowest of the MFP routines was
always Full Pivoting (MFP2) because of the large number of
extra computation required for the fill-in and the normally
time-consuming searches for pivot elements. In iae tightly-
banded cases, Minimum Row/Minimum Column (MFP4) chose ele-
ments consecutively on the diagonil for pivoting, and thus
computed very rapidly; similarly, Minimum Row/Maximum Ele-
ment (MFP5) chose the same pivots as Partial Pivoting (MFP2).
However, in general no Gaussian Elimination variation ran
significantly faster than Partial Pivoting (Table V).

It is interesting to note that, while time comparisons
between Gauss-Jordan and Gaussian Elimination are xeally not
meaningful from an aigorithmic standpoint, in the case of
tost mutrix #12, only two orders of megnitude of ‘accvracy
separated SIMULT and MFP2; yet SIMULT solved the matrix
nearily twelve times as fast as MFP2, Test matrix #12 is a
very uncommon problem; but at some point, the potential uscerx
sust decide which sparse solver he must choose in light of




Table V

P$ - Execution Times for Intermediate Tests

, {
Moret,  SIMULT MFP2 MFP3 MFP4 MFPS
*#5 0.26 0.36 0.73 0.37 0.44
# 6 0.27 0.39 0.76 0.37 0.45
*® 7 0.30 0.36 0.74 0.43 0.45
#8 0.33 1.02 3.40 1.00 1.03
#9 0.66 1.82 7.77 2.38 1.90
#10 0.64 2.19 7.79 3.06 2.79
#11 0.89 2.46 9,17 failed 2,10
#12 1.70 21.11 26.82 9.55 6.35

[ Time in seconds.

the relative disarray of his own problem.

Choice of Optimum Algorithm
The choice of the Optimum Gaussian Elimination Algo-

rithm was derived from the preceding analysis the conclu-
sions of which are recapitulated belows

; 7 1. The best accuracy consistently came from
Gaussian Partial Pivoting.

-
4

. Disregard for stability in some problems
led to poor accuracy and at lesast once case
of division by a small number ("infinite
operand"),

3. By localizing all pivot choices (as in Partiail
Pivoting), the fill-in is also localized ard
its corresponding error affects many fewer
subsoquent calculacions.

EakY
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4, Large amounts of fill-in still may be an
important source of error.

These conclusions suggested the fcllowing criteria for an
"ideal®" pivot strategy:

1. The pivot choice should be from consecutive
rows; this choice would help to localize the
effects of fill-in.

2. The column choice for that pivot row should
initially attempt to minimize the number of
calculations and, hence, lessen the proba-
bility for fill-in occurrence.

3. If, however, the value of the pivot is very
small with respect to some number {called a
"Pivot Tolerance") the eiement with the lar-
gest absolute value in the pivot row should
be used as the pivot. This choice need only
occur cften enough to stabilize the system
when instability insidicusly appears.

As the dilemma of Fig. 5 indicates, even these ideals will

not yield a panacea; however, they indeed provide adequa‘e

groundz for engineering tradeoffs amcng the criteria of ac-
curacy, fill-in, and time.

Therefore. ncne of the original MFP variations was
chosan as the optimum strategy; another strategy was devel-
oped, programmed and tested. This strategy was called
"Consecutively Calculatsd" Pivoting. (The designation of
this strategy is "MFPTH," and the subrcutine naue for the
Forward Gaussian step is called "THINKER.")

The strategy of MFPIH is that sugjyested above: the row
pivot cocordinates g consecutively from 1 to n, and the col-
umn coordinate is chosen as that element in the column with
the fewast number of non-szeros. However, if the value of

the pivot is less than the pivot tolierance (calied "PIVIOL")

Lo aamiatdy WUS T Lg

e A et e




" then a search is made to find the row element with the lar-
rﬂ { gest absolute value. The advantages of the strategy are
very important to the user:

1. PIVIOL can be a readable quantity (as is the

case in the listed program of MFPTH in the
AF1T Computer Archive).
2. If the user is willing to sacrifice scme ac-
curacy, PIVIOL could be chosen to be a small
number (0.0l, for example) and the fill-in
and numbex of calculations would be less than
those for Gaussian Partial Pivoting.
3. On the other hand, if fill-in is not a prob-
lem, choice of a large value for PIVIOL (100,
for example) would always be driving the sys-
tem towards more stability.
In fact, with large values of PIVIOL, the algorithm, for all
intents and purpuses, is the same as Gaussian Partial Pivot-
ing. There is, however, one important disadvantage. Use of
a large PIVIOL would force more second searches for the piv-
ot element; the user must therefore be willing to pay the
price of extra time ror extra accuracy.

The variation MFPTH was programmed and xunj Table VI
shows its performance with all test matrices as well as its
core usage information.

The increase in time is apparent, but not formidable,
It is clear that the MFPIH variation is a decirable program
because the user has an input into the ultimate performance

for his particulas problem,

The next testing phase narrowed the scope of operation

t0 problems likely to bs solved in physics; the study also

-

- gave rise to yet ancther concept for the final form of the

M'P Sparse Matrix Solver,

|
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Table VI
Results of the Consecutively Calculated Strategy

Test Time
Matrix Error Fill-ins Deletions (Seconds)

.10‘-12

1 o 297 1.08

#2 10*1 o 297 1.06

#3 10-6 o 297 1.07

* 4 10-12 o 199 0.71

#5 10°12 o 199 0.73

¢ 10714 0 199 0.78
’ ‘ @7 10713 0 199 0.75
#8 102 116 337 1.54

#9 10-? 485 474 2.84

#10 10~ 620 570 3.58

#11 10-10 715 662 4.08

12 10™9 2686 1103 26.56

| PIVICL = 0,01; THINKER Program length = 12062 (Octal)




