
~~~~~_AOII7. 602 AIR FORCE INST OF TECH WRIGHT—PATTERSON AFS 01110 F/S 5/2 

—________

USC OF A HIERARCHICAL DATA MO0€L TO SUPPORT A RELATIONAL DATA M—ETC(UP
AIlS 77 £ K COteOLCY

JICLASSIFIED AFIT—CI—75 3 ML

&602

U

1=

L

END
FILMi 0

p _ _ _ _ _



~~~

— ~~~~~~~~~~~~~~~~~~~

•

S
_ ‘ ~~~

I
I •

/

I
J ~

USE OF A HIERARCHICAL DATA MODEL TO SUPPORT A

RELATIONAL DATA MANAGEMENT SYSTEM

I
D D C

I
•

DEC 15 flTT

I Ub uU~~~
J

I
APPROVED :

I
_ _ _ _ _ _

I L
~) 7JJ/~9e~4~

I
I

>-
—I
• (_.)

I “
L~~~~i~~

1 ____

D
~ pubbc ~~~~~~

~~~~~~~~~~~ I~.~~~~~~I~C(t

- ~ —--~~— ~~~~~~~-.~~~~~~~~~~~~~~—— -- - -- - -S - -~~~ - -~~~~~~~~~~~



• _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _

‘ UNCLASSIFIED
S E C U R I T Y  C L A S S I F I C A T I O N  OF 1’.,I~ P A G E  ‘Wh .,. ~~,. ~~~~~~~~

REPORT DOCUMENTATION PAGE 
~ I~~~~~~~

I REPORT N U M B E R  ~2 GOV T acct ~S~~I~~~.. ~~~ ‘t ~~~~~~~~

CI 78—3
4. T I T L E  (wd SubIiiS.) ~~ t I .~tI- . I. ’ ~ - I  .

Use of a Hierarchical Data Model to Support .i
Relationa l Data Management System T~~~ i~ - -

t ~~~~~~~~~~~~~~~~~ ~~~. t ’ t t -  b ’

7. ALJ T I40R (.) 6 C~~..~~M A C  C N  ~~I.*.. •.

Ellis K. Conoley

~ P E R F O R M I N G  O R G A N I Z A T I O N  N A M E  AND A D D R E S S  
—

~~~~~~ I0  P k U ~..k A M  t - ~~~~~~ ~~~~~ T~ ‘~~..
A N t A 4 *O N ~ ~~~~~ ~ M A t Nt

AFIT Student University of Texas,
Austin TX

i t . CONTROLLING OFFICE ~AM(AND ADD R ESS Ii N IPON ’ OA T S

August 1977 ____id I5 Nu M BE R OF P a G I s
WPAFB OH 45433 80 Pages

14. M O N I T O R I N G AG E NCY NAME 6 A D O R E S S ~ I I ~~~~~~~ ~~~~ ~~~~~~~~~~ Qff,~. 13 S E C U R I T Y C L A S S r~~I It.. . . p~...

Unclaasifivd

~i•s; OtC%. ASSI V S C a T Oh t~O.t . 0**DING
SCHEDULE

___ ~. _ J
16. DISTRIBUTION STATEM ENT (of I h I . R.po rt)

-

1c)
Approved for Public Release; Distribution Un l imi ted

“~
17. D I S T R I B U T I O N S T A T E M E N T (of It.. ab,ft.cI ,nI.,.d Sn YIoc# 20. I f d I 9 f . I~~~ t,n~~ N.r ~ II~ \\~ ~~~

I~~ SUP P L E M t N t ~ARY t.~ I T E S
~~~~~~~~ ~~ 

• ..~~~~~i ;  ~~~~~~~~~ A~ R 1’~ i 1•1.

~~~L.:\ ‘~~~~~~~ 
-~~ L~ T’T~

JERRAL F. GU~SS , Captain , USAF
Director of Information , AFIT

19. ICEY W ORDS fCon(Inu. on ,.v.,a . .fd. if fl.c.,~ ar-, wd Iden ifv “v b$n. 6 n.... ..I
—

20 AB S1 I4ACT (Contlnu• on ,.v .r.. aId. If n.c..aaly and Id.nfIfr f ’. t, ,,rI. n, ,.f’.,

DD ~~~~~
1473 E D I T I O N OF NOV 65 IS O B S O L E T E UNCLA SSIFIED

S E C U R I T Y CL A S S I F I C A T I O N OF T H I S P A G E (Wt..n Data Entp ,.d)

-- - -
~~~

J.JRfTY C~.*~$IPIC*TION OP T H I S  PAG((*~~~~ ~~~~~~~~~~~~~ -

I _ _ _ _  I
SECURITY CLASSIFICATION OF THIS PAGEf’W7..n Oaf. Ent.r.d)



INSTR UCT IO NS FOR PREPARAT IO,i OF RE PORT DOCUu~~NT aTION PAG(

~~~~~~~~~~~~~~~~ Tb. .ntrulhng Dol l OIIR, w a l l  b. respunsibli- to, t ompIrItUn ~ l the Report DO, umi-nt.t IUn 
~~~~~~ 

1)1.) F’~r* *173. inall technic al report. prepoi’-.I t,~ ., (..r Dul) ~~~~~~~~~~~~~

c L ,A~.’~i f  l~~AT IU”. Sin.r this Rtpovt Du~~umrnt.tion ~~~~ DO Poim 1 4 3  is used in ~~~~~~~~~~~~~~ 611 Outi ..’C eIIIS. bsbh t ’~~I ~~ and dat a
‘.h: uld be- ‘~n~ t,.’.’.,ti.- I it possible If a e L . s e a l i ,  o ’iOfl is vt-quitt-d. sd,irtst~ ‘or a~~s d.. .1 at,- .- OS lb .- p.~ .- ta4 the •ppm.ap(i.Ie.

COMPLET ION GUIDE

C,ene,at %t . .~~, (Ito ,.‘ I I ~~. R, 7 I I . ) 1  IS . and lb .e- v.  .- auth the- cetresp.~ndin.~g anIerWillon on the report . cci
I4l~~ k’, ~ and 3 II .0k

tlI~~. Ii I. Rep..FI Suri Pie, ERIC, lb.- UnIqu e aiphanun.-,,. irporl nu’~b.t elioan OR ‘hr tol d

Block 2. (k,~ rr’, ’oent ~ , e’ . - . i . , n S .  l..’aar Bl ink Thi. ‘ i - ,,, ’ IS to t  us. .~ the DeI,-nae Lf~ utnenI.ti,)n C,ffl e,,

JI~ - k I RI.OIpICnI’~ ( at..l .~~ “ min t I.e.’..- blank ‘IbIS Spa. .- is t i  the’ us.- I hr ie~ .. ii i.- . IptenI Ii a t - i st  in ta ~turi•retr iesa l of~ II~e clocume-nI

~~~~~~~ T - t I . -  .nd SubIit Is- ERIC, ‘Pu- ‘~‘1r in all • ..pII.. 1 1.-It.’,. rk~~. ‘I ’ , .5 t appear. n ‘he public .flon T.tl.a should beon. I.Iqcified w hene.er p sss ~~.. 6 ’. ’ .- ~ hr English .quisalt’n’ I ‘ Gecek ~r ’ e t s  and m.tha.tn.t,a .: symbols in the ttt*• (i.e“Abs  t’u, ‘i” .j ~S. Idf l f I t I  .n.I T~ . hr... .1 Rrp..,ri. of Defrn.e.sg.. *i .,.,, ,~ kil T l~ “A i 1’66 7 (tOO ) It 11w ,epo rt ha. a s~ btIIl.- , thi s subtit leShould follow the main ‘ itle, 1..- ..-p.ra ’.’d b~ — s on.,.-. or .emieolon if appt ‘~~‘ ia t . - . and be. Inat i .~ 1~ apita li:. d II • p~ blic.i .ri has atitle in a Icr eig n la’ .: ,.* .~ r , t rans. , ’ .- th e i t t ! .  into English ,.nd to llow the I.ngli~ h Irsnslation lb th e till, in lb . ‘ .t,g&nal ~.ov .ai’’M.ihe every effort ‘o ..-implif~ ‘h.- lii:. bet,.,,- publi. mu on

B L . .:k A . T~~ .- .t Report arid I’~’t i . o t C,,s~~i.-s* Int.. j.’ .- here whe the r u-p...’ is interim . t rial. r t . .. and , if ap~- lii able , in, l.iSIvedotes ‘1 per. it Cos ererl . suc h a~ th e li fe ~1 a .nt ra. I (“tsr,.-,1 Iri .. fina l COf l ’ ta , ’t o, “

lII’j~,k~~,. l ’ --’Iorlniflg b’.” .‘~~‘i n Re p. r’ S~~i ~~~ (InIt numbers ott,. -, than ‘h. 31. al report nun be, shown in ll~ .- I. audias series numbers for n-b oise ri ~~. t ’ ’. or a ‘ nUa i t , ’ r Vaf l I re ni.’ ~..‘r ass ig ned bt h e • ii be plac ed in Ib Is spac e It no Su, h numbersare used, leav e this spo~~e ank

H!...~~I,7 Au!h.ir~ .~) m i lude c - ru’ .p - ‘ r i t a n ~ ,r.t .nnaIIUo I,~ iti the ‘ ‘i . t ’ c Oyef (. . - . . lb.- n,.— of th, .,thur ‘I) in ~~~~~.r t , r f f.,, .‘eon ~~~e, J . . f ’~,
~ f l . ., ,1 ,f ,,ii l)~., :,,‘f .r . . J . Ft .b.-rt I) . ’ In i s ’ ! h’iofl. 1 , ..? lb. aff .l,al,.’ rs • I an a u i t , if it differs fton’. thato f the performing o rgani/at i n

Blotk 8. Contract or ~,rant ~sumbera). I- or . cc ,,,’ .. I ir r ~“ant. . 1.-p.,t ent.’. the , ‘- .y - :r ~ .- Crinura rt or ge... number s) underWhich the wor k reported so’. a. .‘tipl,~ hed Leav e ’ blank in in.hou’.e r.-p. r t ..

Block 9. Pert m ing ~ rICa n..~aIion Name and Ad,fr.”.’. I- r in-house repi rts erie, the na— c and address , including ‘ Eli symbol.of the perform’ihg act iv I t y For cont ract ., 1 grantee reports enter the name and addrr ss “I the •.n~ .o, - I,,r or Irantee mb, prepared thereport ond identify the appropriate corporate div ision, oh, I, Iaburator~ , C? . I the aut h.-, List c i v , state , and ZIP Cude

~ i2~Jc l0. Program Element , Proje~~t , Tack Ar ea , and W . ri, t’ n i t Nu-’l..’rs Enter her- ’ Ilt r’ number code from the applicableDepartment of Defense form, such u’ the DO Form 1498. . R.’..e. ur. Ii and Technology Work Unit Summary ” or the DO Form *634
‘Research and Development Planning Summary .” which identif ,o’, the pr i 1..” . c - Ic—i- n t . p’ .ie~~t . task arc -a , and work unit or equivalent

under which the w . rk was authorized.

~i~cJ~~ll. (“nirolling Office Nur”,’ and Address. Enter the full , off icial name and address , including ‘Flu symbol , of thecontrolling office. ‘E ju e fe ,s to 1und,n~ - sponsoring .‘.genc. . For d eh n , r : .n a.-,- DoD Di r ec t, . , - 5201) 2’ “t) s ’ , tr lbut,Qn Sfaternen t t. onTi- . hn:cal Documents. ”)

Block 12. Report Date . Enter here the day, month , and year or rn r.r,th and year as shown on the once,

Block !). Nur’b”~ S t ~~~~~~~ E r .~’, thi- t ’ .”l n .r”hcr 3 pages,

Hi ck 14, ~at ri,joring A gency Nuro ,’ and Address (t I d, fk r ”r f (rum L ’n r r . l l i ng Off ice). For use when the controlling or fundingfl.. .‘ does not directly ,, l r . in ,ste r a pr ie’ .- I . contract , or grant , but delegates the adminislrst ive responsibility to another organ.,.t,nn

l3tocks ~S & IS.. Security Classif ication of the Report ! Declassification/Downgrading Schedule of the Report . Enter in IS
the highest classi fication of the report. If appropriate, enter in ISa the declassification/downgrading schedule of the report , using the
abbrev iations (or declassification downgrading schedules listed in paragraph 4- 207 ‘~I DoD 5200. 1-R.

Block 16. Distribution Statement f the Report. Insert here tb’ applicable d is t r ibut ion s ta tement of the repro Er .— DoD
D l r e o t a v e 5200.20 , “Distribution Statements on Technical Documents. ”

13 1 ‘ o k 17. Distribution Statement . i(the ab.’.ttat t entered in Block 20 , if di f ferent (torn the di s t r i b u t i on statement ..f the repor) .
Insert here the appl icubie distribution statement of the abstract from DoD Directive 5200.20. “Distribution Statements on Technical Doc-
uments “

Hiro k 18. Supp lement.. Enter information nit included elsewhere but useful , such as! Prepared in cooperation with
• T rur.’;~ .,!i,,n of (or hy . . . ‘ at con ference of . • . To be published in

Block 19. Key Words , or short phrases that identi fy the principal subjects covered in the report , and are
suffi~ ..’ntly specific and p roo lse to -, as index entries for catalog ing, conforming to slandard terminology . The DoD “Thesaurus
of Engineering and S “ nt if i Tern,,. ’ (7...STI. AD.672 000, can be helpful.

Block 20. Abstra i t. The abstract should be a brief (riot to exo, ’ed 200 words) factual summary of the most significant inform..
twn co nt~~ii~~

’
~T’in the report. If posi.it,le , the abstract of a c lassi f ied report should be unclassified and the abstract to an unclassified

report should consist of publicly- releasable information If the report contains a significant bibliography or literature survey , mention
it here. For information on preparing abs t rac t s see “Ab st r act , r . ,~ Scientific and Technical Reporls of Defense-Sponsored RDT&E,”
A D.667 000.

