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I. Numerical Methods for Optimal Control of
Systems with Delays (H.T. Banks).

In [1] and [2) the authors developed a general framework

to treat approximation techniques for linear functional differ-

ential equation control problems and showed that the so-called

“averaging” approximations could be discussed with complete rigor

in the context of this framework. These approximations have been

used for a number of years in a heuristic and sometimes incorrect

manner by control engineers (see the engineering literature survey

in [21). The results obtained and discussed in [1] and [2] give

a rather clear explanation of when and how one may expect to use

the averaging approximations with some success in either optimiza-

tion problems or in any other problems (e.g. system identification)

where one requires computation of solutions of delay systems.

Banks, in his subsequent efforts, has pursued further development

of approximation methods for delay-differential equations in

several directions as detailed below.

(i) Nonlinear system control problems.

Banks announced in [3] preliminary results on a

theoretical framework (analogous to that in [1]) for approximation

methods to treat nonlinear delay system control problems. During

the past year he has, with the aid of a research assistan t

(partially supported by this Air Force grant), developed software

packages to use the averaging approximations in this framework for

nonlinear problems. Several nonlinear control examples have been

~
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used to test the eff icacy of the resulting method and computational

packages. Our results to date indicate that for many classes of

problems the scheme is quite satisfactory for nonlinear as well

as linear control problems. A detailed treatment of the theoretical

foundations of the nonlinear system framework along with a summary

of our numerical f indings are in the recently completed manuscript

[4]. Banks will continue his efforts at a systematic development

of alternative methods to treat nonlinear system control problems

in the coming year.

(ii) Nonautonomous linear control systems.

Reber, a graduate assistant under the direction of

Banks, has studied nonautonomous linear control systems (special

cases are

V
x(t) = ~ A. ( t ) x ( t — r ~~) + B(t)u(t)

i=0 ’

where 0 = r0 < r1 < ... < r~ , A~ are n ~ n matrix functions,

i = 0,1,...V, and B is an n X m matrix function) such as

those that arise in the engineering analysis of nonlinear control

systems with delays when one linearizes about a nominal solution.

Using factor space techniques (see [5]) he has given a theoretical

development for an approach which offers a viable alternative to

that given in [1] and [21. Rather complete convergence results

(along with error estimates, etc.) have been obtained for these

methods which involve use of simple difference equations as the

approximating equations for the delay systems (as contrasted to

~~~~~ 
v .--~~~ - .
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the finite systems of ordinary differential equations used as approxi—

mants in [1], [2]). The immediate advantage with respect to

implementation on the computer is obvious. Banks and Reber have

begun numerical studies of the overall advantages and disadvantages

of such techniques. Early indications are that for low dimensional

approximating systems, the ordinary di f f e rential equation approxima-

tions may be more accurate when the same amount of computer time is

employed with each technique. For higher order accuracy (necessitat-

ing higher dimensional approximating systems), there may be

substantial savings in using the difference equation approximations.

Banks and Reber are developing software packages to carry

out a careful comparison of these methods for both linear and non-

linear control systems. The results of these investigations should

prove valuable to anyone having to deal with control and/or

identification techniques for differential equations with delays.

(iii) Spline type approximations.

Banks, in joint efforts with F. Kappel (a visitor at

Brown from February—August 1977) of the University of Graz in

Austria , has been investigating the possibility of using other

alternatives to the “averaging” scheme of [1] and [2] in a con-

ceptual framework such as that proposed in [1]. During the summer

of 1977 they made major theoretical advances on the problem of

using spline type approximations as the basis for development of

computational schemes. A theory which handles splines of arbitrary

order has been developed. Convergence results along with order

estimates are now available. For example, if splines of order k

~~~~~~~~~~~~~~~~~~~~~~ I ,
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are used to obtain a system of approximating ordinary differ-

ential equations of dimension N (with solutions denoted by xN)

for the original control system with delays (with solutions x),

then one has that xN ~ x as N -
~ ~ and the order of convergence

is !~~~. • Thus , in theory, one can use splines of arbitrary order

to obtain extremely accurate approximations even with low—

dimensional approximating systems. However , one must expect that

there is a trade off between increasing difficulties with practical

implementation of higher order splines and increased accuracy

obtained via use of these splines. Initial considerations indicate

that for numerical work piecewise cubic splines should be a

reasonable compromise with respect to both implementation and

convergence properties. Numerical experiments are underway to

explore practical aspects of the use of these spline—based methods.