{ V. ZIhe Fipal) Algorithm Comparison

The final phase of testing compared the YSMP, SIMULT,
and MFPTH sparse matrix solvers with eight more test ma-
trices; the structures of these matrices were similar to the
example presented in Chapter I: diagonally dominant, tridi-
agonal core structure with flanking diagonals., The analysis
of these tests also spawned a new feature for the MFP pro-
gram to improve speed. The discussion of the final phase,
therefore, describes the new testc, presents the new features
for MFP, tabulates the speed improvements, and sums up the

overall performance of the three major sparse algorithms,

The Fipal Bight Test Matrices
The study of this final test phase concentrated on the
performance of the sparse solvers with matrices whose flank-
ing diagonals were originally located adjacent to the core
(as in a pentadiagonal structure) and then displaced one
diagonal at a time. (Appendix F contains 2 listing of these
matrices.) The pivot tolerance for MFPTH was chosen to be
10 s0 as to pivot for accuracy. Table VII summarizes the .
exror magnitudes and execution times for the three programs.
- The obvious result of these tests is the conaistent ac-
curacy provided by the MFPIH program; howaver, becaucse the
pivot tolerance was large, the time nesded to solve a systea
was ralatively long for each test. What is not ircluded in
( Tabla VII, but listed on the computer printouts, was that

b
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Table VII
Final Perxformance Comparisons

Test

it ISMP = YMULT MFPTH

#13 Errors 10714 10+45 10-14
Times 0.12 0.35 1.41

#a Errors 1072 10*21 10”14
Time: 0.16 0.34 2.13

5 Errors 1072 10*12 10”14
Time: 0.21 0.40 3.04

#16 Errors 10~2 10° 10°14
Times 0.23 0.76 4.06

#17 Errxors 102 101 10-14
Time! 0.27 1.05 4.96

#18 Errors 10~2 10° 10°14
Times 0.28 0.78 6.09

#19 Error: 102 10° 10-14
Time: 0.30 1.11 7.03

#20 Brrors 10~2 10°° 10°14
Time: 0.30 1.18 8.23

Notess YSMP - LU Decomposition, a priori strategy.
SIMULT - Gauss-~Jordan Reduction with Minimum
Row/Minimum Column pivoting.
MFPTH - Gaussian Elimination with Consecu-
tively Calculated pivoting (pivot
tolerance = 10).

Brror magnitudes calculated as in BEq (29). .
Time in seconds, 10
ZIBST for SIMULT s 10°*V,

for each of the test matrices, the MFPTIH pivoting strategy
chose consecutive elements on the diagonals for the best

accuracy., This observation suggested the next configuration

of the MFP program,

-



Extra Features for MFP

Motivated by the diagonal pivot selections in the pre-
ceding tests and a ¢s..+ to increase the speed of the MFPTIH
program, this stu‘ent p.cgrammed an additional strategy.
The new scheme was an a priori pivoting strategy which chose
the pivot coordinates from the first non-zeros in consecutive
rows; unliess a zero appeared on the diagonal, then the en-
tire diagonal ﬁas the source for pivot values. As an aid to
the user, the a priori pivot subroutine (called "APRIORI")
was included into the MFP program structure with the THINKER
subroutine; as a result, the user was given an option for
which strategy he desired. If a diagonally dominant system
were being solved, chcice of APRIORI would yield good accue
racy with a relatively quicker solution time; if the APRIORI
subroutine failed to give accuracy better than R = 10"2
(Bq [29]), the main program would automaticallv reset and
begin again with THINKER. Of course, THINKER could have
been chosen from the beginning.

sSkeed Improvements in MFP

The solutions for each X using the a priori strategy
gave precisely the same accuracy as in Table VII but with a
measurable time improvement (Table VIII).

The designation for his configuration of MFP is "MFPOP"
to indicate the "option* featuie. (A listing of MFPOP can
be obtained from the AFIT Computer Archive.) The additional
(. core space required for APRIORI wae only 370 (octal) loca-

tion3; in terms of the entire program load size, tha increase
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IO TR AN T i et e,




Table VIII
Time Comparisons of APRIORI and THINKER

Test Time:

Matrix APKIORI THINKER SReduction
#13 1.18 l.41 16%
#14 2,11 2,13 1%
#15 3.02 T 3.04 1%
#16 3.99 4.06 =
#17 4,90 4.96 1%
#18 5.83 6.09 1%
#19 6.78 7.03 4%
#20 . 7.87 8.23 4%

is negligible because muny of the same AORTRAN systea rou-
tines used by APRIORI were already present for THINKER.

Testing Conclusiops

A uger might be motivated to use the SIMULT program for
dispeorsed, unstructured matrices oxr the YSMP program for‘
tightly-banded matrices; this motivation comes as a rcsult
of time considerations. However, the MFPOP program demon-
strated the capability to solve a very wide variety of
matricee with consistently better accuracy than either
SIMULT or YSMP. Also, the user's flexihility in controlling
the progress of the solution with MFFOP is a very important
considerxation.

;t must bs emphbasigsed that to attain the high dagree of

accuracy, the NFFOP program had to allow larger amounts of




filli-ir in bath the a priori and local strategies than most
classical sparse matrix studies conclude would be tolerable
2or a very large problem (n = 10,000, for exawmpiz). The
average spe2d mprovement due to the introduction of the

a priori pivoter was only 4%; but for a class of problems
that are tightly banded, such as a pentadiagonal, the net
improvemen: was a high 16%. With these factors of fill-in
and time in mind, the next segment of this thesis addressed

the prcoblems of a new data-packing scheme and an even fur-

ther improvement in the time factors.
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VI. Sparge Packing in the CDC 6600 Computer

The choice of the MFPOP Sparsé Solver as the optimum
Gaussian Elimination algorithm came not only because of the
higher theoretical accuracy which it provides but also te-
cause it was highly suitable for the CDC 6600 Computer.
While all of the tested programs were written in the FORTRAN
computer language (which is standard for most large comput-
ers), their accuracies were enhanced to a great degree by
the numeric superiority which the CDC 6600 has over many
computers. This chapter deals more closely with such com-
puter capabilities as they pertain to a new packing scheme
developad specifically for MFPOP; a consequence of this
packing scheme is that it justifies the allowance for fill-
in which, in many other computers, would be intolerable.

Te help in the understanding of the new packing scheme, _ ‘
a revisw of the basic MFP packing method is presented; fol- |
lowed by the description of the implementation of the new
packer. The final configuration of the Gaussian Elimination
algorithm is also described since it is a streamlined ver-
sion of the modular MFP concept. A summary presenis the
overall benefits of this student's progrim as it.has been
run on ths CDC 6600 Computar.