* U.S. GOVfRP, M(NT PRINT ING 0t~~ICt 197 3—729.09 1 1431 3- i

- •• .~~ — - _. •. - -— — .~~~ — ——- — —-
~~~~. . —— -.  -.-.—-.--- • --— . - — ..~~~~~~~~~~~ ~~~~. . .  .



I I
I

USE OFAH1 E RA R C HI ~AL DATA MODEL TO SUP1tORT A~~

/ RELATIONAL DATA MANAGEMENT SYSTEM .

- —
.

I by ()jt t:t .~~~~~~~ 
•

I I  
I 0 ~~ 0N0 3

,
~1y’, ,~~~

,
~~~~~:~~~~~

jt:2i

THESIS

Presented to the Facul ty of the Graduate School of

I The University of Texas at Austin

I In Partial Fulfillment

of the Requi rements

for the Degree of

MASTER OF ARTS

1
i

- s

.- .

I THE UNIVERSITY OF TEXAS AT AUSTIN

I
iJ

~~~~~~~~~~~~~~ _ _ _ _ _ _  _ _ _

— ‘ ‘ ‘
~~~~ r: .’.:x~~’~ ~ 

. ., ::~

~ ~ O~
) “±~~

[‘
~‘7”~


~~~~pe ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~

I
I TABLE OF CONTENTS
I PAGE

CHAPTER 1. INTRODUCTION . 1

CHAPTER II. DEFINITIONS 3

I CHAPTER III. PROBLEM DEFINITION 16

CHAPTER IV. THE UNDERLYING HIERARCHY 24

I CHAPTER V. Al GORITHMS FOR THE INTERFACE 36

CHAPTER VI. AN EXT~~SION TO THE SYSTEM 70

CHAPTER VII. SU~IIARY 74

I APPENDIX 75

REFERENCES 78

I

I i i i

I

_
-

I CHAPTER I

1N1’ROOUCT ION

Each Data Base Management System (DBtlS) has Its own unique

I approach to the data management problem. Three basic management

I systems , hierarchical , relational and network, have evolved , each of
which constructs the logical view of a data base in a different way.

I None of the approaches is superior to the other two, rather each has

its own special advantages and applications .

I Lowenthal and others have discussed the design of a general

purpose DBMS kernal which is able to handle several logical views of

a data base Instead of only one logical view [15]. The kernel accepts

I many different “front ends ” by having general units for parsing, data
access , work areas , buffers , etc. The characteristics of such a kernel

I should not affect the user , i.e,., the personality of the management

system should not extend through the user-friendly interface .

The design of such a kernel is a complex undertaking . In

order to discover what specifi c functions should be a part of the

kernel one should study what the kernel must do for a specific model

In a specific instance. The action which would be taken by each model

must be noted to assure that the kernel is able to adequately process

requests by a front end system. In addition , the relationships between

current approaches must be considered so that any dup lication of effort

by a particular front end is avoided

.1

I 2

I
.

This thesis is an investigation of some of the relation-

ships that exist between hierarchical data base organizations and

I relational data base organizations . It discusses these relationships

in terms of the problems and solutions involved in in~1ementing a

I relational front end to a hierarchical data base. A solution is

i presented which defines all relational algebra operations In terms of

hierarchical operations. The system does not have a query optimizer ,

I but Is constructed with facilities for the addition of one. It

provides a vehicle which can be modified to study other relational

I organizations in the hierarchy. ~~~~

1 CHAPTER 11 consists of term definitions and a brief discus-

sion of the relational and hierarchical models. CHAPTER i l l discusses

I the specific problem of designing a relational front end to a hierarchy,

arriving at a possible organization . CHAPTER IV is a study of the

1 algorIthms necessary to implement the algebra . CHAPTER V mentions a

i possible extension to the algorithms of CHAPTER IV , and CHAPTER VI

Is a suninary.

I -

I
I
1
I
I

- — . —— .. -- -~~
— — ..

—.-

CHAPTER Ii

i
DEFINITIONS

1. Data Base
‘- ‘ I
I ... a collection of interrelated data stored

together without harmful or unnecessary
redundancy to serve one or more applications
in an optima l fashion ; the data are stored so
that they are i ndependent of programs which

I
use the data; a convnon and control led approach
is used in adding new data and in modi fying
existing data within the data base. (16]

2. Data Base Management System

I A Data Base Management System (DBMS) is a software system

for managing data bases on a computer . Such a system acts as an inter-

I face between the ultimate user ’s view of the data (logical view) and

the hardware of the system. The DBMS Is, therefore, a mapping between

I the logical structure of a data base and its physical reality (Figure 1).

1 ~~~~~~~~~~~~~
E

~
MS Methods

I FIGURE 1

i PICTORA L REPRESENTATION OF THE DBMS INTERFACE

I
3. Logical Data Ind~p~ndence

I A data model is log ically i ndependent if the programs which

I access the particular data base are unaffected by logical changes in

the data model .

1 3

I

— —— -. .- .- — —~ S —~~~~~~~~~ .~~~~ —— . - -

)

~~~~~~~~~~~~~~~~~

•

1 
4

I 4. Data Integrity

A data model has data integrity when at all times there

I exists no inconsistency In the data base. A data model looses integ-

rity when any data items which should represent the same fact do not

I contain the same information , i.e., when they are Inconsistent. It

i Is a problem of data base design to insure that Inconsistency is

eliminated, or is always kept at a minimum l evel .

5. Hierarchical Data Model

I a. The hierarchical data model has the following characteristics :

[1].

I 1) There is a set of record types (Rl ,R2,...,RN}.

I 
2) There is a set of relationships connecting all record

types in one data structure diagram .

I 3) There is no more than one relationship between any two

record types , R1 and Rj.

I 4) The relationships in the data structure form a tree wi th

I 
all arcs pointing towards the leaves.

5) Each relationship is l:N in the direction of the leaves

I of the tree, and is total -- that is , for every R~ record
occurrence there is exactly one R1 record occurrence

I connected to it , if R~ is the Parent of R~ in the defini-

I 
tion tree.

b. is said to be an ancestor of R~ iff I < j and R1 l ies on a

I path to R~. R~ is a descendant of R1 if the same conditions hol d.

II



- - - - —-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1
c. Operations on a hierarchical data model are :

1 GET DESCENDANT (Record)

I GET ANCESTOR (Record)

GET NEXT (Record )

I
In some systems , requests may be made non-procedurall y using

I statements of the form: ACTION A WHERE P. A is a retrieval of some

I 
subset of record types contained in tt i  model , and P is a hierarchical

predicate wh i ch qualifies elements and records along a coninon (family)

I path . A multi—branch (path) qual i fication is generally illegal because

cases arise where processing of qualifications cannot continue unantig-

I uiously [11).

‘ 
Figure 2 shows an example of the occurrence structure of a

hierarchical data base with 4 record types. Type A is a root and is

I located at level 0.

E3~~~~~ ~~~~~~~~~~~~~~~~2 D 2 :: c4 

•1

I FIGURE 2

HIERARCHICAL ORGANIZATION

I
I
I

—- -~~~~~~ ~~~~ —-  -~~~~~~~ --.-—---- , —.-- ~~~~—~~-- ___
~~~~ ~~~~~~-. ~~~~~~~~~~ — — 


g 6

I

In order to retrieve the subtree Al , and then retrieve Cl ,

the following sequence of comands could be followed in a low..level

navigation l anguage :

GEl’ NEXT A.

I GET DESCENDANT B.

I GET DESCENDANT C.

Notice that while a record of type A may be retrieved using

I a GET A WHERE <81 has cond ition~ AND ~C1 has cond’~~on> , a request of

the form GET A WHERE <Cl has condition> AND <Dl has condition> is

I Illegal because it spans two hierarchical paths . This limi tation has

i

direct affect on the final structure of the relatio nal data base

(CHAPTER III).

I The term repeating group (RG) is used to describe structures

for storing mLltiple sets of data values , and to link the levels of

I the hierarchy . In Fi gure 2A , B, C, and 0 are exar.ples of repeating

i grou ps.

The Presidential Data Base [1] is presented in Figures 3

and 4 in hierarchical form. Figure 3 provides the definition tree

I
or sc hema , Figure 4 is an example of how some sample data would appear

for two presidents , Ni xon and Carter.

• I 6. Relational Data Model

I
The Relational Data Model is based on the r’.athematical theory

of relations . It was first presented by Codd in 1970 and has since

I been a topic of great di scuss ion. The following terms are appropriate

to relational data bases [9].

I
I

— ~~
—

~~-

1

LEVE~~~~~~~~~~~~~~~~~~~~~RESID~~~~~~~~~~~~~~~~~~~~

LEVEL 1
1 LEVEL 1

.

~~~~~DENT SERV ED LEVE L 2

I LEVEL 1 [ ADMINISTRATION 1
1—N

I 
LEVEL 2 [ STATE ADMITTED 1

1-N

I ________________ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LEVEL 3 L NATIVE PRESIDE NT 
1

I
1
I FIGURE 3

I

I
I 

——-—. . —~-— .-



1 

8

I
I wI L&J~~~C I——.~~~

I
1

I //~H—1 L~<

C” ’,,

L

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I j

-

1
Given sets Dl)D2~...$DN (not necessarily distinct), a relation ,

or table , R, is a set of n—tuples each of which has its first element

from D1, its second element from D2~ etc. The sets D1 are called domains ,

or columns. The n-tuple is alternately referred to as row. The number

I n is called the degree of R and the number of tuples , or rows is cal led

its cardinality . A relation is alternately referred to as a table.

The following properties derive from the definition of

I relation:

1) No two rows (tuples) are identi cal.

1 2) The ordering of rows is not significant.

I

3) The ordering of columns is not significant as long as

the col umn headings are presented with the respective rows.

Each relat ion has a name , and each col umn i s named . The

columns of a table are called attributes . Elements of a tuple are

I called components or elements . Elements with similar attributes are

I
elements with similar data types (integer, real , al pha-numeric, etc.).

All elements of a column must be of similar data type. An example of

I a relation is shown in Figure 5.

I < table name >
<column name>1 ,<column name>2 ... <column name)N

i <component11,com ponen t12, ... ~com~onen t1~>
.

• I ccomponent21, ... ~componen t2~>

I <COfllpOfle j l,COmpoflefltM2, ... ,component .,1~>

I FIGURE 5
TABULAR REPRESENTATION OF A RELATION WITH

DEGREE N AND CARDINALITY M

F~ ~~~~~~~~~~

-
_ _ _ _

A

I 10

The presidential data base is presented in relational form

in Figure 6. The structural representation is more compact than the

I hierarchical model , the “s truc ture ” of the whole system being contained

in the tables themselves . Such organization provides for both physical

I and logical data independence , reducing the complexity of the system

i
by hiding it from the user. tt is beneficial to the casual user because

he views all relations and all components on equal l evels. Essentially,

to the use r, the data base is a flat file from which any component can

be selecte d at any time.

I A relation is said to be normalized and to be of the first

normal form if each element in each row is a non—decomposable data item

(ergo, a number or character string, not a table na~’e). A column B of

a table R is said to be functionally dependent on a column A of R, or

a set of columns A of R, if at every instance of time each B entry is
I associated wi th only one A entry. A is said to determine B, and A is

I
called the determinant of B.

A column or set of columns whose values uniquely identify a

row is called a key. Tables may have more than one key per row. In

such cases one of the keys is designated as the prirary key.

I A relation R is said to be in the second norma l form if and

I only if all of the non-key domains (columns) of R are functionally

dependent on the primary key of R. A normalized relation R is said

to be in the third normal form if and onl y i f it Is i n second norma l

form and all of the non-key domains of R are mutually independent.

I Tha t Is , no column which is not a member of the primary key is

I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



I
I i~~~ ION~~~fl_

YEAR WINNER-NAME WINNER-VOTES

I 
1952 Eisenhower 442
1956 Ei senho wer 447
1960 Kenne dy 3303

I 
1964 Jo hnson 483
1968 N i xon 301
1972 Nixon 

- 
520 1

I 
~~~~~

DENT
~~~L _

NAME PARTY HOME—STATE

I Eisenhower Republican Texas
Kennedy Democrat Massachusetts
Johnson Democrat Texas

I Nixon Republican California

I ELECTIONS LOST 
_________________

YEAR LOSER-NAME LOSER-VOTES
1952 Stevenson 89
1956 Stevenson 73
1960 Nixon 219
1964 Goldwater 52

1 1968 Humphrey 191
1968 Wallace 46
1972 McGovern 17

I _ _  _ _

LOSERS 
_________________ 

WIFE I ____________

I NAME PARTY CANDIDATE NAME WIFE NAME
Stevenson Democrat Nixon Pat

I 
Nixon Republ ican Stevenso n Ruth
Goldwa ter Republ ican Goldwa ter Ruth
Humph rey Democra t Humphrey Agnes
Wallace Am. Indep . Wal lace Melody

