=

AD=AO47 602 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO F/6 5/2
USE OF A HIERARCHICAL DATA MODEL TO SUPPORT A RELATIONAL DATA M==ETC(U)

AUé 77 E K CONOLEY

UNCLASSIFIED AFIT=CI=78=3

IoF .

-—

USE OF A HIERARCHICAL DATA MODEL TO SUPPORT A

ADAQ47G02

RELATIONAL DATA MANAGEMENT SYSTEM

APPROVED:

I

=

/7770y S

" DISTATBUTION STATEMENT A'—]
Approved for public release:
Distribution Ualimited

DDC FiLE copy

AD No.—

4

;’ : UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
READ INSTRUC TIONS

T nifon? NUM:!I 2 GOVY ACCESSION NOJ 3 RECIPIENT'S CATALOG NUMBER

CI 78-3 =~
4. TITLE (and Subtitle) S YYPE OF REPORY & PERIOD COVERED

Use of a Hierarchical Data Model to Support a

Relational Data Management System Thesis

€ PERFORMING ORG. REFORY NUMBER

7. AUTHOR(%) § CONTRACY OR GRANT NUMBE R s)

Ellis K. Conoley

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT PROJECT. T ALK
AREA & WORK UNIT NUMBE RS
AFIT Student yniversity of Texas,
Austin TX
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AFIT/CI Augqust 1977

137 NUMBER OF PAGES
WPAFB OH 45433 80

TA. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 18, SECURITY CLASS. fof this report)

Unclassified
h. OIC&.ASQ'ICATIOM DOWNGRADING
SCHEDULE -~

16. DISTRIBUTION STATEMENT (of this Report) /‘/j\ R
\
‘j A \S-
™\ \ > \

e A\
Approved for Public Release; Distribution Unlimited e A ‘ .\ ‘
Q fr'i& 15 :’A,<S§')
\}‘k Q /((\L\u
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) \\\'| .~ \) ,
Wl =

5
o supPLsifnrﬁi(‘?r‘ﬁrss
\ \ |
CARODR e
JERRAL F. GUBSS, Captain, USAF
Diréctor of Information, AFIT

APPROVED FOR PUBLIC RELCASE AFR 190-17.

19. KEY WORDS (Continue on reverse side if necessary and iden’ify by block numier)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

FORM
DD , SAN 79 1473 EOITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Daie Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in
all technical reports prepared by or for DoD organizations

C].Aiﬂ_ﬂ%&]]?g_. Since this Report Documentation Page. DD Form 1473, is used in preparing announcements, buhuovﬁut. and dete
banks, it should be unclassified if possible If a classification is reguired, identify the dn:&wd items on the page by appropriate
symbol.

COMPLETION GUIDE

General. Make Blocks 1. 4, 5, 6, 7, 11, 13, 1S, and 16 agree with the corresponding information on the report cover., Leasve
Blocks 2 and 3 blank

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.
Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Lesve blank. This space is for the use of the report recipient to assist in future
retrieval of the document

Title and Subtitle. Enter the title in all capital letters exactly as it sppears on the publicstion. Titles should be
unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see
“‘Abstracting Screntitic and Technical Reports of Detense-sponsored RDT E *AD-667 000). If the report has & subtitle, this subtitle
should follow the main title, be ieparated by & comma or semicolon if appropriate, and ke initially capitalized. If & publicstion has &
title in & foreign language, trans,ste the title into English and follow the English translation with the title in the original language.
Make every effort to simplify the title before publication

Block 5, Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive
dates of period covered, such as the life of @ contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such
as series numbers for in-house reports or a contractor grantee number assigned by him, will be placed in this space. If no such numbers
are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional
order (for example, John R. Doe or, if author prefers, |. Robert Doe). In addition, list the affiliation of an author if it differs from that
of the performing organization.

Block 8. Contract or Grant Number(s). - For a contractor or grantee report, enter the complete contract or grant number(s) under
which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address, For in-house reports enter the name and address, including office symbol,
of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the
report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable
Department of Defense form, such as the DD Form 1498, «‘Research and Technology Work Unit Summary'® or the DD Form 1634,
‘“Research and Development Planning Summary,’’ which identifies the program element, project, task arca, and work unit or equivalent
under which the work was authorized,

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the
controlling office. (Equates to funding/ sponsoring agency. For definition see DoD Directive §200.20, ““Distribution Statements on
Technical Documents.””)

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.
Biock 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding
office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15
the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the
abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD
Directive 5200.20, ‘‘Distribution Statements on Technical Documents.’”

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of lhe_repon).
Insert hereothe applicable distribution statement of the abstract from DoD Directive 5200.20, *“‘Distribution Statements on Technical Doc-

uments.”’

Block 18. Supplementa Enter information not included elsewhere but useful, such as: Prepared in cooperation with
... Translation of (or by) . . . ' it conference of . . , To be published in . . .

Block 19.” Key Words. - or short phrases that identify the principal subjects covered in the report, and are
lu"iuen(l; specific a::d precise to ' 4 as index entries for cataloging, conforming to standard terminology. The DoD *“Thesaurus

of Engineering and Scientific Terms*! (T£ST), AD-672 000, can be helpful.

Block 20. Abstract, The abstract should be a brief (nof to exceed 200 words) factual summary of the most significant informa-
tion conlnir‘:sa izn the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified
report should consist of publicly- releasable information. If the report contains a significant bibliography or literature survey, me?'uon
it here. For information on preparing abstracts see ‘‘Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E,

AD-667 000.

® U.5. GOVERNMENT PRINTING OFFICE : 1973-729-091/1431 3«

us: OF A urmncmw om nooEL TO supponr A \
RELATIONAL DATA HANAGEHENT SYSTEM , '

/ /t," ’ [,"; B

/
ELLIS mox/conon.sv B.A.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

- 4”f’/’/ : [~---_~_T_;l///
(7 BER : |

THE UNIVERSITY OF TEXAS AT AUSTIN

RIS e

@’ Augns 1977 ﬁ

CHAPTER I.
CHAPTER II.

CHAPTER III.

CHAPTER 1V.
CHAPTER V.
CHAPTER VI.

CHAPTER VII.

APPENDIX .
REFERENCES

TABLE OF CONTENTS

IENRRETION & < « « s s s v &5 e R AT
DEFINITIONS ® s 8 86800 5.8
PROBLEM DEFINITION P R e
THE UNDERLYING HIERARCHY &% W4 m 8
ALGORITHMS FOR THE INTERFACE
AN EXTMGSION TO THE SYSTEM
SUMARY Rt i e I T e e

iii

PAGE

16
24

70
74
75

|

et e————

|
|
\

CHAPTER I
INTRODUCTION

Each Data Base Management System (DBMS) has its own unique :
approach to the data management problem. Three basic management ‘
systems, hierarchical, relational and network, have evolved, each of
which constructs the logical view of a data base in a different way.

None of the approaches is superior to the other two, rather each has
its own special advantages and applications.

Lowenthal and others have discussed the design of a general
purpose DBMS kernal which is able to handle several logical views of
a data base instead of only one logical view [15]. The kernel accepts
many different "front ends" by having general units for parsing, data
access, work areas, buffers, etc. The characteristics of such a kernel
should not affect the user, i.e., the personality of the management

system should not extend through the user-friendly interface.

The design of such a kernel is a complex undertaking. In
order to discover what specific functions should be a part of the
kernel one should study what the kernel must do for a specific model
in a specific instance. The action which would be taken by each model
must be noted to assure that the kernel is able to adequately process
requests by a front end system. In addition, the relationships between
current approaches must be considered so that any duplication of effort

by a particular front end is avoided.

Y

\ \
\)

<

This thesis is an investigation of some of the relation-
ships that exist between hierarchical data base organizations and
relational data base organizations. It discusses these relationships
in terms of the problems and solutions involved in implementing a
relational front end to a hierarchical data base. A solution is
presented which defines all relational algebra operations in terms of
hierarchical operations. The system does not have a query optimizer,
but is constructed with facilities for the addition of one. It
provides a vehicle which can be modified to study other relational
organizations in the hierarchy.;g\\\\\

CHAPTER II consists of term definitions and a brief discus-
sion of the relational and hierarchical models. CHAPTER III discusses
the specific problem of designing a relational front end to a hierarchy,
arriving at a possible organization. CHAPTER IV is a study of the
algorithms necessary to implement the algebra. CHAPTER V mentions a
possible extension to the algorithms of CHAPTER IV, and CHAPTER VI

is a summary.

CHAPTER 11
DEFINITIONS

1. Data Base

.. a collection of interrelated data stored
together without harmful or unnecessary
redundancy to serve one or more applications
in an optimal fashion; the data are stored so
that they are independent of programs which
use the data; a common and controlled approach
is used in adding new data and in modifying
existing data within the data base. [16]

2. Data Base Management System

A Data Base Management System (DBMS) is a software system
for managing data bases on a computer. Such a system acts as an inter-
face between the ultimate user's view of the data (logical view) and
the hardware of the system. The DBMS is, therefore, a mapping between

the logical structure of a data base and its physical reality (Figure 1).

ACCESS

| Methods
and

DBMS j——----

FIGURE 1
PICTORAL REPRESENTATION OF THE DBMS INTERFACE

3. Logical Data Independence

A data model is logically independent if the programs which
access the particular data base are unaffected by logical changes in

the data model.

!
il
| ‘
\
} '

4. Data Integrity

A data model has data integrity when at all times there
exists no inconsistency in the data base. A data model looses integ-
rity when any data items which should represent the same fact do not
contain the same information, i.e., when they are inconsistent. It
is a problem of data base design to insure that inconsistency is

eliminated, or is always kept at a minimum level.

5. Hierarchical Data Model

a. The hierarchical data model has the following characteristics:

[1].

1) There is a set of record types {R1,R2,...,RN}.

2) There is a set of relationships connecting all record
types in one data structure diagram.

3) There is no more than one relationship between any two
record types, R1 and Rj'

4) The relationships in the data structure form a tree with
all arcs pointing towards the leaves.

5) Each relationship is 1:N in the direction of the leaves
of the tree, and is total -- that is, for every Rj record
occurrence there is exactly one R, record occurrence
connected to it, if Ry is the Parent of Rj in the defini-
tion tree.

b. Ri is said to be an ancestor of RJ iff i < j and Ri lies on a

path to RJ. RJ is a descendant of Ri if the same conditions hold.

¢. Operations on a hierarchical data model are:
GET DESCENDANT (Record)
GET ANCESTOR (Record)
GET NEXT (Record)

In some systems, requests may be made non-procedurally using
statements of the form: ACTION A WHERE P. A is a retrieval of some
subset of record types contained in tnhe model, and P is a hierarchical
predicate which qualifies elements and records along a common (family)
path. A multi-branch (path) qualification is generally illegal because
cases arise where processing of qualifications cannot continue unambig-
uiously [11].