Boview of the Basic Packing Schems
In oxrdex to pack only the non-zeros of the sparse A
natrix, the MFP program needed several FORTRAN arrays. (The




reader is directed to Appendix B for the comple¢te packing
method and the flow chart for the algorithm.) The arrays
were as follows:
IA - The array (size N) which contains the
locations of the starting points of
the rows.
JA - The array which holds the column coor-
dinates for each non-zero in the A
matrix, (Size = the number of non-zeros,
denoted "NNZR.")

A -~ The array which contains the non-zeros
(size NN2ZR).

ISTAT - The array (size N) which contains the
number of non-zeros in each row.

As part of the forward Gaussian algorithm, the arrays JSTAT
(a column status vector), JCOL (a working vector), IPIV (row
ordering array), and JPIV (column ordering array) were also
required. Thus the minimum data space required for the
sparse matrix A and its solution was the following set of
arrayss

6 intager arrays, size N

1l integer array, size NNZR

1 floating-point array, size NNZR,
Ths sise of NNZR for any routine must oe judiciously chosen;
a certain allowance for fill-in is xequired. As a rule of
thunb, the following formula fc - NNZR was used in dcvolopiné

the final strategy!
NZR < (3%) x (N®) x 2 (39)

To implement MFPOP on any coaputex, the informatior
from each of the arrays is necessary; but one should note
that if the largest number of equations to be solved is

sl At



limited, the largest value stored in any of the elements of

the integer arrays will be very small relative to the largest

calculable integer for that computer. Since the CDC 6600
computer had a word size of 60 bits (which is nearly twice
as large as the single precision word on most other comput-
ers), for an N on the order of 1000, only the right most ten
bits of each word would be used; the remaining 50 bits would
be wasted. It is the crux of the new packing scheme, there-
fore, to use as much of the integer word as possible to

store inforaation.

New Packing Scheme

The new packing scheme involves manipulaticn cf the
bits of the arrays for both the six N-sized arrays and the
two NNZR-sized a:rrays.

N-sized Arxays. One can envision using the extra 50
bits of a computer word in the CDC 6600 as room to store
other arrays; that is, by subdividing or “segmentinj)" the
bit stxuctuze of the worde in only one array, the informa-
tion of many arrays <an be ccmpactad. To successfully im-
plement this idei, the programcer must keep in mind that
Octal arithmetic is used in thae CDC 6500 and the storage and
retricval of information from a sesmented word must be han-
dled carefully.

In the modified MFPOP program, the six N-gized arrays
are packed in groups of threes JSTAT, ISTAT, and IA; and
JCOOL, IPIV, and JPIV. The array variable name is called
“INTEG* to indicate the integer data iatructure., The fixst




N values of INTEG contain JSTAT, ISTAT, and IA in three
groups of 20 bits. The value of INTEG(N+1l) contains a spe-
cial value used by the packing subroutine, and the value of
INTEG(N+2) holds the initial NNZR value. The next N loca-
tions in INIEG contain JCOL, IPIV, and JPIV in three groups
of 20 bits. |
Since the value of IA is usually a large number, the |
position of IA in the INIEG wozd is very importants since it
occupies the right-most 20 bits, then the value of IA can be
stored as if it were a decimal number. But such is rot the
case for JSTAT and ISTAT. However, these two status vectors
are built, incremented, and decrocmented only one unit at a
time; to add or subtract a "1" in the segment for ISTAT, a
specific octal number (4000000g) is added to the entire
INIEG word. To continue the example, where the old state-
ment was programaed as "ISTAT(I)=ISTAT(I) + 1," the new
statement reads "INIEG(I)=INTEG(I) + 4000000B." (The "B" is
the FORTRAN definition of an CCTAL constant.) A similar
octal number increments JSTAT.
To extract the spacific data for a given row K, the
value of INIRG(K) is first placed into a working register.
Then, by use of two supplied CDC functions, the proper in-
formation can be unambiguously retrieved: to extract IA(K),
the value of INTEG(K) is maaked with an ",AND."” function
over the right-most 20 bits; to extract ISTAT(K), the value
of INITBG(X) is SHIFT-ed 20 bits to the right and then masked
with the AN}, function (Ref 3:12-12; 8-4). For the Jxrays




rﬁ JCOL, IPIV, and JPIV; a similar extraction method is used;

{» however, to store the values, an intermediate register must
come into play. The register is set to zeroj; the computed
value »f JCOL or IPIV is inserted and left-shifted the appzo-
priate number of bits; then the contents of the register is
added to the appropriate INTEG slement. (Appendix G is the
listing of the program with the bit-sliced packing.

The savings on the N-sized arrays is very important for
laxge linear systems; if Na1OOO, then the previously used
SU00 locationk for the arrays is reduced to only 2000. Thus
the allowance of 4000 extra data locations is made available
fox fill-.n. In practice, only 19 of the 20 bits per array
Are used; tiic restriction is necessary because the left-
most bite of JSTAT and JCOL are sign bits of the CDC 6600
compater words. Manipulation of the sign bit may create
protiexs for the data stored in the entire word. With this
configuration, the waximum number of equations is initially
; livited tc (2!19-1) or 524,287; as large as this number is,

the NNZR-s1zed arvays place a much more stringent restric-
tion on the maxaircm nunber of equations.

NNZR-sized Arrays. Further reduction in data storage .
requirements is uleso possible by combining thiec two NNZR-
eized arrays, A and JA, sincz evexry A value has 4 corres-
ponding JA table entry. The procedure is similar to the
rechnique uced in the N-siszed arrays, except that rloating-
point mambers and integur numbezrs are mixad., In the CDC

{3 6300 Computer, a floating-pcint number is stored with the
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left-most 12 bits as the sign and the exponent, and the re-
maining 48 bits as the mantissa. In the new packing scheme,
the right-most ten bits of the mantissa are masked to zero,
and then the integer value of JA is inserted by using a
logical ".OR." function. The array which takes the place
of A and JA is called REALS.