I McGovern Democrat McGovern Jane

I FIt~URE 6

1 PRESrUENTIAL DATA BASE IN A RELATIONAL FORMAT [13

I
I

- ~~~. --



I 12

functionally dependent on any column or group of columns other than

the primary key.

I Operations in a rel ational DBMS are defined in terms of

either a nonprocedural lan guage or an algeb ra. The rela tional algebra
I norm.~Il y cons i s ts of the fo l low ing opera tions :

I a. PROJECTION

PROJECT <table name> .<column l ist>

I The projection operator returns the specified columns of

the given relation (table name ) and eliminates any
I duplica te rows from the resu lt .

b. SELECT

SELECT <table name>[column name<relational-operator><value>]

I where ~relationa1 operator> is one of the following

opera tors : > < ~~~~~ ~ . The selec tion opera tor selec ts
I only those rows of a g i ven relation which satisfy the

I specified condition. The <value> may be either a constant

or a row element.

I c. JOIN

‘ 
JOIN <table name> .<column name> TO <table name> .<column name>

JOIN A. <col > TO B.<col>

I The JOIN operator returns a relation formed by concat-

enating a row of the first tabl e (A) to a row of the

I second relation (B) wherever values in the specified

I 
columns are equal . If any row in table A matches more

than one row in B, it is concatenated with each of them ,

I



I 13

forming as many new rows as the row in table A matched

in table B.

I d. SET OPERATIONS

I 
UNION <table name><table name>

INTERSECT <table name><table name>

I DIFFERENCE <tabl e name><table name>

Each of the set opera tions returns the app ro pr iate se t

theore tic result in the form of one rela tion. The

operand relations must have compatable sets of attributes ,

I i.e., t he two re l ations mus t have the sa me degree and

I columns of a s imi lar type.

e. DIVISION

I <table name> .<col umn name> 1 ,<column name>2(A)

DIV <table name> .<column name>(B)

I Divis ion returns a quo tient rela tion wh i ch cons i s ts of

I <col umn name> 1 entries of A. A <column name>1 element,

say X , is in the quotient if and only if for every

I <column name>1 element of B , there ex i sts a row of A

I 
with <column name> 1 equal to X and <column name>2 equal

to the <column name>~ of B. [1]

I The non-procedural language takes the form of a relational

calculus or of a “mapping oriented language ” . The calculus was proposed

I by Codd [8]. Mapping oriented languages include SEQUEL [3,6] and

I 
SQUARE [4]. Additional information on relational systems can be found

in [9] and [7].

I
I 

~--—--~~ 



- - - - _____________________________

4

I 14

I 7. Relational System vs. Hierarchical System

Th i s sect ion Is a li mited di scuss ion of as pec ts of compar i son

I and difference between the relational and hierarchical approaches.

As discussed earlier, to the user the rel ational model has

I only one level . Since all items exist at this level , each table in

the data base may be used to qualify any query about another table.

In the hierarch ical model the un iverse of opera tions i s more l imited.

I Clemons [7] calls this a lack of ‘directional bias ’ . One reaso n for

using the hierarchical model could be an organization which provides

I for mutually exclusive cases of record occurrences , or mutua l ly

i exclusive access paths . Reasons for using a relational model include

data bases where the universe of operations varies wi th time .

I Any relational system ~mp1emented in terms of a hierarchy

mus t be cons truc ted in terms of a hierarch y . The express ion of a
I hierarch ical da ta base in terms of a re l ational system i s poss ib le

I (see Figure 7) simply by creating a new column for each level above

a particular level and repeating the data values as many times as there

I are part icular el emen ts.

:~I 
81-C B2—C

FIGURE 7
EXPRESS~0N OF A HIERARCHY IN TERMS OF A RELATION . C

REPRESENTS COMPONENTS OF REPEA TING GROUP B

I

-— ~~~--~~ —~~ -~~- . ~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- .~~~~~~

I 15

i The expression of the relation in terms of a hierarc hy is not as

straight-forward as expressing a hierarchy in terms of relation , and

Is one of the problems addressed by this thesis in CHAPTER III.

Data integrity is another issue in which there are differences

I between the relational model and the hierarchical model . The rela-

I tional model is subject to loss of data integrity if relations are

not normalized . Hierarchical data bases are subject to loss of integ-

I rity but the nature of the hierarchy allows designs which provide an

integrity. A conflict arises in some possible expressions of a

I normal i zed rela tional data base in hi erarc hi cal form , particularl y

I that form proposed by Smith and Smith [19] unless the precautions

proposed in the ir paper “Da ta Base Abs trac tion ” are fol l owe d .

8. Conclusion

I Th i s chap ter has def ined terms that w i l l be used extens ivel y

In later chap ters . It di scussed the hierarch ical and relat ional models

I of a data base and mentioned two points of concern to be discussed in

i 
CHAPTER III.

I The remaining chapters discuss the problem of defining a

I rel ational data base i n terms of a hierarc hy an d the implemen tation

algor i thms to be used in the cons truc ti on.

I
I
I
I
I 

,-,- - . .-- —s---~-- ‘ -•~~ 2j .~~~~ - -. - 



.
4
I
I CHAPTER III

PROBLEM DEFINITION

I
l. Problem

The problem of this thesis is to study the design of a

1 relational data base management system as a front end to an existing

hierarch ical data base mana gement sys tem.

2. Constraints

I a. The underlying hierarchical system is to be transparent

to the user .

I b. A Relational Algebra and a subset of the query language

SEQUEL [6] are to be implemented . The SEQUEL subset

will be implemented in terms of the relational algebra .

I c. Th is sys tem will be designed for relatively small data

bases with a limi ted application - studen t data bases .

I It is a demonstration of capability rather than a massive

data base project.

d. Because of the student environment , a user shou ld be able

I to design a data base , l oad it and run it wi th no outside

help from a data base administrator.

I e. As much as possible the front end system should make use

of the operations available in the hierarch i cal model .

The “front end” is used only as a translator and to

I implemen t all relat ional opera tions in terms of opera ti ons

I 
- 

16

I



—-- - ---- .------- 

I 17

I and queries on the underlying structure. Only when It

is impractical to use the available functions , will any

I new functions be created .

I
f. The front end should support any relational data base

organization .

I g. The fron t end sys tem des i gned w i l l not be a rela tional

interpretation of any hierarchical organization . It

I will rather use the hierarchical data base management

I 
system as a low level mechan i sm to man ip ula te rela tional

data structures which are defined in terms of the

hierarch y .

I 3. Goals of the Project

a. Exploring (in terms of implementation) the mapping

relationships between a relational data base and a

hierarch ical data base.

I b. Identifying both rejected data structures and inefficient

I methods so that any future implemen tations w i l l have

a knowledge base from which to start.

I c. Pointing out areas for further research.

I 4. The Underlying Hierarchical System
- 

MRI Sys tem Corpora tion ’s SYSTEM 2000 Version 2.4 for the

Control Data 6000/CYBER hardware environment is the underlying DBMS .

U 
SYSTEM 2000 (S2K~ is a powerful general pur pos e da ta base management

system which provides the user with the ability to design a data base

II



r. 
~~

-
~~

—--
~ ~~~~~~~~~~~~~~~~ 

— ------- -- — -- - 
~
—• —--— 

~~~~~~~ .-
--
---.—

—.- ----- , — ---

4
I 18

i to f i t h is particular requirements . SYSTEM 2000 provides both a

natural language query capability and a procedural language interface

I with the basic system. The procedural language can be PL/1 .

FORTRAN or COBOL . In the front end implementation to be discussed ,

I FORTRAN was chosen as the implementation language because of its word

i manipula tion ca pab ility . The p rocedura l lan gua ge inter face (PU) was

chosen over the natural language interface because using a natura l

language query requires that the query , the generator , and S2K be

swapped as they alternate execution , and because it turns out that

I the natural langua ge ava il able i s no more powe rful in terms of the

relat ional opera tions than the FORTRAN proce dura l l angua ge interface .

Several relevant aspects of natural language and PU are

now discussed [17]. The section finishes with additional constraints

imposed by PLI.
I The Def i ne module of SYSTEM 2000 or gan i zes the elemen ts of

I the data base into repeating groups. Levels of information are

- specified within the define sequence by declaring a “component” (i.e.,

I a data item) to be in another component.

Proce dura l Language is des ig ned for sys tematic work w ith a
I data base rather than specifi c one time queries. The interface

* I - consists of the programming language FORTRAN and additional subroutines ,

which are a subset of the routines supplied by ~‘RI Systems Corp .

I An important concept is that of- schema . A PLI schema is a

group of variables which represents particular parts of, or a ll elements
I of , a repeating group. The schema serves as an input/output buffer

I
I

- - -—-~~~ . - ~~ -

~
.—

4’

I . 19

I for the PU program. The 52K defined component name is use4 as a

var iable in t he schema .

I A logical entry is made up of one level zero data set (RG)

i and any descendant data sets, where data set is defined as a unique

set of data logically defined by the data base definition as belong ing

I to the same repeating group. A logical entry is therefore all of the

information about one of the major records stored in the data base,

I or a com pl ete data tree .

I A family tree is defined as all of the descendant data sets,

• (RGs) of a logical entry . In Figure 2 there are two families repre-

I sented , one wi th root at Al and another with roo t a t A2. Each of the

repea ting groups B , C, and 0 are components of the repeating group A.

I Each occurren ce of A and its descendan ts composes a logical en try .

SYSTEM 2000 PLI provides the following operations which will

be use d extens i ve ly in the fol lowing chapters .

I GET1 <schema> retrieves a unique occurrence of a data set

.
and places its values into the specified schema . GET1 may be used

I wi th a WHERE clause which qualifies the unique schema to be retrieved ,

or without the WHERE clause , in wh i ch case the fi rs t occurrence of

the spec ifi ed sc hema that the DBMS encoun ters w il l be returne d .

• I A WHERE clause takes the general form of a seauence of

qualifications of the members of a family tree. Each qualification

I has the form <name><op><value> , where <name> is the S2K component

name referenced in a schem a, <op> is one of the relational operators

I
- I

~~~-.-- -. .-• . -- --~- - .,- - --— —--- -



I 20

I equals , less than , l ess than or equa l , greater than , greater than or

I 
equal , exists or fails to exist , and <value > is an actual “quantity ”

input to the S2K routines by the user program .

I LOCATE <schema> WHERE <where clause> is a routine which

loca tes , but does not retrieve any data. It l ocates all occurrences

I of the named schema where the <where clause> conditions hold , and

I 
constructs a list of pointers to those occurrences. In order to

retrieve data sets which have been located by a LOCATE statement, the

I GET function must be used .

GET <schema><occurrence parameter> can retrieve any of the

I data sets located by a previous LOCATE statement. The <occurrence

parameter> includes FIRST for the first schema in the list , NEXT for
I the next schema in the list , LAST for the last of the previously

I l oca ted sc hemas , or S2KCOUNT for retrieving a data set which is a

spec i f ied number (greater than zero ) of data se ts removed from the

I last retrieved schema .

Position in a family is established by GET1 and/or GET

I coman ds , while LOCATE is used to collect all families of a qualified

1 class. Other su brou ti nes are GETA for get ances tor and GETD for get

descendan t . Each of the subrout i nes men ti one d , with their power and

I limi tations , have a direct bearing on the structure of the data base.

I 
Fur ther informa tion abou t al l of these opera ti ons , as we ll as PLI in

gener al , is contained in the SYSTEM 2000 Reference Manual [17].

Natural language provides more powerful features than

procedural langua ge in that a single statement can both qualify and

I1



r ~~~~~

- - -

1 21

I output many types of data . The important difference which bears on

this implementation problem is that of multi -family query power.

Natural lan guage prov ides a “HAS” operator wh ich enables the user

I
to ask many branche d ques ti ons . The HAS operator basically allows the

following qualifications :

1 ACTION X WHERE RG EQ <value> AND RG HAS

<some component> = <some value (constant)> .

I The HAS operator does not allow qualifications of the type

<component> = <component> , in the Control Data Implementation . These
U types of qualifications are exactly what is needed in order to imple-

1 ment relational algebra operations i.e., JOIN wou ld be ex presse d as

a retrieval of su bsets of two trees , where specified components are

I equal . The structure of the query does not permit such qualifications.

i 

- a JOIFI Is forced to the repetitive activity of retrieving one record
I of a table and joining it to the second tabl e of the join. Such

I repetition is best suited to a procedural language .

It is possibl e to achieve some relational operations using

I the user-defined function capability of SYSTEM 2000. This capability

i does not ex tend to process ing se quences of co mmands , for w hi ch a dr i ver

is needed. Additionally, the current implementation at UT Austin

-
• I (Version 2.4) requires that if natural language queries are generated

there mus t be a genera tor p ro gram and prov i s ion to rol l the DBMS and

I the generator in and out of execution , and to genera te success i ve

requests and store intermediate results in the SYSTEM 2000 data base.

I
I j
_ _ _ _ _ _ _ ____ J



-
~

--

A

I 22

I Such methods do not grant any particular power over procedural l anguage .

They also requ ire more t ime because the roll in/rol l ou t s tar t up time

I must be added to execution time. Procedural language is elected over

i natural l anguage because it should execute in less time and because in

the context of this project, no additional power is provided by natural

I language.

It is desired to make as much use of the available PLI

I functions as possible. At the same time it is necessary to not over-

load the system with excessive P11 calls. For this reason , the s ize

of a table (relation) Is limited to the number of elements ~‘hich can

I be qualified in any one subroutine call.

P11 perm its 10 schemas to be referenced in a call and 25

I conditions to be set. Because the organization selected provides for

i each domain value (column) of a relation to be in a separate schema

and referenced in that sc hema , and because each qualification requires

I the table name to be referenced , the degree of a tabl e is limi ted to 9.

This limitation does not affect the flavor of the relational system , i t

I does not simplify the mapping functi on used between tables and hier-

arch ical elemen ts , and it does not simplify the relational algebra

algor ithms .

I For ease of man ipula tion i n FORTRAN , the number of rows

in a table (relation) is arbitrarily limited to fifty . Since the

I data bases used should be small , and si nce usin g more s pace per table

i increases core size in an already large program , this limitation is

made.

I
I 

~~ - ----.--— —-—-—~~~~~ - • — -- •~~~~~~~ . -—.



1
• I 23

I 5. Conclusion

This chapter discussed the problem, the goals of the projec t

I and the limitations placed on the system from the outset. The next

chapter concerns the actual choice for data base des ign. The procedural
I langua ge wi l l be used for the pro aram , the degree of eac h tab le w i ll

I be limited to 9 and each tabl e ’s cardinality will be limi ted to fifty.

I
I

• I
I
I
I
I

F ’
• I

I
I
I

‘ I

_____



~~~ ______ ________ 
-

-

~

—--- - -—•• --

4

I
I CHAPTER IV

THE UNDERLYIN G HIERARC HY

I An underlying dat ’ base structure ‘lesi gn is desired which ,

within the criteri a of the previous chapter lends itself to the efficient

I use of P11, Is as s imp le as possible , has no excess ive redundancy or

was-ted s-pace , and will support any normalized relational data base.

I The first design considered is to have table organization

I onl y at the el ement level . Al l informa tion abou t w here an el ement i s

located is carried wi th it , and each element is immediately available

I at level zero of the data base . A definition (in S2K terms) of the

organ ization is:

I
C2*VALUE (rNTEGER)

C3*TABLE NAME(INTEGER)

I C4*ROW

C5*ROW NUMBER(INTEGER)
I All rel ational opera tions can be implemented in terms of

1 this schema ; however , the schema is redundant and requires that the

driver do excessive work . In order to examine a particular row, for

I . example , the row and tab le mus t either be qual i f ied (us ing LOCATE)

with a series of GET operations done to retrieve the elements , or a

1 sequence of GET1 operations must be performed .