The framework developed to handle these spline approximations

appears to be quite general; Banks, Kappel and their students

intend to pursue investigations using either types of functions

(e.g., Walsh function approximations) to develop approximation

schemes for both linear and nonlinear systems problems.

II. Bifurcation Theory (J.K. Hale).

Hale and his colleagues have continued their work on

bifurcation in systems containing several parameters. The original

papers by Chow, Hale and Mallet—Paret [6,73 were a stimulus for

considerable research on bifurcation from an isolated solution

V . -
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and have been applied to a number of problems in the buckling of

rectangular plates and shells (see [8]).

In an effort to understand other problems in bifurcation

theory , Hale and Taboas [9, 10] and Hale and Rodrigues [11,12] have

been considering bifurcation from families of solutions. Due to

the complic ations that are involved in this more general problem,

the first efforts have been to understand specific examples in

detail. In [11 ,12], Hale and Rodrigues studied the bifurcation

of 2~T/w— periodic solutions of Duffing ’s equation

3x + x + p1x + p2x = p3cos Wt (1)

where p1,p2,p3, l w-li are small independent parameters. A complete

analysis has been given. To carry out the analysis, it was

necessary to obtain a priori bounds on the solutions, scale the

variable to reduce the discussion to solutions near zero, and to

exploit the symmetry in the equations. The manner in which the

symmetry was used has some general implications in bifurcation

theory as has been shown by Rodrigues and Vanderbauwhede [13].

In [9], Hale and Taboas considered the second order equation

+ g(x) = X * + p f ( t )  ( 2 )

f(t+2Ir) = f(t)

where X ,p are small independent parameters and xg(x) > 0,

x ~ 0. Supposing that the equation

.

— -  
__
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+ g(x) = 0 (3)

had a 21T—periodic solution corresponding to an orbit r in

(x,x)—space, they determined necessary and s u f f i cient conditions

for the existence of 211-periodic solutions of (2) near r for

(A ,p) in a neighborhood of (0,0). This problem is global in

nature and cannot be reduced to finding solutions near a given

point as in Du f f i ng ’s equation. An interesting implication of

the results is the fact that there may be 211—periodic solutions

of (2) near r which are nice functions of A ,p but which do

not approach a 211-periodic solution of (3) as (A ,i.i) -
~ (0,0) —a

phenomena that cannot occur if A = ki.i , k fixed. The case

A = k~.i, k fixed , is the usual type of one parameter problem

considered in the literature. The implications in general

bifurcation theory are given in 110].

III. Stability of Functional Differential Equations (J.K. Hale).

In recent years, there has been considerable interest in

the development of a theory of functional differential equations

for initial data belonging to spaces other than the space of con-

tinuous functions. The spaces of fading memory of Coleman and

Mizel (which arise naturally in certain applications in material

science) are an excellent example. This space is essentially

X L[(0,°°);g] with a weight function g. There are many other

possibilities for the initial data and each such space requires

that the fundamental theory be completely redeveloped . In [14],

Hale and Kato have given abstract properties on the norm in a

- ~~~~~~~~~~~~~~ ~~~~ i~E.i TI 11111 
_ _ _ _ _ _ _
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Banach space ~~~( _co , 0) of functions from (—‘°,0] into 1R~

which will ensure that the existence , uniqueness and continuous

dependence results are “alid for initial data in ~4(—°’,0).

They also discuss properties of the norm which will ensure that

an orbit which is bounded in .Q(_co ,0) is precompact in .~~(-°~,0)

as well as those which guarantee that asymptotic stability in ]R’~

is equivalent to asymptotic stability in ,~~(-“‘,0). If

= {4 E .~~(~ 0D , 0 ) :  ~‘ ( 0 )  = 0 } and S ( t ) : ~ o ( — 0~, O ) -

~

is def ined by

S(t)~~(O) = 4~~t ÷ O ) ,  t + 0 < 0

= 0

for t > 0, 0 E (-~ ,O], then the most important hypotheses on the

norm in ~~(_co ,0) is that constant functions belong to ~~(-~‘,O)

and S(t), t > 0, is a strongly continuous semigroup of operators

such that there is a to > 0 so that I 1S (t0) H < 1. The latter

norm is easy to compute for the classical spaces used. Under these

hypotheses, it is indicated in [14] that a qualitative theory

should be possible in these spaces and it should be as complete

as the classical one contained in Hale [151.

Paulo Lima [16], a student of Hale , has completed his

dissertation on equations with fading memory , has shown that the

Hopf bi furcation theorem is true , and he has made applications of

this result to equations of the type

V 

— 
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*(t) = J k(t-0)f(x(t+0))dO
-~~~

where r > 0 and k > 0 is a function vanishing at zero and

—
~~~ and has one maximum .