The first N locations of REALS contain the b vector
elements, and the next NNZR contain the compacted A and JA
data. To retrieve a value for A, the value of REALS is
fetched, and then the last ten bits are masked off; a real,
floating-point number is the result. To retrieve a value
of JA, the value of REALS has the left-most 50 bits masked,
and an integer value is the result.

There is one very important advantage to this packing-
feature: the storage required for each non-zero and each new
£ill-in is | \1f of what the old scheme required. There are,
however, three noteworthy disadvantages: 1) with only ten
bits allowed for JA, then the maximum number of equations
which can be solved is further restricted to (210-1) or 10233
2) masking off ten bits from the floating-poirt number a,
decreases the allowable accuracy o a maximum of only il
decimal places instead orf 143 3) the real value stored in
ths mantissa is no longer rounded but truncated to 38 bits,
While the maximum number of equations can be increasad by
changing the masks for A and JA (to 11, 12, or 13 bits) the
maximum accuracy is accordingly decreased.

The sacrifice for accuracy, however, is not costly.
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The MFF pivotiny strateygy can be very sensitive to stability,

and thus 7t compeinsates for these induced machine inaccura-

cies. Tabie IX shows the performunce changes manifested by

the naw packing strategy. (The wew variation is called

“GEBIT" to denote "Gaussian Eliminacion with Bit-slicing.”")
Table IX

Comperison of MFPOP with GEBIT
on Some Test Matrices

Test Errors

Matrix MFPOP GEBIT
#1 20712 10-11
#3 10°6 10~
# 4 10712 10-11
*6 10714 10°11
#10 10~8 10-10
#15 10°14 T i
#8 10714 10”11
#20 1014 10~11

Streamlined Algorithw

After ths final testing of GERIT configuration, an at-
tempt was madse to further improve the speed of the algorithm.
As pointad out in Chapter III, the many cCalls to subroutines
by the Gaussian PFcrward pivoters did use up much time; while
this use of modular subroutines was a tremendous asset in
the testing phase of this thesis, the final “"production®
model would have been unnecessarily slow. For the final




configuration, therefore, the subroutines were removed, and
their logic structures were programmed within the Gaussian
subroutines THINKBER, APRIORI, and GAUSSBX. This program
modification also saved extra time in that only the logic
necessary at a particular step in the algorithm was used
and not the all-encompassing logic of the subroutines DELETE,
STORE, and FETCH (Appendix B). The numerical accuracy of
this final configuration is naturally the same for GEBIT;
but Table X shows the improvement in the time usage over
GEBIT and MFPOP. (The final configuration is called "SMART"
to denote the "Sparse Matrix Algorithm Resesarch Thesis.")

Tabie X
Time Improvemen. of the Streamlined Algorithm

Test Time (Seconds):
Matrix MFPOP GEBIT SMART

#13 1.18 1.04 0.75

14 2.11 1.77 1.39

#15 3.02 2.50 2.02

Mo 3.99 3.25 2,67

#17 4.9} 4.03 3.10

”s 5.83 4.7% 4.01 )
19 6.78 5.57 4,69

#20 7.87 6.50 .5.41

Interestingly enough, the GBBIT configursticn showed
2n average imorovement of nearly 17% by itself. One reascn
for this increase is that the time for the fast regicter
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functions (SHIFT, .AND,, and .OR.) are much less than the
fetch commands from the relatively slow core memory. Thus
the computer needs only to fetch one number. REALS(M), to
attain both the valusas for JA(M) and A(M). Overall, the

SMART configuration showad an imprxovemert of nearly 33% in

time.

Exeduction Model Summary

While the SMART zoutine was still slower than Sherman's
YSMP or Key’'s SIMULT, the ac:uracy cdemonstrated that this
program can be a competitive sparse matrix solver for very
iarge programs, A scaled version of SMART was run on the
AFIT CDC 6600 computer with a 1000~-by-1000 pentadiagonal
matrix. The error was on the ovder of 10-10; but the ost
obvious result was the totai core usage requireds only 64K
woxds., With the packing schemes of YSMP and SIMULT, to run
the same¢ problem wuuld have required considerably more core
sturage (well over 100K words). For problems not quita as
larpe as N=1000, the SMART program could be used on the
INTERCOX texminals at AFIT and AFWL where the core limita-
tion is set at 60K. Clearly, the Gaussian Elimination pro-
ﬁza-od for this thesis is an adequate conputatioral too’.




VII, and commendatio

The summary of this thesig includes a discussion of the
attainment of the thesis objectives, a discussion of the
outcome of the algorithm programmed by this student, and a

ligst of subject areas for further study.

Attainment of Thesis Objectives

The comparison of the two existing sparse matrix
solvers (the LU Decomposition in YSMP and the Gausa-Jordan
Reduction in SIMULT) pointed out two clearly definable areas
where the accuracy of one program was much better than that
of the other: YSMP worked wa’l for tightly-banded matrices
while SIMILT favored the more unstructured systeams. Unfor-
tunately, the aureas in which the programs worked their best
did nut overlap; furthermore, the matrix structure of the
exampie in Chapter I--a very coumon structure--was not con-
tained in either region,

The corxrslative program of ths Gaussian Elimination
with strategic pivoting (called SMART) not only filled the
void but included areas of performance common to both YSMP
! and SIMULY. The pivot schemes available with SMART (Consec-
utively Calculated or an a priori pivot) yield a potertially
serious consequence: the poseibility exists that fill-in may
occur more frequently than in the programs of other methods.

In fact, these pivot strategies conflict somewhat with the
(} thoughts of the writers of many articles in Sparse Matrix
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literature (i.e., there is a great emphasis on fill-in mini-
mization in many of these papers). This zppaxent conflict
was resolved in two ways which justify the nse of these
pivot schemes: 1) by an examination of the word structure

in the computer at hand and 2) by the construction of the
new packing scheme for this thesis. !

Computer Word Structure. The preponderance of comput-
ers used for sparse matrix study in the past decade have
only 32-bit, single-precision woxds; to attain good accuracy
for large sparse systems, the use of double-precision FORTRAN
is a necessity. Therefore, the total number of distinct
storage locations is cut in half. Thus the concern for fill-
in growth in these kinds of comf.ters is quite valid, On
the other hand, the CDC 6600 provides a 6C-bit, single-pre-
cision word which allows essentially the same accuracy as
most 32-bit-per-word computers at double-precision. As a
result, much more extra space is available if fill-in grows
to large proportions.