I An algorithm for a JOIN of two tables , for exam p le , is

straight—forward .

I 24

I

- — -~~~~~~ ---—-.--------- ---— — . - ---- — •. - -- ~~~~~-~~~~•~~~~~~~~ --~~ - --- —-~~-- -~~~ - ~~— -- -------

- -

1 25

I JOIN A.COL X TO B.C OL~

1 1. NUMROWS = 1 ROW COUNT = 1

2. LOCAT E all elements of table A , Row N and place them

in “HOLDING BIJFFER” (ROW COUNT). If any data qualified

I
GOTO 3 ELSE done with JOIN

3. LOCATE all of table B.C0L~ elements which are equal to

I table A , Row N , COL X . IF any data qualified GOTO 4

ELSE GOTO 6

I 4. COUNT = ROWCOUNT . GET all el ements of the NEXT ROW of

table B which qualified , an d p l ace them i n HOLDING
I BUFFER (COUNT). IF end of data GOTO 5 ELSE COUNT =

I COUNT + 1 GOTO 3

5. Repeat all elements of ROW (NUMROW), TABLE A (COUNT-

I ROWCOUNT) times in the HOLDING BUFFER.

i
ROWCOUNT = COUNT + 1 GOTO 6

I 6. NUMROW = NUMROW + 1

I
Since the relation and the hierarchy are equivalenced on

I the element level the driver is forced to operate at the element l evel .

I
An ent i re row or tab le can be loca ted and any elemen t or se quence of

elemen ts can be accesse d . Th i s or gan iza ti on does no t, however , make

I use of the hierarchical structure , and is redundant. Obviously some

redundanc y can be to l era ted , bu t carr ying three extra values per element ,

I added to two pointers per repeating group [18] is excessive.

I
I

-~~—— ~~ ~~ --

• - • ~~--~~~~

4
I 26

I The more informa tion ca rr ied per recor d , the more wor k can

be done with that record. The structure of the hierarchy should be

I utilized and table and row assoc iati on ass igned by pos iti on. Note

that ruling our structures of the form:

H1
•

- ELEMENT ELEMENT .

I (INFO LIST) (r~1FO LIST)

also rules out having other element level 0 organization. For example
• I a structure wi th only one of each

I ELEMENT

TABLE TABLE . . . TABLE

I (COL ,ROW) (COL ,ROW) (COL,ROW)

. . . .
I

element value and using repeating groups for all relations of which

it is a member is ruled out because while it is a less redundant

1 structure than the first one considered , the s truc ture sti l l mus t

contain redundant column and row info rmation .

I The second schema considered , is organization by table name

I
and column name . The S21(definition is , for exam ple:

l*DATA BASE INFORIIATION

I 2*TABLE AND TABLE INFORMATION (RG P1 1)

~~~~~~ AND COLUMN INFORMATION (RG r~1 2)

I 4*ELEMENT (RG IN 3)

I 



- _ _ _ _ _ _

A
I 27

I 5*REAL VALUE (RG IN 4)

6*INTEGER VALUE (RG IN 4)

I 7*ALPHA VALUE (RG IN 4)

I 8*ROW NUMBER (INTEGER IN 4)

An illustration of the organization is:

DAT A BASE

i L TABLE I TABLE] .

-
I _/ \  /\_

COLUMN ... COLUMN ... COLUMN ... COLUMN

I / \  _ _[ii EMENT J 
... 

I
ELEMENT I.~ (

ELEMENT j -~~~~~ I~L~1~1~ I

I 1”~ 
1 1 I

VA1..UE VALUE I VALUE j VALUE .

I Whi le thi s sc hema al lows access to any co l umn , for relational

I opera tions , the organization still requires that a series of GET

operations be performed in order to retrieve a row . The PLI subroutines

I s hould be ut i l i zed to a grea ter ex tent than thi s sc hema allows , because

only one f i eld of the 10 ava i la ble in a WHERE claus e i s use d . Loca ting

I can only be done one element at a ti:me and operations such as inter-

section , where all elements in a row should be qual ifi ed at once aga i ns t



-: ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~
-
~~~~~

1
1 28

1 all elements in rows of a target relation , are many branc h opera tions

and are illegal .

Organizing by row , using a series of equal level repeating

groups such as Figure 8, also leads to mu ltib ranc h quer ies ,

[ DATA BASE

I / \
I [fABLE 1 L TABLE I
I / \ •

[ ROW ROW I
/ \ \_I J ELEMENT J J ELEMENT] I ELEMENT J

I 
_ _  _ _  _ _

VALUE VALUE 1 [ VALUE

FIGURE 8

s ince organ i zati on on the el ement l evel i s the sam e as that of sc hema 2.

I A request to l ocate a row by more than one element is multibranch and

is illegal .

I At this point the HAS operator of natural language which

allows multibranch queries of the type desired in schemas 2 and 3 must

be considered again. In order to qualisfy a row-, however, there mus t

I be values, by which to qual i fy. The elemen ts mus t come from one table

I
I

-~~~~~~~~~~~~~ -- ~~~~--- -— 
~~~~~~~~-~~~~~~~~~ -——- 

~~~
—- - . -

~~~~~~~~~~~~~~ - - ~~~~~~ • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-
- —~~~~- - -- -—

!
• • -- --

f I 29

I and the qualification must occur one row at a time . That is , intersect

table A with table B has the form :

I LOCATE ROWS WHERE DATA BASE HAS ((TABLE NAME EQ A) HAS

((ROWS EXISTS) AND (ROWS HAS ELEMENTS EQ (DATA BASE HAS ...)))))) .

I The problem w ith the above express ion i s that s ince one and onl y one

I value is expected after an EU , the expression is illegal. Comparison

of the elements in one table with elements i n a secon d tab l e mus t be

I accomplished by repeatedly removing each element in one of the tables

and using the element to qualify the second table.

I The fourth schema is an attempt to avoid the problems of

Iteration encountered in the first three schemas. Following the general

philosophy presented by Smith and Smith [19], a very general hierarchy

is designed (Figure 9).

I Data base info (Lev el 0)

I elemen t Master tables (Level 1)

1 -

I el ement - - — — — — Table 2 (Leve l 2)

I el emen
Table 3 (Level 3)

FIGURE 9

I
I

——- — ~~~~~~n___
~~~~~~~ -~~~~~ -~~~— - 

-
~~—‘ — “- - m 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ _-


r ~~

I 30

i This sc hema involves having each element of each tab le be a

potential key through which to access all tables “below ” it. Rela t ions

I are input along wi th key values and/or some indication as to what

columns will have the same attribute , but different names . Load time

I processes involve positioning in the data base according to the key

i elements of a row i.e., (WASHINGTON , MARTHA ...) would involve posi-

tioning at the Washington element of the l evel above the wife level and

I inserting the wife row at the next l evel . The number of elements in

such a hierarchy becomes complicated quickly. By the sixth level of

I rela tions , there are no more SYSTEM 2000 component numbers available.

i This model would construct too large a definition for the hierarchy .

A pro b lem thus far has been that el ements of a tab le mus t

be retrieved by the P11 program in order to perform an operation with

another relation in the data base. The relational algebra deals wi th

I whole c l asses of elemen ts and re l ates them to o ther classes of elemen ts.

The hierarchical system ’ s languages assume that the user is interested

in qual i fying one cla ss or se t of classes by some know n value or va lues.

I The structure is assumed to model the set of interesting queries . The

system works its way down a tree or group of trees with only one compar-

I ison per recor d elemen t in mind . It i s no t s truc tured to hand le c l ass

i to class com par i sons .

The resul t of th i s observa ti on i s to return to a s imp l er

sc hema , which yields a smaller data base definition and a smaller PLI

program.

I
I

• ~~~~~~~~~~- • -~~~~~

w ~~
--

~

--

~~~
-•--— ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~

- - -

~~~~~~

a

1 31

I The next schema considered is an expansion of an earlier

schema . It involves assigning a separate component value to each of

I the 9 possible elements of a row. A schema which utilizes repeati ng

I groups at the same l evel i n the row repea ti ng grou p (Figure 10) i s

illegal because comparing more than one component at once is a multi-

I family qualification.

A modif ica t ion of th i s schema can eliminate the multifamily

I problem (Figure 11). This schema provides that each row contain a

i sin gle fam ily of elements. The fi rs t el emen t i s con tai ned as a repeating

group in the row, the second element as a repeating group in the first,

I the third as an element in the second , and so on to the ninth element.

Now an entire row can be qualified by a PLF query with only one locate.

However , now the s ize cons idera tion en ters as the number of

elements per repeating group are considered . Each repeating group

requires 2 pointer words (in the CDC 6600/6400) in addition to the

words containing data values . Using only one data word record (for a

seven character algebra value and a 15 dig it decimal integer) by the

fourth repeating group, 12 wor ds have been use d for poi nters and va l ues .

By the last or ninth repeating group , a total of 27 words~have been

used by a sc hema w ith all el emen ts as com ponen ts of one repeating

group (ROW).

The break even point for word size occurs at record number

• four where twelve words were assigned versus a constant total of

eleven in a one repeating group row system . This organization allows

-- ~~S~~S__.1~~~

• - -

~~~~~ ~~~
— -- ----— -- --

~~

- --- • •- . -
~~~ 

- - --- -— —-.

I 32

I

TABLE

~~N AME

I I ROW LIIII

i / ~ COMPONENT17 [fCOMPONENT2 I ... ~~~~~NENT Ni

I /
_ _R O W 2 T

~1 _ _ _ _ _ _ _ _1
,“ I COMPONENT,!I1

COMPONENT2 ... COMPONENT N_1

(~owM]
_ _ _ _

1
COMPONENT1 rcOMPONENT2] ... COMPONENT N i

I .
I

FIGURE 10

I

I
I
I

- ~ , • --—-

- -

I
I
I TABLE

NAME

I
I
I COMPONENT1

I
COIIPONENT2

I COMPONENT 1

I ROW M COMPONENT2 J COMP0~1EMT~ J

[COMPONENT N

I
I

FIGURE 1 1

I
. 1

I
I
I
I

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ • - -  •—, ~~~~~~~~~~~~~~~~ •- -•—~~—-.~--~~~~~~~ —-— -—-— —.-—•~~~ - .- —— ~~,-— -- - • —j- — - —- —~•. •—~ ---- ---- -—-—-—— ~~ -.--- — •—



- 

_____________________

34

I retrieval of an entire row (the first schema allows only a sequence of

GElD operations to retrieve a row). It will make the PLF program

I smal ler , and will simplify it. Because this restrictiun does not cause

I 
further restrictions to be placed on the system , the schema shown in

Figure 11 was chosen for the data base for the project.

I There will be no difference between the two schemas in

Figures 10 and 11 for any LOCATE statement. The difference in operation

I ari ses in a “GETROW” (CHAPTER V) call. In the first schema (repeating

groups in repea ti ng groups) , “GETROW ” would make the successive GElD

calls and return a value to a spec ifi ed p lace. In the program sc hema

I GETROW i s one ca l l to GET , wh ich p laces al l elements in a PLI program

buffer. The presidential data base is displayed in Figure 12 using

I the schema of Figure 11.

Thi s chap ter has dis cussed poss i bl e sc hemas for use i n the

underlying hierarchy . It was discovered that in order to accomplish

I relational operations there must be a sequence of retrievals and

qualifications on the retrieved elements . This knowledge leads to

I schemas which provide for both small definition space and ease of

access for both row retrieval and qualification .

I
I
I
I
I 

-- — • ••- -••- -~--~ .~~~ — ----• —.-- -------
~~

--——-
~~
-.——— ~~ ~~~ - —•- —---••- —- - - --—---- -~-- —~-— —-S -- —



1. ‘ T -  - — .~ --  —

4

I
I 

DATA BASE NAME PRESIDENTIAL

PASSWORD XXXX

I TABLENANE PRESIDENTS

I ROW

/

,
‘ C4 EISENHOWER

I ROW 
/ 

C5 REPUBLICAN

I C4 N IXON C6 TEXAS

I 
CS REPUBLICAN

C6 CA~ IF0 R ~n I A

I INFO
TA e LE NA r~E L LE CTIONS LOST

COLUMN YEAR WI NNER VOTES
NAME INTEGER INTEGERI TYPE~

COMPONENT

I ROW

C4 1952

~~~~~c5 MCGOVE RN

I FIGURE 12

I PRESID ENTIAL DATA
• BASE IN THE SELECTED SCHEMA

I
I

_ w - ~~
-
~ •- ,•

~~~~~~~ —-~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ••- ~~~~~ ----•~~~-~--~~ - , - . - - - - - -  - -



-~~~~~
, - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-

—- — -~~~
---

~~~~~~~~~~ ~~~~—-~~~--- - - • -~~

a

I
I CHAPTER V

ALGORITHM S FOR THE INTERFACE

I
This chapter discusses the interface program . It presents

algorithms for the relational algebra operations join , division ,

I restriction , un ion , selec tion , projection , and difference . It d iscusses

the implementation of the SE QUEL subset in terms of sequential applica-

I tions of the algebra operations .

PROCEDURA L SYSTE~1

I USER ~ PARSER F 1 RELATIONAL

~~~~~~TERFAc E H AND DATA

I 
FIGURE 13

I This is a four level system (Figure 13). The outer l evel

i s a mod i fica tion of a Pascal parser wh ich was wr itten for use w ith

the University of Texas implementation of the BOBSW parser generator

program [5]. The parser drives the rel ational interface , which drives

the P11 inter face pro grams , which perform the data base manipulation

by driving SYSTEM 2000. The system is designed so that it can be over-

layed. The parser and the main overl ay reside in core continually.

A hierarchical definition tree of the data base is shown

in Figure 14. To aid in understanding the processing of the algorithms ,

the table sub-tree is expanded in Figure 15.

