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Preface

This report is the summary of my studies in the area

of sparse matrices and the results of the programs which I

wrote. Although I conlined my analyses to Gaussian solution

schemes, I wrote the text so that a follow-on student can

easily apply some of my recommenda.tions and procedures to

other sparse matrix techniques. I also detailed the think-

ing which I used to build my algorithm; such an algorithm is

not widely used for sparse matrix solutions because of limi-

tations of many popular computers. But because of some

novel techniques which I used and the strong arithmetic capa-

bilities of the AFIT CDC 6600 Ccmputer, I feel that my algo-

rithm may be of great use to engineers and physicists.

I wish to acknowledge the guidance of my laboratory

sponsor, Capt. Carl E. Oliver of the Air Force Weapons Lab,

who offered this thesis topic to AFIT and who helped me to

clearly define the thesis objectives; one of Capt. Oliver's

co-workers, Mr. Mark Gatti, provided excellent and timely

•u:pport in part of the test phase of this project. I fur-

ther wish tC thank my thesis advisor, Prof. Bernard Kaplan,

whose vast experience in Numerical Analysis was a most valu-

able source in the formulation of my algcrithm. Finally, I

wish to acknowledge the outstanding performance of my typist,

Mrs. Olivia Davis.

Michael F. Poore
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Computer "roaram Infcrmation

The following is a summary of the programs developed

by this student as part of this thesis. The algorithms of

these programs are directly suited to the CDC 6600 Computer

at the Air Force Institute of Technology.

All of the programs are written in CDC FORTRAN Extended,

Version 4. Listings of these programs may be obtained from

the AFIT Computer Archive, AFIT/AD, Wright-Patterson AFB,

OH, 45433.

1. MFP - A Gaussian Elimination sparse matrix
solver with various strategic pivoting schemes.

2. K•PTH - A Gaussian Elimination sparse matrix
solver with a consecutively calculated pivoting
strate gy.

3. MFPOP - The same program as MFPTH except that
the user can clhoose either the computed pivoting
strategy or an a priori strategy depending on
the circumstances of his particular problem.

4. GEBIT - This program represents the same
capabilities as MFPOP except that a new
packing scheme is used.

5. SMART - The same program as GEBIT exrept the
modular subroutines used in the prcgx m devel-
opment are replaced by program statements
within the spaxse solver itself. This program
is the production model. of the Gaussian Elimi-
nation al~orithm developed in this thesis.

A userts guide to the program SMART can be obtained from the

AFIT Physics Department.
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GEO/PH/77l 3

Abstract

A comparison is made of the merits of three popular

alg.irithms for direc t solutions of large, sparse matrices:

Gaussian Elimination, LU Decomposition, and Gauss-Jordan Re-

duction. The last two algorithms are used in exinting

sparse matrix solvers at the Air Force Weapons Lab, Kirt'-,nd

AFB, NM. A mathematical theory discussion explains the al-

gorithms and predicts their performance for arbitrary and

strongly structured matrices. The performance comparison

involves a wide range of problems practical to technical

study at the Weapons Lab. Particular emphasis is placed on

solution accuracy and the efficient use of core space. The

same test problems are used to analyze the Gaussiani Elimina-

tion algorithm programmed by this student. From a ,study of

the performaoce of several Gaussian solution strategies, a

new strategy is developed which offers the user a range of

options for his particular programming needs, The salient

points of this strategy include some stability features of

partia.'. pivoting and some array optimization similar to min-

iu•um row/minimum column pivoting. The final Gaussian Elimi-

nation program is enhanced by a new packing scheme which is

highly [uited for the CDC 6600 computer: many ay :ays can be

compacted into a single array by subdividing the long com-

puter word structure. A final •ualitative comparison is

oresented from which an optimal solution method is proposed

mid further study recommended.

vii



DIR3CT SOLUTIONS OF LARGE9 SPARSE LINEAR SYSTEMS

1. Introduction

Classical Linear Algebra defines a ulinear system" as

one whose model can be represented by the matrix equation

A a k (1)

where A is an On-by-n" system matrix, i is & column vector

of solutions, and k is a column vector of constants. A

*sparse* system is understoxod to be one whose non-sezo ele-

ments of the A matrix are fews no more than 55 (and typic.;1.-

ly less than IS) of the total namber of possible entries.

lase matrices are usually associated with systems whose

sise (c: "rank*) is very large (about a thousand).

Large, sparse systems of equations come as a result of

work in many fields: physics, engineering, and business man-

agment. In cbhni•s&l fields, a frequent use of sparse

matrix techniques is in the approximation of the scoutions

of -.diferential equations. Frequently, the variables of

differential equations may not be msearable, or tho geometry

of mm problem may not be described by simple, algebraic

fun•tionsl under these kinds of conditions, classical tech-

nique for solving differential equations cannot be ase*d an

apprdxmation method is necessary.

Toe following is an iliustration of bow a system (whicb

1



happens to have a straightforward analytic solution) can be

solved by a finite difference technique which yields a

spa•se matrix (Ref 11s149, 233-261).

Given. A very long rod whose cross-section is a unit

square, and whose heat generation is uniform from within.

Problem, To solve for the temperature distribution along

the x-axis for the indicated boundary conditions.

Solutions The governing partial diffetrenti&l equation

is

i2u&2
+ - X- 0 (2)

where Ou" is a normalised temperature parameter. The

boundary conditions are

u(ly) a 0 u(xl) a 0

(3)
44Oy) 0 0 x9O) a 0

The exactO anlytical solution is

3m m1 32L * .)~ coshf2n~l) (-T/2)x1 4w3 "(2n+]L)3 coh[ (2n.]•;i/2]

To approximate the partial differential equation, a

set of ndAL& pVints (Pig. 1) is defined in the region of

interest. The distance between adjacent points in the x

mW yp directions are bx and AV respectively. The partial

dLfferential equation is approximted in tlw following

2



y

/ (1,4) .(2,4) .(3,4) .(494)

S//1(1,3) .(2,3) .(3,3) .(4,3) u,,O

(1,2) .(2,2) .(3,2) .(4,2)

Fig. 1. Nodal Foint distribution (From Ref 11:255)

About any node U(mn),

j2. ; " -It.'- 2umn "+_u+ ,n(5

&x2 (,&X)2

and

I2au n nn- - 2%.n * u.,C()

By substituting Sqs (5) and (6) back into Eq (2), and allow-

ing Ax - Ay, the following equation results:

~mm~n na,.j ,~ u~,~l *(tax)= (7)""- u~ ",,n-, * 4%n,n "%Vn+n• ""n~itn " A) 7

by Invoking characteristic symmetry of these approximations,

and noting that in this case Ax a 1/4, the sparse system

depicted in Fig. 2 is the result.

3
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It is important -.o note that to solve for only four

unknown nodes on -the x-axis (as the problem stated), it

t&kes 16 equations. Far more rougher approximations yield

less accurate results; Fig. 3 demonstrates the effects of

an approximation with Ax v 1.0, 0.5, and the chosen 0.25 of

this example. Clearly, as AY gets smaller, the nodal solu-

tions are distributed more closely to the actual analytic

solution. As a consequence of shrinking the size of 6x,

however, the number of equations increases very quickly.

Thus for a near-perfect approximation, a very large number

of equations is necessary (hence the development of larue,

sparse matrices).

In the above example, the curve for Ax a 0.25 is indeed

very close to the "exact" solution (Fig. 3)1 this "good* ap-

proximation may suggest that only 16 equations are needed

for a reasonably accurate solution (as opposed to the 1000

equations suggested above). However, had the geometry been

more arbitrary, the nodal elements of 16 equationp would have

not provided adequate detail at the boundary. Fig. 4 is pro-

posed as such an example. To attain a good approximation, a

vast increase in the nodal density is required. In any case,

the use of sparse matrix approximation for the problem of

Pig. 4 is much preferred to an analytic solution.

A frequent consequence of sparse matrix construction is

that the non-sero elements are distributed in an predminant-
ly diagon~t structure with flanking diagonals. The system

in Pig. 2 illustr&tes a tridiagonal core structure with two

6
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it')2,4) .(34) (4 4)

//

(1,2) . 292) .(-3,2) ,2)e

Pig. 4. Sample Problem with Odd Geometry

flanking diagonals each displaced three diagonals away from

the main diasonal. These "banded" structures occur often in

physics and engineering problems.

Although linear algebraic equations are theoretically

more easy to solve than differential equations, becauso of

the potentially vast number of equations, the system must be

solved in a digital computer; the problem is to handle the

characteristically large amunts of data as effectively as

possible. As an illustration of the problem, a system of

sgie 1000 would require a million locations in the computer

core for data alonel since 500,000 locations is a typical

6pper bound for most large computers, the entire & matrix

could not be stored. Therefore, packing routines must te

written wht•c- need to store moXy the non-sero values of •1

( in this case, a sparse matrix of sire 1000 at 0 sparsity

7



would need no more than 50,000 locattons to pack the non-

zeros,

The actual solution method aust also be chosen to main-

tain sparseness as much as possible as the program runs. A

result of the classical inversion solution,

-el

is that el is very dense and will demand core in excess of

that available.

Even with an ideal packing scheme, one cannot assume

perfect algebraic accuracy in any computer; the conception

and growth of errors is a very important consideration in

the construction of the sparse matrix solver.

Another factor bearing on the problem is the growth of

the & matrix as it is computed; new non-zeros (called "fill-

imu) may be manifested andi, in some, circumstances, force the

data storage requirementns beyond the limits allowed.

The pursuit of the solution to this problem is the

theme of this thesis.

Thesis Objectives

The following objectives were defined for this project

as a result of the iotivation of the utility of finite dif-

ference techniques and the guidelines of the problem state-

meats

C---rimon of 34-|ti- y S-== Matrix Solvers. Two

sWprse matrix algorithms, already In use at the Air Force

Weapons Laboratory, were to be compared. The desired

S



outcome was to find those classes of problems which each al-

gorithm solvks the best. Tho programs compared are The Yale

.Sgarse Matrix Packaoe by Sherman (Ref 14) and a program

called "SIKULT" by Key (Ref 9).

A New Packino Scheme. A third sp•,"e matrix solver was

programmed as part of this thesis with which the existing

programs were compared. A new packing scheme was developed

in an effort to exploit the sparseness of the test matrices

and more efficiently use the allotted core storage.

The result of the accomplishment of these objectives

was a choice from the three programs of the "most desirable"

sparse matrix solver as a computational tool.

There were three significant measures of performance

readily available on the computer printouts; one oti-er crite-

rion was rather intangible, but nevertheless, important.

The criteria used in judging the sparse matrix solution

methods were

1. Accuracy;

2. Core storage requirements;

3. Ixecution time;

4. The degree that a routine met the user's needs.

me fourth criterion was important in that the outcome of

the thesis pertains to engineering problems and not to ma-

trices which are spawned by mere academic curiosity.

e The performance of the sparse matrix routine developed

as part of tbis thesis was compared to the existing sparse

9



solvers: the solutions given by Shernan and Key's programs

were used as a "performance frame o0 reference.W

The analyses of this thesis were limited to the per-

formances of the three routines on strictly non-singular,

square arrays. The best particular solution for 21 was the

goal of each computer program as opposed to the eigenvalue

problem.

There are two basic methods cf spersa matrix solutions

iterative and directi each of the programs under study was a

direct sparse matrix solver. Furthermore, the particular

direct methods analyzed were the Gaussian Elimination, the

LW Decomposition and the Gauss-Jordan Reduction algorithms.

These algoritbas were tested against various structures of

general sparse matrices; the ramifications of special struc-

tures (such as symmetric) were not covered.

Sumtios

The testing of the algorithms against the indicated

standards involved practical problems; therefore a certain

broad class of problems made "p the bulk of the tests. The

example of Fig. 1 yielded a "well-conditioned" matrix (de-

fined in Chapter UI) which was also diagerally dominant and

banded. While it is invalid to assume that all practical

sparse matrices are similarly structured, it was assumed

that very badly conditioned, near-singular matrices would

.( not generally ieed to be solved by these programs in

10
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practice.

It ig also important to assume that the computer into

which a future user may load any of these programs is the

same make as that used to produce the performance data.

Naturally, this assumption implies the ability to duplicate

the results of this thesisl but the new packing scheme devel-

oped as part of this thesis relies heavily on the word 3truc-

ture of the CDC 6600 Computer (common to both APIT and AFWL.).

Any claims for performance based on the experimental data of

this thesis must be referred to the hardware superiority

which the CDC 6600 computer has over other makes.