Figure 2 shows an example of the occurrence structure of a
hierarchical data base with 4 record types. Type A is a root and is

located at level 0.

LEVEL O Al A2
o G @ (B
me @ D OEEE

FIGURE 2
HIERARCHICAL ORGANIZATION

|

Ve e

In order to retrieve the subtree Al, and then retrieve Cl,
the following sequence of commands could be followed in a low-level
navigation language:

GET NEXT A.
GET DESCENDANT B.
GET DESCENDANT C.

Notice that while a record of type A may be retrieved using
a GET A WHERE <B1 has condition> AND <C1 has condition>, a request of
the form GET A WHERE <C1 has condition> AND <D1 has condition> is
illegal because it spans two hierarchical paths. This limitation has
direct affect on the final structure of the relational data base
(CHAPTER I1I).

The term repeating group (RG) is used to describe structures
for storing multiple sets of data values, and to link the 1evé1s of
the hierarchy. In Figure 2A, B, C, and D are examples of repeating
groups.

The Presidential Data Base [1] is presented in Figures 3
and 4 in hierarchical form. Figure 3 provides the definition tree
or schema, Figure 4 is an example of how some sample data would appear

for two presidents, Nixon and Carter.

6. Relational Data Model

The Relational Data Model is based on the mathematical theory
of relations. It was first presented by Codd in 1970 and has since
been a topic of great discussion. The following terms are appropriate

to relational data bases [9].

TS P—

e - —
7
LEVEL 0 PRESIDENT
1 \
ELECTION 1-N CONGRESS SERVED LEVEL 1
LEVEL 1 l T-N
PRESIDENT SERVED LEVEL 2
LEVEL 1 ADMINISTRATION
1-N
LEVEL 2 STATE ADMITTED
1-N
LEVEL 3 NATIVE PRESIDENT

FIGURE 3

v 3dn9I1d NOILYYLSINIWGY

IN3QIS3¥d JAILYN 03A43S IN3QIS3Yd NOILI373 Q
Q31L1INaY SSIYINOI IN30IS3¥d D
ETLARY

S3dAL Q¥0J3Y

€ 13A31 ON
: 2 13A31
56 €6 4 \MV e 8961)1 13A31
Y¥3LYY) 0 T3A3T

——

—

Given sets D]’DZ""’DN (not necessarily distinct), a relation,
or table, R, is a set of n-tuples each of which has its first element
from D], its second element from Dz, etc. The sets Di are called domains,
or columns. The n-tuple is alternately referred to as row. The number

n is called the degree of R and the number of tuples, or rows is called

its cardinality. A relation is alternately referred to as a table.
The following properties derive from the definition of
relation:
1) No two rows (tuples) are identical.
2] The ordering of rows is not significant.

3) The ordering of columns is not significant as long as

the column headings are presented with the respective rows.
Each relation has a name, and each column is named. The
columns of a table are called attributes. Elements of a tuple are
called components or elements. Elements with similar attributes are
elements with similar data types (integer, real, alpha-numeric, etc.).

A11 elements of a column must be of similar data type. An example of

a relation is shown in Figure 5.

< table name >

<column name>],<c01umn name>, ... <column namesy
<component1],component12, Sios ,component]N>
. <component2], e ,component2N>

<comp6nentM],componenth, s ,componentMN>

FIGURE 5
TABULAR REPRESENTATION OF A RELATION WITH
DEGREE N AND CARDINALITY M

10

The presidential data base is presented in relational form
in Figure 6. The structural representation is more compact than the
hierarchical model, the "structure" of the whole system being contained
in the tables themselves. Such organization provides for both physical
and logical data independence, reducing the complexity of the system
by hiding it from the user. It is beneficial to the casual user because
he views all relations and all components on equal levels. Essentially,
to the user, the data base is a flat file from which any component can
be selected at any time.

A relation is said to be normalized and to be of the first
normal form if each element in each row is a non-decomposable data item
(ergo, a number or character string, not a table name). A column B of
a table R is said to be functionally dependent on a column A of R, or
a set of columns A of R, if at every instance of time each B entry is
associated with only one A entry. A is said to determine B, and A is
called the determinant of B.

A column or set of columns whose values uniquely identify a
row is called a key. Tables may have more than one key per row. In
such cases one of the keys is designated as the primary key.

A relation R is said to be in the second normal form if and
only if all of the non-key domains (columns) of R are functionally
dependent on the primary key of R. A normalized relation R is said
to be in the third normal form if and only if it is in second normal
form and all of the non-key domains of R are mutually independent.

That is, no column which is not a member of the primary key is

I ELECTIONS WON
YEAR WINNER-NAME WINNER-VOTES
1952 Eisenhower 442
l 1956 Eisenhower 447
1960 Kennedy 3303
1964 Johnson 483
| 1968 | Nixon 301
1972 Nixon 520
I PRESIDENTS
NAME PARTY HOME-STATE
I Eisenhower | Republican Texas
Kennedy Democrat Massachusetts
, Johnson Democrat Texas
| Nixon Republican California
l ELECTIONS LOST
YEAR LOSER-NAME LOSER-VOTES
1952 Stevenson 89
1956 Stevenson 73
1960 Nixon 219
1964 Goldwater 52
1968 Humphrey 191
1968 Wallace 46
1972 McGovern 17
LOSERS WIFE
NAME ~ PARTY CANDIDATE NAME | WIFE NAME
Stevenson Democrat Nixon' Pat
Nixon Republican Stevenson Ruth
Goldwater Republican Goldwater Ruth
Humphrey Democrat Humphrey Agnes
Wallace Am. Indep. Wallace Melody
, McGovern Democrat McGovern Jane

PRESIDENTIAL DATA BASE IN A RELATIONAL FORMAT [1]

l
l
l FIGURE 6
l
l
l

— T YT —— T ————

12

functionally dependent on any column or group of columns other than

the primary key.

Operations in a relational DBMS are defined in terms of

either a nonprocedural language or an algebra. The relational algebra

norme 11y consists of the following operations:

PROJECTION

PROJECT <table name>.<column Tlist>

The projection operator returns the specified columns of

the given relation (table name) and eliminates any
duplicate rows from the result.

SELECT

SELECT <table name>[column name<relational-operator><value>]
where <relational operator> is one of the following
operators: > < > < = # . The selection operator selects
only those rows of a given relation which satisfy the
specified condition. The <value> may be either a constant
or a row element.

JOIN

JOIN <table name>.<column name> TO <table name>.<column name>
JOIN A.<col> TO B.<col>

The JOIN operator returns a relation formed by concat-
enating a row of the firﬁt table (A) to a row of the

second relation (B) wherever values in the specified

columns are equal. If any row in table A matches more

than one row in B, it is concatenated with each of them,

13
forming as many new rows as the row in table A matched

in table B.
d. SET OPERATIONS

UNION <table name><table name>
INTERSECT <table name><table name>
DIFFERENCE <table name><table name>
Each of the set operations returns the appropriate set
theoretic result in the form of one relation. The
operand relations must have compatable sets of attributes,
i.e., the two relations must have the same degree and
columns of a similar type.
e. DIVISION
<table name>.<column name>],<column name>2(A) 1
DIV <table name>.<column name>(B) 1
Division returns a quotient relation which consists of
<column name>, entries of A. A <column name>, element,
say X, is in the quotient if and only if for every
<column name>. element of B, there exists a row of A
with <column name>, equal to X and <column name>, equal
to the <column name> of B. [1] 4
The non-procedural language takes the form of a relational
calculus or of a "mapping oriented language". The calculus was proposed
by Codd [8]. Mapping oriented languages include SEQUEL [3,6] and
SQUARE [4]. Additional information on relational systems can be found

in [9] and [7].

14

7. Relational System vs. Hierarchical System

This section is a limited discussion of aspects of comparison
and difference between the relational and hierarchical approaches.

As discussed earlier, to the user the relational model has
only one level. Since all items exist at this level, each table in
the data base may be used to qualify any query about another table.
In the hierarchical model the universe of operations is more limited.
Clemons [7] calls this a lack of 'directional bias'. One reason for
using the hierarchical model could be an organization which provides
for mutually exclusive cases of record occurrences, or mutually
exclusive access paths. Reasons for using a relational model include

data bases where the universe of operations varies with time.

must be constructed in terms of a hierarchy. The expression of a
hierarchical data base in terms of a relational system is possible

(see Figure 7) simply by creating a new column for each level above

a particular level and repeating the data values as many times as there

are particular elements.

81-C BZ-C

FIGURE 7
EXPRESSION OF A HIERARCHY IN TERMS OF A RELATION. C
REPRESENTS COMPONENTS OF REPEATING GROUP B

l Any relational system implemented in terms of a hierarchy

The expression of the relation in terms of a hierarchy is not as
straight-forward as expressing a hierarchy in terms of relation, and
is one of the problems addressed by this thesis in CHAPTER III.

Data integrity is another issue in which there are differences
between the relational model and the hierarchical model. The rela-
tional model is subject to loss of data integrity if relations are
not normalized. Hierarchical data bases are subject to loss of integ-
rity but the nature of the hierarchy allows designs which provide an
integrity. A conflict arises in some possible expressions of a
normalized relational data base in hierarchical form, particularly
that form proposed by Smith and Smith [19] unless the precautions

proposed in their paper "Data Base Abstraction" are followed.

8. Conclusion
This chapter has defined terms that will be used extensively

in later chapters. It discussed the hierarchical and relational models

of a data base and mentioned two points of concern to be discussed in
CHAPTER III.

The remaining chapters discuss the problem of defining a
2 relational data base in terms of a hierarchy and the implementation

algorithms to be used in the construction.

NS UUVIRE V. i

CHAPTER III
PROBLEM DEFINITION

1. Problem
The problem of this thesis is to study the design of a
relational data base management system as a front end to an existing

hierarchical data base management system.

2. Constraints

a. The underlying hierarchical system is to be transparent

to the user.

SEQUEL [6] are to be implemented. The SEQUEL subset
will be implemented in terms of the relational algebra.
c. This system will be designed for ée]ative]y small data
bases with a 1Timited application - student data bases.
It is a demonstration of capability rather than a massive
data base project.
d. Because of the student environment, a user should be able
to design a data base, load it and run it with no outside
help from a data base administrator.

e. As much as possible the front end system should make use

of the operations available in the hierarchical model.