36

• — - - .•~~~~~~ — - - - ~~~~~~~~~~~~~~~
---~~~~ • —~~~~~~~~~~ •— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ .,~~ • ~~-——. — ~~~~~~r •~~~~~~~~~~ - - - -



I
I
I
I DATA BASE

NAME PASSWORD

I
I TABLE

I
I ~~~~~~~~~~~~ DESCR IPTION

I 1~OLIJMN 1 ELEMENT 1 ~~2~
PoNENT NUMBER ccNUM BER

I ~COLUMN 2 ELEME N T I

• I
I LcoI~

ur1N N ELEMENT

I
I FiGURE 14

1
I
I
I
I

~ 

.•: - —- - - - -  -‘ , -~~~~~~~~ • •  • .  ~~~~ ,. , 4



~ ~~~~~~~~~~~~~~~~~~~ 
-

1

I . 38

Level 0 DATA BASE

I
Level 1 TABLE1 TABLE2 ... ... TABLE N H

I
ROW1

Level 2 ROW1

/ EL 1

I LeveL/~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ Ll

Level 11 ~~~ I
L~EL9

EL#9

I .

.

.

-r

I
FIGURE 15

I
I

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

:

~~~~ ~~—~—-~~~ -~~ .~~ —--~~~~~~~~~~~ - - --~~ -— ~~~~~~~~~~~~~~~ - -~---~~ ~~-~ ----~~


4
-

I
I The relational interface duplicates the table name and column

description information for rapid use by the seman tic rou tines . The

I interface table information is kept in a linked list of records , one

i of which is shown in Figure 16. Name , number and type fields for a

spec ific co l umn hol d i ts pr int name , SYSTEM 2000 componen t number ,

1 and type, respectively.
• The seman ti c rou tines ma intain two pus h down stacks , one

I for tab les and one for re l ational opera tors . Figure 17 show s the

conten ts of an entr y on each stack , as we ll as its recor d s truc ture .

Each seman tic rou tine ex pec ts to f i nd the corr ect num ber of argumen ts

I on the table stack. If the correct number of arguments is not found ,

an error is returned and the statement terminated .

I Unless a statement calls for a specific projection (a PROJ

— I in the algebra or a SELECT <col list> in SEQUEL), a l l columns of a

table in the stack are kept. This allows ANDS and ORS in SEQUEL

I statements to be processed as table intersection and union . The use

of intersec tion and un ion i n thi s con tex t i s demons tra ted in an

I extension of an example from Boyce and Chamberlain [6].

I
NAME DEPT MGR

John Shoe Bob

I Fred Shoe Frank

Fred Toy Bob

I Bil l Toy Frank

I
1

_ -- ____ ____

I 40

I
.

TABLE NAME

NUMBER OF COL UMNS —

I COLUMN 1 NAME

I COLUMN N NAME
COLEJMN1 TYPE

I COLUMN N TYPE
COLUMN1 COMPONENT#

I
COLUMN N COMPONENT #

- I FIGURE 16

I
_ _ _ _ _ _ _ _ _

0 OR EQ LABEL NAME LABEL FLAG OPERATOR

I l...EQ OPERATION CODE SPARE
TABLE NAME FORWARD LINK

I POINTER TO COLUMNS BACK L I N K

POINTER TO LAST LABEL

I ASSOCIATED TABLE NAME
SPARE

I
FORWARD L I N K

BACK L I N K

I OPERAND STACK ENTRY OPERATOR STACK ENTRY

1
FIGURE 17

I
I
I
I

~~~~~~ —~-- - - - .—~-. - - -  - - ~- --~~~~~~ — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • ~ --~~•~~~- - ~~~__ -  ----- —.



I 41

I QUERY 1 SELECT EMP .NAME WHERE DEPT= ”shoe ” AND ~GR= “Bob”

QUERY 2 SELECT EMP .NAME WHERE DEPT= “s hoe ” (‘
~

I SELECT EMP .NAME WHERE MGR= “Bob”

I 
Query 1 processes as:

Selection of all “shoe ”=DEPT rows :

I NAME DEPT MGR

John shoe Bob

I Fred shoe Frank

Selection of all “Bob” =MGR rows :
I NAME DEPT MGR

I John shoe Bob

Fred toy Bob

I Intersection of the two tabl es yields the correc t answer :

‘ 
NAME DEPT MGR

John shoe Bob

I Query 2 processes as:

Selection of all “shoe ” :DEPT rows and projection of NAME:

NAME

I John

Fred

I Sel ection of all “Bob” :MGR rows and projection of NAME :

NAME

I John

I 
Fred

This intersection yields the correct values of John and Fred .

I 

__ - - ~~~~~~~- - ~~~~~-- - - —-- —— - .- ~~~~~~~~~~~~ -_ - _-- ~~~~~~~~~~~~ -~~~ _ • - ~~~~ ---— _ - _



~~~~~~~~ -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_ - _

~~~~
--_ - -

~~~~~~~~~~~ - _ - -~ 

a
1 42

I The design of any algori thm for use with a procedural

language has seve ral l imitati ons wh i ch mus t be cons idered from the
I onset. The f i rs t, as di scussed i n CHAPTER III , is the problem of not

being able to issue a qualification statement in the form of Action X

where . . . <COMPONENT><CONDITION><COMPONENT> . This limi tation drives

I the algorithms to successive retrieval—comparison-retrievals. The

sequence can be done in two ways. The elemen ts can be e ither removed
I one at a time , com pare d , and these elements which qualify be retrieved ,

I or all of the elements to be used as qualifiers can be removed at once

and stored in a stac k for use by success i ve com par i son retr ieva l

I opera tions .

For the very general case of an un known s ized tabl e , remov ing
I the qualifying elements or rows one at a time , immediately performing

I the comparison , and immediately performing the output se quence to store

the newly generated table would be the method of choice . This method

I invol ved changing primary position between two tables to be compared ,

I
and performing a retrieval after each position change . The second

method is suitable for smaller tables and limited sized data bases

I since all retrievals can be done at one time and position need there-

fore only be established twice per function call. Both methods yield

I equival ent results and either could be used for this project. The

second method is elected because it yields more modularity than the

I first.

p Another consideration is that the interface must work directly

with the data values , rather than w ith po inters to values . Th i s is

I
I

I
I balanced by the advantage of having the underlying DBMS do all the work

of inverting files and keeping track of all maintainance information.

I The data is essentially physi cally independent since the relational

I
system accesses it only through the PU access method . As discussed

In CHAPTER rir , there is a trade off between data base complexity and

I redundancy. The “simpler ” the relational data base representation is ,

the more redundancy must be introduced . The less complex schema was

I chosen for the data base of the des ig n. However , the d~sign programs

I
will function in generally the same way for any hierarchical implemen-

tation. This is because the interface has knowledge at all times of

-. I which components are assigned to the elements of any table. Changing

the underlying schema only involves changi ng component numbers (as far

I as the interface is concerned). CHAPTER V I discusses an extens ion of

I
this nature in more detail.

The general construction of any algebra algorithm is infl uenced

I by the problem of not being able to compare components without first

taking out one of the components values . As a result there must always

I be two loops set up for an opera ti on. One loo p retrieves the val ues

I
from one table in an opera tion, and the second loop does the comparison

and retrieval . Such a constraint enables each algorithm to be designed

I to always termi nate. The outer, or retrieval l oop retrieves only a

f in i te num ber of elemen ts, in fact, it normally issues a locate state-

I ment and retrieves those rows whi ch were located . The inner , or

qual ifica tion loop i ssues as many loca te statements as there are

1
I

—— - - - -~~~~— —-- -—- S -- - - -~~~~~~~
— - -

~~~~~
--- -—- - - -  _--~~~~~ --__



a
1
I elements or rows retrieved in the fi rst loop . It terminates because

unless the PLI functions perform incorrectl y, zero or a finite number

I of elements will always be qualified .

Each of the algorithms presumes the existence of necessary

I buffers and stacks for retrieval of stored information. Unless they

I are cruc ial to unders tandi ng a par ticular proces s, small details will

be omitted. The program limi tation of tabl e size of degree 9 is not

I cons idered in the al gorithms , nor is the table size of 50 rows a factor.

I 
The first algorithm to consider is the process to retrieve

a row (Figure 18).

I
Al gorithm GETROW (N)

I N = Number of columns to retrieve

1. INDEX = 1
I 2. GET the next descendant element of the current row .

I 
- 

If the operation was successful

Then place the element into a buffer

I Else process an error.

I 
3. INDEX = INDEX + 1

If INDEX > N

1 Then Done

Else Go To 2

I
FIGURE 18

I
I

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



--- ----—--—--
~ 

4 .

1
I GETROW depends on a primary position having been established at the

row l evel of a particular table. GETROW will finish because it cycles

I exactly N times and will retrieve each element in a row. Retrieval

I 
of an entire table is accomplished by positioning at the table and

then retriev ing each row in succession.

I GETTABLE (Figure 19) will retrieve all rows of a table if

there are any rows in the table. It will terminate since it cycles

I in a finite loop controlled by the number of rows qualified in the

I 
locate , and since it controls the number of cycles GETROW will make .

Projec tion of a single column or a group of columns is

I accomplished by PROJECT (Figure 20).

The algorithm contains two loops , an outer loop on the

1 number of rows in the table and an inner loop on the number of columns

to be projected. The algorithm retrieves only the descendants whose

names are specified in the array COLLIST. It retrieves the correct

I rows because position is established at the table whose name is equal

to NAME before row retrieval starts and because the outer l oop does

I not allow rows other than those in the table to be retrieved.

I 
Insertion of a table (Figure 21) is accomplished in the

- reverse of retrieval . Arrays containing the row elements , table des-

I cript ion , and the number of rows to be inserted are passed to the

inser tion rou tine. Each inser tion creates a new su btree at the

I specified position .

I 
Two loops mus t be execute d in order to insert an entire

table because insertion of the column description information within

I
I

- -- -- - ----S.- -- --- -—--—- - 5—--- ~~____ -. --~ — a- - - - S-_~~~~~~~~~~~~~~~~-~~~~ - ~~~ ~~—



~

I’

t I  46

I
Al gorithm GETTABLE (NAME,N)

NAME = Ta ble name

I N = number of columns

I 
1. Establish a prima ry position at the table whose

name field = NAME

1 2. Count the number of rows in the table (LOCATE)

3. If any rows were loca ted in 3

I Then INDEX = 1 , Go To 4

I Else Done

4. Establish a primary position at the next row

I If the operation was successful

Then GETROW (N)

I Else process an error

I 5. INDEX = INDEX + 1

If INDE X > Number of rows l oca ted

I Then Done

Else Go To 4

I
FIGURE 19

I
I

II



- - -~~~ -- --~~~~~--—---~~~~~- -~~~~~~~~~ - - - •  -- ~~~~~~~~---~~~~~~~~~~~~ -•~~~~

I 47

I Algori thm PROJECT (NAME,COLLIST ,NUM)

NAME = table name
COLLIST = Array 1. Number of allowed columns containing

the column names to be proj ected

I NUM = Number of columns in COLLIST
K = Position in an output buffer

I 1.

p Establish position at Table = Name

Count the number of rows and place the number in  NROWS

I
I 

Then Done

Else INDEX = 1

I 2. GET the NEXT row

J =  1

I 3. GET the descendant schema whose Name = COLLIST(J)

I 
If the operation was successful

Then place the value retrieved into BUFFER (J ,K),

I
Else process an error

1 4.

Then Go To 3

1 5. INDEX = INDEX + 1

I If INDEX > NROWS

Then Done

I
FIGURE 20

‘ I



w~~~~~~
5- ---

~~
----S--S-

~~
- 

~~~
—-

~~~~
-S - - - - - S —  - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—

a
48

1
I Al gor ithm INSERTT AB L~( NAME , CNAME , RO~4, TYPE , COMP , NROW S, NCOLS )

NAME = Table name

I RO~ = Array to hold input rows
TYPE = Array of element types

I CNAME = Array of column names
COMP = Array of component names

1 NROWS = Number of rows to be inserted
NCOLS = Number of columns (elements per row)

1. Establish position at the last table in the data base
INSERT the schema for a table w ith name field = NAME

I If the opera tion was successfu l
Then INDEX = 1, Go To 2

I Else process error
2. INSERT the schema for a row element

i If the opera tion was success ful
I Then INSERTROW (ROW( l , INDEX), TYPE , COMP , NCOLS)

3. INDEX = INDEX + 1
I If INDEX > NROWS

Then INDEX = 1 , Go To 4

I
4. INSERT the schema for column descriptor with

1 description information COLNAIE = CNAME(INDEX)

TYPE = TYPE(INDEX), COMPMO = COMP(INDEX)

I If the operation was unsuccessful
Then process error

I 
5. INDEX = INDEX + 1

If INDEX > NCOLS
Then Done

I
I FIGURE 21

1
I

— _ _~~~~~~~~~,S_ S _ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- . 

-~~—-—~~~~~~~~~-.- 

j



— - -  —

4
1
i the firs t loop would mean there would be as many column description

groups as rows . Only those rows whi ch fall wi thin the limits (1.. .NROWS)

I are inserted , and each row is guaranteed to be inserted in a separate

subtree because a subtree parent (ROW) is inserted before each set of

I row elements are inserted .

i 
rnsertion or row elements (Figure 22) is in a somewhat

analagous manner to table insertion , except that position is assumed

I to al ready have been established at a row entry . Only those elements

which fal l within the limits [l...NCOLS] in the element array (ROW)

I are inserted , and these elements are placed into a record of the type

i 
specified in the array TYPE.

The elemen ts of a sc hema to be •deleted must be retrieved

I before a removal can be made , so at least two operations are always

necessary for a deletion to be completed . Removing a parent from a

I hierarchical data base also deletes all of its descendants , so table

i 
removal invo l ves only one positioning followed by a remove operation.

Removal of a specific ROW requires locating the row , positioning at

I the row by retrieval and deleting the row repeating group. This

removal also deletes all of the constituent elements , since they are

I the descendants of the row repeating group.

