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SHELL THEORY FROM THE STANDPOINT
OF FINITE EIASTICITY

P. M. NAGHDI
UNIVERSITY OF CALIFORNIA, BFRKELEY

ABETRACT

iz an account of the nonlinear theory of thin shells from the stand-

thig i
point of finite elasticily, together with a brief summary of some related recent
recearches on the subject. The development of the basic theory, as well as a
ircussion of constitutive equations for elastic shells, are presented via a

et npproach on the basis of a continuum model known as a Cosserat swurface
ther than from the three-dimensional equations of nonlinear elasticity.

P
1. INIRODUCTION. GENERAL BACKGROUND.
The development of a complete two-dimensional theory of thin elastic shells
from » three-dimensional equations of classical continuum mechanics is, in

general, a difficult problem. Most of the difficulties arise in the development
of the constitutive equations and remain even when the deformation is emall. The
nature of these difficulties in s derivation from three-dimensional equations has
beon claborated upon previously by Naghdi [1, Section 1]. Because of the dif'-
ficultics just referred to, when dealing with motions and deformations of thin
she li=1ike bodies, it has been customary to employ a variety of approximatc
procodurcos in the derivation of elastic shell theories [rom the three=dimensional
vintions.  Instesd of adopling such a proeodure, we approach the subject hoer
from sanother point of view, namely via the theory of a Co aal (or a dircetoed)
which iv based on a continuum model comprising a material suarfuce in
3=-cpace with a deformable vector field -- called a director -- attachoed
point of the surface. It should be emphasized that a Cosserat surface
iz not just a two-dimensional surface but one which is endowed with structurc.
A general background and motivation for use of a direct approach in shell
il as a further deccription of a Cosserat surface together with some
nd on the subjeet can be found in [1 ].] llere, we limit our-

! R
historicil backg

to only a vrief historical sketch on the basic theory of tCogserat surfacos.

[he concept of 'directed' or 'oriented' media originated in the work of Duhem | 3]
irst systematic development. of theories of oriented media in one, two and
engions (the first two being motivated by rods and shells) was carried

"Aleo,. reference may be made to Naghdi [2] which contains a rapid exposition of
the theory of a Cosserat surface and includes a discussion of its relevance and
npplicability to elastic chells and fluid sheets.
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out by F. and F. Cosserat {h]. In their work, the Cosserats represcated the
orientation of each poiut of their continuum by a set of mutually perpendicular
rigid vectors. The purely kinematical aspects of oriented bodies char:ucterized
by ordinary displacement and the independent deformation of N deformable vectors
in N-dimensional space has been discussed by kricksen and Truesdell (5], who also
introduced the terminology of directors. A complete general theory of a Cosserat
surface with a single deformable director given by Green, Naghdi and Wainwright
[6] wag developed within the framework of thermomechanics; and their derivation
in [©] is carried out mainly from an appropriate energy equation, together with
invariance requirements under superposed rigid body motions. A related develop-
ment utilizing three directors at each point of the surface, in the context of
a purely mechanical theory and with the use of a virtual work principle, is given
by Cohen -nd DeSilva [7]. A further development of the basic theory of a Cosserat
surface is given by Naghdi [1], which also contains additional historical remarks
relevont to oriented continua and the development of the theory of elastic shells.
Before describing the contents of this lecture, it is helpful to provide a
definition for a shell-like body. To this end, consider a three-dimensional body
embedded in a Fuclidean 3-space and let its particles be identified by a con-
vected coordinate systemé ot; (1=1,2,3). Let

p = p(e',6%,6%,t) (1.1)

denote the position vector, relative to a fixed origin, of a typical particle of
the three-dimensional body in the present configuration at time t. In a
reference configuration of the body, not necessarily the initial configuration,
we denote the position vector by