Hale and Infante have begun an extensive program on the

stability of linear differential difference equations with constant

coefficients. ‘nZante has already discovered the form for the

Liapunov functions for linear systems. A student, Peter Tsen ,

has obtained necessary and sufficient conditions on the co-

efficients in order to ensure stability independent of the delays.

Another student, Cerino Avellar is studying the stability question

for singular perturbation problems in differential difference

equations. The effects of variations in the delays can be

significant in difference equations and differential-difference

equations of neutral type. Our objective is to understand this

basic problem .

IV. Stability of Feedback Structures (Control Generators)
(J.P. LaSalle)

As outlined in our proposal of January 13, 1976, LaSalle

returned to this problem (he has been thinking about it off and

on for a number of years) of identifying stable (“good”) control

generators, and LaSalle and Max Palmer , a research assistant ,

spent considerable time attempting to develop a theory without

much success. It, however, might be worthwhile to say something

about what they tried to do.

~~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~~~~~~~~ “ “ -- .- - .~~~~~~~~~ - - - 5 - -~~~~~~~~~~
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They considered a control system described by a system of

ordinary differential equations (f: Rn X Rk -
~ R~)

= f(x ,u); (1)

the n-vector x is the state of the system and the k-vector u

is the control. The desired state of the system is the origin so

that x is the state error. Assume that within some bounded

neighborhood G of the “rigin there is an open loop control

u(t,x°) that brings the system from x° to the origin in

time ‘t (x°); that is, if 1T(t,x°) is the solution of

0 0x = f(x,u(t,x ) ) ,  x(0) = x , ( 2 )

then 1T (T (~~°) ,~~°) = 0 for each x° E . The control function

u(t,x°) need not be continuous with respect to either t or

x°, but the solutions are well—behaved (existence , uniqueness and

continuity of solutions in the forward direction of time). Suppose

now that it is possible (as it will be under the above assumptions)

to synthesize the open loop control and to obtain a control law

u = u~(x), so that in the absence of perturbations the two controls

give the same solution curves; that is, if y (t ,x°) is the

solution of

= f(x ,~~(x)), x(0) = x° (3)

then

y(t,x°) = T1 (t,x0), 0 < t < ‘t (x°).

~~~~~~~~~~~~~~~~~~~~~ — 5. “~~~~~‘~~~~~~~~~~~~ ‘~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .—‘-
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These are the simplest types of control generators. Although

neither of these may be “ good ” control generators , it was fe l t

that this is the natural starting point.

As we know , in many cases the r ight -hand side of

equation (3) wil l  have discontinuities , and this raises mathe-

matical and practical difficulties if the system is perturbed .

Such discontinuous differential equations have been the subject

of many investigations (in Germany , for example , after the

V—i-bomb). The first successful mathematical theory was developed

by Andre and Seibert, German mathematicians. Later work was done

by the Russian mathematician Filippov , and by Hermes in this

country , among others. LaSalle suggested that Palmer look at

this theory of discontinuous differential equations , and at the work

of Boltyanski on “regular ” syntheses. Palmer did this and was

able to make some improvements by giving a descriptive theory of

a class of discontinuous vector fields and conjectured some

stability results.

Although this was not a blind alley, LaSalle did not feel

that anything essentially new was being learned. The class of

vector fields covered by the theory and by Palmer ’s improvements

is too restrictive, and something different, more closely related

to reality of practical systems is needed . LaSalle concluded these

questions were too difficult and too unchartered for a research

assistant, and he shifted Palmer to another problem. Last July

during a visit from Mark A iserman , Institute of Control Sciences ,

Moscow , we learned that he and E.S. Pyatnitskii have developed

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — --‘ -- .--‘ --—-.-.-. — .-
~~~~~