The "front end" is used only as a translator and to

implement all relational operations in terms of operations

16

/|
|
!
|
!
I
I
l
l b; A Relational Algebra and a subset of the query language
|
|
I
|
!
|
I
I
I
I

and queries on the underlying structure. Only when it
is impractical to use the available functions, will any
new functions be created.

The front end should support any relational data base
organization.

The front end system designed will not be a relational
interpretation of any hierarchical organization. It
will rather use the hierarchical data base management
system as a Tow level mechanism to manipulate relational
data structures which are defined in terms of the

hierarchy.

3. Goals of the Project

a.

Exploring (in terms of implementation) the mapping
relationships between a relational data base and a
hierarchical data base.

Identifying both rejected data structures and inefficient
methods so that any future implementations will have

a knowledge base from which to start.

Pointing out areas for further research.

4. The Underlying Hierarchical System

MRI System Corporation's SYSTEM 2000 Version 2.4 for the

Control Data 6000/CYBER hardware environment is the underlying DBMS.

SYSTEM 2000 (S2K) is a powerful general purpose data base management

system which provides the user with the ability to design a data base

1

7

—— -

T

M— e e e

with the basic system. The procedural language can be PL/1,

~a data item) to be in another component.

18

to fit his particular requirements. SYSTEM 2000 provides both a

natural language query capability and a procedural language interface

FORTRAN or COBOL. In the front end implementation to be discussed,
FORTRAN was chosen as the implementation languace because of its word
manipulation capability. The procedural languace interface (PLI) was
chosen over the natural language interface because using a natural
language query requires that the query, the generator, and S2K be
swapped as they alternate execution, and because it turns out that
the natural language available is no more powerful in terms of the
relational operations than the FORTRAN procedural language interface.
Several relevant aspects of natural language and PLI are
now discussed [17]. The section finishes with additional constraints

imposed by PLI.

The Define module of SYSTEM 2000 organizes the elements of
the data base into repeating groups. Levels of information are

specified within the define sequence by declaring a "component" (i.e.,

Procedural Language is designed for systematic work with a
data base rather than specific one time queries. The interface
consists of the programming language FORTRAN and additional subroutines,
which are a subset of the routines supplied by MRI Systems Corp.

An important concept is that of schema. A PLI schema is a
group of variables which represents particular parts of, or all elements

of, a repeating group. The schema serves as an input/output buffer

1
{
{

2

A @S SRR R R R B TR B e DR R R T T R e Y e

for the PLI program. The S2K defined component name is used as a
variable in the schema.

A logical entry is made up of one level zero data set (RG)
and any descendant data sets, where data set is defined as a unique
set of data logically defined by the data base definition as belonging
to the same repeating group. A logical entry is therefore all of the
information about one of the major records stored in the data base,
or a complete data tree.

A family tree is defined as all of the descendant data sets,
(RGs) of a logical entry. In Figure 2 there are two families repre-
sented, one with root at Al and another with root at A2. Each of the
repeating groups B, C, and D are components of the repeating group A.
Each occurrence of A and its descendants composes a logical entry.

SYSTEM 2000 PLI provides the following operations which will
be used extensively in the following chapters.

GET1 <schema> retrieves a unique occurrence of a data set
and places its values into the specified schema. GET1 may be used
with a WHERE clause which qualifies the unique schema to be retrieved,
or without the WHERE clause, in which case the first occurrence of
the specified schema that the DBMS encounters will be returned.

A WHERE clause takes the general form of a seauence of
qualifications of the members of a family tree. Each qua]ificatioﬁ
has the form <name><op><value>, where <name> is the S2K component

name referenced in a schema, <op> is one of the relational operators

%

e

19

equals, less than, less than or equal, greater than, greater than or
equal, exists or fails to exist, and <value> is an actual "quantity"
input to the S2K routines by the user program.

LOCATE <schema> WHERE <where clause> is a routine which
locates, but does not retrieve any data. It locates all occurrences
of the named schema where the <where clause> conditions hold, and
constructs a list of pointers to those occurrences. In order to
retrieve data sets which have been lTocated by a LOCATE statement, the
GET function must be used.

GET <schema><occurrence parameter> can retrieve any of the
data sets located by a previous LOCATE statement. The <occurrence
parameter> includes FIRST for the first schema in the list, NEXT for
the next schema in the 1list, LAST for the last of the previously
lTocated schemas, or S2KCOUNT for retrieving a data set which is a
specified number (greater than zero) of data sets removed from the
last retrieved schema.

Position in a family is established by GET1 and/or GET
commands, while LOCATE is used to collect all families of a qualified
class. Other subroutines are GETA for aet ancestor and GETD for get
descendant. Each of the subroutines mentioned, with their power and
limitations, have a direct bearing on the structure of the data base.
Further information about all of these operations, as well as PLI in
general, is contained in the SYSTEM 2000 Reference Manual [17].

Natural language provides more powerful features than

procedural Tanguage in that a single statement can both qualify and

20

I T — T —— — V:5gr5:::=======................‘

21

output many types of data. The important difference which bears on
this implementation problem is that of multi-family query power.
Natural language provides a "HAS" operator which enables the user
to ask many branched questions. The HAS operator basically allows the
following qualifications:
ACTION X WHERE RG EQ <value> AND RG HAS '

<some component> = <some value (constant)>.

The HAS operator does not allow qualifications of the type

<component> = <component>, in the Control Data Implementation. These
types of qualifications are exactly what is needed in order to imple-
ment relational algebra operations i.e., JOIN would be expressed as

a retrieval of subsets of two trees, where specified compcnents are
equal. The structure of the query does not permit such qualifications.
a JOIN is forced to the repetitive activity of retrieving one record
of a table and joining it to the second table of the join. Such
repetition is best suited to a procedural language.

It is possible to achieve some relational operations using

the user-defined function capability of SYSTEM 2000. This capability
does not extend to processing sequences of commands, for which a driver
is needed. Additionally, the current implementation at UT Austin
(Version 2.4) requires that if natural language queries are generated
there must be a generator program and provision to roll the DBMS and
the generator in and out of execution, and to generate successive

requests and store intermediate results in the SYSTEM 2000 data base.

h

22

Such methods do not grant any particular power over procedural language.
They also require more time because the roll in/roll out start up time
must be added to execution time. Procedural language is elected over
natural language because it should execute in less time and because in
the context of this project, no additional power is provided by natural
language.

It is desired to make as much use of the available PLI
functions as possible. At the same time it is necessary to not over-
load the system with excessive PLI calls. For this reason, the size
of a table (relation) is limited to the number of elements which can
be qualified in any one subroutine call.

PLI permits 10 schemas to be referenced in a call and 25

each domain value (column) of a relation to be in a separate schema
and referenced in that schema, and because each qualification requires

the table name to be referenced, the degree of a table is limited to 9.

This limitation does not affect the flavor of the relational system, it

does not simplify the mapping function used between tables and hier-

T p———

archical elements, and it does not simplify the relational algebra
algorithms.
For ease of manipulation in FORTRAN, the number of rows

in a table (relation) is arbitrarily limited to fifty. Since the

data bases used should be small, and since using more space per table

increases core size in an already large program, this limitation is

made.

N
¥
| conditions to be set. Because the organization selected provides for

s EEN RN G R O e

23

5. Conclusion

This chapter discussed the problem, the goals of the project
and the limitations placed on the system from the outset. The next
chapter concerns the actual choice for data base design. The procedural
language will be used for the proaram, the deagree of each table will

be limited to 9 and each table's cardinality will be limited to fifty.

o - T R R ki E ko —

AL S i A om S Al ML A TS M B AN At e et

CHAPTER IV
THE UNDERLYING HIERARCHY

An underlying dat: base structure design is desired which,
within the criteria of the previous chapter lends itself to the efficient
use of PLI, is as simple as possible, has no excessive redundancy or
wasted space, and will support any normalized relational data base.

The first design considered is to have table organization
only at the element level. A1l information about where an element is
located is carried with it, and each element is immediately available
at level zero of the data base. A definition (in S2K terms) of the
organization is:

C1*ELEMENT(RG)
C2*VALUE (INTEGER)
C3*TABLE NAME (INTEGER)
C4*ROW NAME(INTEGER)
C5*ROW NUMBER(INTEGER)

A1l relational operations can be implemented in terms of
this schema; however, the schema is redundant and requires that the

driver do excessive work. In order to examine a particular row, for

. example, the row and table must either be qualified (using LOCATE)

with a series of GET operations done to retrieve the elements, or a
sequence of GET1 operations must be performed.
An algorithm for a JOIN of two tables, for example, is

straight-forward.

24

rmtn e

e —————

JOIN A.COLx TO B.COL‘y

1. NUMROWS = 1 ROW COUNT = 1
2. LOCATE all elements of table A, Row N and place them
in "HOLDING BUFFER" (ROW COUNT). If any data qualified
GOTO 3 ELSE done with JOIN
3. LO&ATE all of table B.COL.y elements which are equal to
table A, Row N, COL,. IF any data qualified GOTO 4
ELSE GOTO 6
4. COUNT = ROWCOUNT. GET all elements of the NEXT ROW of
table B which qualified, and place them in HOLDING
BUFFER (COUNT). IF end of data GOTC 5 ELSE COUNT =
COUNT + 1 GOTO 3
5. Repeat all elements of ROW (NUMROW), TABLE A (COUNT-
ROWCOUNT) times in the HOLDING BUFFER.
ROWCOUNT = COUNT + 1 GOTO 6
6. NUMROW = NUMROW + 1
GOTO 2
Since the relation and the hierarchy are equivalenced on
the element.level the driver is forced to operate at the element level.
An entire row or table can be located and any element or sequence of
elements can be accessed. This organization does not, however, make
use of the hierarchical structure, and is redundant. Obviously some
redundancy can be tolerated, but carrying three extra values per element,

added to two pointers per repeating group [18] is excessive.

fﬁﬁ—“
i—
{
j

26

The more information carried per record, the more work can
be done with that record. The structure of the hierarchy should be
utilized and table and row association assigned by position. Note

that ruling our structures of the form:

ELEMENT ELEMENT
(INFO LIST) (INFO LIST)

also rules out having other element level 0 organization. For example

a structure with only one of each

ELEMENT : |
TABLE TABLE Aot TABLE
k ! (COL ,ROW) (coL ,ROW) (COL ,ROW)

element value and using repeating groups for all relations of which
it is a member is ruled out because while it is a less redundant
structure than the first one considered, the structure still must
contain redundant column and row information.