Packing Schemg. Additionally, the bit-sliced packing
scheme used in SMART further reduces the requirements for
data storage by combining information from several data
arrays into a single data array. In handling the compacted
A matrix alone, the SMART algorithm uses nearly 508 less
stoxage space by combining the A values and their respective
column index pointers into divisions of the same arrays.
(This new peacking scheme thus fulfils the second major objec-
tive of this thesis: the efficient use of computer core
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storage.) ‘

Thus any conflict with the proponents of fill-in reduc-
tion is avoided because the SMART program as it is run on
the CDC 6600 computer can clearly be allowed to pivot for
accuracy or calculation reduction rather than strictiy for
fill-in minimization: the extra core space is readily avail-

able.

h Eliminat Pr

There are several factors to discuss about the Gausg-
ian Elimination algorithm as it is programmed in SMART; the
factors discussed deal '7ith both tangible and intangible
considerations,

Janaidble Advantages. The accurﬂcy of SMART is well-
documented over a wide scope of linear systems. Bven fox
very large systems, the core usage for SMART is small when
compared to the two existing sparse solvers tested. Also,
inasmuch as the user has an option on the pivot strategy
(consecutively calculated or a priori) and a choice for
pivot tolerance (for accuracy or some fill-in reduction),
the SMART program can satisfy a large range of raquirced
dapabilitioo very easily.

Ianaible Disadvantags. 7The single drawdack of SMART is
the time it takes to solve a problem. The reason for this

time excess is related to the packing and core usage designs:

to keep core usage low, much of the array of data must be
relocated at each incidence of a fill-in or deletion., PForx
example, if a fill-in were to occur near the top of the data
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array; the subsequent data are all shifted down one location
to make rcom for the £fill-in, The array is siumiiarly
shifted up one location for each deletinn. In the context
of a large linear system whose solution may require :ome
fill-in, these data manipulations for the sake of core stor-
age translate into much extra computer executionrn time.

i vant s, Even with long execution times,
pro¢rams which'require less core space in a computer are
often given higher priority for execution; as a result, the
outnut from the SMART program would be finished and into the
hands of the user much sooner than for YSMP or SIMULT for
the same large, sparse matrix. This "turn around time" can
be a very importaat element in a user's computational needs.
(The proper analysis of this concept lies in understanding
the operating system of the particular cumputer in use.) Ir
any case, in a large multiprngramned computer environment
(such as AFIT or AFWL), it is generally harder to get large
amounts of core at a given time than it is to get extended
execution time. Another intangible benefit of SMART is that
Gaussian Elimination is very easily studied; thus the algo-
rithm makes SMART highly adaptable to other thesis study.

Sugoested Areas for Further Study

In the entire field of Sparse Matrix research, there
axe other considerations which have been applied to other
sparse matrix solution techniques. As a way to mention some
of these factors and how they might apply to the SMART algo-
rithm, the following recommendations are presented:




Reduction of Execution Timg. 1) It would be interest-
ing to attempt a Consecutively Calculated Pivoting strategy

in the faster Gauss-Jordan Reduction and LU Decomposition
programs of Key and Shezman. 2) The packing scheme of SMART
couvid be modified so that the tirme-consuming "shuffle" duxr-
ing delstions and fill-in could be eliminated: by use of a
*linked list" tabDle, elements of a row need not by stored
adjacent to each other; the table list would contain the
computer "addresses" of consecutive row elements., Bit-slic-
ing could be applied here so that the linked list table
would not require inordinate amounts cof extxa working space.
Iterative Techniques. 1) While this thesis dealt only
with direct solutions of sparse matrices, it would be appro-
priate to conduct a thorough investigation of iterative
techniques and compare their results with SMART. 2) Many
writers suggest using iterative improvers for systems which
are solved with poor accuracy: the direct solutions can be
used as the starting points for the iterations. Along these
lines, consideration should be given to the case where a
particular solution to Bq (1) is found the first time using
SMART; then, some elemsnts of A or b might be changed to re-

flect subtle differencas in the mathematical model. An iter-

ative solver c:wuld use the first accurate solution from
SMART as a starting point for the solution of the modified
system. Such a technique will provide mich faster solutiors
than complete recomputation by either SMART or the iterative
solver starting from scratch.
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Rigorous Mathg¢matical Tests. 1) For a class of near-

singular matrix systema, it may be necessary to interface a
direct solution with an iterative solution as described
above; the useful result would be an idea of the true extent
for which the Gaussian sparse solutions are applicable.
2) 1n order to handle problems which transcend the well-con- |
ditioned systems common to physics and engineering, the pro-
gramming of a scaling algorithm (as in &q [34]) would allow
the more theoretical systems to be tested. 3) Additional
study on algorithus for special matrix structures (such as
symmetic or symmetric zero structure) is a naturally follow-
on to generui matrix solutiona.
Frocram Adapialility. 1) Since sparse matrices can
come as a resulit of tinite differencing technicues for solv-
ing differential aquations, it may be appropriate to con-
stxuct computer programs which can generate the sparse ma-
trices given the differential equations and the boundary
conditions. An important suggestion in this case is to
staniardize the data formats so that the sparse generator
programs can interface directly with the sparse solver.
2) To carcy the aralogy one siep further, one can conceive
cf one lax¢e computer program which generates the sparse
matrix, golves it with direct methods, and improves the
answer with iterative techniques. With such a large concegpt,
exploitation of the computer's opsrution system would be a
valuable aid to this end.




h 'y i Other Computgrg. It

would be of great value to attempt to execute SMART both in
single-precision and double-~precisin: on a computer other
than the CDC 6600; the performance degradation by using a
32-bit-per-word computer would be of particular interest.
It would be necessary to make changes to the bit-sliced
array packing depending on the sophistication of a particu-

lax FORTRAN compiler with such computers.