Because of practical lizitations, the Yale Sparse

Matrix Package program had to be run at Weapons Lab, while

SMB.LT and the third algorithm were run at APIT. To the

greatest extent practicableg, however, the test matrices were

standardized so that the results of all three programs were

mutually meaningful.

The programming at APIT was budgeted $700 to complete

the proJect. To efficiently handle the test matrices, the

test data were stored on permanent disk files and read into

each sparse solver from a local program file insteae of from

cards. (Naturally, the final production model reads all

data from cards.) Some matrix teats were simple, dense

matrices with known solutions# these tests were used to ver-

SifUy the operation of the packing schumes and the solution

logic.

11



The standard test matrices were all of size 100; this

size was large enough to represent a "spaxs" system solix-

tion, but not too large as to prohibit execution on the core-

limited INTERCOM terminals. (The final variations of the

thesis computer work were scaled up to handle larger sizes

once the essential comparisons and tests were accomplished.)

Once the basic logic of the new sparse solver was veri-

fied, modifications were applied to test various configura-

tions of solution strategy as suggested in the Mathematical

Theory (Chapter II). Pinally, once an optimimum algorithm

was found, a new packing scheme was incorporated as well as

other modifications to make the program execute more effi-

ciently.

Thesis Preview

The text of this report contains the mathematical

theory required to understand and complete the project, the

descriptions of three phases of tests, the method for choos-

ing the optimal program, and a section of conclusions and

recommendations suggested by the thesis work.

12



I. Mathematcal Theory

To understand the criteria for choosing the be•t Gaus-

siafn sparse mautrix algorithat, it is necessary to first con-

sider the algebraic principles used for linear systems as if

they were applied to an ideal problems "perfect" mathemati-

cal accuracy and no computat.oonal limitations. Thk next

consideration is the effect of the creation and propagation

of errors as tih mathematical ideals are constrained by

practical limitations. Finally, the scope of the problem to

be solved should be considered to decide if a particularly

involved solution tecanique is really required.

The mathematical theory discussed will therefore cover

the tirea principal Gausnian solution methodu, the causes of

errors, some strategies which ittempt to minimize the ef-

fects of note errors , and the need for sca).ing based on the

context of the proolem to be solved. A suinary will include

some quDlitative predictions for the Gaussian a"gorithas

un4.r comparison.

G~ussian Solutions to Linear Svitems

Three algorithms used to solve Eq (1) are the Gaussian

Elimination, the LU Decomposition, and the Gauss-Jordan

Reduction.

b...,.4LJ U1naS-t All of the three solution

schemes have their roots in Gaussian Elimination. In the

basic form, Gaussian Elimination is a series of n forward

13



operations which transforms & into an upper-triangular ma-

trix q whose main diagonal elements are urity; then in the

back aclution, a is computed. The terminology used to de-

scribe the Gaussian forward process is as follows:

aij = an original element of •.

k(k)
ai- = the value of &ij computed during the

k-th operation.

uij a an element of 11; or, a(n).

bi a an original element of k.

bi a the value of bi computed during the
k-th operation.

hb = the fin&l v&J.ue for bi.

The forward operation transforms. q (1) into

U.t* (9)

The following is an e3:ample of the nomenclature which

describes an intermediate step in the forward process#

1 u 1 2 u 1 3  u 1 4 - - - Ul n  x1 bl

0 1 u2 3 U2 4 - - - u"m x2t

(2) (2) (2) (2)
0 O &33 a -- - a x3b (10)

C 0 0,3 a" - -- - ,aft X4  b,

( 0 ( ) ( 2) 2 (2

14



The sub-matrix enclosed by the heavy line is referred

to as the "k-th derived set"; in the preceding exawsiple, the

second operation has just been done. The ar'.a to the left

of the diagonal and to the left of the sub-matrix is strict-

ly zero; the area to the right of the diagoinal and above the

sub-umtrix is the partial set of elements of U. The com-

puter algorithm for the k-th derived set is

(k-.) k-1,2,...n-1
(W) (k-1) aik (k-i)a... a. -aij W a'ij (k-1) j

"ak i-k+1,....n (11)

a I ink=l,2g. .1n

and

(k-1)
b(k) - (k-i) N__ _ (k-I

b b 1 (k-1) a ik luk+l,,o..n

akk 
(12)

* bi

(k-1)
akk

The term i-1) is the diagonal or "pivot" element used in

the k-th operation. The back solution of Eq (9) is the fol-

lowing computer algorithms

Xi bn in

(13)

M bi - ujj . xj

15



The preceding applies to a dense matrix; for a sparse

(k)
matrix, however, for tki so elements, &ij 9 wh.ch are zero,

no time-consuming arithmetic operation is necessary. Fur-
.(k-I)

thermore, the case may arise in which akj is zero but

(k)
&j) is computed to be non-zero. This manifestation is

called "fill-in." Additionally, a zero n&y appear on the

diagonal; appropriate row or column interchanges can be usied

to prevent & division by zero. In fact, the proper choice

(k-1)
of a .may be dictated by many criteria. The sparse

Gaussian Elinination and a study of pivoting strategies is

programmed by the student as part of this thesis.

LU Deconoosition. The LU Decomposition method makes

use of the "LU Theorem" (Ref 7:27) which states that the ma-

trix & can be factored into two unique matrices, k and !I L

is a lor-triangular matrix, and Y is an upper-triangular

matrix whose diagonal elements are unity. The utility of

this theorem is that k and V can be determined without ref-

erence to the constant vector, . Therefore, onca & is fac-

tored, any set of vectors k will yield immediate' Iniqtte

solutions for the corresrw~nding set of 1.

The factorization of A into L and SL represents two tri-

angular systems (Ref 7:29)t

and

2 use a computer algorithe to factor & and to solve Sqs t4)

amd (lot one can use the following prcdure I



S k (Given) (1)

Premultiplication of • by a n-by-n identity matrix gives

Ma .Ik (16)

Instead of involving Z in any of the derived sets, as in

Eq (149 the algorithw should apply arithmetic operations to

the identity matrix: multiplication of a row by a scalar

should be carried through the row of J, and manipulation of

elements through row addition should create new elements be-

yond the diagonal of j. As a result, the matrix I will be

transformed into a general matrix G. It can be proved that

C is a lower triangular matrix. Therefore,, Eq (16) becomes

Ila S& (17)

Premultiplication of both sides of Eq (17) by g_- yields

_ - (2--) (18)

which further reduces to
•-l = . ()

By uniqueness of the LU Theorem, one therefore concludes

that

271 n 16(20)
Thus the computer algorithm really solves Eq (16) as

L7 'k (21)

When k is entered into the computation, Eqs ( 1A) and (15)
become

k 0 Y (22)

-•L'b (23)

17



Eqs (22) "nd (23) reduce to a re-statement of Eq (9) since y

is identical to •*. The factorization of A and the solution

for y is the same as the forward Gaussian Elimination pro-

cess; the back solutions in both Gaussian Elimination and LU

Decomposition represent the same procedure.

Any techniques which aid the forward process of Gaussi-

an Elimination (such as row and column interchanges) can be

used with LU Decomposition. In theory, therefore, Gaussian

Elimination and LU Decomposition give the same results if

the same pivoting strategy is used.

In the context of computer operations, he LU Decompo-

sition of A can be stored for future use for any number of

particular solutions for a given any •. These subsequent

solutions represent a considerable savings in computer time.

However, extra space must be provided to store I as it grows

into 2. For a "one-timen solution of Eq (1) the LU Decom-

position algorithm may not be appropriate.

The LU Decomposition sparse matrix solver is used by

Sberman (Ref 14) in the Yale SDarse Matrixa E~gg,, (YS)P

IMMU2o• WaS Reduction. The Gauss-Jordan Reduction be-

gins with the same matrix setup as in Gaussian E.imination..

Tl.., 4ubatantial difference is that in the k-th operation,

all elements above and below the diagonal (in the k-th col-

umn) are eliminated. The computer algorithm for the sub-

matrix of a and the computation of the elements of )a are the

same s •qs (11) and CR2) except that the range of the index i

( is from 1 to n (Ref 13s4OO,40). The geomatry of the k-tb
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derived set, therefore, is not a shrinking square sub-matrix

which collapses about the diagonal (Eq (10]) but rather a rec-

tangular sub-matrix whose width collapses from left to right.

The following is the nomenclature for the second derived set

of Gauss-Jordan Reduction:

(2) (2) (2) (2)
1 0 & a14 - - aln X1 b2

(2) (2) (2) '2)

0 0 Ia33 a34 -- a3n x3

I

(2) (2) (2)
lof a3 an4 " "i•.~ Xn bnJý _

To the left of the dotted line, an identity matrix, ;, is

taking shape. Thus, only onv forward pass of n operations

is needed to solve for I I

S* (25)

(The constant vector, jr"* in Eq (25] is not the same final

constant vector in Sq [9].) It may first seem that Gauss-

Jordan Reduction is the most efficient way to deal with iin-

ear systems; however, for a dense matrix, Gauss-Jordan Reduc-

tion requirez almost 50S more arithmetic oporatiohs than

Gausajan Mliaination (Ref 133401).

A Gauss-Jordan algorithm usually takes less space in a

computer than any Gaussian Bliaination program. Bkt in the

solution of some problems by Gauss-Jordan Reduction, the

..



46 exponents of the computed data tend to grow; this growth, in

a large system, becp..,es intolerable even in the best digital

computer. Pivoting strategies can be applied to Gauss-Jor-

dan Reduction; however, the effects of a particular pivoting

strategy are often different in the Gauss-Jordan algorithm

as compared to Gaussian Elimination. John Key's computer

program "SIMJLT" uses the Gauss-Jordan algorithm (Ref 9).

Errors in Solution Systems

The most important consideration in the solution of a

sparse system is that it represents an approximation of some

physical system. But to propvrl.y analyze the errors spawned

in the sparse computer solution, it is assumed that t#e un-

certainties in the given elements aij and bj are zero before

the operation begins. (The uncertainty of an arbitrary

quantity, u, will be annotated as "6u.")

The kinds of errors which have a direct bearing on the

solution of sparse systems are round-off error, truncation

error, instability, and fill-in proliferation.

raond-off Errors. In a typical digital computer, the

product or quotient of a multiplicative operation appears in

a double-length accumulator. Before the contents of that

accumulator are stored in a data location, the lower order

digits are rounded off. For floating point numbers in the

CDC 6600 computer, the mantissa of a number cm be computed

with accuracy up to 14 decimal places provided no other

error is introduced,

V0
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Truncation Error. Before two numbers can be added in a

computer, the smaller number must be right-shifted so that

the exponents are normalized. If two numbers whose expo-

nents differed greatly were added, the lower significant

digits of the smaller number would be lost; the accuracy

once contained in the lost digits would not be carried over

into the sum.

One may infer into the discussion of round-off and trun-

cation errors that the smallest algebraic error in a solu-

tion scheme may be obtained by minimizing the number of mul-

tiplicative and additivwt operations.

Insability. The "instability" in the solution of a

system is a qualit•.tive •teasure of how algebraic errors have

grown to the de tri•a•rt .cf the final answer. The following

example shows that errors from unstable systems result from

the type of algorithm used and not the computer itself.

x
Z -- (the algorithm) (26)

y

If x - 1,0 and 6x a O then what are z and 6z if there are

two values of y and 6y ?

Caue Is Yl 0.0100, 6Yl a 0.0001
(27)

8 .100, and 6z a 2.0002

Case I's Y2 1 .000, & 2 " 0.001

X a 1, and 8s 0.002

In Case 1, x might be stored as 97.9998 (about a 2% error),

C and in Case Il, x might be stored as 0.998 (only a O.2 or-

tor). Rven though 6y 2 was larger than 6y 1 , division by the
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smaller number (yl) amplified the error much more than d.r-

sion by the larger number (y2)- Even though truncation and

round-off errors themselves are on the order of 10"14, J'r a

small number were used as the pivot element, the result .&g

computation could contain a substantial net error. In this

regard, the algorithm of Eq (26) would be deemed relatively

unstable if it chose y 1 and relatively stable if it chose Y2 "

Accordingly, an algorithm which actively seeks the larger

numbers for pivot elements is said to be more stable than an

algorithm which ignores the relative sizes of possible pivot

elements.

fStrs. Matrix Fill-in Errors. In a large sparse matrix,

it is important to store only the non-zero elements of A; if

a fill-in value is calculated, there must be room available

(k)
to store the new aij . A little fill-in is normally accept-

able, but a large amount may exceed the storage capability

of a digital computer. More importantly, with the prolifer-

ation of fill-in, the algorithm is faced with many more

arithmetic operations (respilting in more algebraic uncer-

tainty). Worse yet, in some problems, the fill-in values

are relatively small numberst and the possibility exists

that this kind of fill-in may become pivot elements. Further

errors due to instability may result. Thus a choice of piv-

ot elements which vd.anmises fill-in may reduce error growth.