I 
Removing an arbitrary column is more complicated than simply

deleting an element repeating group. It is possible that there are

I entries for the row at levels below the element to be deleted . If

there are descendant entries , then deleting a parent will remove all

I descendants along with the parent repeating group. In order to avoid

I

~1 

— -----5- ~ —S- --5-—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__~5_ _ ____ .___5-__  -- - -5 -



- - - ------- - S - -
~~~~~~~~

a
I 50

I Al gorithm INSERTROW

(ROW , TYPE , COMP , NCOLS)
I ROW = Array 1. Max possible col umns of elements to be

I inserted into this row

TYPE = Array of types for each element

I COMP = Component to place the element in

- NCOLS = Number of columns in the row

INDEX = 1

I
1. INSERT schema wi th

VALUE = ROW(IN DEX)

TYPE = TYPE(INDEX)

COMPONENT = COMP(INDEX)

I If the opera tion wa s unsuccess ful

Then process error

1 2. INDEX = INDEX + 1

If INDEX > NCOLS
I Then Done

Else Go To 1

- 1

FIGURE 22

I

II

— - - - - - - - --~-- --- ---------~---- -- ~~~~~ — -

r

a
I 51

1 this prob lem, al l el ements wh ich are descen dants of a column to be

deleted must be moved up in the hierarchy . The algorithm (Figure 23)

I del etes a specified col umn by beginning at the column entry to be

I
deleted , one at a time moving descendants up one level in the hierarchy

until the end of the row is reached . The last element is then deleted .

I Figure 24 is a driver for the algorithm of Figure 23. The

algorithm, REMOVE , takes care of the special case of a table with

only one column . In this case it is necessary to delete the entire

I
row. The table itself will stay in the data base until an explicit

DELETE TABLE command is given by the user.

I The outer l oop of REMOVE terminates because it is based on

the number of rows actually in the table. The inner loop; REMOVE COL ,

I terminates because it successively steps through a finite chain of

A
elements until it reaches the end (step 3), and then terminates . The

I al gorithm correctly deletes one column entry per call because only the

last row element is removed frd’m the data base and because values are

moved upwards into the element to be removed , maintaining integrity .

I Obtaining knowl edge of what component is a given component’s

I
direct descendant may be accomplished by table look up or it may be

accomplished by ori ginally organizing the component numbers in ascending

order. A d i rec t descendan t would have a fixed cons tant component

difference from a parent.

I The algori th for selection of all rows with one specific

value in a ~olumn (~SELECT) is shown in Figure 25. The idea of SELECT

I
I

~1

-- — - ---5--- ---- ~~~~~~~~ --~~--- -- --5 -- ---—--—-- - -.- -

.~~~~~ — ~~~ ~~~~~ _ - _ . ~~~~~_ _ _ ~~~~ _ .‘—s _- __.-_~~~--_—._ - - - - ,- - ________ - — -. ---- ----- -—

1 52

I Algorithm REMOVECOL
(~A~E, COLNAME , COMP , TYPE , COLDEX , NCOLS)

I
NAME = Table name
COLNAME = Name of co lumn to be del eted
COMP = Array of components

I TYPE = Array of element types
COLDEX = COMP index of component to be del eted

I NCOLS = Number of co l umns

I
l. Establish a pos ition at the Table whose name element is

NAME and count the number of rows and place in NROWS
INDEX = 1 , COLSAV E = INDEX

1 2. GET the NEXT row sc hema
if the operation was unsuccess ful

I Then process error

3. If COMP(COLDEX) is the last element in the row

I Else Go To 5

I 4. GET the values for COMP (COLDEX)
REMOVE the repeating group from the data base
If the removal was successfu l

I
Else process error

I 5. GET the values of the direct descendant of COMP(COLDEX)

Place the values into COMP (COLDEX)

I MODIFY the data base
If the opera tion was success ful

I Then Go To 6
El se process error

I
6. COLDEX = COLDEX +

Go To 3
7. INDEX = INDEX + 1

If INDEX > NROWS
Then DONE FIGURE 23

I
I

—S- —-. -—- -5-

-~

- - i.. ~~::
—

~~~~~~T T~. -— --- ..-~~~~~
-- - ----- - - ----- —-

~
- — — —---P------

I
I
I 

Al gorithm REMOVE
(NAME, COLNAME , COMP , TYPE , COLDEX , NCOLS)

NAME = Table Name

I COLNAME = Name of column to be deleted
COMP = Component name array

I TYPE = Array of Component types
COLDEX = Component index of the column to be deleted

I NCOLS = Number of columns in the row

1. I-f COMP(COLDEX) is the first component in the row

I AND NCOLS =

Then Go To 2

I El se REMOVECOL (NAME , COLNAME , COMP , TYPE , COLDEX , NCCLS)
Go To 5

I 2. Establish position at Table = NAME
3. GET the NEXT descendan t row sc hema

i If the last row in the table has j ust been processed
I Then Go To 5

Else
I If the l ast opera tion was success ful

Then Go To 4

I Else process error
4. REMOVE the row from the data base

I If the operat ion was success ful
Then Go To 3

I Else process error
5. GET the column descriptor schema with column name fiel d

I 
equal to COLNAME
REMOVE the schema from the data base
If the operati on was successful

I Then Done
Else process error

I FIGURE 24

I



r

I 
-

I Al gorithm SELECT
(NAME , ICOL , ICON D , VALUE)

I NAME = Ta bl e name
ICOL = Name of column

ICOND = Sel ection conditi on
I VALUE = Comparison value

I 1. Set up a new table called MEWTABLE which has the same row
types , name, and co l umns as FlAME

I 2. LOCATE the rows in NAME where ICOL ICOND VALUE
(that is, the conditi on ICOND hold s between ICOL and VALUE)

I 
3. If any rows were located

Then INDEX = 1, Go To 4
Else INSERT a tabl e schema for NEWTABLE w ith no rows

I Done
4. GET the NEXT row

I If the opera tion was successfu l
Then Go To 5

I Else Proces s error
5. GETROW(N UMBER OF COLUMNS IN TABLE = NAME )

I 
Place retrieved information into a buffer

6. INDEX = INDEX + 1
If INDEX > Number of rows whi ch were LOCATed

I Then INSERTTABLE( NEWTABLE , CNAME , BUFFER , CTYPE , CCOMP ,
Number of rows LOCATEed , Number of columns i n NEWTAB

I NEWTABLE) , Done
Else Go To 4

I
I

FIGURE 25

I .  
-

~ -— - - —-5 - — —5--— - -— -—,~~~~~ —~~~~~- — -— - . -- -— - —— ----- — -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ S— .- ~~~~~~ A



_ _

I
I
i is to place into the new table only those rows of the input table which

qualify under the parameter condition of COMPONENT (ICOL) ICOND VALUE. —

I The al gorithm terminates by retrieving the rovts which qualified and

insertIng the new tabl e into the data base. SELECT retrieves rows

I wi th the correct value in them , s ince on ly those rows are located by

i 
the LOCATE issued at the start of the algorithm .

It is des ired in SEQUEL process ing to do a COMPOUND SELECT whi ch

I retrieves rows where co lumn elemen ts may be equa l to any of several

values in table co lumn.

I Since a query always terminates with a table entry placed

I on the semantic stac k, the appearance of a table entry as an argument

tells the semantic routi nes that a COMPOUND SELECT may be necess ary.

I COMPOUND SELECT first places on a stack all elements of the specified

col umn of the table that holds values which will act as qualifying

1 values . It calls a shortened version of SELECT (SSELECT) as many

I times as there are new stack entries . Qualified Rows are placed in

sequential locati ons in a buffer. The procedure finishes by inserting

I the new table in the data base. The algorithm is shown in Figure 26.

Restriction of a table is a relational operation which

I compares two different row elements and saves those row elements in

i which the elements satisfy the specified conditions. The procedure

involves retrieving both elements and comparing them in the interface

I program. In this procedure it is not productive to use any procedural

language routines because none of the routines suppl ied provides

I component to component comparison . Since the interface is already

I
5- 5-—.- -~~~~~~~~ -~~~~--~~~~~ ----- 5-——-- - -~~~~~~~~~~~~ -— -- -~~~~~~~~~~~~~~~~~ -—~~~~~~~~~~~~~~~~~~~~~



-~- —— - —~-— — --— -——--- -—-— ~~~~~~~~~-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•_~_ 5 _ _ _ _ 5- 5-__S5-

I

I
I 56

i Al gor ithm COMPOUNDSELECT
• (NPJIE1, NAME2, ICOL 1 , ICOL 2, ICOND)

I
NAME1 = Tab le to be selec ted
NAME2 = Table with selection values
ICOLl = Column in NAME1 to be qualified

I ICOL2 = Col umn in NAME2 used as a qualifier

I l. Find Component numbers for ICOL1 , ICOL2
Set up NEWTABLE with columns , types , an d com ponen ts equa l to

I
those in NAME1

2. LOCATE ICOL2 sc hemas WHERE TABLE = NAME1
3. If any ICOL2 elements were LOCATED in 2

I
Else INSERT NEWTABLE w ith no rows

I 4. GET all ICOL2 values and place them on a STACK
INDEX = 1

I 5. Repeat SSELECT (NAME1 , ICOL 1 , ICOND , STACK(INDEX))
INDEX = INDEX + 1

I Until INDEX > Top of STACK
6. INSERTTABLE (NEWTABLE , CNAME , BUFFER , TYPE , COMP , NROWS , NCOLS)

Done

Al gorithm SELECT

I (NAME , ICOL , ICOND , VALUE)
NAME = table name

I ICOL = Column in NAME to be qual ifi ed
ICOND = Conditi on to hol d between ICOL and VALUE

I VALUE = Qualifying value

1. LOCATE all rows of table = NAME WHERE COMP (ICOL) ICOND VALUE

I 2. If any rows qual if ied
Then Go To 3

I -
Else Done

I
1

— -— -5-- - -- -— - ,- - - - ----~~~~~~~~~ -—~~~~~~~~~ -5- ---- -- --~ j . - ---

I
I
I
I 3. Repeat GET NEXT row, GETROI4(NCOLS in NAME) ,

Place result in buffer

I Until the rows LOCATEed in 1 are ex haus ted
Done

I
I
I FIGURE 26

I
I
I
I
I
I

• 1

I
I
I

— S -- —- -~~~~~~~~~~—-- - — — —- ~~ - --—--— - - — -—- - -— -- — - - - -—- - -—-—~~~~~~~

- - ______________

I
positioned at a given row for possible retrieval it is expedient to

retrieve the two elements and compare them in the PU routine.

I The algorithm -for RESTRICT is shown in Figure 27. The

procedure RESTRICT w ill terminate s ince it cyc l es on the number of

I rows- qualified by the previous call to LOCATE . It will retrieve the

I desired information , and only that i nformation , because it inserts only

those rows which meet the specified condition: Component (ICOL1)

I IICOND Component (ICOL2).

-
UNION is used to append all rows from one tabl e to a second

I table. The two tabl es must have the same number of rows , and the

1
rows must have elements of similar attributes . The elements are

appended exactly as they occur in the row schema , as appropriate

I col umns must be al i gned before union . This algorithm is shown in

Fi gure 28. It will terminate because only a finite number of rows

I are located and inserted . All rows in both tables qualify for

insertion in the new table , and the structure of the algorithm

guarantees that only those rows in the tables will be qualified in

I the LOCATES.

Intersection (see Figure 29) is an occasion for all para-

I meters of the PLI Loca te subroutine to be used . If the number of

I
columns in two tables to be intersected is the same, then one table

is placed into a buffer and its rows sequentially compared to the

I second table using LOCATE . Rows which are equal (that is all components

equal) are placed in the intersection table. The algorithm cycles

I on the number of rows in the retrieved table. It will produce the

II

I
I Al gorithm RESTRICT

(NAME , ICOL 1 , ICOL2 , ICOND)

‘
NAME = Table name
ICOL1, ICOL2 = Columns between which ICOND shoul d hold

I
ICOND = Condit ion

1. Set up NEWTABLE with columns , types, and components of NAME

I 2. LOCATE rows of NAtIE and place the number LOCATEed into NROWS
If no rows were LOCATEed

I Then Go To 8
Else INDEX = 1 , Go To 3

3. GET the NEXT row
I If the operation was success ful

Then Go To 4

I Else Process error
4. GET the row descendant whose component is COMP(ICOU1)

I Place the retrieved value into COMP 1

GET the row des cendant whose component i s CO MP(ICOL 2)

I Place the retrieved valu e i nto COMP2
If either operation was unsuccessful then Process error

I 5. If COMP1 ICONO COMP2
Then GETROW (NCOLS in NAME)

6. INDEX = INDEX + 1

I If INDEX > NROWS
Then Go To 7

I
7. If NROWS > 0

I Then INSERTTABLE (NEWTABLE , CNAME , BUFFER, TYPE , COMP , NROWS , NCOLS)
Else INSERT only NEWTABLE

I Done

FIGURE 27

I
I

-5— —- --.---~

r - - --‘- . -.-5 ---

~~~~~~~

- ,-----5

~~~~

--S —

I 60

I
Al gorithm UNION

(NAME1 , NAME2)

NAME1 , NAME2 = Table name s

1 -

1 1. If the tables NAME 1 and NAME2 do not have the same number of columns

Then Report error

I Else Set up NEWTABLE with column names , types , and components

of NAME1
I 2. GETTABLE (NAME1 , NCOLS in NAME1 , BUFFER(1 ,1))

I NROWS = Number of rows in NAJIE1

3. GETTABLE (NAME2, NCOLS in NAME2 , BUFFER(1 , NROWS + 1))

4. INSERTTABLE (NEWTABLE , CNAME , BUFFER , TYPE , COMP , NROWS i n

NAME 1 + NROWS in NAME2 , NCOLS)

-

~ I
I

FIGURE 28

L I
-

I
I 1-
1
I

-5 - -5- - - - ---5 --- -- —- —‘ -~~~ --- - - . ——

61

I Al gorithm INTERSECT
(NAME1 , NAME2)

I
NAME1 , NAME2 = Tables to be intersected

1. If NCOLS in NAME1 = NCOLS in NAME2

I Then Report error , Done
El se Set up a NEWTABLE with description information of NANE1

I 2. GETTABLE(NAME1 , NCOLS in NAME1 , SCRBUFFER(1 ,1)
NQUAL = 0, NROWS = Number of rows i n MAME1

I
I N D E X = 1

3. LOCATE rows of table NAME2 WHERE
COMP(l) = SCRBUFFER (l ,INDEX) AND

I COMP(2) = SCRBUFFER (2,INDEx) AND

COMP(NCOLS) = SCRBUFFER(NCOLS , INDEX)
4. If any rows qualified in 3

Then NQUAL = NQUAL + 1, Trans fer SCRB UFFER co l umn INDEX to
BUFFER co lumn NQUAL

I 5. INDEX = INDEX + 1
If INDEX > NROWS

I Then Go To 6
Else Go To 3

I 6. INSERTTABLE(NEWTABLE ,CNAME , BUFFER , TYPE , COMP , NQUAL , NCOLS)
Done

I
FIGURE 29

I
I
I

-- -- - -~~~~~~~~~~~~~~ - -— -S ---5- - ~~~~~~~~~ -~~~~-~ -- —~~~ - -~~~~~~~~~ ~ -~~~~ —-~~~~~~~ - - ~~~~~~~ -- -5- -—- --5-—-— ~~~~~~~~ —-

— -- -
~~~~~~~~~~

-
-:~~~~~~

- ‘— -  ~~~~~~~~~ ---- - -—~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~
-
~~~~~~

-
~~~~~~~~~~~~~

-:
~~~~~~

I

I 62

I correct information because the only elements of the second table

which qual ify under a given call to LOCATE are those in which both

I tab l es have equa l components.