Copcluding Statement

In summary, the most important result of this thesis is
the development of the sparse matrix solver SMART, The pro-
gram gives the user much flexibility in the conduct of a
particular probiem's solution. The algorithm of SMART pro-
grammed on the CDC 6600 computer can provide accurate solu-
tions from a very compact, efficiently used core structure

for a wide range of linear system structures.
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Appendix A

Example of the Need for Strategic Pivoting
Given: 0,0001 x; + 1.00 xz = 1.00

.1.00 xl + 1.00 x2 = 2.00

Desk calculator solution: Xy = 1,00010001

Xy = 0.,99989998

"Machine" limitation: Accuracy is iimited

to three places.

Case I: Gaussian Elimination without Pivoting

Operation 1 - 1.00 x; +
0.0 XI -
Operation 2 - 1,00 x; +

0.0 Xy +

10,000 x, = 10,000
9,999 x, = ~9,998
10,000 x, = 10,000
1.00 x, = "1,00" (round-off)

Cage II: Elimination with Row_Interchange

1.00 x, +
00,0001 xl +
Operation 1 - 1,00 Xy +

0.0 x"" *

1.00 x, = 2.00
1.00 x, = 1.00
1,00 x5 = 2,00
"1,00" x5 = 1,00

(round-off)

Solutiony x; = 1.00 and x, = 1.00 ("Perfect" to within

round-off accuracy
of desk calculator.)

(From Ref 7134)
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Appendix B
Flow Charts for MFP Subxroutines

General Information

This appendix contains the logical flow charts for the
important subroutines in the MFP sparse matrix solver: PACK1,
FETCH, STORE, DELETE, GSSGEN, and GAUSSBX. The program
GSSGEN is the forward Gaussian Elimination with a general
pivot strategy which gave rise to the variations of MFP.

(A FORTRAN listing of the entire MFP program can be obtained

from the AFIT Computer Archive.)

PACK)
PACK1 compresses the A matrix into a compact form,
reads in the b vector, and generates status information.

The FORTRAN arrays used are the following:

IA - The starting address of the i-th row,
JA - The column coordinates for the A values.,

ISTAT - The number of non-zeros in the i-th row.
A - The column array of the A matrix in

compressed form,
B - The constant vector.

Fig. B-1 shows the packing of only the non-zeros in a sample
4-by-4 system. The flow chart (Fig. B-2) depicts only the
essential logic for packing and not the exroxr checks which
are contained in the program,

The main program and all of the functional subroutines
use the arrays generated in PACKl. This . Tmation is ex~

changed be2tween programs by way of a COMMON statement.

e e S B b
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5 9\\\\\;2 5
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Fig. B-1. Packing Scheme for MFP

PACK]1:
KSIRT = 1
I1=0

JLENG

] {//» Read
Read N +— INEW, JLEFT,-4+—<E2>

I =1I4+1
IA(X)=KSTRT

| JA(KSTRT)= ISTAT(I)=
JLEFT \ IA(I+1) -
IA(I)
\ 4
/// Read
[ A(KSTRT)
4 N Return
n J
JLEFT=JLEFT+1
KSTRT = iEE;>
KSTRT + 1 :

INEW - The row number of the next set of data.
JLEFT - The leftmost coordinate of first piece of data.
JLENG - How many non-zeros will be read.
KSTRT - The staring address of the next row,
I - The index of the current row being packed.
IA{N+1) - The location after the last non-zero.
o Fig. B-2, Flow Chart of PACKl
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FETCH

To attain the value of an ajjr @ call to FETCH will re-
turn with the value or zero if a value is not found. Since a
comparison with a floating point zero in FORTRAN is not al-
ways valid, a logic flag called ZERO is set to TRUE if no
value is found; this actually saves time since a logic check
is faster than an arithmetic comparison. The call to subrou-
tine requires the coordinates I and J; the value, the condi-
tion of the logic flag, and a value called IHOLD are returned.
In subsequent subroutines, IHOLD is used because it contains
the present address of ajji if aj j must subsequently be de-
leted or a uew value stored into ajjs IHOLD tells immediately
where that value must go. Thus, the program is spared the

extra file search for the location of aij for these other

subroutines.
K = IA(1)
FETCH 2j5 LENG = |
ISTAT(i)
'

ZERO = F,
INOLD = K
KuK+1 ]
IA, JA, 1ISTAT
as in Fig. B-1 VALUE = O.
ZBRO = ,T. |- Return
INOLD = -~}

Fig. B-3, Flow Chart of FBICH
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DELETE

The subroutine DELETE removes from the compacted form
of the A matrix any value which will be eliminatea in the
Gaussian forward process or any pivot element which has been
normalized and is understood to be exactly 1.0 in value,

Any element ajj can be eliminated by DELETE; however,
it is usually the case that the value IHOLD contains a num-
ber which is the address of the 3ij to be eliminated. Thus
another search of the xow is not necessary. There is a
safety check: the coordinate J is checked with the value of
JA(IHOLD) to be sure that the correct element is to be elimi-
nated. If this test fails, the subroutine merely reverts to
a row search., The following variables are defined for use

in the flow chart (Fig. B-4):

NDEL - The address of the value to
w deleted .

IDEL - A counter to track the number
of deletions which the forward
Gauss subroutine must make.

. Once NDEL is computed, the arrays JA and A are all shuf-
fled up one location starting at JA(NDEL) and A(NDEL). Then
the starting addresses of rows (i+l) through (n+l) are dec-
remented one place.

The counter IDEL can be used t»n check the relative per-
formance of the various pivoting strategies. Once the final

form of MFP has been establishe?, the counting of IDEL is no
ionger needed for the user's information.




NDEL = IHOLD"@

l.-

Return —

found ?

NDEL = K

IFIN =
IA(N+1)-1

Y

"DO" LaNDEL

through IFIN
JA(L)=JA(L+1)
A(L)=s A(L+1)

.
"DO" Lsl+l
through N+1

IA(L)=IA(L)-1

JV

IDEL = IDBL + 1
ISTAT(I)=ISTAT(I)-1

Figure B-4, Flow Charxt for DRLETE

el




SIORE

The subroutine STORE places a computed value back into
the A matrix or, if the situation dictates, it will create
space for a fill-in value.

As with the subroutine DELETE, it is usually the case
that the value of IHOLD contains the address of the 33 j
where the data nust be stored; a similar safety chkeck is
performed. If the safety check fails, a standaxd row search
is completed. Aftexr a tnorough search, the subroutine de--
faults into the "fill-in* mode.