Many pivoting strategies have been developed which at-

tempt to resolve these types of errors.

...................)i......



Pivotina Strateaies

A pivoting strategy is a part of a computer algorithm
(k-i) (k-i)

which chooses an element aj( to be the new ak (the

pivot element) based on some desired outcome. A demonstra-

tion for the need for strategic pivoting is found in Appen-

dix A. The following are three examples of the most com-

monly used strategies for general matrices.

Diaoon i Pivoting. Diagonal Pivoting strategy is real-

ly no s'crategy at all. Each of the n operations chooses the

diagonal element for the k-th pivot without regard for the

results of any previous operation. Hence, instability is

possible. Moreover, if a zero were on the diagonal, the

computer operation would halt abruptly.

( GQussian Partial Row Pivoting. The Partial Row strate-

gy goes through the rows consecutively; the largest element
(k-1l)in the pivot row is selected as the new akk . A column

interchange in the & matrix and a re-arrangement of the com-

ponents of • are necessary to get the pivot element onto the

diagonal. The advantages of Partial Row pivoting are that

such an algorithm can handle any non-singular matrix, even

if a zero were to appear on the diagonal, and that numerical

stability is enhanced by use of the largest element. There

is, of course, the requirement for extra programming for the

column manipulation.

Gususian Pull Pivotina. The Pull Pivoting strategy

searches the entire submatrix of & for the element with the

largest absolute value. In this case,. a set of row and
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column interchanges may be necessary. Full Pivoting is con-

sidered to be the most accurate pivot scheme for dense ma-

tricesl however, not only must additional programming be

done for row interchanges, but considerable execution time

will be spent searching the remaining submatrix to find the

largest value.

The preceding pivoting schemes are those which are

classically associated with dense matrices; while pivoting

for stability is a good idea, complete disregard for other

factors common to sparse matrices can lead to massive errors.

Popular sparse pivoting strategies are generally classified

as "a priori" or "local" strategies.

A Priori Strateov. An a priori scheme is one in which

the overall strategy for the selection of pivoting has been

decided for the entire forward proceso before any operations

are done. The most common usage of an a priori pivoting

strategy is the c•se where a system is so vast that it can-

not completely reside in the computer core and must be

stored on tape or disk. The row* are permuted so that they

appear in increasing size. The pivot can be chosen as the

first non-sezo element of the row (:,ikely to be the diagonal

element), A priori schemes can be used for some special

cases where the entire &rray does reside in core;

~AI Straten . A local pivoting strategy checks the

psesent status of the remaining sub-matrix of & before the

k-th operation; the pivot element is chosen according to the

( dictates of the strategy, Local strategies are better than
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a priori strategies in preserving sparsity or operation

count (Ref 6s505). The following examples are some of the

more popular local strategies.

1. Hakowitz's Strategv. The Markowitz procedure
.(k-1)

chooses the pivot element as that element (-ij for which

the product of the number of non-zeros in the column and the

number of non-zeros in the row is a minimum. To scan a

large submatrix for the appropriate pivot element would take

considerable time. This scheme is meant to minimize the

number of arithmetic operations and immediate fill-in. At

no time, however, is the absolute value of the pivot consid-

ered for numerical stability.

2. Minimum Row/Minimum Column. A scheme which is

slightly less effective than the Markowitz strategy but more

simple is the Minimum Row/Minimum Column technique. The as-

signment of1(k-) is given to that element in the smallest

.olumn of the smallest row in the remaining submatrix.

Again, no checks are made for numerical stability.

3. Minima Row/Maximum Blement. A scheme similar to

Gaussian Partial Pivoting, the Minimum Row/Maximum Element

technique seeks the largest element of the smallest row in

the remaining submatrix. A compromise has been made between

the number of computations and stability.

There are many other local pivoting strateries (Ref 4is

92993) which have been tested; as with these and all cf the

previously discussed strategies, a dilem arise*. Ideally,

it would be desirable to minimise fill-in, maximise stability,



and compute the minimum number of calculations as necessaryi

however, these three criteria are not all mutually exclusive

of each other. For example, the Markowitz strategy pivots

for computational reduction without regard to stability;

Full Pivoting acts to stabilize without regard to the amount

of calculation or fill-in. Figure 5 shows a philosophical

view of the dilemma. If I
max

the "cost" of one eriter- Stability

ion were linked with the $
length of the "line"

joining the criterion and

the actual strategy used, CompUWtation Fill-

attempting to shorten one'.0
line (to improve perform-... Fig. 5. Pivoting Dilemma

ance in that respect)

would stretch out the other two, and hence the "cost" would

increase. The "cost" would be measured in a rise in comput-

er time or performance degradation.

k"uErina Strategv Effectiveness. Once any scheme is

prograimed, it may be of interest to compute the scalar re-

sidual error -as a performance value. An algorithm would ccr-

pute this value as the average error per equation, R. in the

follou'-ng manner

R Z abs(b - bl) (29)
n imi

where, if lie is the calculated solution, then

b- £ ll. xJ)c (30)
Jul
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It is the total effect of the errors which gives rise

-o R; when discussing the theoretical upper bounds on the

errors, it is helpful to define an error matrix, 6& as that

matrix which, when added to A, yields the computed value of

as if ideal computation took pJace.

(A + 6A) -a (k31)

There is no doubt that, in general, the choice of pivoting

strategy has ar important effect on the size of 66 or, more

precisely, the Euclidian Norm of 6&. The Euclidian Norm of

any matrix, !, is defined as (Ref 1.417):

r~ 11/2

norm Z jl i (32)

James Bunch adds a new wrinkle to the pivoting dilemma for

Geussian Elimination s

The error matrix [bA] arising from performing the
elimination process in finite precision depends on
the fill-in occurring during the elimination, We
could 3eek an ordering of equations ;o that the bound
on [norm (64)] is minimized. This would gal be equiv-
alent to the seeking of an ordering to minimize fill-
in. Indeed, we see that minimizing fill-in helps to
keep the bound on (norm (54)] from becoming too large.
The problem is even more difficult if we need to pivot
for stability (Ref 20873).

Buach suggests that the structure of the matrix has a great

deal influence on the net error. For example, if the a pri-

ori pivoting stratesj mentioned on page 24 were used with a

tightly banded, diagonatly dominant matrix, one would expect

vey good accuracy and little fill-in. By the structure of

the matrix, the chosen pivot element will be from the set of
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large numbers on the diagonal, ard there will be relatively

few places within the band structure to allow fill-in. But

the same scheme with an arbitrary matrix would not be nearly

as successful. In fact, the derivation by Bunch considers

the upper bounds for norm (66) in the case of banded ma-

trices; for very widely banded matrices or unbanded matrices,

the minimization of fill-in may 'e overshadowed by numerical

instability. In any cas,, the structure of the system to be

solved and the desired performance influence the choice of

pivoting strategy.

Structure and pivoting have their own peculiar effects

on Gauss-Jordan Reduction. The strict error analysis of

Gauss-Jordan Reduction is difficult; in Gaussian Elimination,

the study of error can be represented by Eq (31) in that the

system (& + 6&) represents a "neighboring"' system of •. In

other words, the resulting computed solution, gc, lies in a

"neighborhood" of the true solution 1 as specified by Eq (1).

But in Gauss-Jordan Reduction, it in difficult to prove that

&€ is always in a neighborhood of E (Ref 12:21); in the con-

text of Eq (31)9 the system actualiy solved is not strictly

a neighboring system of &. The problems associated with

Gauss-Jordan Reduction result from failure to control the

growth of the elements above the diagonal.

The Gauss-Jordan algorithm can be seen as a combination

of above and below diagonal elimination which yields the

Identity matrix in Eq (25). The below-diagonal elimination

is identical to Gaussian Elimination, and thus the errors
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from these computations are limited to those which arise

from Gaussian Elimination. As for the above-diagonal elim-

ination, no guarantee can be made for any system which ig-

nores stability; but even with Partial Row pivoting, the

growth of the above-diagonal elements may be arbitrarily

large (Ref 12s21). It is known that positive definite and

diagonally dominant A matrices are stable with Gauss-Jordan

Reduction with Partial Row pivoting; but in the comparison

phase of this thesis, it should be emphasized that Key's

"SIMULT" program uses Minimum Row/14inimum Column pivoting

which is still subject to numerical instability.

Scalinoa Sie stems

Algoritkzs for scaling are used to improve the "condi.-

tioi•? of some systems; the relative condition of a system

refers to two factorst 1) the relative magnitudes of neigh-

boring elements both before and during elimination, and

2) the uncertainty with which each of the original aij and

bi were approximated. (Haretofore, 6aij and 6bi were as-

sumed to be sero.) If A is "well-conditioned," then the in-
S(0) (0o)

herent errors 6aj and 6bi will not be amplified; but in

an will-conditioned" system even & small error is likely to

grow past acceptable limits (Ref 13396,397).

For example, the situation may arise when b is meas-

uard in milliwatts and b 2 is measured in killowmtta; the

borresponding alj and &2J will necessarily be out of propor-

( tion. No pivoting strategy alone could be stable enough to

bandle tuis sort of problem. Homver, the rows and colums

29
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of A can be scaled to a more workable size relationship such

as a row or column norm (Ref 15:10).

To bring neighboring rows into line, each column should

be divided by that column element with the largest absolute

value; the matrix which scales A this way is a diagonal ma-

trix, D , whose elements are the reciprocals of those maxi-

mum column elements. To maintain equivalence of Eq (I),

postmultiplication by D is required:

D D_1 x, b_ (33)

Then, to align the columns, a row scaling is required; the

row element with the largest absolute value is divided into

the row and corresponding bi. The scaling matrix is another

diagonal matrix, D , whose elements are the reciprocals of

these row scales. The solution x of Eq (1) is the same as

that of the following (Ref 15:11):

D AD D 1x =Db (4
;-- -1wl-1 - -- (4

Eq (34) reduces to the final form of

where m _ll' (36)

A' ADl (37)

and* (38)

Since . and 2 are diagonal matrices, their storage re-

quirements are only n locations each for the diagonals, and
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their inverses are easily calculated.

For a program which is designed to be an all-encompas-

sing sparse matrix solver, a scaling algorithm should be an

integral part. Hlowever, if problems are limited to those

with well-conditioned systems, zcaling need not be used. In

fact, scaling would require extra multiplications for each

non-zero, and the computer search for the scaling elements

would be time-consuming (even if simple).

Therefore, if some regard is paid to numerical stabili-

ty in the solution algorithm, and if the scope of the prob-

lems to be solved is reasonably constrained, no scaling al-

gorithm is really needed.

MMor Sumry &W~ Predictions

Blased on the preceding discussion~s, some predictions

for the Gaussian sparse solvers can be made an a result of

the mathematical theory. Short analyses of pentadiagonal

and arbitrary matrices will be discussed for Gaussian Elimi-

nation and Gauss-Jordan Reduction. (Gautssian Slim..nation

aid LA Decomposition will, be classified together sinrce they

are arithmetically similar.)

bnmA4&e LMae A diagonally dominant, pen tadiag-

anal matrix Is a comon problem to solve in nuclear phiysics.

With this structure, almost any a priori or local pivoting

stratagy in Gaussian Blimination will choose pivots consec-

utively on the diagonal. The notable exception may be Full

Fivoting for which no guarantees can be made. Also,, in the

W-aimam, Row/Minimum Column scheme, it is posaible that two
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or more rows have the smallest size (rows one and n, for ex-

ample); but most algorithms usually have "tie breaking"

rules which choose the first element to meet the criteria of

the strategy as the pivoc. In this pentadiagonal case,

there should be no Uill-in and the accuracy should be very

good,.

On the oth•sx hands the Gauss-Jordan Reduction with the

Minimum Row/Minimum Column pivoting strategy will fill in

greatly with a pentadiagonal matrix. (This strategy is that

of the SIMLJLT program to be compared in this thesis.) The

fill-in of at least two values per rov (in columns four and

five) will occur in all but the first two and last two de-

rived sets (Fig. 6). Furthermore, these fill-in values will

have been calculated using previous fill-in. And lastly,

the final pivot operations will be in columns four and five

and thus are bound to yield significant errors.

Arbitrary Case. Gaussian Elimination will show a wide

range of performance with different pivoting schemes. For

example, Full Pivoting could easily choose a pivot in the

largest row and create vast amounts of fill-in. Even Mini-

man Rov/4/inimum Column could "jump" around the matrix for a.

proper pivot; as a result, even though inAediate fill-in is

localized xnd small in amount, it would, in fact; remain to

be used repeatedly. Thus fill-in could enter into many cal-

culations and perhaps even become a pivot later on.