The second schema considered, is organization by table name
and column name. The S2K definition is, for example:

1*DATA BASE INFORMATION

2*TABLE AND TABLE INFORMATION (RG IN 1)
3*COLUMN AND COLUMN INFORMATION (RG IN 2)
4*ELEMENT (RG IN 3)

S O SEEE SRS SRR B N RIS G e e BERaeE BRRE DEERE BN R PUREE R R e

27

5%REAL VALUE (RG IN 4)
6*INTEGER VALUE (RG IN 4)
7*ALPHA VALUE (RG IN 4)
8*ROW NUMBER (INTEGER IN 4)

An illustration of the organization is:

DATA BASE
TABLE TABLE
COLUMN | «-- COLUMM |«--| COLUMN | --- | COLUMN

Pl .

ELEMENT | --- [ELEMENT { «-« | ELEMENT | ... | ELEMENT

£

VALUE

PR A TR A R TR A G TR e GEEEE0 DI R T O e I Y e

operations, the organization still requires that a series of GET
operations be performed in order to retrieve a row. The PLI subroutines
should be utilized to a greater extent than this schema allows, because
only one field of the 10 available in a WHERE clause is used. Locating
can only be done one element at a time and operations such as inter-

section,

VALUE VALUE VALUE

While this schema allows access to any column, for relational

where all elements in a row should be qualified at once against

) © o s N ——

28

all elements in rows of a target relation, are many branch operations
and are illegal.
Organizing by row, using a series of equal level repeating

groups such as Figure 8, also leads to multibranch queries,

Mt el meees 0 Bemms BSREE 0 DR B

DATA BASE
TABLE TABLE
ROW ROW
ELEMENT ELEMENT ELEMENT
VALUE VALUE VALUE
FIGURE 8
since organization on the element level is the same as that of schema 2.
A request to locate a row by more than one element is multibranch and

is illegal.

At this point the HAS operator of natural language which
allows multibranch queries of the type desired in schemas 2 and 3 must
be considered again. In order to qualify a row, however, there must

be values by which to qualify. The elements must come from one table

FF . e
I |
r ' 29

l and the qualification must occur one row at a time. That is, intersect
table A with table B has the form:

LOCATE ROWS WHERE DATA BASE HAS ((TABLE NAME EQ A) HAS

((ROWS EXISTS) AND (ROWS HAS ELEMENTS EQ (DATA BASE HAS ...)))))).
The problem with the above expression is that since one and only one
value is expected after an EQ, the expression is illegal. Comparison
of the elements in one table with elements in a second table must be
% accomplished by repeatedly removing each element in one of the tables
and using the element to qualify the second table.
E The fourth schema is an attempt to avoid the problems of

iteration encountered in the first three schemas. Following the general

philosophy presented by Smith and Smith [19], a very general hierarchy

is designed (Figure 9).

Data base info (Level 0)

elepent (Yy Master tables (Level 1)

element Table 2 (Level 2)

elemen :
Table 3 (Level 3)

FIGURE 9

i,

AN TR R R D SR DR Gmaee e e 0 Semee 0 deeee GRS GEEEY 0 SBEER 0 SRR R Baa

30

This schema involves having each element of each table be a
potential key through which to access all tables "below" it. Relations
are input along with key values and/or some indication as to what
columns will have the same attribute, but different names. Load time
processes involve positioning in the data base according to the key

elements of a row i.e., (WASHINGTON, MARTHA ...) would involve posi-

tioning at the Washington element of the level above the wife level and
inserting the wife row at the next level. The number of elements in
such a hierarchy becomes complicated quickly. By the sixth level of
relations, there are no more SYSTEM 2000 component numbers available.
This model would construct too large a definition for the hierarchy.

A problem thus far has been that elements of a table must
be retrieved by the PLI program in order to perform an operation with
another relation in the data base. The relational algebra deals with
whole classes of elements and relates them to other classes of elements.
The hierarchical system's Tanguages assume that the user is interested
in qualifying one class or set of classes by some known value or values.
The structure is assumed to model the set of interesting queries. The
system works its way down a tree or group of trees with only one compar-
ison per record element in mind. It is not structured to handle class
to class comparisons.

The result of this observation is to return to a simpler
schema, which yields a smaller data base definition and a smaller PLI

program.

T —————

31

The next schema considered is an expansion of an earlier
schema. It involves assigning a separate component value to each of
the 9 possible elements of a row. A schema which utilizes repeating
groups at the same level in the row repeating group (Figure 10) is
illegal because comparing more than one component at once is a multi-
family qualification.

A modification of this schema can eliminate the multifamily
problem (Figure 11). This schema provides that each row contain a
single family of elements. The first element is contained as a repeating ;
group in the row, the second element as a repeating group in the first, ‘
the third as an element in the second, and so on to the ninth element.
Now an entire row can be qualified by a PLF query with only one locate.

However, now the size consideration enters as the number of
elements per repeating group are considered. Each repeating group
requires 2 pointer words (in the CDC 6600/6400) in addition to the
words containing data values. Using only one data word record (for a
seven character algebra value and a 15 digit decimal integer) by the
fourth repeating group, 12 words have been used for pointers and values.
By the last or ninth repeating group, a total of 27 words-have been
used by a schema with all elements as components of one repeating

group (ROW).

The break even point for word size occurs at record number
four where twelve words were assigned versus a constant total of

eleven in a one repeating group row system. This organization allows

COMPONENT N

COMPONENT N

TABLE
NAME
ROW 1
COMPONENT1 COMPONENT?2
ROW 2
/
,/ _TUH%GNENTZ ' COMPONENT?2
/
/
/
ROW M
I) j
COMPONENT1 COMPONENT?2 COMPONENT N
FIGURE 10

32

i e et £

TABLE

NAME

/ COMPONEN

T

/ COMPONENT1

/ N

ROW 2 ‘\\\\\

COMPONENTZ2

N

ROW M COMPONENT?2

N

AN
N

<
\
\

COMPONENT N

N

COMPONENT N

F

s
B i e PR Bl " R . o R 8 k. e 8 k2 R R R AR _ e
~

IGURE 11

33

retrieval of an entire row (the first schema allows only a sequence of
GETD operations to retrieve a row). It will make the PLF program
smaller, and will simplify it. Because this restriction does not cause
further restrictions to be placed on the system, the schema shown in
Figure 11 was chosen for the data base for the project.

There will be no difference between the two schemas in
Figures 10 and 11 for any LOCATE statement. The difference in operation
arises in a "GETROW" (CHAPTER V) call. In the first schema (repeating
groups in repeating groups), "GETROW" would make the successive GETD
calls and return a value to a specified place. In the program schema
GETROW is one call to GET, which places all elements in a PLI program
buffer. The presidential data base is displayed in Figure 12 using
the schema of Figure 11.

This chapter has discussed possible schemas for use in the
underlying hierarchy. It was discovered that in order to accomplish
relational operations there must be a sequence of retrievals and
qualifications on the retrieved elements. This knowledge leads to

schemas which provide for both small definition space and ease of

access for both row retrieval and qualification.

BT AR ST S SEEER GERR GRERNR OB DS DRI BEEEE 0 G R O e R e T e

DATA BASE NAME | PRESIDENTIAL
PASSHORD XXXX
TABLENAME PRESIDENTS ///
[row
7/
~" ¢4 [EISENHOWER
A N\
ROW c¢s [repusLICAN
N\ SN
ca [NIXON c6 [TEXAS
<
cs [repusLicAN
T
c6 | cALIFORNIA
INFO
I TABLENAME ELECTIONS LOST
coLuMn [YEAR WINNER VOTES
NAMEZ T INTEGER | [INTEGER
YPES o) =
COMPONENT
ROW
- N
I c4 | 1952
ROW. <
e cs [STEVENSON
7 ca [1972 <
c6 89
YEAR 5 [MCGOVERN
INTEGER -
c4 C6 17 |
FIGURE 12

PRESIDENTIAL DATA BASE IN THE SELECTED SCHEMA

35

CHAPTER V

ALGORITHMS FOR THE INTERFACE

This chapter discusses the interface program. It presents
algorithms for the relational algebra operations join, division,
restriction, union, selection, projection, and difference. It discusses
the implementation of the SEQUEL subset in terms of sequential applica-

tions of the algebra operations.

PROCEDURAL SYSTEM
RELATIONAL |—sf ., PLI o 2000
USER === PARSER o NTERFACE. [LANGUAGE [AND DATA
INTERFACE BASE
FIGURE 13

This is a four level system (Figure 13). The outer level
is a modification of a Pascal parser which was written for use with
the University of Texas implementation of the BOBSW parser generator
program [5]. The parser drives the relational interface, which drives
the PLI interface programs, which perform the data base manipulation
by driving SYSTEM 2000. The system is designed so that it can be over-
layed. The parser and the main overlay reside in core continually.

A hierarchical definition tree of the data base is shown
in Figure 14. To aid in understanding the processing of the algorithms,

the table sub-tree is expanded in Figure 15.

l 37

DATA BASE
NAME | PASSWORD

TABLE
NAME

ROW COLUMN DESCRIPTION
COLUMN NAME (CNAME)
COMPONENT NUMBER (CNUMBER)
COLUMN TYPE (CTYPE)

COLUMNT ELEMENT

COLUMN2 ELEMENT
|

[
[COLUMN N ELEMENT

FIGURE 14

|

[
J
¢
|
|
t
I
‘
!
!
l
!
f
I
-
|
I
|
|

38
Level Q DATA BASE
Level 1 TABLE1 TABLE2 s . [TABLEN] M
e ///// RO
eve ROW1 7
7 /’ \
/’ \ / EL1
N\
Aievel 3 [L ! \
- ROW N
Level = N
ROW N Level 4 EL#2 EL9
\
\\\ b5 ELT
\ \
EL#1 AY
\ Level 11 EL#9
EL9
EL#2
]
\
\
EL#9
FIGURE 15

eemer 0 SR Geese 0 S0 R B R B

e

39

The relational interface duplicates the table name and column
description information for rapid use by the semantic routines. The
interface table information is kept in a linked list of records, one
of which is shown in Figure 16. Name, number and type fields for a
specific column hold its print name, SYSTEM 2000 component number,
and type, respectively.

The semantic routines maintain two push down stacks, one
for tables and one for relational operators. Figure 17 shows the
contents of an entry on each stack, as well as its record structure.
Each semantic routine expects to find the correct number of arguments
on the table stack. If the correct number of arguments is not found,
an error is returned and the statement terminated.

Unless a statement calls for a specific projection (a PROJ
in the algebra or a SELECT <col list> in SEQUEL), all columns of a
table in the stack are kept. This allows ANDS and ORS in SEQUEL
statements to be processed as table intersection and union. The use
of intersection and union in this context is demonstrated in an

extension of an example from Boyce and Chamberlain [6].