—-
~~~~~
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a new and more general theory of discontinuous systems. The

conclusion we had come to in our research is the starting point

of the investigation by Aiserman and Pyatnitskii. They have

O both published and unpublished results, and Aiserman has promised

to send LaSalle copies of their papers as they are written. The

answers here are not easy, and this is only an initial step for

the investigation we had proposed. For the moment, at least,

this research has been put aside. In our proposal of April 12, 1977

LaSalie suggested that another possible approach to this problem,

where the mathematical difficulties should not be as great, is to

replace the continuous model (1) by a discrete model (a system of

difference equations). This he intends to take a look at in the

near future.

V. Stability and Control of Discrete Processes (J.P. LaSalle).

LaSalle has made considerable progress in his investigations

and expository writing on discrete processes. While many of the

results can be said to be new, they are not surprising to anyone

who knows the continuous theory. However, there are many instances

where the discrete analog is not obvious, and some results are by

necessity quite different. LaSalle has completed a first draft of

Parts I and II of his book on “The Control and Stability of

Discrete Processes” . Part I is the linear theory and Part II is

the nonlinear theory. A final rewrite of Part I is almost

completed.

Mike Latina , under the direction of LaSalle, is working on

completing the theory of the stability of discrete processes
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(nonautonomous difference equations). At the moment, he is

working on the relationship between the asymptotic stability of

the limiting equations and the uniform asymptotic stability of

the process. This is an essential step in completing the

extension of Liapunov ’s direct method and in finally obtaining

improved sufficient conditions for uniform asymptotic stability.

The previous theory developed by LaSalle (see [17]) did not cover

uniform asymptotic stability , which in practical applications is

what is wanted. This research is going well, we know what needs

to be done, and expect no difficulties.

VI. Stability of Nonautonomous Retarded Differential
Equations (J.P. LaSalle).

This is a new area of research being investigated by

Max Palmer under the direction of LaSalle. Although the definition

of the skew—product flows is known for retarded functional differ-

ential equations (see 118]), the objectives of Sacker and Sell

in doing this are such that the theory turns out to be unsatisfactory

for stability theory. This is exactly what happened for ordinary

differential equations, and so history will now repeat itself for

functional d i f fe ren t ia l  equations. We know that the key is to f ind

the r ight  topology for the skew—product f low and that there will be

the usual difficulties associated with infinite dimensional state

spaces. Thus, at this point, although we know what needs to be

done, there is some uncertainity as to the difficulties and the

results to be expected. For instance , for difference equations,

the limiting equations can be set—valued difference equations

-- --- ~~~~~~ —5.- -.
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(an unpublished result of Zvi Artstein, Weizmann Institute of

Science, Israel) and for ordinary di f fe rential equations can be a

generalized type of differential equation. What will they be for

difference—differential equations?

- 
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Hereditary Control Problems: Numerical Methods

Based on Averaging Approximations

by

H. T. Banks and J. A. Burns

Abstract

An approximation scheme involving approximation of linear

functional di f ferential equations by systems of high order ordinary

differential equations is formulated and convergence is established

in the context of known results from linear semigroup theory.

Applications to optimal control problems are discussed and a summary

of numerical results is given. The paper is concluded with a brief

survey of previous literature on this class of approximations for

systems with delays. 
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APPROXIMATION METHODS FOR OPTIMA L CONTROL

PROBLEMS WIT h DELAY-D IFFERENTIAL SYSTEMS

11. T. Ba nks

Abstract

We consider optimal control problems for systems described b y

functional differential equations and present approximation ideas

based on elementary approximation results from linear semigroup

theory. We discuss briefly three aspects of these ideas. First ,

we outline a general theory for linear system problems and indicate

extensions to bilinear and certain nonlinear system problems. We

next show how one can apply the result ing theoretical framework to

particular classes of approximation schemes. We conclude with  a

brief discussion of examples and numerical results which support the

e f f i cacy  of our proposed methods.
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Approximation of Nonlinear Functional D i f f e r en t i a l  Equation

Control Systems

by

H. T. Banks

Abs tract

We deve lop a general approximation framework for use in

optimal control problems governed by nonlinear functional

differential equations. Our approach entails only the use of

linear semigroup approximation results while the nonlinearities

are treated as perturbations of a linear system. Numerical

results are presented for several simple nonlinear optimal

control problem examples.
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STABILITY IN NEUTRAL EQUAT IONS

by

Jack K. h ale and Pedro Mart inez— i\mor es

A b s t ra c t

Coupled systems of d i f f e r e n t i a l — di f f e r en c e  and o rd ina ry

d i f fe rence  equations occur in various app l ica t ion s  inc lud ing  th~

theory of transmission l ines [1] and gas dyiiaiuic~; [2] - St~tbi .i i Ly

of linear systems has been discussed by Br ay ton  [1] using Laplace

transform and the problem of absolute stability by Rasvan [12]

using the frequency domain method of Popov.

In this paper , the same problems are discussed by the

following method. By differentiating the difference equation ,

one obtains a system of neutral differential—difference equations.

The desired solutions of the or iginal  problem ar c obtained by

restricting the in i t ia l  data to lie on certain man i fo lds  in the

space of all initial data.  In this way , the methods for  neutra l

equations may be exploited . A crucial step in the process is a

transformation of variables used previously in [8]  for  study ing

stability in critical cases. In addition to obtaining results

for the equations of J3rayton and Razvan , we indicate how our method

simplifies the discussion in [10) concerned with s tab i l i ty  in gener-

al neutral differential difference equations . We also show how

general difference equations can be considered as special cases of

neutral differential—difference equations. Generalizations to ar-

bitrary functional differential equations is also immediate when

this approach is employed.
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RESTRICTED GENERIC BIFURCATIOi~

by

Jack K. h i a le

Abstract. In the past few year s , there has been considerable

attention devoted to the existence of bifurcation for one para-

meter families of mappings. Concurrent with this development

has been the ex t e n s i v e  theory of t h e  w i i  v er~;i I u n l o .1 c h i  i i j  o t

mappings or gener ic  b i f u r c a t i o n  for  f a m i l i e s  of mappings ~.•:hich

depend on a sufficientl y large number of parameters. The

purpose of this paper is to discuss  methods for determining the

nature of bifurcation when the family of mapp ings  has k > 1

parameters , but k is generally smaller than the number of

parameters necessary to describe the universal unfolding . 
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GENERIC BIFURCATION WITH APPLICATIONS

by

J. K. Hale

Abs tract:  This paper is a set of lecture notes on generic

b i fu rcation and its applications with the emphasis on equations

involving more than one independent parameter.  The general

theory is discussed for problems which are degenerate to order

one or two . Applications are g iven pr imari ly  to the buckling

of plates and shells with the parameters representing external

forces , loading, imperfections, cu rvature and dimension .

~ 
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INTERACTION OF DAMPING AND FORCU~G IN  A SECOND ORDER EQUATION

by

Jack K. Ha le and Pl~ cido T~ boas

Synopsis. Suppose X ,;i arc real parameters , f is a scaler func-

tion which is 2’rr—pcriodic , xy (x) > 0 f o r  x / 0 and co!o;idcr tI~o

equation

x + g(x) —
~~~~~~ + ;~ f(t). (1)