Conversely, in Key's Gauss-Jordan Reduction, not only

( w ill the imediate fill-in be mini•ise4, but also the fill-in
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is likely to be eliminated soon after its creation; thus

even with large amounts of fill-in, the errors are less

likely to cascade as badly as in Gaussian Elimination.

Therefore, it is predicted that Key's program will out-

perform Gaussian Elimination on very unstructured matrices,

while Gaussian Elimination proves to be more effective on

more structured systems. At some "degree" of randomness,

both performances should be comparable. Also, in the study

of Gaussian Elimination with pivoting, good accuracy may be

attained by strategies which either eliminate fill-in short-

ly after its inception or localize fill-in so that it is not

involved with too many subsequent calculations; this claim

should hold true even in caseb with large amoun:s of fill-in.

Finally, the type of problem which the user has .o mind will

be the guiding force in choosing the alg rithm and pivot

strategy.
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III. gWy•risons of the Gaussian Solvers

The testing of three major Gaussian algorithms was done

on CDC 6600 computers at the Air Force Weapons Lab (AFWL)

and the Air Force Institute of Technology (APIT). Standard

main programs were used for all three algorithms to accom-

plish the following functi abj packing the sparse matrix

into an appropriate form, executing and timing the particular

Gaussian algorithm, computing an average scalar residual

error, and printing out the solution.

The comparisons of these programs contain a capsule

description of each sparse solver, the initial testing pro-

cedure, and & summary which suggests the direction of further

study.

§sinule Descriptions of Gausst-an ProoraMs

The names of the programs under study are the Xg

Soarse MAtrix Packaoe (YSMP) 9 by 3hermanr the "SIMU!2" pro-

gran, by John E. Key; and the "MP" study by this student.

J•f. While Shermans YSFIP program contains many

FORTRA subroutines for sol%ýnq various special types of

sparse matrices (symmetric, for example), only those sub-

routines needed for general sparse matrices were compared.

The YSW uses an a priori pivoting scheme for LU Decomposi-

tion; a permutation array is generated to order both the rows

and the columns of & for pivoting (Ref 181315). The packing

scheme is similar to that suggested by Gustavson
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(Ref 8:43,44)1 only the non-zero elements of A are packed,

and a row and column pointer table computes the "address" of

the desired aij for future computation.

SI•T. Xey's SIMuLT program uses Gauss-Jordan Reduc-

tion with Minimum Row/Minimum Column pivoting. The calling

program must supply an important data value called "ZTEST";

during the calculations, if the magnitude of a result is com-

puted to be less than ZTEST, it is automatically set to zero.

The packing scheme uses a compressed, two-dimensional FORTRAN

array for A; the maximum number of allowed non-zeros per row

is determined by the user. (Key recommends no more than 20

t0 30 elements per row as adequate to handle fill-in.) A

similarly structured two-dimensional pointer array stores the

"J" column coordinates of the corresponding & values

(Ref T &10).

NP. The MFP program is a study of Gaussian Elimination

with various pivot strategies. The packing scheme is identi-

cal to that used in YSMP. The following variations used the

indicated pivot strategies in the course of the algorithm

construction and the initial testings

MVPl - Diagonal
MWP2 - Row Partial Pivoting
MIWP3 - Gaussian Full Pivotivj
MPP4 - Minimum Row/Minimum Column
WIP5 - Minii. Row/Maximum Rlement.

Instead of ,e-shuffling the rows and col~uwat for pivoting,

the program stored the order of row and column pivot noordi-

(-) nates into two arrays called IPIV'and JP7V. These arrays
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were then passed to the back solution subroutine to properly

compute j,. The resulting matrix U may not have appeared to

be upper-triangular; but if the row and column interchanges

were done as prescribed by IPIV and JPIV, U would have indeed

appeared as upper-triangular. (Appendix B contains the flow

charts for the most important subroutines in MFP.)

Testina Procedures

The criteria for the initial testing of the three Gauss-

ian sparse solvers were the required program space, the or-

ders of magnitude of the scalar residual errors, and the exe-

cution time for four standard matrix problems.

EoraM spa. Table I contains a summary of Appendix C;

this comparison lists the storage space required for the

( Gaussian algorithms excluding the main programs and the FOR-

TRAN system routines. All of the variations of MFF are in-

cluded.

Table I

Rasential Programming Space for Sparse Solvers

Program Length (Octal) $ Program Data

YSaP 2134 20207

SIMJLT 532 17662

WPI - Diagonal 757 16666
WP2 - Partial 763 16666
NF" - Full 1034 16666
W4 - Miin Row/Min Col. 1335 16666
NP5 - Miin Row/Max ILoe 1145 16666
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The data storage requirements were set as that space neces-

sary to solve any 100-by-QO0 system at 5% Gparsity.

Standard Test Results. Four test matrices (Appendix D)

were run in each configuration; all tests of YSMP were done

at AFWL and tests of SIMULT and MFP were done at AFIT. The

average scalar residual error was calculated in each routine

as in Eq (29), and the "TIMER" function (Ref 10) provided the

time required to execute only that portion of the programs

that called the Gaussian solvers. As a result, each Gauss-

ian solver was examined truly independently. The first

phase of the comparison is listed in Table II.

Table II
Initial Comparisons of Sparse Solvers

Test
Matrix YSMP SIMULT* MP:l MPP2 MFP3 MFP4 MFP5

Irrors 10-14 10+13 10-"1 10-14 10-1 10-14 10-14

Timis 0.12 0.28 0.48 0.48 2.67 1.31 0.58

02
Errors 100 failed 10+1 10+1 10+11 10+1 10+1
Timis 0.11 0.47 0.65 0.93 0.55 0.74

.3
Errors 10O8 i0"3 10-8 10-8 10-3 - 8  10-8

Times 0.11 0.33 0.47 0.60 1.24 0.55 1.32

.4
Errors 10-14 10+30 10-14 10-14 10-14 10-14 10-14

Times 0.06 0.26 0.29 0,29 0.68 0.88 0.37

Error calculated as in Eq (29).
Time measured in seconds.

*=SST for SIMJLT runs 10-10.

U
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The first phase of testing confirmed two important aspects

of the theory section:

1. LU Decomposition and Gaussian Elimination can
yield comparable accuracy.

2. The Gauss-Jordan Reduction in SIMULT performed

poorly for very structured matrices.

Test matrix #2 is a near-singular matrix; both YSMP and MFP

solved it, although badly. But SIMULT determined the matrix

to be singular; this is due to one or more critical elements

being computed to be less than ZTEST. As a result, some im-

portant non-zero data was cast aside resulting in a singu-

3%rity. In any case, test matrix #2 was a bad test, and no

• bher c'-nclusions should be drawn from its results.

As predicted, LU Decomposition and Gaussian Elimination

always gave the same order of accuracy (except for the Gauss-

ian Full Pivoting). Interestingly, all of the pivot strate-

gies of MFP (except for Full Pivoting) chose pivot elements

consecutively -n the diagonals. It appears that the YSMP

proýL.y chk'ce the diagonal; most a priori strategies would

choose the diagonal for a pentadiagonal matrix. Additional-

ly, the actual lues of the errors came very close to those

of MFP which "d use the diagonal. There is, however, a dis-

parity in the time criterion.

The LU Decomposition should have taken more time than

Gaussian Elimination; but a check of the program structures

would explain part of this disparity. Most of the repeated

operations of the MPF pivot subroutines are contained in

(4 other individual subroutines; each call to a FORTRAN
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subroutine requires more time than a simple "GO TO __"

statement. The call to subroutine causes a transfer of con-

trol from the calling program to the computer's operating

system in order to find the subroutine, execute it, and re-

turn to the calling program. The pivot subroutines in MFP

must frequently use some external programs called FETCH,

DELETE, ROWDIV, and STORE which manipulate data in the com-

pacted form of the sparse matrix (Appendix B). YSMP, on the

other hand, is built so that all of the necessary programming

for a specified step is contained within the entire subrou-

tine (Ref 14:18):

SORDER - Computes minimum ordering.
NSRORD - Re-orders A given the ordering

from SORDER.
SSFAC - Computes the symbolic factor-

ization of the re-ordered A
matrix.

NSNFAC - Computes the numeric factor-
ization of A, given its sym-
bolic factorization.

NSBSLV - Solves Eq (1) givwn the LU
factorization of A.

None of these subroutines needs to communicate with any

others; they merely must be executed in a prescribed se-

quence. Finally, an a priori pivot scheme is basically

faster than a local pivoter when dealing with pentadiagonal

or tridiagonal matrices. Of course, the core usage is

larger than MFP because of these speed capabilities.

Study Areas for Next Phase

C One of the important advantages of MFP is that it was

easy to build and test new pivoting schemes by using the
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same modularized subprograms for routine operations. There-

fore, the relative merits of particular Gaussian Elimination

pivot strategies could be easily evaluated. Also, factors

such as fill-in and number of deletions could be used to

check the effective use of data storage available. Since

SIMULT similarly offered fill-in and deletion monitoring,

the Gauss-Jordan algorithm by Key was included in all tests

of the MFP variations,

Therefore, the objectives of the next phase were to

compare SIMULT and MFP with more arbitrary matrices to find

the "performance crossover point" (as suggested by the Math-

ematical Theory) and to find the optimum version of MFP

which not only performs well but meets a prospectivq user's

needs.

41

WARi.,-



IV. The Choice of the Ontimwm Pivot Strategy

The initial test phase confirmed the programing logic

for the three major Gaussian algorithms using standard test

matrices; the next phase used matrices which were arbitrary

both in value and structure. The range of structures in-

cluded some systems which are typical problems in physics

and engineering. Thus# the tests results and the choice of

an optimum pivot strategy for Gaussian Elimination come as a

result of the solutions of practical problems.

The discussion of the intermediate test phase includes

a description of the test matrices, an analysis of the re-

suits with respect to the mathematical theozy, and the pro-

cess by, which the final version of the JWP program (Gaussian

Elimination) was developed.

Intermediate sest Matrices

All of the next eight test matrices started with ran-

domly-generated numbers in a tridiagonal structure. About

354 of any particular set of numbers were negative. The

last five matrices contained an additional 2% non-zero

structure whose values were randomly generated; the coor-

dinates for these extra values were also randomly determined..

This additional structure was contained within bandwidths

which• normally ranged from tS to &15 diagonals from the main

dlegonal. The last matrix, however, had its extra non-zero

Sstruzcture scattered throughout the entire available array.
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These test matrices were used to exercise the varia-

tions of the Gaussian Elimination program (MFP) and the

Gauss-Jordan Reduction program (SIMULT). The diagonal pivoC

3trategy, WFPI, was not used in the intermediate phase; as

the mathematical theory pointed out, diagonal pivoting stziat-

egy is really no strategy at all, and the chance exists that

a sero would be found on a diagonal location. (The original

purpose of MFPI was merely to be the basic framework fo:r tthe

other pivoting strategies.)

The enumeration of the test matrices andci their results

with SI?4JLT and four variation's of WPF are contained in

Appendix S.

hnYli of the Results

The data which was available from the MVP strategies

and the SIMJLT program established three performance crite-

rina the order of magnitude of the error (as calculated &c-

cording to Eq [29] ), the number of times in which a fill-in

v&lue was manifested, and the execution time for the Gauss-

ian algorithm.

EAor initudes. The most consistent performance was

achieved by the Gaussian Partial Pivoting strategy (MP2)

with an error magnitude on the order of 10"12 or less

[Table IXI). With Minimum Row/Minimum Column (WP4), Mini-

m Row/Maximum Blement (MIPS), and SINULT, the error magni-

tudee were functions of the degree of "scatter* of the extra

S-m- seros NM and MWPS (which were mant to reduce local

fill-in) did vork well with the more ,tightly banded matrices,
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Table III
Error Magnitudes for Intermediate Tests

Test SIMJLT MIP2 MFP3 MFP4 MF"'5

# 5 10- 2  10"14 10"1 10"14 10-14

# 6 10-4 10"14 10"I 10-14 10"14

# 7 I0lI 10-13 10+1 10"13 10-13

# a 10"8 112 100 10"1 10"1

* 9 1o-9 1o-12 10o 10o 1o0

#1o 1o0 1o"13 100 1o+ 1o÷I

#11 Wo0 1o-13 10( failed 10o

#12 10"11 10" 1 3  10*1 10+1 100

but did poorly with increasing disorder in the extra non-

zero structure; SIXJLT, on the other handA cItarly improv'-1

from 10- 2 to 10"11 with more ar)i.trary s"if'ctura. These ob-

servations clearly con$.iioaed the predictions made in the

Mathematical Theory. The failure of MFP4 with test matrix #11

was due to a computer diagnostic which stated that an "infi-

nite operand* had been chosen. Since Minimum Row/Mininmu

Coltum pivots without regard to stability, this result is

not surprising. As for Full Pivoting (M P3), the error mag-

nitudes were generally poorl this performance cam chiefly

a & result of mexss fill-in.