EMP
NAME DEPT MGR
John Shoe Bob
Fred Shoe Frank
Fred Toy Bob
Bill Toy Frank

s,

40

TABLE NAME
NUMBER OF COLUMNS
COLUMN1 NAME

COLUMN N NAME
COLUMNT TYPE

COLUMN N TYPE
COLUMNT COMPONENT#

COLUMN N COMPONENT #

FIGURE 16

0 OR EQ LABEL NAME LABEL FLAG OPERATOR
Tz .o EQ OPERATION CODE SPARE
TABLE NAME FORWARD LINK

POINTER TO COLUMNS BACK LINK
POINTER TO LAST LABEL
ASSOCIATED TABLE NAME

SPARE
FORWARD LINK

BACK LINK

OPERAND STACK ENTRY OPERATOR STACK ENTRY

FIGURE 17

[
‘
'
|
I
I
|
1
d
I
'
|
|
l
|
|
|
|
I

:

41
QUERY 1 SELECT EMP.NAME WHERE DEPT="shoe" AND MGR= "Bob"
QUERY 2 SELECT EMP.NAME WHERE DEPT= "shoe" N
SELECT EMP.NAME WHERE MGR= "Bob"
Query 1 processes as:
Selection of all "shoe"=DEPT rows:
NAME DEPT MGR
John shoe Bob
Fred shoe Frank
Selection of all "Bob"=MGR rows:
NAME DEPT MGR
John shoe Bob J
Fred toy Bob
Intersection of the two tables yields the correct answer:
NAME DEPT MaR
John shoe Bob

Query 2 processes as:

Selection of all "shoe":DEPT rows and projection of NAME:
NAME
John
Fred

Selection of all "Bob":MGR rows and projection of NAME:
NAME
John
Fred

This intersection yields the correct values of John and Fred.

42

The design of any algorithm for use with a procedural
language has several lTimitations which must be considered from the
onset. The first, as discussed in CHAPTER III, is the problem of not
being able to issue a qualification statement in the form of Action X
where . . . <COMPONENT><CONDITION><COMPONENT>. This limitation drives
the algorithms to successive retrieval-comparison-retrievals. The
sequence can be done in two ways. The elements can be either removed
one at a time, compared, and these elements which qualify be retrieved,
or all of the elements to be used as qualifiers can be removed at once
and stored in a stack for use by successive comparison retrieval
operations.

For the very general case of an unknown sized table, removing
the qualifying elements or rows one at a time, immediately performing
the comparison, and immediately performing the output sequence to store
the newly generated table would be the method of choice. This method
involved changing primary position between two tables to be compared,
and performing a retrieval after each positicn change. The second
method is suitable for smaller tables and limited sized data bases
since all retrievals can be done at one time and position need there-
fore only be established twice per function call. Both methods yield
equivalent results and either could be used for this project. The
second method is elected because it yields more modularity than the
first.

Another consideration is that the interface must work directly

with the data values, rather than with pointers to values. This is

i

43

balanced by the advantage of having the underlying DBMS do all the work
of inverting files and keeping track of all maintainance information.
The data is essentially physically independent since the relational
system accesses it only through the PLI access method. As discussed
in CHAPTER III, there is a trade off between data base complexity and
redundancy. The "simpler" the relational data base representation is,
the more redundancy must be introduced. The less complex schema was
chosen for the data base of the design. However, the design programs
will function in generally the same way for any hierarchical implemen-
tation. This is because the interface has knowledge at all times of
which components are assigned to the elements of any table. Changing
tﬁe underlying schema only involves changing component numbers (as far
as the interface is concerned). CHAPTER VI discusses an extension of
this nature in more detail.

The general construction of any algebra algorithm is influenced
by the problem of not being able to compare components without first
taking out one of the components values. As a result there must always
be two loops set up for an operation. One Toop retrieves the values
from one table in an operation, and the second loop does the comparison %
and retrieval. Such a constraint enables each algorithm to be designed
to always terminate. The outer, or retrieval loop retrieves only a
finite number of elements, in fact, it normally issues a locate state-

ment and retrieves those rows which were located. The inner, or

qualification loop issues as many locate statements as there are

——---——---.----------n-n—--n—m————-s

elements or rows retrieved in the first loop. It terminates because
unless the PLI functions perform incorrectly, zero or a finite number
of elements will always be qualified.

Each of the algorithms presumes the existence of necessary
buffers and stacks for retrieval of stored information. Unless they
are crucial to understanding a particular process, small details will

be omitted. The program limitation of table size of degree 9 is not

44

considered in the algorithms, nor is the table size of 50 rows a factor.

The first algorithm to consider is the process to retrieve

a row (Figure 18).

Algorithm GETROW (N)
N = Number of columns to retrieve
1. INDEX =1
2. GET the next descendant element of the current row.
If the operation was successful
Then place the element into a buffer
Else process an error.
3. INDEX = INDEX + 1
If INDEX > N
Then Done

Else Go To 2

FIGURE 18

45

GETROW depends on a primary position having been established at the
row level of a particular table. GETROW will finish because it cycles
exactly N times and will retrieve each element in a row. Retrieval
of an entire table is accomplished by positioning at the table and
then retrieving each row in succession.
GETTABLE (Figure 19) will retrieve all rows of a table if
there are any rows in the table. It will terminate since it cycles
in a finite loop controlled by the number of rows qualified in the
locate, and since it controls the number of cycles GETROW will make.
Projection of a single column or a group of columns is

accomplished by PROJECT (Figure 20).

e et BRSSO R e

The algorithm contains two loops, an outer Toop on the
number of rows in the table and an inner loop on the number of columns
to be projected. The algorithm retrieves only the descendants whose
names are specified in the array COLLIST. It retrieves the correct

rows because position is established at the table whose name is equal

to NAME before row retrieval starts and because the outer loop does
not allow rows other than those in the table to be retrieved.

Insertion of a table (Figure 21) is accomplished in the
reverse of retrieval. Arrays containing the row elements, table des-
cription, and the number of rows to be inserted are passed to the
insertion routine. Each insertion creates a new subtree at the
specified position.

Two Toops must be executed in order to insert an entire

table because insertion of the column description information within

46

Algorithm GETTABLE (NAME ,N)
NAME = Table name

N = number of columns

Establish a primary position at the table whose
name field = NAME

Count the number of rows in the table (LOCATE) i
If any rows were located in 3

Then INDEX = 1, Go To 4

Else Done

Establish a primary position at the next row

If the operation was successful

Then GETROW (N)

Else process an error

INDEX = INDEX + 1

If INDEX > Number of rows located
Then Done

Else Go To 4

FIGURE 19

47

Algorithm PROJECT (NAMF,COLLIST,NUM)

NAME = table name

COLLIST = Array 1. Number of allowed columns containing
the column names to be projected

NUM = Number of columns in COLLIST

K = Position in an output buffer

. K=1
Establish position at Table = Name
Count the number of rows and place the number in NROWS
If NROWS = 0
Then Done
Else INDEX = 1
2. GET the NEXT row
J=1

If the operation was successful
Then place the value retrieved into BUFFER (J,K),
J=Jd+1
Else process an error
4. If J < NUM
Then Go To 3
5. INDEX = INDEX + 1
If INDEX > NROWS
Then Done

Else Go To 2

FIGURE 20

l 3. GET the descendant schema whose Name = COLLIST(J)

Algorithm INSERTTABLE
(NAME, CNAME, ROW, TYPE, COMP, MROWS, NCOLS)

NAME = Table name

ROW = Array to hold input rows
TYPE = Array of element types
CNAME = Array of column names
COMP = Array of component names

Number of rows to be inserted
Number of columns (elements per row)

NROWS
NCOLS

Establish position at the last table in the data base
INSERT the schema for a table with name field = NAME
If the operation was successful

Then INDEX = 1, Go To 2

Else process error

INSERT the schema for a row element

If the operation was successful

Then INSERTROW (ROW(1, INDEX), TYPE, COMP, NCOLS)
INDEX = INDEX + 1

If INDEX > NROWS

Then INDEX = 1, Go To 4

Else Go To 2

INSERT the schema for column descriptor with
description information COLNAME = CNAME(INDEX)
TYPE = TYPE(INDEX), COMPNO = COMP(INDEX)

If the operation was unsuccessful

Then process error

INDEX = INDEX + 1

If INDEX > NCOLS

Then Dane

Else Go To 4

FIGURE 21

e D0 BOERSY 0 AR e 0 DI A A e

the first loop would mean there would be as many column description

groups as rows. Only those rows which fall within the 1imits (1...NROWS)
are inserted, and each row is guaranteed to be inserted in a separate
subtree because a subtree parent (ROW) is inserted before each set of
row elements are inserted.

Insertion or row elements (Figure 22) is in a somewhat
analagous manner to table insertion, except that position is assumed
to already have been established at a row entry. Only those elements
which fall within the limits [1...NCOLS] in the element array (ROW)
are inserted, and these elements are placed into a record of the type
specified in the array TYPE.

The elements of a schema to be deleted must be retrieved
before a removal can be made, so at Teast two operations are always
necessary for a deletion to be completed. Removing a parent from a
hierarchical data base also deletes all of its descendants, so table
removal invoives only one positioning followed by a remove operation.
Removal of a specific ROW requires locating the row, positioning at
the row by retrieval and deleting the row repeating group. This
removal also deletes all of the constituent elements, since they are
the descendants of the row repeating group.

Removing an arbitrary column is more complicated than simply
deleting an element repeating group. It is possible that there are
entries for the row at levels below the elerent to be deleted. If
there are descendant entries, then deleting a parent will remove all

descendants along with the parent repeating group. In order to avoid

50

Algorithm INSERTROW
(ROW, TYPE, COMP, NCOLS)
ROW = Array 1. Max possible columns of elements to be
inserted into this row i
TYPE = Array of types for each element
COMP = Component to place the element in
NCOLS = Number of columns in the row

INDEX = 1

1. INSERT schema with
VALUE = ROW(INDEX)
TYPE = TYPE(INDEX)
COMPONENT = COMP(INDEX)
If the operation was unsuccessful
Then process error
2. INDEX = INDEX + 1
If INDEX > NCOLS 1

Then Done

Else Go To 1

FIGURE 22

A
t

51

this problem, all elements which are descendants of a column to be
deleted must be moved up in the hierarchy. The algorithm (Figure 23)
deletes a specified column by beginning at the column entry to be
deleted, one at a time moving descendants up one level in the hierarchy
until the end of the row is reached. The last element is then deleted.

Figure 24 is a driver for the algorithm of Figure 23. The
algorithm, REMOVE, takes care of the special case of a table with
only one column. In this case it is necessary to delete the entire
row. The table itself will stay in the data base until an explicit
DELETE TABLE command is given by the user.