Pi= 2(91,92’93) . (1'2)
If the reference configuration of the three-dimensional body is specified by the
initial configuration, sy at time t =0, then the right-hand side of (1.2) can
be identified with g(ei,( ). DNow, for convenience, set =€ and adopt the
notation

o = (8%g) . (1.3)
Keeping the above in mind, we begin by defining first in descriptive terms what
is meant by a thin shell or a shell-like body in its reference configuration.
Consider = two-dimensional surface, called a reference surface, which may be
defined by the parametric equation §=0; and let R and A3 denote, respectively,
the position vector and the unit normal to the reference surface. Imagine now
material filamente from above and below surrounding the surface along the normal
at oach point of the reference surface. Suppose further that the bounding
surfaces formed by the end points of the material filaments are equidistant from
the reference surface. ©Such a three-dimensional body is called a shell if the
dimension of the body along the nommals, called the thickness and denoted by h,
is small. A shell is said to be thin if its thickness is much smaller than a
certain characteristic length of the reference surface such as the minimum
radius of curvature of the reference surface. If h is constant, the shell is
said to be of uniform thickness, otherwise of variable thickness. A three-
dimensional shell-like body in its reference configuration may be depicted as in
Fig. 1, where §=0 is shown as the middle surface and the bounding surfaces are
specified by € = * h/2 with h a constant. Let the region of space occupied by
the shell in the reference configuration be covered by a normal coordinate
aystem (89,C) with ¢ along the normal to the middle surface and 8% on the
reference surface (§=(=0). Then, the position E of any point of the shell in

2 2

Recall that when the particles of a continuum are referred to a convected co-
ordinate system, the numerical values of the coordinates associated with each
particle remain the same for all time.

3T\'\ the case of a plate, since the reference surface is a plane, the character-

istic length is taken to be the smallest dimension of the reference plane.
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its reference configuration may be expressed as a function ot‘l‘ (8%,¢):

P = p(e%,0) = K(6™) + ca (%) . (1.4)

With the above deseription in mind we now proceed to provide a more general
definition for shell-like bodies in fairly precise terms. Since a material
surface in the three-dimensional body can be defined by the equation £=g(@%),

it follows that the equations resulting from (1.1) and (1.2) with €=£(8%)
represent the parametric forms of the material surface in the present and the
reference configurations, respectively. In particular, the equation € =0 defines
a surface in space at time t, which we assume to be smooth and nonintersecting.
Any point of this surface is specified by the position vector r, relative to the
same fixed origin to which p is referred, where

= r(g",6°) = p(e’,%,0,8) . (1.5)

rile s

Let the btoundary of the three-dimensional continuum be specified by the material
sur faces

Fedl e 5 -
g=6(07,8") , £=8/(6,0) , 6 <§ (1.6)
with the surface £=0 lying entirely between them, and a material surface
2 .
£(o',6°) =0 , (1.7)

which is chosen such that € =const. form closed smooth curves on the surface
QI

By way of additional background information, suppos= now that p in (2-0) is
a continuous function of @*,t, and has continuous space derivatives of order 1
and continuous time derivatives of order 2 in the bounded region €, =€3E).
llence, to any required degree of approximation, p may be represented as a
polynominl in % with coefficients which are continuous functions of e
However, instead of considering a general representation of this kind, we
restrict attention here to the approximation

1 e e A L (1.8)
N o Tw

where r is defined by (1.9) and d-d(e%,t). The expression corresponding to
(L.8) in the reference configuration is

P=R+ED , (1.9)

where B =1(6%) ic the reference value of (1.5) and D= D( 8%) is the reference
value of d. fince a representation of the form (lg) can always be chosen in
any one confipuration without loss in generality, it is of interest to indicate
the relationship between the right-hand sides of (1.9) and (1.4), let D be
specified along the normal to the surface £§=0, i.e., let

D= DAy s (1.10)
where D is the magnitude of D. Then, after equating (1.4) and (1.9), we obtain
¢ = &b (1.11)

the transtormation relation between ¢ and €. Hence tor a shell-like body,
while (1.9) represents an approximation for the position vector in the current
configuration at time t, the simple representation (1.9) in the reference con-
figuration with D specified in the form (1.10) involves no loss in generality.
In the rest of the paper, we consider a fairly general development of the
thoory ot shells by direct approach suitable for application to shell-like
todies as defined in the preceding two paragraphs. Specifically, the next two

]

'For details see [1, pages 442 and 471].
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sections deal, recpectively, with kinemalics and the basic principles for shells
based on a Cosserat surface and section 4 is concerned with a discussion ot
constitutive equations for elastic shells. The final section of the paper con-
tains a brief summary of some relevant rescarches pertaining to elastic shells.
An etfort is made to employ a direct (coordinate free) notation in keeping with
recent trends in finite elasticity and the subject of this symposium. Otherwise
our notation, with some minor differences, is essentially that in [1]. > Through-
out the paper, Latin indices (subscripts or superscripts) have the range 1,2,3,
Greek indices have the range 1,2 and the usual summation convention is employed.