EAI.-i. With the eception of test matrix #12 (the

least organimad structur*e)p Ill Pivoting always created the

met fill-in; furtheraore, the fill-in 0=C30 was generally



two or three times as much for the other Gaussian Elimina-

tion strategies (Table IV).

Table IV
Fill-in Tabulations for Intermediate Tests

Tesrt SIMULT MFP2 WFP3 MFP4 MFP5
Matrix

97 59 232 0 59

# 6 97 61 233 0 61

# 7 97 58 218 0 58

0 8 336 291 1149 207 249

* 9 987 699 2002 792 629

#10 871 930 2153 951 932

#11 1247 1044 2129 failed 717

*12 2168 4038 3815 2117 1713

For tightly-banded matrices, the strategies which piv-

oted for fill-in mininszation did, in fact, fill in fewer

values than the rest of the strategies; however, for more

scattered structures, the reduction in local fill-in made

little differences that sam local fill-in did come into

play in many more calculations to mnifest further fill-in;

and, as with the "infinite operand" case, some values did

become subsequent, unstable pivot elements.

There was a feature in the main program which would

list the pivot ordering. The MPP4 and WPS programs often

"t mJumped" around the matrix in successive pivots a row 1, then

raw 100] row 3, then row 89, for exai:qpie. As a result, the
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fill-in lingered for many calculations and contributed to

errors many more times than did the fill-in A•%om the Partial

Pivoting. For example, in the case of test matrix #12, in

which Gaussian Partial Pivoting registered the greatest

amount of fill-in, the new non-zeros were localized about

the pivot elements, often eliminated soon after creation,

and thus were not involved in as many subsequent calcula-

tions. This observation is in direct agreement with the

Mathematical Theory.

Execution Time. The slowest of the MFP routines was

always Full Pivoting (MFP3) because of the large number of

extra computation required for the fill-in and the normally

time-consuming searches for pivot elements. In tne tightly-

banded cases, Minimum Row/minimum Column (MFP4) chose ele-

ments consecutively on the diagonal for pivotingt and thus

computed very rapidly; similarly, Minimum Row/Maximum Ele-

ment (MFPS) chose the same pivots as Partial Pivoting (MFP2).

However, in general no Gaussian Elimination variation ran

significantly faster than Partial Pivoting (Table V).

It is interesting to note that, while time comparisons

between Gauss-Jordan and Gaussian Elimination are really noý

me&gdngful from an aljiorithmic standpoint, in th* case of

toot matrix #12, only two orders of magnitude of accvr&cy

separated SINMJT and M4P21 yet SIKLJLT solved the matrix

nearly twelve times as fast as WP2. Test matrix #12 is a

very uncomon problem; but at some point, the potential user

(; mast decid. which sparse solver he must choose in light of
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Table V
Execution Times for Intermediate Tests

Testxatrix SIMULT MFP2 MFP3 MFP4 MFP5

# 5 0.26 0.36 0.73 0.37 0.44

# 6 0.27 0.39 0.76 0.37 0.45

# 7 0.30 0.36 0.74 0.43 0.45

# 8 0.33 1.02 3.40 1.00 1.03

* 9 0.66 1.82 7.77 2.38 1.90

#10 0.64 2.19 7.79 3.06 2.79

#11 0.89 2.46 9.17 failed 2.10

#12 1.70 21.11 26.82 9.55 6.35

Time in seconds.

the relative disarray of his own problem.

Chice of Optimum Aloorithm

The choice of the Optimum Gaussian Elimination Algo-

rithm was derived from the preceding analysis the concla-

sions of which are recapitulated below:

1, The best accuracy consistently cum from
Gaussian Partial Pivoting.

2ý Disregard for stability ih some problems
led to poor accuracy and at least once case
of division by a *mail nhmber ("infinite
operwwd").

3. By localizing all pivot choices (a6 in Partiai
Pivoting), the fill-in is also localized and
its corresponding error affects many fewer
subsoquent calculations.
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4. Large amounts of fill-in still may be an

important source of error.

These conclusions suggested the following criteria for an

"ideal" pivot strategy:

1. The pivot choice should be from consecutive
rows; this choice would help to localize the,
effects of fill-in.

2. The column choice for that pivot row should
initially attempt to minimize the number of
calculations and, hence, lessen the proba-
bility for fill-in occurrence.

3. If, however, the value of the pivot is very
small with respect to some number (called a
"Pivot Tolerance") the element with the lar-
gest absolute value in the pivot row should
be used as the pivot. This choice need only
occur often enough to stabilize the system
when instability insidiously appears.

As the dilemma of Fig. 5 indicates, even these ideals will

not yield a panacea; however, they indeed provide adequatte

grounda for engineering tradqeffs am-onng the criteria of ac-

curacy, fill-in, and time,

Therefore, ncne of the original MFF variations was

chosen as the optimum strategy; another strategy was devel-

oped, programmed and tested. This strategy was called

"Consecutively Calculated" Pivoting. (The designation of

this strategy is "MFPTH," aid the subroutine name for the

Forward Gaussian step is called "THINKER." )

The strategy o0 MWPTJ is that suggested above: the row

pivot coordinates go consecutively from 1 to n, and the col-

um coordinate is chosen as that element in the column with

the fewest number o@ non-zeros. However, if the value of

0 the pivot Is less tan the pivot toler&aze (called NPIVT(L")
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then a search is made to find the row element with the lar-

gest absolute value. The advantages of the strategy are

very important to the user:

1. PIVTOL. can be a readable quantity (as is the
case in the listed program of MFPTH in the
APIT Computer Archive).

2. If the user is willing to sacrifice some ac-
curacy, PIVTOL could be chosen to be a small
number (0.01, for example) and the fill-in
and number of calculations would be less than
those for Gaussian Partial Pivoting.

3. On the other hand, if fill-in is not a prob-
lem, choice of a large value for PIVTOL (100,
for example) would always be driving the sys-
tem towards more stability.

In fact, with large values of PIVTOL, the algorithm, for all

intents and purposes, is the same as Gaussian Partial Pivot-

ing, There is, however, one important disadvantage. Use of

a large PIVTOL would force more second searches for the piv-

ot element; the user must therefore be willing to pay the

price of extra time for extra accuracy.

The variation MFPTH was programmed and run; Table VI

shows its performance with all test matrices as well as its

core usage information.

The increase in time is apparent, but not formidable.

It is clear that the MFPTH variation is a decirable program

because the user fa3 an input into the ultimate performance

for his particulaa" problem.

The next testing phase narrowed the scope of operation

to problems likely to bs solved in physics; the study also

(.) gave rise to yet another concept for the final form of the

MIP Sparse Matrix Solver.
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Table VI
Results of the Consecutively Calculated Strategy

Test Time
Matrix Error Fill-ins Deletions (Seconds)

S1 10"1. 0 297 1.08

* 2 10J+ 0 297 1.06

* 3 10- 6  0 297 1.07

* 4 10-12 0 199 0.71

* 5 10"12 0 199 0.73

# 0, 10"14 0 199 0.78

# 7 10"13 0 199 0.75

* 8 10-9 116 337 1.54

* 9 10-9 455 474 2.84

#10 109 620 570 3.58

#11 W010 715 602 4.08

*12 10-9 2686 1103 26.56

PIVT• L 0,01; THINKER Program length m 1202 (Octal)

so

m i i i i i i iN--Asio



V. The Final Algorithm Comparison

The final phase of testing compared the YSVP, SIMULT,

and MWPTH sparse matrix solvers with eight more test ma-

trices; the structures of these matrices were similar to the

example presented in Chapter I: diagonally dominant, tridi-

agonal core structure with flanking diagonals. The analysis

of these tests also spawned a new feature for the WPF pro-

gram to improve speed. The discussion of the final phase,

therefore, describes the new testa, presents the new features

for MPP, tabulates the speed improvements, and sums up the

overall performance of the three major sparse algorithms.

Th. Final Siaht Test Matrices

The study of this final test phase concentrated on the

performance of the sparse solvers with matrices whose flank-

ing diagonals were originally located adjacent to the core

(as in a pentadiagonal structure) and then displaced one

diagonal at a time. (Appendix F contains a listing of these

matrices.) The pivot tolerance for MFPTH was chosen to be

10 so as to pivot for accuracy. Table VII summarizes the

error magnitudes and execution times for the three programs.

The obvious result of these tests is the conaistent ac-

curacy provided by the MP M program however, because the

pivot tolerance was large, the time needed to solve a system

was relatively long for each test. What is not included in

Tabla VII, but listed on the computer printouts, was that
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Table VII
Final Performance Comparisons

Test M rULT M
Matrix

#13 Errors 10"14 10+45 10" 14
Times 0.12 0.35 1.41

#14 Errors 10-2 10+21 10"14
Times 0.16 0.34 2.13

#15 Errors 10-2 10+12 10-14

Times 0.21 0.40 3.04

#16 Error:s 10-2 100 10"14

Times 0.23 0.76 4.06

*17 Errors 10-2 10-1 10"14
Times 0.27 1.05 4.96

#18 Errors W02 100 10"14
Time: 0.28 0.78 6.09

( #19 Errors 10"2 100 10"14

Times 0.30 1.11 7.03

#20 Errors 10-2 10-5 10"14

Times 0.30 1.18 8.23

Notess YSMP - LU Decomposition, a priori strategy.
SIMULT - Gauss-Jordan Reduction with Minimum

Row/Minimum Column pivoting.
MPPTH - Gaussian Elimination with Consecu-

tively Calculated pivoting (pivot
tolerance a 10).

Error magnitudes calculated as in Eq (29).
Time in seconds.
ZSTfor SIMULT a 10

for each of the test matrices, the MFPTH pivoting strategy

chose consecutive elements on the diagonals for the best

accuracy. This observation suggested the next configuration

of the MWP program.
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Extra Features for 4rP

Motivated by the diagonal pivot selections in the pre-

ceding tests and a oss.&• to increase the speed of the MFPTH

program, this stt.;ent p:'ogrammed an additional strategy.

The new scheme was an a priori pivoting strategy which chose

the pivot coordinates from the first non-zeros in consecutive

rows; unless a zero appeared on the diagonal, then the en-

tire diagonal was the source for pivot values. As an aid to

the user, the a priori pivot subroutine (called "APRIORI")

was included into the MWP program structure with the THINKER

subroutine; as a result, the user was given an option for

which strategy he desired. If a diagonally dominant system

were being solved, choice of APRIORI would yield good accu-

racy with a relatively quicker solution time; if the APRIORI

subroutine failed to give accuracy better than R a 10-2

(Eq [29]), the main program would automatically reset and

begin again with THINKEKR. Of course, THINKER could have

been chosen from the beginning.

§eSd Improvements in KVP

The solutions for each a using the a priori strategy

gave precisely the same accuracy as in Table VII but with a

measurable time improvement (Table VIII).

The devignation for this configuration of WIP is "Mr'POP"

to indicate the "option" featuze. (A l.sting of MWPOP can

be obtained from the APIT Computer Archive.) The additional

core space required for APMIORI war only 370 (octal) loca-

tionM3 in terms of the entire progran load size, tha increase
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Table VII I
Time Comparisons of APRIORI and THIMNER

Test Times
Matrix APiIORI THINKER %Reduction

#13 1.18 1.41 160

#14 2.11 2.13 1s

#15 3.02 3.04 15

#16 3.99 4.06

#17 4.90 4.96 1%

#18 5.83 6.09 *A

#19 6.78 7.03 45

#20 7.87 8.23 44

is negligible because many of the same 7ORTRAN systea rou-

tines used by APRIORI were already present for THINKER.

Testina Conclusions

A user might be motivated to use the SINMUT program for

dispersed, unstructured matrices or the YSMP program for

tightly-banded matrices; this motivation comes as a result

of time considerations. However, the MFPOP program demon-

strated the capability to solve a very wide variety of

matricer with consistently better accuracy than either

SIMJLT or YSMP. Also, the user's flexibility in controlling

the progress of the solution with MPVOP is a very important

consideration.