The outer loop of REMOVE terminates because it is based on
the number of rows actually in the table. The inner loop: REMOVE COL,
terminates because it successively steps through a finite chain of
elements until it reaches the end (step 3), and then terminates. The
algorithm correctly deletes one column entry per call because only the
last row element is removed from the data base and because values are
moved upwards into the element to be removed, maintaining integrity.

Obtaining kﬁow1edge of what component is a given component's
direct descendant may be accomplished by table look up or it may be
accomplished by originally organizing the component numbers in ascending
order. A direct descendant would have a fixed constant component
difference from a parent.

The algorithm for selection of all rows with one specific

value in a column (SELECT) is shown in Figure 25. The idea of SELECT

0 - e - - | . - k. R . Bl S R o il E s A L}

Algorithm REMOVECOL
(NAME, COLNAME, COMP, TYPE, COLDEX, NCOLS)
NAME = Table name
COLNAME = Name of column to be deleted
COMP = Array of components
TYPE = Array of element types
COLDEX = COMP index of component to be deleted
NCOLS = Number of columns

Establish a position at the Table whose name element is
NAME and count the number of rows and place in NROWS
INDEX = 1, COLSAVE = INDEX

GET the NEXT row schema

If the operation was unsuccessful

Then process error

If COMP(COLDEX) is the last element in the row

Then Go To 4

Else Go To 5

GET the values for COMP(COLDEX)

REMOVE the repeating group from the data base

If the removal was successful

Then Go To 7

Else process error

GET the values of the direct descendant of COMP(COLDEX)
Place the values into COMP(COLDEX)

MODIFY the data base

If the operation was successful

Then Go To 6

Else process error

COLDEX = COLDEX + 1

Go To 3

INDEX = INDEX + 1

If INDEX > NROWS

Then DONE

Else Go To 2

FIGURE 23

52

.

Algorithm REMOVE

(NAME, COLNAME, COMP, TYPE, COLDEX, NCOLS)
NAME = Table Name
COLNAME = Name of column to be deleted
COMP = Component name array
TYPE = Array of Component types
COLDEX = Component index of the column to be deleted
NCOLS = Number of columns in the row

If COMP(COLDEX) is the first component in the row
AND NCOLS =1

Then Go To 2

Else REMOVECOL (NAME, COLNAME, COMP, TYPE, COLDEX, NCCLS)
Go To 5

Establish position at Table = NAME

GET the NEXT descendant row schema

If the last row in the table has just been processed
Then Go To 5

Else

If the last operation was successful

Then Go To 4

Else process error

REMOVE the row from the data base

If the operation was successful

Then Go To 3

Else process error

GET the column descriptor schema with column name field
equal to COLNAME

REMOVE the schema from the data base

If the operation was successful

Then Done

Else process error

FIGURE 24

53

»

54

Algorithm SELECT
(NAME, ICOL, ICOND, VALUE)
NAME = Table name
ICOL = Name of column
ICOND = Selection condition
VALUE = Comparison value

1. Set up a new table called MEWTABLE which has the same row
types, name, and columns as MNAME

2. LOCATE the rows in NAME where ICOL ICOND VALUE

(that is, the condition ICOND holds between ICOL and VALUE)
3. If any rows were located

Then INDEX = 1, Go To 4

Else INSERT a table schema for NEWTABLE with no rows

Done

4. GET the NEXT row

If the operation was successful

Then Go To 5

Else Process error

GETROW(NUMBER OF COLUMNS IN TABLE = NAME)

Place retrieved information into a buffer

6. INDEX = INDEX + 1

If INDEX > Number of rows which were LOCATed

Then INSERTTABLE(NEWTABLE, CNAME, BUFFER, CTYPE, CCOMP, ‘
Number of rows LOCATEed, Number of columns in NEWTAB }
NEWTABLE), Done
Else Go To 4 '

FIGURE 25

RN O A O R R S RS R R e R A R B O e e
(3,

55

is to place into the new table only those rows of the input table which
qualify under the parameter condition of COMPONENT (ICOL) ICOND VALUE.
The algorithm terminates by retrieving the rows which qualified and

inserting the new table into the data base. SELECT retrieves rows

T T R——— e

with the correct value in them, since only those rows are located by

the LOCATE issued at the start of the algorithm.

It is desired in SEQUEL processing to do a COMPOUND SELECT which
retrieves rows where column elements may be equal to any of several ;

values in table column.

Since a query always terminates with a table entry placed 1

tells the semantic routines that a COMPOUND SELECT may be necessary.
COMPOUND SELECT first places on a stack all elements of the specified
column of the table that holds values which will act as qualifying
values. It calls a shortened version of SELECT (SSELECT) as many
times as there are new stack entries. Qualified Rows are placed in
sequential locations in a buffer. The procedure finishes by inserting
the new table in the data base. The algorithm is shown in Figure 26.
Restriction of a table is a relational operation which
compares two different row elements and saves those row elements in
which the elements satisfy the specified conditions. The procedure
involves retrieving both elements and comparing them in the interface
program. In this procedure it is not productive to use any procedural

language routines because none of the routines supplied provides

i

component to component comparison. Since the interface is already

l on the semantic stack, the appearance of a table entry as an argument

56

Algorithm COMPOUNDSELECT
(NAME1, NAME2, ICOL1, ICOL2, ICOND)

NAMET = Table to be selected

NAME2 = Table with selection values

ICOLT = Column in NAME1 to be qualified
ICOL2 = Column in NAME2 used as a qualifier

Find Component numbers for ICOL1, ICOLZ2

Set up NEWTABLE with columns, types, and components equal to
those in NAMEI]

LOCATE ICOL2 schemas WHERE TABLE = NAMEI]

If any ICOL2 elements were LOCATED in 2

Then Go To 4

Else INSERT NEWTABLE with no rows

GET all ICOL2 values and place them on a STACK

INDEX = 1

Repeat SSELECT (NAME1, ICOL1, ICOND, STACK(INDEX))

INDEX = INDEX + 1

Until INDEX > Top of STACK

INSERTTABLE (NEWTABLE, CNAME, BUFFER, TYPE, COMP, NROWS, NCOLS)
Done

Algorithm SELECT
(NAME, ICOL, ICOND, VALUE)
NAME = table name
ICOL = Column in NAME to be qualified
ICOND = Condition to hold between ICOL and VALUE
VALUE = Qualifying value

LOCATE all rows of table = NAME WHERE COMP(ICOL) ICOND VALUE
If any rows qualified

Then Go To 3

Else Done

Foran,

i l

. Repeat GET NEXT row, GETROW(NCOLS in NAME),

Place result in buffer
Until the rows LOCATEed in 1 are exhausted
Done

FIGURE 26

57

)
1
3

—

58

positioned at a given row for possible retrieval it is expedient to
retrieve the two elements and compare them in the PLI routine.
The algorithm for RESTRICT is shown in Figure 27. The

procedure RESTRICT will terminate since it cycles on the number of

rows qualified by the previous call to LOCATE. It will retrieve the
desired information, and only that information, because it inserts only
those rows which meet the specified condition: Component (ICOL1)

ICOND Component (ICOL2).

UNION is used to append all rows from one table to a second
table. The two tables must have the same number of rows, and the
rows must have elements of similar attributes. The elements are
appended exactly as they occur in the row schema, as appropriate
columns must be aligned before union. This algorithm is shown in
Figure 28. It will terminate because only a finite number of rows
are located and inserted. A1l rows in both tables qualify for
insertion in the new table, and the structure of the algorithm
guarantees that only those rows in the tables will be qualified in
the LOCATES.

Intersection (see Figure 29) is an occasion for all para-
meters of the PLI Locate subroutine to be used. If the number of
columns in two tables to be intersected is the same, then one table
is placed into a buffer and its rows sequentially compared to the
second table using LOCATE. Rows which are equal (that is all components
equal) are placed in the intersection table. The algorithm cycles

on the number of rows in the retrieved table. It will produce the

59

Algorithm RESTRICT
(NAME, ICOLT, ICOL2, ICOND)
NAME = Table name
ICOL1, ICOL2 = Columns between which ICOND should hold
ICOND = Condition

Set up NEWTABLE with columns, types, and components of NAME
LOCATE rows of NAME and place the number LOCATEed into NROWS
If no rows were LOCATEed

Then Go To 8

Else INDEX = 1, Go To 3

GET the NEXT row

If the operation was successful

Then Go To 4

Else Process error

GET the row descendant whose component is COMP(ICOL1)

Place the retrieved value into COMP]

GET the row descendant whose component is COMP(ICOL2)

Place the retrieved value into COMP2

If either operation was unsuccessful then Process error

If COMPT ICOND COMP2

Then GETROW (NCOLS in NAME)

INDEX = INDEX + 1

If INDEX > NROWS

Then Go To 7

Else Go To 3

If NROWS > O

Then INSERTTABLE(NEWTABLE, CNAME, BUFFER, TYPE, COMP, NROWS, NCOLS)
Else INSERT only NEWTABLE

Done

FIGURE 27

60

Algorithm UNION
(NAME1, NAME2)
NAME1, NAME2 = Table names

1. If the tables NAMET and NAMEZ do not have the same number of columns
Then Report error
Else Set up NEWTABLE with column names, types, and components
of NAME]
2. GETTABLE (NAME1, NCOLS in NAME1, BUFFER(1,1))
NROWS = Number of rows in NAME]
3. GETTABLE (NAME2, NCOLS in NAME2, BUFFER(1, NROWS + 1))

NAME1 + NROWS in NAME2, NCOLS)

FIGURE 28

4
I
I
!
I
|
|
i
|
I 4. [INSERTTABLE (NEWTABLE, CNAME, BUFFER, TYPE, COMP, NROWS in
!
|
|
|
|
|
I
I
'

61

Algorithm INTERSECT
(NAMET1, NAME2)
NAME1, NAME2 = Tables to be intersected

If NCOLS in NAME1 = NCOLS in NAME2

Then Report error, Done

Else Set up a NEWTABLE with description information of NAME1
GETTABLE(NAMET, NCOLS in NAME1, SCRBUFFER(1,1)

NQUAL = 0, NROWS = Number of rows in MAME1

INDEX = 1

LOCATE rows of table NAME2 WHERE

COMP(1) = SCRBUFFER (1,INDEX) AND

COMP(2) = SCRBUFFER (2,INDEX) AND

COMP(NCOLS) = SéRBUFFER(NCOLS, INDEX)

If any rows qualified in 3

Then NQUAL = NQUAL + 1, Transfer SCRBUFFER column INDEX to
BUFFER column NQUAL

INDEX = INDEX + 1

If INDEX > NROWS

Then Go To 6

Else Go To 3

INSERTTABLE (NEWTABLE ,CNAME, BUFFER, TYPE, COMP, NQUAL, NCOLS)
Done ¥

FIGURE 29

- " " " - .v o m———— T q

62

correct information because the only elements of the second table
which qualify under a given call to LOCATE are those in which both
tables have equal components.