2. KINEMATICS

Deformable media which are modelled by a material surface, embedded in a
Fuclidean 3-space, together with K (K=1,2,...,N) deformable vector fields --
called directors -- attached to every point of the material surface are called
Cosserat surfaces or directed surfaces and may be conveniently referred to as Cg.
In the absence of the directors, we merely have a two~dimensional material
surface which can serve as a model for the construction by direct approach of

= the membrane theory of shells. With K=1, the directed medium is a body C; = C
consisting of a material surface and a single deformable director attached to
every point of the material surface of C. The latter is the simplest model for
the construction of a general bending theory of thin shells; and, for simplicity,
we restrict attention to this particular model in the discussion that follows.®

le:t the particles of the material surface of ¢ be identified by a system of
convected coordinates 8% (a =1,2); let o, the material surface of C in the
present confipuration at time t, be described by its position vector r relative
to a fixed origin; let a_ and a3 denote, respectively, the base vectors along
the 8¥-curves on o and t hﬁe unit normal to ; and let d stand for the director at
r. Then, a motion of the Cosserat surface is defined ] by vector-valiued functions
which assign position r and director d to each particle of C at ecach instant of
time, i.e.,

o =l
r=x(e%t) , a=d(e%t) , [aadléo , (2.1)
where
ar
a = aleht) = —= 2.2)
39

and the condition kQ.L)3 ensures that the director d is nowhere tangent to .
It is convenient to introduce here a slightly different notation than that
adopted in Naghdi [1] and a number of previous papers. Thus, we put

d =a d, =d 2.3)
d =a , d=d (2.3
and observe that, in view of (2.1), and (2.3), dy4d5,d, are linearly independent
vectors. llence, we may introduce a set of reciprocal Vectors d1 such that

a, ~ad = ¢ (2.4)
~] ~ %
where ﬁf in the Vroneckwr cymbol in three-space. Whenever desirable, the nota-
tions d; - d ,Q? d,) and ( ,d) will be used interchangeably throughout the
paper ifp-ndlnr on the p.rxg‘ulwr context.
Congider now a reference configuration, not necessarily the initial
t/‘
he coordinate free notation employed here is similar to that used by Carroll
and Naghdi [8] but some of the definitions are different.

“For a more general development of the theory of Cosserat surfaces see for
example soction 2 of a recent paper by Green and Naghdi [9] which, however,
denls with fluid sheets and water waves.

"For convenience, we adopt the notation for r in (1.5) and (1.8) also for the
surface 'ﬁ.l)]. This permits an easy identification of the two surfaces, if
desired.




configuration, of the Cosserat surface C. In the reference confipuration, let
the material surface of C be referred to by § with R as its position vector: let
ﬂa»i’ denote, respectively, the base vectors along The 8%-curves on % mnd the
unit normal to 93 and let B be the director at §; Then corresponding to (2.0);
we have

E‘ = !L(aa) ’ ’ll = 2(60) ’ [é_]_,{\g!;),] £0 , (2.9)
where
- AR
A =A (g') = — (2.6)
~x ~ aerx

and LE.’,\)2 ensures that D is nowhere tangent to the surface S. 1f the reference
configuration of C is specified to be the initial configurstion, eay at time
t =0, then the vector-valued functions on the right-hand sides of (Q.b)a » can b

identified with S(e“,@) and i(e“,o), respectively. Analogously to (2.3)) we set
D =A D, =D 2.7)
~ ~ 0 M~ (

and note that the dual of (2.4) is given by

)
Ei' s 6i . (2.8)
As in [8], we introduce the notations grad and Grad to denote the right