It mst be euphas.sed that to attain the high degree of

cuaxacy the PTOP program had to allow larger amo'mnts of
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fi'•i-i. in bo>th the a priori and local strategies th~n most

classical sparse matrix studies conclude would be tolerable

lor a very layge problem (n w .10,000, for ex-aNp•a). Thi.

average spead improvement due to the introduction of the

a priori pivoter was only 4XI but for a class of problems

that are tightly banded, such as a pentadiagonal, th* net

improvement was a high 16%. With these factors of fill-in

and time in mind, the next segment of this thesis addressed

the problems of a new data-packing scheme and an even fur-

ther improvement in the time factors.
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VI. Soarse Packing in the 9X 6600 ComDuter

The choice of the 4MPOP Sparse Solver as the optimum

Gaussian Elimination algorithm came not only because of the

higher theoretical accur:acy which it provides but also be-

cause it was highly suitable for the CDC 6600 Computer.

While all of the tested programs were written in the FORTRAM

computer language (which is standard for most large comput-

ers), their accuracies were enhanced to & great degree by

the numeric superiority which the CDC 6600 has over many

computers. This chapter deals more closely with such com-

puter capabilities as they pertain to a new packing scheme

developed specifically for MFFOP; a consequence of this

packing scheme is that it justifies the allowance for fill-

in which, in many other computers, would be intolerable.

To help in the understandting of the new packing scheme,

a review of the basic WP packing method is presented , fol-

lowed by the description of the implementation of the new

pac ker. The final configuration of the Gaussian Elimination

algorithm is also described since it is a streamlined ver-

sion of the modular •HP concept. A suvmary presen a the

Overall benefits of this student's program as it has been

run on the CDC 6600 Camputar.

BW9_ of tbe amic Packiga Scheme

In order to pack only the non-seros of the sparse A

Cntrix, the WP prgram needed several PORTRAN arrays. (The
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reader is directed to Appendix B for the complete packing

method and the flow chart for the algorithm.) The arrays

were as followst

IA - The array (size N) which contains the
locations of the starting points of
the rows.

JA - The array which holds the column coor-
dinate3 for each non-zero in the A
matrix. (Size w the number of non-zeros,
denoted "NNZR.")

A - The array which contains the rhon-zeros
(size NNZR).

ISTAT . The array (size N) which contains the
number of non-zeros in each row.

As part of the forward Gaussian algorithm, the arrays JSTAT

(a column status vector), JCOL (a working vector), IPIV (row

ordering array), and JPIV (column ordering array) were also

required. Thus the minimum data space required for the

sparse matrix & and its solution was the following set of

arrays$

6 intoger arrays, size N
I integer array, size NNZR
I floating-point array, size NHU.

The size of NNZR for any routine must oe judiciously chosen;

a certain allowance for fill-in is required. As a rule of

thumb, the following formula fc* NNZR was used in developing

the final strategy:

Mit (5) x (N2 )x 2 (39)

To implement WPM on any computer, the infomation

tram each of the arrays As necess&xyl but one should note

that if the largest number ol equaations to be solved is
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limitedt the largest value stored in any of the elements of

the integer arrays will be very small relative to the largest

calculable integer for that computer. Since the CDC 6600

computer had a word size of 60 bits (which is nearly twice

as large a. the single precision word on most other comput-

ers), for an N on the order of 1000, only the right most ten

bits of each word would be used; the remaining 50 bits would

be wasted. It is the crux of the new packing scheme, there-

fore, to use as much of the integer word as possible to

store information.

new Packino Scheme

The new packing scheme involves manipulation of the

bits of the arrays for both the six N-sized arrays &rid the

two NUZR-sixed axr&ys.

N-sized Arr§as. One can envision using the extra 50

bits of a computer word in th'i CDC 6600 as room to store

other arrays; that is, by subdJviding or "segmentinj" the

bit structuze of the wordu in only one array, the informa-

tion of amy arr&ys can be compacted. To successfully im-

plement this idea, the prog~rawr must keep in mind that

Octal ari thmetic is used in the CDC 64500 and the stor&ga and

'mtrieval, of information from & selmented word must be han-

died carefully.

In the modified HPTP program, the six N-sized arrakvo

are packed in groups of threes JSTAT, ISTAT and IAl and

MML, IPIV, and JPIV. The rra~y variable name is called

NUUMN to indicate the integer data structure. The first
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N values of INTEG contain JSTAT, ISTAT, and IA in three

groups of 20 bits. The value of INTEG(N+I) contains a spe-

ci&l value used by the packing subroutine, and the value of

INTEG(N÷2) holds the initial N4ZR value. The next N loca-

tions in INTEG contain JCOL, IPIV, and JPIV in three groups

of 20 bits.

Since the value of IA is usually a large number, the

position of IA in the INTEG word is very important: since it

occupies the right-most 20 bits, then the value of IA can be

stored as if it were a decimal number. But such is not the

case for JSTAT and ISTAT. However, these two status vectors

are built, incremented, and decramented only one unit at a

tine; to add or subtract a "1" in the segment for ISTAT, a

specific octal number (40000008) is added to the entire

INTSG word. To continue the example, where the old state-

sent was programed as "ISTAT(I)=ISTAT(I) + 1," the ncw

statement reads "INTEG(I)=INTEG(I) + 4000000B." (The "B" is

the FORTRAN definition of an OCTAL constant.) A similar

octal number increments JSTAT.

To extract the spccific data for a given row K, the

value of INTRG(K) is first placed into a working register.

Then, by use of two suppXied CDC functions, the proper in-

fotmation can be unambiguously retrieved: to extract IA(K)q

the value of IN TG(K) is masked with an ".AD)." function

over the ritiht-most 20 bitsl to extract ISTAT(K), the value

of INT3(K) is SHIFT-ed 20 bits to the right and then masked

dltb the .AIM. function (Ref 3s2-121 8-4). For the arrays
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JCOL, IPIV, and JPIV• a stmilar extraction method is used;

hiowever, to store the values, an intermediate register must

come into play. The register is set to zero; the computed

value 3f JCOL or IPVV is ineerted and left-shifted the appro-

priat4 number of bits; then the contents of the register is

added to the appropriate INTEG element. (Appendix G is the

listing of the program with the bit-sliced packing..'

The wvairigs on the N-sized arrays is very important for

large linear systems; if NaIl000, then the p::eviously itsed

6UOO locationg tor the arrays is reduced to only 2000. Thus

the allowance of 4000 extra data locations is made available

for fill-.n. In practicv',, only 19 of the 20 bits per array

are used; thic restriction is neatcessary because the left-

most biten of JSTAT and JCOL are sign bits of the CDC 6600

compgter words. Manipulation of the sign bit may create

proble•3 for the data stored in the entire word. With this

cxonfiguration, thr waximum number of equationo is initially

1Uived te (219-1) or 524,287; as large as this number is,

the NNZR-sized aryays place a much more stringent restric-

tion on tVe max:Pw:m number of eqnations.,

tONZR-sised Arrays. Furýhwr redutction in data storage

requirements is ulso possible by combinAng the two NNZR-

sised arrays, A and JA, sine. every A value has A corres-

ponding JA table entry. The procedure is similar to the

%.chniqu. uc&sd in tie N-sised Arraysp except that floating-

poin% nwambers art integeir mmbers ate abtad. In the CDC

V 864Q Camputir, a floating-peint number is stored with the
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left-most 12 bits as the sign and the exponent, and the re-

maining 48 bits as the mantissa. In the new packing scheme,

the right-most ten bits of the mantissa are masked to zero,

and then the integer value of JA is inserted by using a

logical ".OR." function. The array which takes the place

of A and JA is called REALS.

The first N locations of REALS contain the b vector

elements, and the next NNZR contain the compacted A and JA

data. To retrieve a value for A, the value of REALS is

fetched, and then the last ten bits are masked off; a real,

floating-point number is the result. To retrieve a value

of JA, the value of REALS has the left-most 50 bits masked,

and an integer value is the result.

There is one very important advantage to this packing-

features the storage required for each non-zero and each new

fill-in is 1 %lf of what the old scheme required. There are,

however, three noteworthy disadvantages: 1) with only ten

bits allowed for JAr then the maximum number of equatliona

which can be solved is further restricted to (210-1) or 1023;

2) masking off ten bits from the floating-point number aij

decreases the allowable accuracy vo a maximum of only 11

decimal places instead oi 14; 3) the real value stored in

the mantissa is no longer rounded but truncated to 38 bits.

While the maximum number of equations can be increasid by

changing the masks for A and JA (to 11, 12, or 13 bits) the

mmximnm accuracy is accordingly decreased.

( The sacrifice for accuracy, however, is not costly.
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The WPO pkvotinýi strategy can be very sensitive to stability,

and thua 4,t compel)sates for these induced machine inaccura-

cies. Tabie IX shows the perfo'rm&ne changes manifested by

the new packing strategy. (The imw variation io called

OG3BIT" to deantt "Gaussian Eliminaxion with Bit-slicing.")

Table IX
Comparison of MFPOP with GEBIT

on Some Test Matrices

Test Error$
Matrix MPFOP GSBIT

S1 W012 10-ll

* 3 10- 6  106

* 4 10"1 2  10-11

0 6 W014 1011
(

#10 10-8 10"10

#15 10"14 101

18 o10"4 1011

#20 10"1 10"11

Streamlined Alooriths

After the final tuating of GEBIT configuration, an at-

tempt waa made to further improve the speed of the algorithm.

As pointed out in Chapter III, the many calls to subroutines

by the Gaussian Forward pivoters did use up mucki timel wh le

this use of modular subroutines was a tremendous asset in

the testing phase of this thesis, the final "production"

Smodel womld have been unnecessarily slow. For the final

i "D
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configuration, therefore, the subroutines were removed, and

their logic structures were programmed within the Gaussian

subroutines THINKER, APRIORI, and GAUSSBX. This pr'ogz:am

modification also saved extra time in that only the logic

necessary at a particular step in the algorithm was used

and not the all-encompassing logic of the subroutines DELETE,

STORE, and FETCH (Appendix B). The numerical accuracy of

this final configuration is naturally the same for GEBIT;

but Table X shows the improvement in the time usage over

GEBIT and MFPOP. (The final configuration is called "SMART"

to denote the "Sparse Matrix Algorithm Research Thesis.")

Table X
Time Improvemen . of the Streamlined Algorithm

Test Time (Seconds):
Matrix MFPOP G&BIT SMART

#13 1.18 1.04 0.75

#14 2.11 1.77 1.39

#15 3.02 2.50 2.02

#06 3.99 3.25 2.67

#17 4.91 4.03 3.10

#16 5.83 4.75 4.01

#19 6.78 5.57 4.69

#20 7.87 6.50 5.41

Interestingly enough, the GNBIT configuration showed

an average improvamnt of nearly 17% by itself. One reason

for this increase is that the time for the fast regirter
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functions (SHIFT, .AND.# and .OR.) are much less than the

fetch commands from the relatively slow core maemory. Thus

the computer needs only to fetzh one number. REALS(M), to

attain toth the valuos fow JA(M) and A(K). Okerall, the

SMART configuration showed an improvement of nearly 33% in

time.

Production MWdel Suinarv

While the SMART :outine was still slower than Sherman's

YSW or Keys SXXLTý the &c-urarcy demonstrated that this

program can be a co"petitive sparse matrix solver for very

large programss. A scaled version of SMART was run on the

APIT CDC 6600 computer with a 1000-by.1000 pentadiagonal

matrix. The error was on the o-7der of 1 0 -1C; but the iost

obvious result was the totai core usage required: only 64K

words. With the packing schemes of YSMP and SIMULT, to run

the same problem wuuld have required considerably more core

storage (well over 100K words). For problems not quite as

laroe as N=10009 the SMART program could be used on the

INXERCOM terminals at APIT and AnWL where the core limit&-

tion is set at 60K. Clearly, the Gaussian EliminA•ion pro-

gzaamed for this thesis is an adequate conputational tool.
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VII. Conclusions and Recoummendations

The summary of this thesic includes a discussion of the

attainment of the thesis objectives, a discussion of the

outcome of the algorithm programmed by this student, and a

list of subject areas for further study.

Attainment of Thesis ObjecULej&

The comparison of the two existing nparse matrix

solvers (the LU Decomposition in YSMP and the Gauss-Jordan

Reduction in SIIULT) pointed out two clearly definable areas

where the accuracy of one program was much better than that

of the otheri YSMP worked we!.l for tightly-banded matrices

while SIWFJLT favored the more unstructured systems. Unfor-

tunately, the areas in which the programs worked their best

did nut overlap; furthermore, the matrix structure of the

weampie in Chapter I--a very common structure--was not con-

tained in either region.