Set difference is handled similarly to set intersection as
the note in Figure 30 indicates. It is essentially a union of two
calls to set intersection. Difference will retrieve all values which
are in the difference because it performs a membership test for each
row of each table versus the rows in the second table of the inter-
section. Those rows which fail to qualify any rows are included in
the difference. The intersection routine must be called twice to
insure that all rows of both tables are considered for membership in
the difference. :

The JOIN of two tables (referred to as the domain and range
tables) is shown in Figure 31. JOIN must first retrieve a specified
row element from the domain table and compare the value returned to
all of the range elements in the range table, and if any rows qualified,
then concatenate the two tables. As discussed earlier, JOIN may
accomplish this by retrieving one row at a time from the domain tabie.
This involves keeping a counter and repositioning before each retrieval
and comparison, or it may retrieve all rows in the domain table and
keep a row index and not have the overhead of repositioning.

The division operator is implemented in terms of repeated
table intersections (see Figure 32). Values from the divisor table

are stored on a stack. The algorithm creates an initial table with

those rows whose dividend fields are equal to the divisor field (the

T e Ty ey T ———

Algorithm DIFFERENCE
(NAMET, NAME2)

NAME1, NAME2 = Table names for difference

1. If NAME1 and NAME2 do not have the same number of columns

i Then Report error, Done

Else SCRTABLE1 = INTERSECT* (NAME1, NAMEZ)*

INTERLSCT* (NAME2, NAMET)™

SCRTABLE2
2. NEWTABLE = UNION (SCRTABLE1, SCRTABLE2)

INTERSECT is the algorithm INTERSECT with the test at step 4

negated

FIGURE 30

Algorithm JOIN
(NAME1, NAME2, ICOL1, ICOL2, ICOND)
NAMET, NAME2 = Tables to be JOINED
ICOLY, ICOL2 = Columns to be compared
ICOND = Condition to hold between columns

Set up NEWTABLE with column names, types from NAME1 and NAME2
concatenated

[Place NAME1 columns in the first (NCOLS in NAME1) components of
the component chain

Place NAME2 columns in the component chain starting at
COMP(NCOLS in NAMET + 1)]

LOCATE all rows in NAMET

NROWS = Number of rows in NAME]

INDEX = 0, BUFPOS = 0

INDEX = INDEX + 1

If INDEX > NROWS

Then Go To 10

Else Establish position at table NAME1

GET the row which is INDEX rows from the start of NAMEI]
GET the row descendant COMP(ICOL1), Place in COMPARE
If the operation was unsuccessful Then Process error
LOCATE the rows of NAME2 WHERE COMPARE ICOND ICOL2

If no rows were located Then Go To 3

Else J = 1, NEWROWS = Number of qualified rows

GET the NEXT row which qualified

GETROW (NCOLS in NAME2)

If operation was unsuccessful Then Process error

Else Place values in BUFFER starting at

BUFFER (NCOLS in NAME1 + 1, BUFPOS + J)

J=J+1 :

If J > NEWROWS

Then Go To 8

Else Go To 6

i

it

/

64

4
|
' l
\
| '
| l
|

10.

GET the row which is INDEX rows into NAME]

GETROW (NCOLS in NAME1)

Note: Position must be reestablished at MAME1 row INDEX before
GETROW can be called. The call to GET1 does both at once

J =1

Transfer the retrieved NAME1 row to BUFFER starting at

BUFFER(1,BUFPOS + 1)

J=J+1

If J > NEWROWS

Then BUFPOS = BUFPOS + NEWROWS, Go To 3

Else Go To 9

If BUFPOS = 0

Then INSERT NEWTABLE with no rows

Else INSERTTABLE (NEWTABLE,CNAME, BUFFER, COMP, TYPE, NCOLS in

NAME1 + NCOLS in NAME2, BUFPOS), Done

FIGURE 31

65

66

Algorithm DIVISION
(NAMET, ICOL1, ICOL2, NAMEZ2, ICOL3)

NAMET = Dividend Table

NAME2 = Divisor table

ICOLY = Result column from NAME]
ICOL2 = Dividend column from NAME]
ICOL3 = Quotient column from NAME 2

1. Set up a NEWTABLE with columns and types ICOL1 and ICOL2
Use the first two components in the row chain

2. Retrieve all ICOL3 vﬁlues from table NAME2 and place them on a STACK
STACKPT = top of STACK

3. NEWTABLE = SELECT (NAME1, ICOL2, = , STACK(STACKPT))

INDEX = 1
4. SCRTABLE = SELECT(NAME1, ICOL2, = , STACK(INDEX))
5. NEWTABLE = INTERSECT (NEWTABLE, SCRTABLE)

6. INDEX = INDEX + 1
If INDEX > STACKPT - 1
Then Done

Else Go To 4

FIGURE 32

67

top element of the stack). A loop is executed for the remaining
divisor entries. A new table is created whose divident fields are
equal to the divisor field at the current stack top. This table is
intersected with the initial table, and the table from the intersection
is assigned as a new initial table. The loop is executed using INDEX
to step through the table.

The last table will be those rows whose QUOTIENT values
appear as elements with each of the divisor values.

Removing Duplicate rows is necessary before output or at
the end of any statement (Figure 33). The algorithm retrieves all
rows of a table. It sequentially compares the retrieved rows to the
stored table by locating all rows in the stored table which have
elements equal to the corresponding row element of the current buffer
row. If more than one row is located, all but one of the rows is
deleted. When the last row in the retrieved table has been compared
to the storéﬁ table all duplicate row: will have been removed.

The parsing principle of this system is to make a rule
reduction in the interface whenever one is made by the parser. This
is a design choice. It forces the system to do more work than waiting,
for example, for an entire string of ANDS, and then performing one
qualification. Such an ability is an enhancement but adds more size
to an already large program, and it does not add more power to the
system.

The SEQUEL subset is shown in Appendix 1. The grammar
itself is LALR (1)]. The structure allows for algebra and SEQUEL

Algorithm REMOVEDUPES
(NAME, FLAG)

NAME = Table name from which to remove duplicate rows
FLAG = Pointer to a buffer if the table is already in the

interface, zero otherwise

If FLAG = 0

Then SCRTAB = GETTABLE (NAME,SCRBUF)
Else SCRBUF = Buffer pointed to by FLAG
LOCATE rows in NAME

NROWS = Number of rows LOCATEed

INDEX = 1

LOCATE rows of NAME WHERE

COMP(1) = SCRBUF{1,INDEX) AND

COMP(2) = SCRBUF(2,INDEX) AND

COMP(NCOLS in NAME) = SCRBUF (NCOLS in NAME, INDEX)

If more than one row was LOCATEed
then d =1, Go To 5

INDEX = INDEX + 1

If INDEX > NROWS

Then Done

Else Go To 3

GET the NEXT row

If unsuccessful Then Process error
REMOVE the row from the data base
If unsuccessful Then Process error
J=J+1

If J > (Number of rows qualified - 1)
Then Go To 4

Else Go To 5

FIGURE 33

68

statements to be alternated, but not intermixed. Every reduction

results in an entry on either the operand stack or the operator stack.

Every reduction of type <operand> <comp> <operand> results in the
operands being removed from the stack, the operator applied to them
and the resulting table being put back on the stack.

An algebra statement always terminates with one table on
the stack, the result table. A SEQUEL statement always terminates
with two entries, the projection list and the result table. If the
parser is completely finished with an expression, the specified
columns in the list are projected from the table on the top of the
stack, otherwise a table is made from the specified columns and the
table is placed on the stack in place of the two input entries.

This chapter has discussed the algorithms used in the
interface program. A1l relational operations were implemented in
terms of the available hierarchical DBMS functions. The final two

chapters are, respectively, an extension to the system, and the

conclusion.

69

!

i
|
|
|

m— ——

CHAPTER VI
AN EXTENSION TO THE SYSTEM

Smith and Smith [19] proposed a data structuring primitive

which defines the relational model in terms of a hierarchy of n-ary

relations. The structuring primitive takes advantage of both the
relational and hierarchical models by building the inter-relational
dependencies into the structure of the hierarchy.

A definition in the above structure depends on the user
defining key values. Each element of a table is either specified
as being a key element or specified as a non-key element. Each
element is also listed in every table with which it is associated.

Defining a relational data base in this structured manrer
allows each relation to be assigned to a level of the hierarchy. To
exemplify the structure this concept imparts to the hierarchy, the
relational presidential data base is defined in a sample definition
language and the resulting structure is graphed.

PRESIDENTS

NAME : KEY OF ELECTIONS-WON : WINNER-NAME
PARTY : NON KEY

HOME-STATE : NON KEY

The structured decomposition yields four levels of tables

rather than the one level of tables used by the system designed in
this paper. It is immediately obvious that this data organization is

suited to the implementation of a non-procedural query processor.

70

-

e
-

ELECTIONS-WON

YEAR ; KEY OF ELECTIONS-LOST : YEAR
WINNER-NAME : KEY
WINNER-VOTES : NON KEY

ELECTIONS-LOST

YEAR : KEY

LOSER-NAME : KEY OF LOSERS : NAME
LOSER-VOTES : NON KEY

LOSERS

.NAME : KEY

PARTY : NON KEY

The structure generated by this sample definition is:

PRESIDENT PARTY | BIRTH

VAhS i

YEAR

WINNER NAME VOTES PRESIDENT | WIFE MAR DATE

YEAR

LOSER NAME VOTES

/

LOSER NAME PARTY

FIGURE 34

72

Statements such as SELECT LOSERS.PARTY WHERE PRESIDENTS,NAME=ROOSEVELT
AND ELECTIONS=LOST.YEAR=1944 AND ELECTIONS=WON.YEAR=1944 ; which are
complex in terms of relational algebra operations, may be much simpler
in terms of a hierarchical query. The query can be formulated in one
statement similar to the example SEQUEL statement.

An algorithm for a query optimizer should be designed which
would perform a hierarchical query, a series of relational operations,
or a combination of the two methods. This optimizer should make the
best use of both models. It should allow comparison of disjoint tables
using either the relational algebra or via a schema transformer followed
by a hierarchical query.

There are two uses of the work KEY to consider. KEY in
terms of the definition language establishes a hierarchical level.

An actual management system may or may not regard all elements as
elements to be kept in inverted files and by which any row of any
relation may be accessed.