For fill-in, the program nsust find the coordinate
before which the data must be entered; then, all of tue sub-
sequent data are shuffled down one location. The new data
value is inserted into the empgy space in both the A and JA
array tables. The variables which are used in the flow
chart (Fig. B-5) are the same standard set plus the fol-
lowings

IBUMP - The coordinate at which the
fill-in will be placed.

IFILL. - A counter to track the number

of fill-in values which occur

in the Forward Gaussian

process.,
The starting address vectoz, IA, is finally incremented by
one for each row after tha filt-in row,

The counter IFILL can be used to chack the relative

performance of the various pivoting strategies; the counter

is m0 longer nsaded for the final version of the pxogram.
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L

Kl=IA(I)

A(IHOLD)
= DATA
—
N L 4
Search A \
for a;jj ai Return
in Fig. B-3
4
A(K) =
DATA

Search row
for J between

through IA§N+1

adjoining
aijs
Y
IBUMP = K
IBULZ = of larger
ai
4 '
- S
"DO" LalBUMP

JA L+l)=JA L;
A(LaL)= A(’
A(IBUMP) -] "DO" L = I+l | ISTAT(I) =
through N+l ISTAT(I)+)
JA(IBUMP) IA(LE - IFILL =
J IA(L)+1 IFILL+1
Fig. B-5. Flow Chart of STORE
o3
N L o - .




SSIGEN

The subroutine GSSGEN accomplishes the forward Geussian
Elimination step. This subroutine is really an illustrative
examplz in that the flow chart \Figs. B-6 and B-7) indicates
pivoting based on some arbitrary strategy. The following
FORTRAN variables are rdefined:

ELIM(I) - An element of an array ELIM
which is declared as a LOGICAL
variable name. If ELIM(I) is
+TKUE., then row I has been
used as a pivot row and should
not be used for substitution.
1f BLIM(I) is .FALSE., then
row I is a candidate for a
pivot or a substitution.

IELROW - The row number of the current
pivot row.

JEL - The column number of the
current pivot column.

IPIV - An array which orders the pivot
rows for the back-solver,
JPIV - An array which orders the pivot
columns for the back-solver,
JSTAT(I) - The number of non-zeros in the

I«th column. This status vecrtor
is used by Minimum Row/Mirnimum
Column pivot strategy, for
@xample.

If the diagonal pivot strategy were used, there would
be no need for JSTAT or ELIM; in this case, IELROW and JEL
would always equal the value K. DBut in more complicated
strategies, these variables are neceseities.

IPIV and JPIV are used so that no row or column ex-
changes are necessary in a pivoting strategy. Their
utility is described furthar in the description of GAUSSBX,.




Clear ELIM
flags to .F.

GSSGEN  Construct col-
umn status
(JSTAT) if
required
"DO" K=l b
v through N
¢
Select Rows: IELROW
Pivot coor-
dinates from Col: JEL
strategy
r
Fetch
[ FETCH]
*"pPIVOI"
[
Divide row
and b; by [ROWDIV]
PIVOT
¥
Delete
Pivot [DELETE]
Element
ELIM(IELROW)=.T.| If column counter,
IPIV(K)=IELROW JSTAT, is used,
JPIV(K)=JEL reduce each column
1 J of IELROW by 1.
IROWS=#rows found Find rows

where ELIM(I)
JCOL(I)oxrow number =,.F, and have
' of such a column J =
row JBL

Fig. B-6. Seazch Portion of GSSGBN




"DO" L = 1

— through

IROWS
T

ISUB=The row into ISUB =
which the pivot JcoL(L)
row (JIELROW)
will be Y
substituted

Fetch

value at [ FETCH]
A(1ISuB,JEL)

Delete
value at [ DELETE]
A(ISUB,JEL)

}

Substitute
pivot row
1nto row ISUB
as in Egs

(s) and (6)

L_/Store new
(x) [STOR£1
L aiJS

4

Fig. B-7. Substitutional Portion of GSSGEN




GAUSSBL

The back solution of the Gaussian Elimination is
done by the CAUSSBX subroutine. 7The operation corresponds
to Eq (7). In the rforward solution, the ordering of rows
and columns is stored in the arrays IPIV and JPIV, The flow
chart for GAUSSBX (Fig. B-8) shows how the proper x; values
are computed. In the example of Fig. B-1, if the second row,
third column were the last pivot coordinates, then IPIV(N)
and JPIV(N) would be "2" and "3" respectively. The first x;
to be sc ved would thereforxe be x3. Had the rows and columns
been interchanged, x5 would have appeared in the last element
in the x vector. Thus, the us:2 of row and column pivot ar-
rays saves much extra programming and execution time re-

quired by interchanges in A and x.

Subroutine Summary
The calling sequence for a driver program for these
subroutines would be as follows:
PACKl - To store the compressed data.
GSSGEN -~ For the forward solution.,
GAUSSBX ~ For the back solution.
There are other subroutines used in the MFP program; but

their structure is very simple, and reference to the

listing would be sufficient for further study.




.

GAUSSBX 3
A,/) "DO" K = 1
! thxrough N i \

"

[ KK=N+1-K
IROW=IPIV(KK)
| JCOL=JPIV(KK)

X(JCOL) =
B(IROW)

KX=K-1
; "DO" L=1,K% j

‘ f :
i JJaN+1-L

J=JPIV(JT) A Y

Fetch
[ FETICH] ///'value -//414,__
. (IROW,J)

( ¢
X‘Jocou) = ’—I

— CoL) - bl
va?&\i x ))((J)

|
@ . ST e
|
|

Y
f ' \
Return
| - J
: ( Fig. B-8. Flow Chart for GAUSSBX
g
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Pﬁk Appendix C

| Table C-I
Core Storage for Gaussian Sparse Solvers

Program Subroutine Length (Oc<al) Data Length (Octa).)