The correlative program of the Gaussian Zlimination

with strategic pivoting (called SMART) not only filled the

void but included areas of performance common to both YSUW

and SIrnLT. The pivot schemes available with SMART (Consec-

utively Calculated or an a priori pivot) yield a potentially

serious consequences the possibility exists that fill-in may

occur more frequently than in the programs of other methods.

In fact, these pivot strategies conflict somewhat with the

0thoughts of the writers of many articles in Sparse Matrix
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literature (i.e., there is a great emphasis on fill-in mini-

mization in many of these papers). This apparent conflict

was resolved in two ways which justify the vise of these

pivot schemes: 1) by an examination of the word structure

in the computer at hand and 2) by the construction of the

new packing scheme for this thesis.

Comauter Word Structure. The preponderance of comput-

ers used for sparse matrix study in the past decade have

only 32-bit, single-precision woxdsl to attain good accuracy

for large sparse systems, the use of double-pr'ecision FORTRAN

is & necessity. Therefore, the total number of distinct

storage locations is cut in half. Thus the concern for fill-

in growth in these kinds of comFrters is quite valid. On

the other hand, the CDC 6600 provid.. a 60-bit, single-pre-

cision word which allows essentially the same accuracy as

most 32-bit-per-word computers at double-precision. As a

result, much more extra space is available if fill-in grows

to large proportions.

ESS -ogJ&ML. Additionally, the bit-sliced packing

scheme used in SMART fuarther reduces the requirements for

data storage bty combining information from several data

&rrays into a single data array. In handling the compacted

1 matrix alone, the SMART algorithm uses nearly 5CM less

storage space by combining the & values and their respective

column index pointers into divisions of the same arrays.

(This now packing scheme thus fulfils the second major objec-

tive of this thesiss the efficient use of computer core

•: • m pq| • i~ml~l lldii~ll ~ lmmGe m,•,,Lpp mq e •l~ 1 • • "r. . .. . .• .P-



storage.)

Thus any conflict with the proponents of fill-in reduc-

tion is avoided because the SMART program as it is run on

the CDC 6600 computer can clearly be allowed to pivot for

accuracy or calculation reduction rather than strictiy for

fill-in minimization: the extra core space is readily avail-

able.

Critigue of the GAussian Elimination Proorae

There are several factors to discuss about the Gauss-

ian Elimination algorithm as it is programmed in SMART; the

factors discussed deal rith both tangible and intangible

considerations.

anoible Advantages. The accuracy of SMART is well-

documented over a wide scopN of linear systems. Even for

very large systems, the core usage for SMART is small when

compared to the two existing sparse solvers testad. Also,

inasmuch as the user has an option on the pivot strategy

(consecutively calculated or a priori) and a choice for

pivot tolerance (for accuracy or some fill-in reduction),

the SMART program can satisfy a large range of raquired

capabilities very easily.

b�ZaiD~kLisLvantaMa. The single drawback of SMART is

the time it takes to solve a problem. The reason for this

time excess is related to the packing and core usage designs s

to keep core usage low, much of the array of data must be

relocated at each incidence of a fill-in or deletion. For

exaMple, if a fill-in were to occur near the top €d the "ata
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array, the subsequent data are all ghifted down one location

to make room for the fill-in. The array is simiiarly

shifted up one location fox each deletion. In the context

of a large linear system whose solution may requi:re iowe

fill-in, these data manipulations for the sake of core stor-

age translate into much extra computer execution time.

Zntanaible Advantages. Even with long execution times,

programs which require less core space in a computer are

often given higher priority for execution; as a result, the

output from the SMART program would be finished and into the

hands of the user much mooner than for YSMP or SIMULT for

the same large, sparse matrix. This "turn around time" can

be a very important element in a user's computational needs.

(The proper analysis of this concept lies in understanding

the operating system of the particular cAmputer in use.) In

any case, in a large multiprogramud computer environment

(such as APIT or AFWL), it is generally harder to get large

amounts of core at a given time than it is to get extended

execution time. Another intangible benefit of SMART is that

Gaussian Elimination is very easily studied; thus the algo-

rithm makes SMART highly adaptable to other thesis study.

SuCeasted Areas for Further Stdty

In the entire field of Sparse Matrix research, there

are other considerations which have been applied to other

sparse matrix solution techniques. As a way to mention some

of these factors and how they might apply to the SMART alga-

ritho, the following recmmendations are presented:
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Reduction of execution Time. 1) It would be irnterkest-

Ing to attempt a Consecutively Calculated Pivoting strategy

in the faster Gauss-Jordan Reduction and LU Decompositi.on

programs of Key and Shvzman. 2) The packing scheme of SMART

could be modified so that the tinmeconsuming "shuffle" dur-

ing deletions and fill-in could be eliminated: by ute of a

"linked list" table, elements of a row need not " storea

adjacent to e&ch other; the table list would contain the

computer "addresse*" of consecutive row elements. Bit-slic-

ing could be applied here so that the linked list table

would not require inordinate amounts of extra working space.

lIteative Techniques. 1) While this thesis dealt only

with direct solutions of sparse matrices, it would be appro-

priate to conduct a thorough investigation of iterative

techniques and compare their results with SMART. 2) Many

writers suggest using iterative improvers for systems which

are solved with poor accuracys the direct solutions can be

ubed as the starting points for the iterations. Along these

lines, consideration should be given to the case where a

particular solution to Eq (1) is found the first time using

SMART; thtn, some elemnts of & or k might be changed to re-

flect subtle differences in the mathem-tical model. An iter-

ative solver could use the first accurate solution from

SMART & starting poiat for the solution of t*e modified

system. Such a technique will provide mach faster solutiors

than complete recquftation by either SMART or the iterative

solver starting from scratch. 6*t

L



Riogrous Mathematical Tests. 1) For a class of near-

singular matrix systema, it may be necessary to interface a

direct solution with an iterative solution as described

above; the useful result would be an idea of the true extent

for which the Gaussian sparse solutions are applicable.

2) In order to handle problems which transcend the well-con-

dltioned systems common to physics and engineering, the pro-

gramaing of a scaling algorithm (as in Uq [34]) would allow

the more theoretical systems to be tested. 3) Additional

study on algorithms far special matrix structures (such as

symmetic or symmetric zero structure) is a naturally follow-

On to generui matrix olutllona.

_rorAM AdMDltaility. 1) Since 3parse matrices can

come as a result of tinite differencing tchniques for solv-

ing differential equations, it may be appropriate to con-

struct computer programs which can generate the sparse ma-

trices given the differential equations and the boundary

conditions. An important suggestion in this case is to

stantardize the data formats so that the sparse generator

programs can interface dirwctly with the sparse solver.

2) To carry the analogy one step further, one can conceive

of one lau•.e computer program which generates the sparse

matrix, .ol.v@s it with di:ect methods, and improves the

anamr with iterative tdchniques. With sucn a large concept,

exploitation of the computer's operation system would be a

valuable aid to this end.

(
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Use of the SMART Aloorithm on Other Com. It

would be of great value to attempt to execute SMART both in

single-precision and double-precisio= on a computer other

than the CDC 6600; the per-formance degradation by using a

32-bit-per-word computer would be of particular interest.

It would be necessary to make changes to the bit-sliced

array packing depending on the sophistication of a par-icu-

lar FORTRAN compiler with such computers.

Goncludj no Statgemnt

In sumaryg the most important result of this thesis is

the development of the sparse matrix solver SMART. The pro-

gram gives the user much flexibility in the conduct of a

particular probiem's solution. The algozithm of SMART pro-

grammed on the MC 6600 computer can provide accurate solu-

tions from a very compact, efficiently used core structuze

for a wide range of linear system structures.

0
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Appendix A

Example of the Need for Strateoic Pivoting

Given: 0.0001 x, + 1.00 x2 = 1,00

'1.00 x1 + 1.00 x 2 = 2.00

Desk calculator solution: x, = 1.00010001

x2 = 0.99989998

"Machine" limitation: Accuracy is iimited
to three places.

Case It Gaussian Elimination without Pivoting

Operation 1 - 1.00 xI + 10,000 x 2 = 10,000

0.0 x1 - 9,999 x 2 = -9,998

COperation 2 - 1.00 xI + 10,000 x 2 = 10,000

0.0 xI + 1.00 x 2 = "1.000" (round-off)

Solution: x, = 0.00 and x 2 = 1.00

Case II: Elimination with Row Interchapqe

1.00 x, + 1.00 x 2 - 2.00

0.0001 xI + 1.00 x2 - 1.00

Operation 1 1.00 x, 4 1.00 x 2 - 2.00

0.0 x1 + "1.00" x2 = 1.00

(round-off)

Solutions x, * 1.00 and x 2 = 1.00 ("Perfect" to within
round-off accuracy
of desk calculator.)

(Prom Ref 7:34)
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Appendix 8

Flow Charts for WFP Subroutines

general Information

This appendix contains the logical flow charts for the

important subroutines in the MFP sparse matrix solver: PACK1,

FETCH, STORE, DELETE, GSSGEN, and GAUSSBX. The program

GSSGEN is the forward Gaussian Elimination with a general

pivot strategy which gave rise to the variations of MFP.

(A FORTRAN listing of the entire MFP program can be obtained

from the AFIT Computer Archive.)

PACK1 compresses the A matrix into a compact form,

reads in the b vector, and generates status information.

The FORTRAN arrays used are the following:

IA - The starting address of the i-th row.
JA - The column coordinates for the A, values.

ISTAT - The number of non-zeros in the i-th row.
A - The column array of the A matrix in

compressed form.
B - The constant vector.

Fig. B-1 shows the packing of only the non-zeros in a sample

4-by-4 system. The flow chart (Fig. B-2) depicts only the

essential logic for packing and not the error checks which

are contained in the program.

The main program and all of the funct 4 onal subroutines

use the arrays generated in PACKI. This irmation is ex-

changed between programs by way of a COMMN statement.
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1 2 0 - xi I Index ISTAT IA JA A B
1 2 1 0I 1 1

3 4 0 x 2  21 2 2 3 -.. 2 2 2
3 2 5 2 3 3

0 5 6 ,X 3 4 2 7\• 3 4 459 2 50 0 7 8 x4 4 646
-JL 7 • 3 '74 4 8

Fig. B-i. Packing Scheme for MFP

N?

KSTTT=Read'JEJA(KSTRT )= info

TLEf t coA(oIdia) -
If

Read wl era

N Re turn

JLEFT=JLF-FT÷l /ALL V,ý

•\INEW -The row number of the next set of data.

KSTRT - The staring address of the next row.
I - The index of the current row being packed.

IA(N+l) - The location after the last non-zero.

-- 9ig. B-2. Flow Chart of PACK1
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FETCH

f To attain the value of an aij, a call to FETCH will re-

turn with the value or zero if a value is not found. Since a

comparison with a floating point zero in FORTRAN is not al-

ways valid, a logic flag called ZERO is set to TRUE if no

value is found; this actually saves time since a logic check

is faster than an arithmetic comparison. The call to subrou-

tine requires the coordinates I and J; the value, the condi-

tion of the logic flag, and a value called IHOLD are returned.

In subsequent subroutines, IHOLD is used because it contains

the present address of aij; if aij must subsequently be de-

leted or a iiew value stored into aij IHOLD tells immediately

where that value must go. Thus, the program is spared the

extra file search for the location of aij for these other

subroutines.

FETCH aij L = JA(K
ISTAT(i) ? ,3

#2 K=K+l
seen?

as in Fig. B-1

l qig, 5-3. Flow Chart of P97CH
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DELETE

C The subroutine DELETE removes from the compacted form

of the A matrix any value which will be eliminatea in the

Gaussian forward process or any pivot element which has been

normalized and is understood to be exactly 1.0 in value.

Any element ai can be eliminated by DELETE; ho-wever,

it is usually the case that the value IHOLD contains a num-

ber which is the address of the ai. to be eliminated. Thus

inother search of the row is not necessary. There is a

safety check: the coordinate J is checked with the value of

JA(IHOLD) to be sure that the correct element is to be elimi-

nated. If this test fails, the subroutine merely reverts to

a row search. The following variables are defined for use

in the flow chart (Fig. B-4):

NDEL - The address of the value to
be deleted.

IDEL - A counter to track the number
of deletions which the forward
Gauss subroutine must make.

Once NDEL is computed, the arrays JA and A are all shuf-

fled up one location starting at JA(NDEL) and A(NDEL). Then

the starting addresses of rows (i+l) through (n+l) are dec-

remented one place.

The counter IDEL can be used to check the relative per-

foimance of the various pivoting strategies. Once the final

form of WP has been establish&., the counting of IDEL is no

longer needed for the user' s information.

so
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The subroutine STORE places a computed value back into

the A matrix or, if the situation dictates, it will create

space for a fill-in value.