If all elements are key elements, then the functioning of
the algorithms of CHAPTER IV remains unchanged. Since each algorithm
involves retrieval followed by qualification, followed by retrieval
of qualified data sets, each algorithm will work properly as long as
all elements of a row may be qualified in a query.

If only the elements designated as key are used as actual
keys in the hierarchy, a problem arises. Qualifications cannot qualify
non key elements, and much of the comparison work must be done by the

interface proaram. For example, in removing duplicate rows from a

T —

——

73

relation, all elements need to be available for comparison. Thé
interface must retrieve all elements of a table and compare all non key
é]ements of all rows with the same key. The data base is smaller than
it is when all elements are key elements, but algebra operations requive
longer to finish.

A solution to the above problem is to restrict the relational
operations to key values only. This is a reasonable approach since
it places the user in the position of deciding the size of the data
base as well as the scope of the operations performed in it. Having
few key values moves the data base away from algebra operations and
towards the non-procedural operations.

In conclusion, an enhancement of the system designed in
CHAPTERS III and IV is the conversion of the underlying data base to
the general structure proposed by Smith and Smith, the addition of a

data base definition program, and the construction of a query optimizer.

CHAPTER VII

SUMMARY

This paper has discussed some of the relationships between
a relational data model and a hierarchical data model. It designed
a relational interface for implementation as a front end to a hier-
archical data base.

Nine choices for structuring the underlying hierarchical
data base were discussed. A structure which preserved the table
integrity and row integrity of relations was selected.

A11 relational algebra operations were designed in terms of
the hierarchical operations. Two approaches, one applicable to large
data bases and the other more suitable for small data bases, were
noted to be possible for each operations.

Areas for possible future research were pointed out. An
enhancement to the current systems was proposed. This would add a
definition module and a query optimizer to the system, making more

efficient use of the structure of the underlying hierarchy.

APPENDIX

BACKUS-NAUR (BNF) for the SEQUEL subset:

1 <SLIST> ::= <STATEMENT>
2 / <SLIST><STATEMENT>
3 <STATEMENT> ::= <CONTROL>
4 / <DEFINE>
5 / <ALGEBRA>
6 / <QUERYs>
7 / <DML STATEMENT>
8 <CONTROL> ::= EXIT ;
9 / DEBUG ON <DBLIST>
10 / DEBUG OFF <DBLIST»>
l 11 / SHOW ;
12 / DATABASE IS <DBNAM> PASS <PASSWRDs
3 ' 13 <DEFINE> ::= NEW DATABASE IS <DBNAM> PASS <PASSWRD> ;
: 14 / TABLE IS <DEF TABNAME> <COLDES LIST> : <LITTUPLE LIST> ;
2 15 / LOAD ;
3
I 16 <ALGEBRA> ::= PROJ <PROJ LISTs> <ATABMAMEs ;
17 / JOIN <ATREF> <RELOP> <ATREF> ;
18 / REST <ATREF> <RELOP> <ATREF> ;
' 19 / SEL <ATREF> <RELOP> <ATREF> ;
20 / UNION <ATABNAME> <ATABNAME> ;
i 21 / INT <ATABNAME> <ATABNAME> ;
22 / DIFF <ATABNAME> <ATABNAMEs ;
23 / DIV <ATREF> <DIVIDENDs> ;
24 <QUERY> ::= <BASIC QUERY>
25 / <BASIC QUERY> A <QUERY>
26 / <BASIC QUERY> v <QUERY>
27 / <BASIC QUERY> - <QUERY>
28 <DML STATEMENT> ::= <DEF TABNAME> = <QUERY>
29 / <DEF TABNAME> = <ALGEBRAs
30 / DELETE <DEF TABNAMEs

31 <DBLIST> ::= NUMBER
32 / <DBLIST>, NUMBER

33 <DBNAM> ::= NAME
34 <PASSWORD> ::= NAME

' 75

i

.

Mt i w o g dane s b
76
35 <DEF TABNAME> ::= NAME
36 <COLDES LIST> ::= <COLDES>
37 / <COLDES LIST> <COLDES>
38 <LITTUPLE LIST> ::= <CONSTANT LIST>
39 / <LITTUPLE LIST> (<CONSTANT LIST>)
40 <COLDES> ::= <DEF COLNAME><TDES>
41 <DEF COLNAME> ::= NAME
42 <TDES> ::= A
43 /1
44 <CONSTANT LIST> ::= <CONSTANT>
45 / <COMNSTANT LIST> , <CONSTANT>
46 <CONSTANT> ::= NAME
47 / NUMBER
48 <PROJ LIST> ::= <ACOLNAME>
49 / <ACOLNAME> , <PROJ LIST>
50 <ATABNAME> ::= NAME
51 / (<ALGEBRA>)
52 <ATREF> ::= <ATABNAME> . <ACOLNAME>
53 / <SVALUE>
54 <RELOP> ::= #
55]/ =
56 / <
57 | &
58]/ >
59 Fied
60 <DIVIDEND> ::= <ATREF> <DCOLNAME>
61 <DCOLNAME> ::= , NAME
62 <ACOLNAME> ::= NAME
63 <SVALUE> ::= " NAME "
64 / " NUMBER "
65 <BASIC QUERY> ::= <LABEL> : SELECT <SELCLAUSE LIST> <WHERE CLAUSE> ;
66 / SELECT <SELCLAUSE LIST> ;

67

/ SELECT <SELCLAUSE LIST> <WHERE CLAUSE> ;

sLABEL> ::= NAME

<SELCLAUSE LIST> ::= <SELCLAUSE>
/ <SELCLAUSE> : <SELCLAUSE LIST>

<WHERE CLAUSE> ::= WHERE <BOOLEAN>

<SELCLAUSE> ::= <PROJ TABNAME>
/ <PROJ LIST> FROM <PROJ TABNAME>

<PROJ TABNAME> ::= NAME
<TABLEREF >::= <TABLE NAME> . <COLNAME LIST>
<TABLE NAME> ::= NAME

<COLNAME LIST> ::= <COLNAME>
/ <COLNAME LIST> , <COLNAME>

<COLNAME> ::= NAME

<PREDICATE>
/ <PREDICATE> OR <BOOLEAN>
/ (<BOOLEAN>)

<BOOLEAN> ::

<PREDICATE> ::= <PRED>
/ <PREDICATE> AND <PRED>

<PRED> ::= <COMPARAND> <RELOP> <COMPARAND>

<COMPARAND> ::= <ATOM>
/ (<COMPARAND>)
/ <BASIC QUERY>
/ ALL <COMPARAND>

= " NAME "
/ " NUMBER "
/

<ATOM> ::
<TABLEREF>

77

REFERENCES

. Special Issue on Data Base Management Systems.
ACM Computing Surveys, Vol. 8, No. 1, March 1976.

Astrahan, M. et al. "System R: a Relational Approach to
Data Base Management". IBM Research Report RJ 1738,

Astrahan, M. and Chamberlain, D. “Implementation of a
Structured English Query Language". Communications of the

Boyce, R. F. et al. "Specifying Oueries as Relational
Expressions: SQUARE". 1IBM Technical Report RJ 1297, IBM
Research Laboratories, San Jose, CA, October, 1973.

Burger, W. F. "BOBSW -~ a Parser Generator". SESLTR-7,
Computation Center, University of Texas at Austin, TX,

Chamberlain, D. "SEQUEL: a Structured English Query Language".

IBM Research Report RJ 1394, May, 1974.

Clemons, E. "Design of a User Interface for a Relational
Data Base". Dissertation, University of Pennsylvania,
Philadelphia, PA, September, 1976.

Codd, E. F. "A Data Base Sub-Tanguage Based on the Relational
Calculus". Proceedings of the 1971 ACM-SIGFIDET Workshop on
Data Description, Access, and Control, ACM, New York, November,

Date, C. J. "An Introduction to Data Base Systems". Addison-
DeRemer, Franklin L. "Simple LR(K) Grammars". Communications

Hardgrave, W. T. "Theoretical Aspects of Boolean Operations
on Tree Structures and Implications for Generalized Jata
Management". Computation Center, University of Texas at

Keel, Tom. "SYSTEM 2000, Version 2.4 User's Guide for UT 2D
Implementation". on-line documentation. Computation Center,
University of Texas at Austin, TX.

78

T R T "
[1]
[2]
February, 1976.
: [3]
ACM, October, 1975.
' [4]
[5]
' December, 1974.
' [6]
| [7]
| [8]
1971, pp. 35-68.
l fo
Wesley, Reading Mass., 1975.
l [10]
of the ACM, July, 1971.
: 1]
' Austin, TX, August, 1972.
[12]

79

[13] Kent, W. "New Criteria for the Conceptual Model". IBM
General Products Division, Palo Alto, CA, unpublished.

[14] Knuth, D. E. "The Art of Computer Programming". Vol. 1
Addison-Wesley, Reading Mass., 1968.

[15] Lowenthal, F. I. "A General Purpose DBMS Kernel”. MRI
Systems Corp., Austin, TX, to be published.

[16] Martin, James. "Computer Data Base Organization". Prentice
Hall Inc., Englewood Cliffs, NJ, 1975.

[17] MRI Systems Corporation. "SYSTEM 2000 General Information
Manual". Austin, TX, 1974.

[18] Parsons, Ronald G. "Techniques for Decreasing the Size of
SYSTEM 2000 Data Bases". University of Texas CC-TPB-145,
June, 1973.

[19] Smith, John and Smith, Diane. "Data Base Abstraction"
Computer Science Department, University of Utah, Salt Lake
City, Utah, to be published.

[20] Tsichritzis, D. "LSL: a Link and Selector Language".
1976 SIGMOD, ACM, New York.

T A T T T T T
N

|
|
|
i
|

E11is Knox Conoley was born in Temple, Texas on March 1,

1947, the son of Maxine E11is Conoley and Rufus Knox Conoley. He
graduated from Lakenheath American High School, Brandon, Suffolk,
England in 1965. He completed requirements for the Degree of Bachelor
of Arts in Mathematics at the University of Texas at Austin, Texas in
August, 1969. On December 22 of 1969 he was commissioned a 2nd
Lieutenant in the United States Air Force, and presently holds the
rank of Captain. Captain Conoley has served tours of duty in Montana,
Southeast Asia, and at the North American Aerospace Defense Command
(NORAD) Combat Operations Center at Colorado Springs, Colorado. In
May, 1974 he was selected by the Air Force Institute of Technology to
pursue a Master of Arts Degree and he entered the Graduate School of

the University of Texas in January, 1976.

Permanent address: 10303 Newport Avenue
Austin, Texas

This thesis was typed by Ann M. Patterson.

| Offering Professional Word Processing Services “as
_ _ an Economical Alternative to In-House Production.