For A = p = 0 , every solution has the form x ( t )  = ~~( ( J ( a ) t  -:- cz , a)

for some constants a,a and q (0+2-rr ,a) = ~(O ,a). If there is an

a 0 such tha t 1~ (a 0 ) = 1 ( i . e . ,  there is a 2 Tr —pe r iodic orbi t

in (x ,~~) — s pace) and w ’( a 0 ) / 0, the problem is to characterize

the number of 2 r— p er io d i c  solutions of f loua t ion  ( 1)  ~ihich lie in

a neighborhood of j” for (A ,p ) in a small neighborhood of (0,0).

A complete solution of this problem is given under the hypothesis that
2u 2n

the function h(a) = J [ (t,a0)/~t ] f ( t_ c t ) dt/J [~~ (t,a0
)/~t]

2dt has a non zero

derivative except at a f in i t e  number of points and h” (ct~~) 
-/ 0.

The bifurcation curves in (A,p )—space are determined by the

and are tangent  to the s t r a igh t  lines A = h(ct~ ht at (\i~:) = ( 0 , 0 ) .

In general , the 2 -r i—periodic solutions of (1) are not cont inuous at

( A , p )  = (0 , 0 ) .  The na ture of this d i scont inu i ty  is discussed in

detail .  It is also shown that  a necessary and s u f f i c i e n t  condition

for a 2 ir—periodi c solution x(A,p ) to be continuous at (X ,p )  = (0 , 0)

is that A/p -
~ constant  as A -

~ 0 , p -
~ 0.