As with the subroutine DELETE, it is usually the case

that the value of IHOLD contains the address of the aij

where the data -must be stored; a similar safety check is

performed. If the safety check fails, a staida-d row search

is completed. After a thorough search, the subroutine de-

faults into the "fill-in" mode.

For fill-in, the program must find the coordinate

before which the data must t% entered; then, all of tiie sub-

sequent data are shuffled down one location. The new data

value is inserted into the ebap$y space in both the A and JA

array tables. The variables which are used in the flow

chart (Fig. B-5) are the same standard set plus the fol-

lowing x

IBUMP - The coordinate at which the
fill-in will be placed.

IFILL - A counter to track the number
of fill-in values which occur
in the Forward Gaussian
process.

The starting address vector, IA, is finally incremented by

one for each row after the fill-in row.

The counter IFILL can be used to check the relative

performance of the various pivoting strategies! the countQr

is no longer neded for the final version of the program.
0
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STORE in A(IHOLD y A(IH)LD) -
~iDATA- AA

NN

Search

for &jj &2. Return
in Fig. B-3

KI=I(I)N aj yA(K)
foundDATA

*LT. .GT. N for J between
I K2 adjoining

IBUMP IBUMPIBUMP a
K1 K2of larger

A(Ht4P ."DO" LI.,a .1 ITA(I

DATA throu h N+1 ISTAT(I)4K+
JA(IBUI"U) IM L) IFIM m

L X A(L) +1 IPILL+1

fig. 3-5. Flow Chart of MT MR
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The suibroutine GSSGEN accompl.shes the forward G•..ussian

Elimination step. This subroutine is really an illustrative

example in that the flow chart (Figs. B-6 and B-7) indicates

pivoting based on some arbitrary strategy. The following

FORTRAN variables are defined:

ELIM(I) - An element of an array ELIM
which is declared as a LOGICAL
variable name. If ELIM(I) is
.T•UE., then row I has been
used as a pivot row and should
not be used for substitution.
If ELIM(I) is .FALSE., then
row I is a candidate for a
pivot or a substitution.

IELROW - The row number of the current
pivot row.

JEL - The column number of the
current pivot column.

IPIV - An array which orders the pivot
rows for the back-solver.

JPIV - An array which orders the pivot
columns for the back-solver.

JSTAT(M) - The number of non-zeros in the
I-th column. This status vector
is used by Minimum Row/Minimum
Column pivot strategy, for
example.

If the diagonal pivot strategy were used, there would

be no need for JSTAT or ELIM; in this case, IRLROW and JEL

would always equal the value K. But in more complicated

strategies, these varlables are necespities.

IPIV and JPIV are used so that no row or columi ex-

charges aze necessary in a pivoting strategy. Their

utility is described further in the description of GAUJSSX.



Clea . ELIM
dflags to C. o

GCWSSGMEN H Construct col-

umn status
(JSPA() if
required

"DO" Kul
through N

Select Rows IELR b1Piot coor-\
hnaes from Colt JELstrat4,egy/

JePeach"PIVOT" (F[ETCH)

Element

vELIM(clun )=.T.l If colum counter,IPIV(K)=IELROW |JSTAT, is used,
JI(K)-JSL reduce each column

,,, |J of IELO by 1..
IROWwerows found /Find rows\

(where 
ELIM( I)\

Fig. B-6. Seaxch Portion of GSSG(N
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#4

"DO" L = 1

through
IROWS

ISUB-The row into ISUB -

which the pivot JCOL(L)
row (IELRCOV)
will be
substituted Fetch

/value at (FETCH]
/A( ISUBJEL)

Delete
value at (DELETE]

A ( IU .JE±I

SubstituteA

pivot row
Iinto row ISUB

\aas in Eqs
(5) and (6)

L~Store new
!(k) (STORE]

n stic r wR t r

Pig. B.-7. Subtitutiozal Portion of GSSN



GAUSSBX

The back solution of the Gaussian Elimination is

done by the CAUSSBX subroutine. The operation corresponds

to Eq (7). In the forward solution, the ordering of rows

and columns is stored in the arrays IPIV and JPIV. The flow

chart for GAUSSBX (Fig. B-8) shows how the proper xi values

are computed. In the example of Fig. B-i, if the second row,

third column were the last pivot coordinates, then IPIV(N)

and JPIV(N) would be "2" and "3" respectively. The first xi

to be sc$ved would therefore be x 3 . Had the rows and columns

been interchanged, x 3 would have appeared in the last element

in the 4 vector. Thus, the use of row and column pivot ar-

rays saves much extra programming and execution time re-

quired by interchanges in A and x.

ugbrputine Summary

The calling sequence for a driver program for these

subroutines would be as follows:

PACK1 - To store the compressed data.
GSSGEN - For the forward solution.

GAAUSSBX - For the back solution.

There are other subroutines used in the MFP program; but

their structure is very simple, and reference to the

listing would be sufficient for further study.
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GAUSSBX

USS "DOI$ K m I
through; N

KK=N+1-K
IROW=IPIV(KK)
JCOL=JPIV(KK)

t

X(JCOL)
B(IROW)

KK

;?

N y

KX=K-1
"DO" L=IOKY.

r

JNJPIV(J.T) y

Fetch
(FETCH] value value,

A Z(I ROW p 7J) 0?

;NN

XI.JC011)

value x X(J)

r Retu

Fig, B-S. Flow Chart for GATJSSBX
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Appendix C

Table C-I
Core Storage for Gaussian Sparse Solvers

Program Subroutine Length (Octal) Data Length (Octal.)
al - - --- -

YSKW - SORDMR 411
NSRORD 151
SSFAC 351
NSNFAC 321
NSBSLV 141
ZRROSYM 317

Total: 2134 20207

SIMKLT - SIMULT 432
PIVSEL 100

Total: 532 17662

MFP - FETCH 31
ROWDIV 2
DELETE 57
STORE 134
GAUSSBX 56

#1 GAUSSF - Diagonal 413

Total: 757 16666

#2 GAUSSFP - Partial 4.17

Total: 763 16666

#3 c-Aj•Sp1' - Fud 1 570

Total: 1034 16666

#4 GAUSS - Min Row 771
MirA Col

Total 1335 16666

05 AUSSML - A±in Row 601
Max el*

Total: 1U43 16666

Storage for any arbitrary 100-by-100 matrix, 53 eparsity.

90i -°
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Appendix D

StAndard Test Matrices

The following matrices (Figs. D-1 through D-4) were

used in the initial test phase of this thesis.

§2&c~ifications

In all cases, the rank, n, was 100, and all elements

of the constant vector, g were unity.

10 3 -4 5 3 -4

2 .2

-4-4

33

-L 21 -1 2

Pig. D--l. Test Matrix 1 Faig. D-2. Test Matrix 2

14-1

-0

3

Fig. D-3. TsMarx32 Fig. D-4. Test Matrix 4

09

.................... ;
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Appendix E

Intermediate Test Matrices

This appendix contains the descriptions of each of the

next eight test matrices and tables of performance for five

sparse solvers.

Descriptions of Intermediate Test Matrices

Test Matrices five through twelve were all of size

n a 100, with non-zeros at 3 to 5% sparsity. All values

aij and the elements of b for each matrix were randomly gen-

erated by a standard function in the CDC 6600 computer. In

some cases, the coordinates of the aij values were generated

randomly; thus, not only were random values tested, but also

( random structures.

Test Matrices 5,6,7 - Three different tridiagonal
matrices.

Test Matrix 8 - An arbitrary tridiagonal
matrix with an additional 2%
non-zero structure arbitrarily
placed within t5 diagonals of
the main diagonal.

Test Matrix 9 - Similar to Test Matrix 8 ex-
cept the 2% extra non-zeros
are contained within ±lO
diagonals.

Test Matrices 10,11 - Siptilar to Test Matrix 8 ex-
copt that the 2% extra non-
zeros are contained within
&15 diagonals.

Test Matrix 12 - Similar to Test Matrix 8 ex-
cept that the 2% extra non-
zeros are arbitrarily assigned
throughout the entire matrix

()i structure.
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Performance Tables

The measured criteria contained in Tables E-i through

E-V are the order of magnitude of the average scalar re..d-

ual error (Eq (29]), the execution time, the number of times

a fill-in value was generatedt and the number of elements

which the Gaussian algorithm deleted, In the case of Gauss-

ian Elimination algorithmsp the normalized pivot elements

were also deleted because they were undezstood to be exactly

1.0 in value.

Table E-I
Intermediate Tests with SIKhILT

Test Time
Matrix (rror Pill-ins Deletions (Seconds)

#5 10-2 97 295 Oe26

# 6 10-4 97 295 0.27

# 7 10"1 97 295 0.30

* 8 10-8 336 734 0.33

# 9 10"9 987 1385 0.66

#10 10-8 871 1269 0.64

#11 1010 1247 1645 0.89

*1 P. 10"I 2168 2566 1.70

zr O-010
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Tabli E-Il
Intermediate Tests with MFP2 (Partial Pivoting)

Test Error Fill-ins Deletions Time
Matrix (Seconds)

* 5 10"14 59 258 0.36

* 6 10-14 61 260 0.39

* 7 10"13 58 257 0.36

#8 10"1 2  291 512 1.02

* 9 10i-12 699 721 1.82

#10 10"13 930 874 2.19

#11 10"13 ].044 946 2.4C4

#12 10-13 4038 2405 21.11

TAble B-Ill
Intermediate Tests with MFP3 (Pull Pivoting)

Test Error Fill-ins Deletions Time
Matrix (Seconds)

# 5 10"1 232 305 0.73

* 6 10"1 233 305 0.76

# 7 1o+1 218 302 0.74

# 3 100 1149 827 3.40

# 9 100 2002 1267 7.77

#10 100 2153 1105 7.79

#11 100 2129 1409 9.17

#12 10÷1 3815 4177 26.82
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Table 6- IV
Intermediate Tests with MFP4 (Mn Row/Mmn Col)

Test Error Fill-ins Deletions Time
Matrix (Seconds)

# 5 10"14 0 199 0.37

* 6 10"14 0 199 0.37

# 7 10"13 0 199 0.43

# 8 10"1 207 464 1.00

# 9 10° 792 936 2.38

#10 10*4 951 958 3.06

#11 failed - computed an infinite operand

#12 10+1 2117 1750 9.55

Table 8-V
Intermediate Rests with MFP5 (Min Row/Max Element)

Test TimeMatri Error Fill-ins Deletions Time

* 5 10"14 59 258 0.44

* 6 10"-1 61 260 0.45

* 7 10-13 58 257 0.45

* a 1O" 249 504 1.03

* 9 100 6"9 771 1.90

10 10+1 933 1051 2.79

#11 100O 717 779 2.10

*12 100 1713 1452 6.35
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Appendix F

Te1t Matrices with Flankina Diagonals

The following uatrices (Figs. F-i through F-S) were

used in the final test phase of this thesis.

Saecifications

In all cases, the rank, n, was 100, and all elements of

the constant vector, b, were unity.

20 4 -2 20 4 0 -2

3 33

. -2

L -1 21 -1 0 3 2J
Fig. F-1. Test Matrix 13 Fig. F-2. Test Matrix 14

20 4 0 0-2

3

0

-2

oo 0

0

4

SM1 "0 3 20

Fig, F-3. Test Matrix 15
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(20 4 0 0 -2

3

o -2

N' 0

N 0

40

L 0 0 'C 3 20

Fig. F-4. Test Matrix 16

20 4 0 0 0-2

0 '

0 K "2

0 0

1 0

0

.4

-1 0 0 0 0 3 20

fig. P-5. Teat Matrix 17
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S[20 4 0, 0 , 0 , 0 -2

3 "

0' -2

0 'N 0

NN "N

0 o

0 0

Nl 0

0

4

S0 0 0 3 20

Fig. F-6. Test Matrix 18

o

20 4 0 0o, 00 -2

0

0 0

K0

0

'N 4

01 0 0 0 3 20

Fig. P-7. Test Matrix 19
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20 4 0 0 0 0 -2

3

0

o -2

0

0 0

0 

0

o 0

o\ 0

-1 0

( 4

-1 0 0 0 0 0 3 20

Pig. P-8. Test Matrix 20
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Appendix G

jaussian Eli•.inj tion Program Listina

This Appendix contains the listing of the Gaussian

Elimination Sparse Solver called "SMART." This particular

program is not the production model; the reader will noi:e

that the sparse matrix is read in from a permanent disk file

called "TAPE2." The only significant difference between

thia listing and the listing of the zoduc"ion model is that

all references to lo•ical unit 2 have been replaced by list-

directed "READ's commnnds from data cards.

Am
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