I 
Set difference is handled similarly to set intersection as

the note in Figure 30 indicates . It is essentially a union of two

calls to set intersection. Difference will retrieve all values which

are in the difference because it performs a membership test for each

1 row of each table versus the rows i?i the second table of the inter-

I 
section. Those rows which fail to qualify any rows are included in

the difference . The intersection routine must he called twice to

1 insure that all rows of both tables are considered for membership in

the difference.

The JOIN of two tables (referred to as the domain ~nd range

tables) is shown in Figure 31. JOIN must first retrieve a specified

I row element from the domain table and compare the value returned to

I a l l  of the ra~ge el ements in the range tabl e , and if any rows qualified ,

then concatenate the two tables. As discussed earlier , JOIN may

I accomplish this by retrieving one row at a ti.ne from the domain table.

This i nvolves keeping a counter and repositioning before each retrieval

I and comparison , or it may retrieve all rows in the domain table and

I keep a row index and not have the overhead of repositioning.

The division operator is implemented in terms of repeated

I table intersections (see Figure 32). Values from the divisor table

are stored on a stack. The algorithm creates an initial table with

I those row~ whose dividend fields are equal to the d i v isor f ield (the 

_ r-~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~ --~------.“-— - . -  
--



-S -S . _--
~~~~

I
63

I
Al gorithm DIFFERENCE

(NAME1 , NAME2)

NAME1 , NAME2 = Table names for difference

1. If NAME1 and NAME2 do not have the same number of columns

Then Report error , Done

Else SCRTABLE 1 = INTERSECT * (NAME 1 , NAME2)*

SCRTABLE2 = INTERY CT* (NAME 2, NAME1)

2. NEWTABLE = UNION (SCRTABLE1 , SCRTABLE 2)

INTERSECT is the al gorithm INTERSECT with the test at step 4

negated

FIGURE 30

L_. — ~~~~~~~~~ .-5 — -~~~~~~~~~~~~~ -5-

c i
—-5—

1 64

I Algorithm JOIN
(.NAME1 , NAME2 , ICOL1 , ICOL2, ICOND)

I NAME1, NAIIE2 = Tab l es to be JOINED
ICOL1 , ICOL2 = Columns to be compared

J
ICOND = Condition to hold between columns

1. Set up NEWTABLE w ith co l umn names , types from NAME1 and NAME2
concatenated
[Place NAME1 col umns in the first (NCOLS in NAME1) components of

i the component cha in
Place NAME2 columns in the component chain starting at
COMP(NCOLS in NAME1 + 1)]

1 2. LOCATE all rows in NAME1
NROWS Number of rows i n NAME 1

I INDEX 0, BUFPOS = 0
3. INDEX INDEX + 1

I If INDEX > NROWS
Then Go To 10

I Else Establish position at table NAME1
4. GET the row which is INDEX rows from the start of NAME1

I
GET the row descendant COMP(ICOL1), Pl ace in COMPARE
If the operation was unsuccess ful Then Process error

5. LOCATE the rows of NAME2 WHERE COMPARE ICO N D ICOL2

I If no rows were loca ted Then Go To 3
Else J = 1, NEWROWS = Number of qualified rows

I 6. GET the NEXT row which qualified
GETROW (NCOLS in NAME2)

I If operation was unsuccessfu l Then Process error
Else Place values in BUFFER star ting at

I BUFFER (NCOLS in NAME1 + 1, BUFPOS + J)

7. J = J + l
If J > NEWROWS

I
Else Go To 6

I
I

- ——- --5---- - — ~~~~~~~~~~~~~ 5- . -
- - - -

_ _ _ _ _ _ _ _ _

I
65

1
I 8. GET the row which is INDEX rows into NAME1

GETROt4 (NCOLS in NAME1)

I Note: Position must be reestablished at NAME1 row INDEX before
GETROW can be called . The call to GET1 does both at once

J 1
I 9. Transfer the retrieved NAME1 row to BUFFER starting at

BUFFER(1 ,BUFPOS + 1)

I
If J > NEWROWS

I Then BUFPOS = BUFPOS + NEWROWS, Go To 3
Else Go To 9

I 10. If BUFPOS = 0
Then INSERT NEWTABLE w ith no rows

J
Else INSERTTABLE (NEWTABLE ,CMAI-IE , BUFFER , COMP , TYPE , NCOLS in
NAME 1 + NCOLS in N~4ME2, BUFPOS), Don e

I
I

FIGURE 31

I
- - I

I ’

I

___________________________ ~ .-- —- .

66

I
I Algorithm DIVISION

(NAME1, ICOL1 , ICOU2 , NAME2, ICOL3)

I NAME1 = Dividend Table
NAME2 = Divisor table

I ICOLI = Resul t column from NAME1
1C012 = Dividend column from NAME1
ICOL3 = Quotient column from NAME 2

1. Set up a NEWTABLE with columns and types ICOL1 and ICOL2

I Use the first two components in the row chain

i 2. Retrieve all ICOL3 ‘values from table NAME2 and place them on a STACK

STACKPT = top of STACK

I 3. NEWTABLE = SELECT (NAME1 , ICOL2 , = , STACK(STACKPT))

INDEX = 1

1 4. SCRTABLE = SELECT (NAME1 , ICOL2 , = , STAC K(I NDEX))

5. NEWTABLE = INTERSE CT (NEWTABLE , SCRTABLE)

6. INDEX = INDEX + 1

If INDEX > STACKPT - 1

Then Done

I Else Go To 4

I
1

FIGURE 32

I
I
I

_ _
- -5- . -5 - -—--

_
_ _ _ _ _ -- - - 5 - - - —----S--S - - - ---- 5-- - --— -

1 67

top element of the stack). A loop is executed for the remaining

divisor entries . A new table is created whose divident fields are

I equal to the divisor field at the current stack top. This table is

intersected with the initial table , and the table from the intersection

is assigned as a new initial table. The loop is executed using INDEX

I to step through the table.

The last table will be those rows whose QUOTIENT values —

I appear as elements with each of the divisor values .

I
Removing Duplicate rows is necessary before output or at

the end of any statement (Figure 33). The algorithm retrieves all

I rows of a table. It sequentially compares the retrieved rows to the

:1 stored table by locating all rows in the stored table which have

I elements equal to the corresponding row element of the current buffer

row . If more than one row i s l ocated, all but one of the rows is

deleted . When the l as t row i n the retrieved tab le has been compared

(to the stored table all duplicate row: ~:i1l have been removed .

The parsing principle of this system is to make a rule

I reduction in the interface whenever one is made by the parser. This

I
is a design choice . It forces the system to do more work than waiting,

for example, for an entire string of ANDS , and then performing one

I qualification . Such an ability i s an enhancement but adds more s ize

to an al ready large program , and it does not add more power to the

I system.

I The SEQUEL subset is shown in Appendix 1. The grammar

its-elf i_ s LALR (1). The structure allows for algebra and SEQUEL

I

- —----- —-~~~--~~~~--~~~~~~~~~~~~~~~ - - - - - - --—

-

~~~~~~~~~~~~~~~~~~~~ 
- 5- --S—------- —-;-5----- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - ~~~~~~~5-

I
-

- I 68

Al gorithm REMOVEDIJPES
I (NAME , FLAG)

r~AME = Table name from which to remove duplicate rows

I FLAG = Pointer to a buffer if the table is already in the
interface , zero otherwise

1. If FLAG=O

I
Then SCRTAB = GETTABLE (NAME ,SCRBUF)
Else SCRBUF = Buffer pointed to by FLAG

2. LOCATE rows in NAME

1 NROWS = Number of rows UOCATEed
INDEX = 1

3. LOCATE rows of NAME WHERE
COMP(l) = SCRBUF(1 ,INDEX) AND

I COMP(2) = SCRBUF(2,INDEX) AND

I COMP(NCOLS in NAME) = SCRBUF (NCOLS in NAME , INDEX)
If more than one row was LOCATEed

I then J = 1, Go To 5

4. INDEX = INDEX + 1
If INDEX > NROWS

I Then Done
Else Go To 3

I 5. GET the NEXT row
If unsuccess ful Then Process error

I 6. REMOVE the row from the data base
If unsuccess ful Then Process error

I 7. J = J + l
If J > (Number of rows qualified - 1)

I
Then Go To 4
Else Go To 5

I FIGURE 33

I
I -

- -5- — - S - -5--

~ —

rr -5 - -

~~~~~~~~~~~~~~~~~~~~

5---

~~~~~

. _ .

~~~~~~~~

--5—-—--

~~~ 

I
69

statements to be alternated , but not intermixed . Every reduction

results in an entry on either the operand stack or the operator stack.

I Every reduction of type <operand> <comp> <operand> results in the

I
operands be i ng removed from the stac k, the operator applied to them

and the resulting table being put back on the stack.

I An algebra statement always term i na tes w ith one table on

the stack , the resul t table. A SEQUEL statement always ierminates

1 with two entries, the projection list and the result table. If the

parser is completely finished with an expression , the specified

columns in the list are projected from the table on the top of the

I stack , otherwise a table is made from the specified columns and the

table is placed on the stack in place of the two input entries.

This chapter has discussed the algorithms used in the

interface program . All relational operations were implemented in

terms of the available hierarchical DBMS functions. The final two

chapters are , respectively, an extens ion to the system, and the

conclus ion.

-- -- - ---- 5---—

- --5---— - —

I

I
I CHAPTER V I

AN EXTENSION TO THE SYSTEM

Smith and Smith [19] proposed a data structuring primitive

I -

which defines the relational model in terms of a hierarchy of n-ary

I relati ons . The structuring primitive takes advantage of both the

relational and hierarchical models by building the inter-relational

I dependencies i nto the struc ture of the hierarchy.

l
A definition in the above structure depends on the user

defining key values . Each element of a table is either specified

I as being a key element or specified as a non-key element. Each

element is also listed in every table with which it is associated.

I Defining a relational data base in this structured manner

I
allows each rela tion to be ass ig ned to a l eve l of the hierarchy . To

exemplify the structure this concept imparts to the hierarchy , the

I relational presidential data base is defined in a sample definition

language and the resulting structure is graphed .

I PRESIDENTS

I
NAME : KEY OF ELECTIONS-WON : WINNER-NAME

PARTY : NON KEY

- I HOME-STATE : NON KEY

The structured decompositi on yields four levels of tables

I rather than the one l evel of tables used by the system desi gned in

I
this paper. It is immediately obvious that this data organization is

sui ted to the implementation of a non—procedural query processor.

I . 70

I i

—-5 _ -- --5. - - - - - 5 - -- -- -

-5- -5--- -—— - --—--5— —- -— -- -—----- - -_ , - - - —--.-- - - - - - - - - — -~~~ -~~~--~ -_ — - ~~

I
I 71

I ELECTIONS-WON
YEAR ; KEY OF ELECTIONS-LOST : YEAR

I WINNER—NAME : KEY
WINNER-VOTES : NON KEY

I ELECTI:ONS—LOST
YEAR : KEY

I LOSER—NAME : KEY OF LOSERS : NAME
LOSER—VOTES : NON KEY

I LOSERS
NAME : KEY

I PARTY : NON KEY
The structure generated by this sample definition is:

I
IPRES IDE MT

1 J ~~
RTH I

[YEAR)(WINNER NAME VOTES1
~
PRESIDENT) WIFE MAR DATE

I
_ _ _ _ _ _ _

I II~R)I LOSER NAME VOTE~~~

I LOSER NAME PART Y

I
I

FIGURE 34

I
I
I

--5 -— ~~~~~~~ -—. — --- -5- - --~~~~~~ - - -.—~~~~--~~~~~~~~~~~ -~~~ ---- —-S- —— --5—-~~~~~~~~~~ - - S - - — - - -5-

72
-

~~~

— Statements such as SELECT LOSERS.PART Y WHERE PRESIDENTS ,NAME=ROOSEVELT

AND ELECTIONS=LOST .YEAR=l944 AND ELECT IONS=WON.YEAR =l944 ; which are

I complex in terms of rel ational algebra operations , may be much simpl er

in terms of a hierarchical query . The query can be formulated in one

I statement similar to the example SEQUEL statement.

I An algorithm for a query optimizer should be designed wh ich

would perform a hierarchical query, a series of relati onal operations ,

1 or a combination of the two methods . This optimizer . should make the

I 
best use of both models. It should allow comparison of disjoint tables

using either the relational algebra or via a schema transformer fol lowed

I by a hierarchica l query. 4 -!
There are two uses of the work KEY to consider. KEY in

I terms of the definition language establishes a hierarchical level .

I 
An actual management system may or may not regard all elements as

elements to be kept in inverted files and by which any row of any

I relation may be accessed.

If all el ements are key elements , then the functioning of

I the algorithms of CHAPTER IV remains unchanged . Since each algorithm

I 
involves retrieval followed by qualification , fol l owed by retrieval

of qual ified data sets , each al gor ithm will work properly as long as

I all elements of a row may be qualified in a query .

If only the elements designated as key are used as actual - 
-

-

I keys in the hierarchy, a problem arises . Qualifications cannot qualify

‘ 
non key elements , and much of the comparison work must be done by the

Interface program. For example , in removing duplicate rows from a

I
I 



- -  - - -

I
I
I relation, all el ements need to be available for comparison . The

interface must retrieve all elements of a table and compare all non key

I elements of all rows w ith the same key. The data base is smaller than

I 
it is- when all elements are key elements , but algebra operations require

longer to finish.

I A solution to the above problem is to restrict the relational

operat ions to key values only. This is a reasonable approach since

I it places the user in the position of deciding the size of the data

I 
base as well as the scope of the opera tions performed in it. Hav ing

few key values moves the data base away from algebra operations and

I towards the non—procedural operations .

In conclus ion , an enhancement of the system designed in

I CHAPTERS III and IV is the conversion of the underlying data base to

the general structure proposed by Smi th and Smith , the addition of a

I data base def inition program , and the construction of a query optimizer.

I
I
I

- I
I

_ 
- -



TiTI: I~=~~~~~~ - - 

CHA PTER V I I

SUMMARY

This paper has di scussed some of the rela tions hip s between
I a relational data model and a hierarchical data model . It designed

a relational interface for implementation as a front end to a hier-

archical data base.

Nine choices for structuring the underlying hierarchical

data base were discussed . A structure which preserved the table

I integrity and row integrity of relations was selected .

I All relational algebra operations were designed in terms of

the hierarchical operations . Two approaches , one a ppl icable to lar ge

data bases and the other more suitable for small data bases , were

noted to be poss ibl e for eac h opera tions .
- Areas for possible future research were pointed out. An

I enhancement to the current systems was proposed. This would add a

definition module and a query optimizer to the system , making more

I efficient use of the structure of the underlying hierarchy .

I
. I

I -

I 
74

I 

- -5 - - -S - - - - —~~~~-- - - . - ——--~~~ --——-~~~~- - - — - — — - ---- - - - —~ -.- - -—-~ _ - ---- -— ---5-- - - -



_ _  _ _ _ _ _ _  
_ _ _ __ _

I
AP PEND IX

BACKUS--NAUR (BNF) for the SEQUEL subset:
I 1 cSLIST> :: <STATEMENT>

1 
2 / <SLIST>cSTATEMENT>

I 3 <STATEMENT> ::= <CONTROL>
4 / <DEFINE>
5 / <ALGEBRA >
6 / <QUERY>
7 / <DML STATEIIENT>

I 8 <CONTROL> ::= EXIT
9 / DEBUG ON <DBL IST>

10 / DEBUG OFF <DBLIST>

I 11
12 / DATABASE IS <DBNAM> PASS <PASSWRD> ;

1 13 <DEFINE> : := NEW DATABASE IS <DBNAM> PASS <PASSWRD>
I 14 / TABLE IS <DEF TABNAME> <COLDES LIST> : <LITTUPLE LIST>

15 / LOAD ;

I 16 <ALGEBRA> :: PROJ <PROJ LIST> <ATABNA !’-IE> ;
17 / JOIN <ATREF> <RELOP> <ATREF> ;

I 
18 / REST <ATREF> <RELOP> <ATREF>
19 / SEL <ATREF> <RELOP> <ATREF> ;
20 / UNION <ATABNAME > <ATABNAME>
21 / INT <ATABNAME> <ATABMAME>

I 22 / D1FF <ATABNAME> <ATABMAME>
23 / DIV <ATREF> <DIVIDEND> ;

I 24 <QUERY> ::= <BASIC QUERY>
25 / <BASIC QUERY> A <QUERY>
26 / <BASIC QUERY> v <QUERY>

I 
27 / <BASIC QUERY> - <QUERY>

28 <DM1 STATEMENT> :: <DEF TABNAME> = <QUERY>
29 / <DEF TABNAME> = <ALGEBRA>

I 30 / DELETE <DEF TABNAME>

31 <DBLIST> :: NUMBER

I 32 / <DBLIST> , NUMBER

33 <DBNAM> ::= NAME

I 34 <PASSWORD> ::= NAME

I
I 

- -—---~~~~~~~~~----- - - 5- - -—-5-~~~~ - - --5- -—---- _



- ~

-5_ _ - 5

~~~~~~~~~~~~~~~

-5-

~~~~

•

~

5- -.--- ----- ----5 

I 76

I 35 cDEF TABNAME> :: NAME

36 <COLDES LIST> :: <COLDES’
I 

37 / <COLDES LIST> <COLDES>

38 <LITTIJPLE LIST> : := <CONSTANT LIST>

I 
39 / <LITTUPLE LIST> ( <CONSTANT LIST> )

40 <COLDES> :: <DEF COLNAME’<TDES>

I 41 <DEF COLNAME> :: NAME

42 <TDES> : := A

I / 1

44 <CO~1STANT LIST> : := <CONSTANT>
45 / <CONSTANT LIST> , <CONSTANT>

46 <CONSTANT> : := NAME
47 / NUMBER

48 <PROJ LIST> :: <ACOLNA !1E>
49 / <ACOLNAME> , <PROJ LIST>

I 50 <ATABNAPIE> :: NAME
51 / ( <ALGEBRA> )

I 52 <ATREF> :: <ATABNAME> .

53 / <SVALUE>

I 54 <RELOP> ::
I 55 1=

56 /<

I 57 /1
58 I >
59

1 60 <DIVIDEND> : := <ATREF> <DCOLNAME’

I
- 61 <DCOLNAME> :: , NAME

62 <ACOLNAME > : := NAME

I 63 <SVALtJE> .= NAME
64 / “ NUMBER

65 <BASIC QUERY> ::= <LABEL> : SELECT <SELCLAUSE LIST> <WHERE CLAUSE>
66 / SELECT <SELCLAUSE LIST>
67 / SELECT <SELCLAUSE LIST> <WHERE CLAUSE> ;

I

I i i
L - - - - 5 - -- ----—---5------ — - - — - -- - — - - --— -5 - -—- - --—--

~~
-—-------——---—- -----.----- ---—-- - - — —- ---—--— 

~~~~
_

~~~~
—_

~~~


77

68 <LABEL> : := NAME

69 <SELCLAUSE LIST> ::= cSELCLAUSE>

I 70 / cSELCLAUSE> : <SELCLAUSE LIST>

71 <WHERE CLAUSE> :: WHERE <BOOLEAN>

72 <SELCLAUSE> : := <PROJ TABMAME>
73 / <PROJ LIST> FROM <PROJ TABNAME>

1 74 <PROJ TABNAME> ::= NAME

75 <TABLEREF > : : <TABLE NAME> . <COLNAME LIST>

I 76 <TABLE NAME> : := NAME

I 77 <COLNAME LIST> ::= <COLNAME>
78 / <COLNAME LIST> , <COLNAME>

79 <COLNAME> :: NAME

80 <BOOLEAN> :: <PREDICATE>
81 / <PREDICATE> OR <BOOLEAN>
82 / (<BOOLEAN>)
83 <PREDICATE> : := <PRED>

I 84 / <PREDICATE> AND <PRED>

85 <PRED - : : = <COMPARAND> <RELOP> <COMPARAND>

I 86 <COMPARAND> : := <ATOM>
87 / (<COMPARANt)>)
88 I <BASIC QUER~1 89 / ALL <COt ~~

90 <ATOM> :: NAME

I 91 / NUMBER
92 / <TABLEREF>

I

- - -~~~~T~~~T~~~~~~~~~~~~~
-
~~~~~~~

-
~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

J REFERE N CES

1 [1] 
________

. Special Issue on Data Base Management Systems .
ACM Computing Surveys , Vol . 8, No. 1 , March 1976.

I [2] Astrahan , M. et al. “System R: a Relational Approach to
Data Base Management” . IBM Research Report RJ 1738,
February, 1976.

I [3] Astrahan , M. and Chamberlain , D. “Implementation of a
Structured English Ouery Language ” . Communicat Ions of the

I 
ACM , October , 1975.

[4] Boyce , R. F. et al. “Specifying Queries as Relati onal
Express ions : SQUARE ” . IBM Technical Report RJ 1291 , IBM
Researc h Laboratori es , San Jose , CA , October , 1973.

[5] Burger , W. F. “BOBSW — a Parser Generator ” . SESLTR—7 ,
Computation Center , Univers i ty of Texas at Austin , TX ,
December , 1974.

- [6] Chamberlain , D. “SEQUEL: a Structured English Query Language ” .
IBM Research Report RJ 1394, May, 1974.

[7] Clemons , E. “Des ig n of a User Interface for a Relational

I Data Base” . Dissertation , University of Pennsylvania ,
Philadelphia , PA , September , 1976.

I [8] Codd , E. F. “A Data Base Sub-language Based on the Rel ational
Calculus ” . Proceedings of the 1971 ACM-SIGFIDET Workshop on
Data Description , Ac cess , an d Con tro l , ACM , New Yo rk , Novem ber ,
1971 , pp. 35-68.

I [9] Date , C. J. “An Introduction to Data Base Systems” . Addison-
Wesle y, Read i n g Mass. , 1975.

I [10] DeRemer, Franklin 1. “S impl e LR(K) Grammars ” . Commun i cati ons
of the ACM, July, 1971 .

[11] Hardgrave , W. T. “Theoretical Aspects of Boolean Operatiofls
on Tree Structures and Implications for Generalized Jata
Management” . Compu ta ti on Cen ter , University of Texas at

I Austin , TX , August , 1972.

[12] Keel , Tom . “SYSTEM 2000, Vers i on 2.4 User ’s Guide for UT 2D

I Implementation” . on-line documentation. Computation Center ,
University of Texas at Austin , TX.

I 78

I 

-5---— ~~~~~~~ . ---
~~~~~~~~ --- - - - - -  J


- - ---~~~~~~ --- ------- -~ - --- -
~~~~~~

- 5---
~~~~ -~~~

~~~~~~~

---
~~~

79

[13] Kent, W. “New Criteria for the Conceptual Model ” . IBM
General Products Division , Palo Al to, CA , unpu blished .

- [14] Knuth , D. E. “The Art of Computer Programing ”. Vol . 1
-

Addison—Wesley , Reading Mass., 1968.

[15] Lowenthal , F~ I. “A General Purpose DBMS Kerne l ” . MR I
Systems Corp., Austin , TX , to be published .

[16] Martin, James. “Computer Data Base Organization ” . Pren tice
Hall Inc., Englewood Cliffs , NJ , 1975.

[17] MRI Systems Corporation . “SYSTEM 2000 General Information
Manual ” . Austin , TX , 1974.

[18] Parsons , Ronald G. “Techniques for Decreasing the Size of
SYSTEM 2000 Data Bases” . University of Texas CC-TPB-145,

I June , 1973.

[19] Smith , John and Smith , Diane. “Data Base Abstraction ”

I Computer Science Department , University of Utah , Salt Lake
City , Utah , to be published .

I [20] Tsichritzis , D. “LSL : a Link and Selector Language ” .
1976 SIGMOD , ACM , New York.

I
I
I
I

-

. 1
I
I
1
I

~-- . -- - ---5 --

- -
~~~~~ 

‘ -
~~ - —~‘~~~~~ -~r ~~~~~ ~~ - - -

. 
--

VITA

I Ell is Knox Conoley was born in Temple , Texas on March 1,

1947 , the son of Max ine El lis Cono ley and Rufus Knox Conoley. He

I graduated from Lakenheath American High School , Brandon , Suffolk ,

i England in 1965. He completed requirements for the Degree of Bachelor

of Arts in Mathematics at the University of Texas at Austin , Texas in

I August , 1969. On December 22 of 1969 he was commissioned a 2nd

Lieutenant in the United States Air Force, and presently holds the

I rank of Capta in. Captain Cono l ey has serve d tours of duty in Montana ,

I Southeast Asia , and at the North Amer i can Aerospace Defense Command

(NORAD) Combat Operations Center at Colorado Springs , Colorado. In

1 May , 1974 he was selected by the Air Force Institute of Technology to

pursue a Master of Arts Degree and he entered the Graduate School of

I the Univers i ty of Texas in January, 1976.

I Permanent address : 10303 Newport Av enue
Austin , Texas

This thes is was typed by Ann M. Patterson.

I-

II. ~~~~~~~~~~~~~~~~~~~~~~~~~ —-5 - - — - - — ~~--~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________



r 
___ 

—- 

~~~~~~~~~~~~~~~ 
:

~
1~

~ 0 ~ ~~~ ~
., ‘

~~
-
,
I. / ~

q
•

/ -
-

~~~~~~~~ 

- 
.

~~~~~

-
.

‘,

‘

~~~~~~~~~~ 

~%, 
~ 

.

-

~~

, 
~/

,

C 

~•% ~
s
;
) 

,.
, 
I~, 

-
‘ - - 

z
¶ 

P 
~~~~~~ 

?~~ ~~~~~ ~~~~

‘

,~~

-
.

~— _ /
‘
~~

~~ 6 ~~~~~~~ ~‘h ~~~~~~~~~~~~~ (P
)

4~~
~~~~~~~

‘

. c e -. 0
(J) I

� ~~~~

. 
-; _ \

_ ~~~~~~~ ~~~~~~~~
I”—,. —~ - ~ 

~.

~~~~~~~~~~ 1 -

‘I ’—‘ ~~~~~ - -
- “
.

‘

~~4 ~4 1
- -

—
~~

-
.
.

f’ J.3 (
~ 7 -

— .

— ~4’. ~
- (I)

0 1
,

~~~~~ 
. . rn

c,2_. - 

. / \ — A -‘ p \ # JI ‘. - -
-~~ 4 / ,~ 

~~~~ 
~~~~~‘q ’ . ~~~~ - 

— -- — - --, 
- -.- .

~~ 

‘ -
. 

* ~~~

- 
- / ~~~~~~~~~.4 sr / - / - /

~~~~~ 
-- • /r~~$~ ~~~~~~~~~~~~~~ , . * —-

u - , ~~~~
.

,- I
~~~

~~~~

(‘D
~ Q

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

D (I
~~ - - ~~~~~~ _ _ _ _ _6 - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

~!i 4; ~~~~1~4~~L_
~~~~. 1J) - -

* 
________________________________ _________

p 
~~~~~~~~~~~~~~~~~~~

- - _ _

- -. —.---- --- -- . w—~_ _ _ . _ ___
~- ~~ - ---