-
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BIFURCATION NEAR 1-’AHIL IE S OF SOLUTIONS

Jack K. Hale

Summary: Many investigations in bifurcation theory are concerned

with the fol lowing problem . If M ( 0 , 0 )  = 0 and ~M(0,0)/Dx has

a nontrivial null space , f i n d  a l l  s o l u t i o n s  of the  oqLu ~L i o n

M (x,A ) = 0 (1.1)

for  (x , A )  in a neighborhood of (0 , 0) r X ;~

If dim A = 1; tha t  is , there is onl y one parameter  involved

then the existence of more than one solution in a neighborhood of

zero can be proved by making assumptions only about 3~1 (0 ,0)/3x and

~M ( 0 , 0 ) / ~ x~~A . However , if dim A > 2, then the problem is much more

difficult and more detailed information is needed about the function

M. A ca re fu l  examinat ion of the exis t ing l i t e r a t ur e  for dim > 2

reveals that the additional conditions imposed on ~‘1 imply, in

part icular, that the solution x = 0 of the equation

M ( x , 0) = 0 ( 1 .2)

is isolated (see, for example, the papers on catastrophe theory).

These hypotheses eliminate the possibility that Equation (1.2) has

a fami ly  of solutions conta in ing  x = 0. Such a s i tua t ion  occurs ,

fo r example , for  ~• I ( x , A )  = Ax + N ( x , A ) ,  where A is l inear wi th a

nontr ivial  null  space and N ( x , 0) = 0 for  all x.  There also are

interes t ing applications where Equat ion ( 1 . 2)  is nonl inear  and there

exists a f ami ly  of solutions. For examp le , Eq uat ion ( 1 . 2)  could be

an autonomous ordinary differential equation with i. nonconstant

periodic orbit of period 2 hI w i th  the f a m i l y  of solutions being
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Summary (continued )

obtained by a phase shift. When the differential equation in the

la t ter  si tuation is a Ilamiltonian system , the parameters (A 1,A 2)

could correspond to a small damp ing term and a small  fo rc ing  term of

period 211. To the author ’ s kno wledge , the f i r s t  comoict e invest iga-

tions of special problems of each of these latter types are con tained

in papers by Hale , T~ boas and Rodr igues .

It is t he pur pose of this paper to begin Lhic i!IVc~;L i g c Li o t 1  ol

the abstract problem for Equation (1.1) , especi~ l1 y to e::tend tho

resu l t s  in the paper by Hale  and T~ boas.
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PHA SE SPACE FOR RETARDED EQUAT IONS

WITH INFINITE DELAY

by

Jack K. Hale

Abstract:  It is the purpose of this paper to examine initial data

from a general Banach space. We develop a theory of existence,

uniqueness, continuous dependence , and continuation by requiring

that the space (J
~~~ only satisfies some general qualitative

properties. Also , we impose conditions of which will at least

indicate the feasibility of a qualitative theory as general as

the one presently available for retarded equations with f in i t e

delay in the space of continuous functions. In particular , this

will imply that bounded orbits should be precompact and that the

essential spectrum of the solution operator for a linear autonomous

equation should be inside the unit circle for t > 0. Also, we

impose conditions which imply the definitions of asymptotic stability

in R’51 and ~ are equivalent and that the W—limit set of a pre—
compact orbit for an autonomous equation should be compact,

connected and invariant.

~ 
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STABILITY OF NONAUTONOMOUS SYSTEMS

by

J. P. LaSalle

Abstract

Recent advances in the study of the limiting equations of non-

autonomous systems and the invariance properties of positive limit

sets of solutions motivate improving some of the known results

connected with Liapunov ’s direct method. Here, we give improvements

of a theorem due originally to Yoshizawa and some improved suff ic ient

conditions for asymptotic stability and instability. What we do is

to again generalize the notion of a Liapunov function. At the end,

we point out how the new knowledge concerning invariance properties

immediately sharpens our results.
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NEW STABILITY RESULTS FOR NONAUTO N OM OUS SYSTEMS

by

J .P.  LaSa lle

Abstract

• The new invariance properties that  have been established

for nonautonomous ordinary differential equations greatly extend

the range and power of Liapunov ’s direct method for the study of

the stability of time—varying systems. An essential feature  of

the method is the establishment of a re lat ionship between Liapunov

functions and the location of the positive limit sets of solutions. L
The principal contribution of this paper is a theorem connecting

Liapunov functions and positive limit sets of s uf f i c i e n t  general i ty

to close a gap in the present theory.
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