YSMP? - SORDER 411
NSRORD 151
SSFAC 351
NSNFAC 321
NSBSLV i4l
ZEROSYM 317

Total: 2134 20207
SIMULT - SIMULT 432
PIVSEL 100

Total: 532 17662
MFP - FETICH 31
ROWDIV z2
DELETE 57
GAUSS 56

#1 GAUSSF - Diagonal 413

|
N

f { STORE 134

I

{ Totals 757 16666

#*2 GAUSSFP - Partial /17

Total: 763 16666
#3 GAUSSFT - Wull 70
E Totals 1034 16666
: 4 GAUSSMM - Min Row 771
! Min Col
}
! Total 133s 16666
| #5  GAUSSML - ™in Row 601
Max ale

Totals 1i48 16666
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Fﬁ Appendix D

Standard Test Matrices

The following matrices (Figs. D-1 through D-4) were

used in the initial test phase of this thesis.

Specifications

In all cases, the rank, n, was 100, and all elements

of the constant vector, b, were unity.

- r~
| 10 3_ -4 5. 3 -4 ]
‘ 2 -2
! -}, -1\
|
| S 9

{ 3
L -1 "2 10 o -1 2
Fig. D-1, Test Matrix 1 fig. D-2. Test Matrix 2

§\ \\\

N -10°1 2] i 1j

"2 L4

Fig. D-3, Test Matrix 3 Fig. D-4. Tast Matrix 4
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Appendix E
Intermediate Test Matrices

This appendix contains the descriptions of each of the
next eight test matrices and tables of performance for five

sparse solvers.,

Degcriptions of Intermediate Test Matrices

Test Matrices five through twelve were all of size
n = 100, with non-zeros at 3 to 5% sparsity. All values
ajj and the elements of b for each matrix were randomly gen-
erated by a standard function in the CDC 6600 computer. In
some cases, the coordinates of the a;

J
randomly; thus, not only were random values tested, but also

values were generated

:andom structures,

Test Matrices 5,6,7 Three different tridiagonal

matrices.

Test Matrix 8 - An arbitrary tridiagonal
matrix with an additional 2%
non-zero structure arbitrarily
placed within #5 diagonals of
the main diagonal.

Test Matrix 9 ~ Similar to Test Matrix 8 ex-
cept the 2% extra non-zeros
are contained within $10
diagonals.

Test Matrices 10,11 Similar to Test Matrix 8 ex-

caept that the 2% extra non-

zeros are contained within

415 diagonals.

H

Test Matrix 12 - Similar to Test Matrix 8 ex~
cept that the 2% extra non-
zexros are arbitrarily assigned
throughout the entire matrix
structure.




Performance fables

The measured criteria contained in Tables E-1 through
E-V are the order of magnitude of the average scalar re.id-
ual error (Eq [29]), the execution time, tie number of times
a fill-in value was generated, and the number of elemants
which the Gaussian algorithm deleted. In the case of Gauss-
ian Elimination algorithms, the normalized pivot elements
were also deleted because they were undeistood to be exactly
1.0 in value,

Table E-I
Intermediate Tests with SIMULT

Test Time

2rix Exror Fill-ins Deletions {Seconds)

{ #5 1072 97 295 0. 26
#6 1074 97 295 0.27
#7 10-1 97 295 0.30
#8 1078 336 734 0.33 |
#9 10°° 987 1385 0.66 3
#10 1078 871 1269 .64
11 10710 1247 1645 0.69 |
2 1011 2168 2566 1.70 |




Tabl? E~I1

i Intermediate Tests with MFP2 (Partial Pivoting)

)
Test . Time

Matrix Error Fill-ins Deletions (Seconds)

#s 10-14 59 258 0.36
#6 10-14 61 260 0.39
#7 10-13 58 257 0.36
#8 10-12 291 512 1.02
#9 1012 699 721 1.82
#10 10-13 930 874 2.19
#11 10713 1044 946 2.46
#12 10~13 4038 2405 21.11

{ Table E-III

Intermediate Tests with MFP3 (Full Pivoting)
ME::Ix Exrror Fill-ins Deletions (S:i::ds)

#5s 101 232 30s 0.73
#6 10~ 233 305 ©.76
*7 10*! 218 302 0.74
#0 10° 1149 827 3,40
#9 10° 2002 1267 7.77
#10 10° 2153 1105 7.79
1 10° 2129 1409 9.17
12 107! 3815 2177 26.82

~

w
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Table E-1IV
intermediate Tests with MFP4 (Min Row/Min Col)

Mz::Ix Error Fill-ins Deletions (Szi::ds)

s 10°14 o 199 0.37
#6 10-14 ) 199 0.37
*7 10°13 199 0.43
8 1071 207 464 1.00
09 10° 792 936 2.38
#10 10+4 951 958 3.06
#11 failed - computed an infinite operand

#12 10*! 2117 1750 9.55

{ Table E-V

Intermediate Rests with MFPS (Min Row/Max Element)

":::Ix Exror Fill-ins Deletions (S:i::ds)
s 10°14 59 258 0.44
*6 10-14 61 260 0.45
7 10713 s8 257 0.45
#8 101 249 504 1.03
¢ 10° 629 771 1.90
#i0 10%! 932 1051 2.79
a1 10° 717 779 2.10
"2 10° 1713 1452 6.35

()
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Appendix F
[
A
t with Flapking Dj
The following matrices (Figs. F-1 through F-8) were
used in the final test phase of this thesis.
sSpscifications
In all cases, the rank, n, was 100, and all elements of
the constant vector, b, wexe unity.
(
Fig. F-1. Test Matrix 13 Fig. F-2., Test Matrix 14
20 4 0 9 -2 B
3
O\\\\\
\ 2
- (o)
o
4
1(, | -1 o 0o 3 '2%
Fig., F-3, Test Matrix 15
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Fig. F-6, Test Matrix 18
Fig. F-7. Test Matrix 19




Test Matrix 20

F-e .

Fig.
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? Appendix G

Gaussian Eliwnin:tion Program Listing

Tris Appendix contains the listing of the Gaussian
Elimination Sparse Solver called "SMART." This particular
program is not the production model; the reader will noie
that the sparse matrix is read in from a permanent disk file
called "TAPEZ." Tne only significant difference between
this listing and the listing of the _roduction mndel is that
all refsxernces to lcogical unit 2 have teen replaced by list-

directed "READY comm~-nds from data cards.

RS T
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