cpatial and material gradient operators, respectively, with respect to the
position on the surface o in the current configuration and on the surface 8 in
the reference configuration. The corresponding divergence operators will be
denoted by div and Div, respectively. In particular, for a vector-valued func-
tion V(g¥,t), we have

grad V=V ®a% , divVv=V .a%

~,a ~ N’G ~ (‘(‘.())
Grad V =V @a% , Divv=v -a% .
~ ~y Y A~ ~ ~ A~
8
We define o measure of deformation by the tensor F, namely
F = 2‘132‘ = Grad r + 133133 x (2.10)

where the symbol ® denotes the tensor product. Keeping the notations (2.3) and
(2.7) in mind, we observe that

FD =FA =a =d_,
~ A~y o~~~ ~ ~ (2.11)
3 R s d=d .

T T

by the definition of the determinant of a second order tensor and the conditions
(2.113 and (2.9),, as well as the fact that for continuous motions the scalar
triple products in (2.1) and (2.5) must have the same sign, we obtain

t F = ) D : 2.12)
det F [dﬁddheg}]/[hie%l >0 (2.12)

The tensor ¥, a linear operator on vectors in 3-space, is noniin{ndar: and there

exists, therefore, the inverse deformation gradient tensor E: defined by
-1 i
= ®d™ . 2.13)
Rl (2.13

The inverse operator =1 transforms vectors in the present configuration into
vectors in the reference configuration, i.e.,

I

“The symbol F in the paper of Carroll und Naghdi [8] stands for a different
quantity. The term Grad r in (2.10)2 corresponds to the deformation gradient
tensor ¥ in [8].

R st
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Bd, = D, 2.14)
and it follows that
8 =] i &
Vs R PTE - - - 2.15
F7F = F F I=4d 8d D, @D~ (2.15)

where I is the unit tensor in 3-space. We also introduce here the director
gradient tensor by

G=Gradd =d, ®D%=4 a@n"‘ . (2.16)

The velocity and the director velocity vectors at a point of o and at time t
are defined by

v

~

re%t) , w=d(e%t) , (2.17)

where o superposed dot denotes the material time derivatives with respect to t

holdin, 8" fixed. Since I'1 =V sy We have
24
~N ~Q

F=ad®D =d @0%+d 805 = v ®d%+weD’ |,
~ ~NL o~ ~NY o~ ~3 o~ ~ o~ ~ o~ (2.18)
G=d, ®@0%=w ®p¥ .
~ ~3,a ~ ~ o~
Also,
P e d el = grad v +w@dS .
~~' 1~L ~ ~ o~ A~ (,7.]())
P = w ®dY = grad w .

3. BASIC PRINCIPLES

In the development of this :‘-A-ot,iun, we follow the mode of derivation of the
basic theory employed by Naghdi (1, Section 8]. Let P, bounded by a closed
curve ap, be any part of g occup L“d bv an arbitrary material region of the
surface of ¢ in the present configuration at time t and let

a a
v=yd =vd (3.3
te the outward unit normal to 3P. We now introduce various field quantities

associnted with the Cosserat surface as follows: The mass density p= p(aY,t) of
the surface o in the present configuration: the internal mechanical action across
any curve aQ characterized h,f the contact force” n= (e“ L \,\ and the contact
director foree m= 'v\(e 5% 5 \; » each measured per unit lcnrth Of a curve in the
present configuration; the intrinsic (surface) director force k *k(e ,t) per unit
areca of o, which makes no contribution to the supply of moment “of™y momentum; the
1seigned force f - x(e t ) and the assigned director force 4- l(eo t), each mr
unit mass of the cvzri'xc" o+ and the inertia coefficients °M~°' (e¥), (M=1,2),

are ageumed to be independent of time. We assume that the knmtlc -*nu‘py oi‘ the
osserat surface C per unit area of o in the present configuration is given by

" 1 ¢
= 5 v 4 W+ . 3 3.2
T =3p(y-y+2av -Wtaw.u) (3.2)
We further define the momentum corresponding to the velocity v and the director
momentum corresponding to the director veloclty w by
3

av - Plyta

%) o Ge=elagyran) (3-3)

"E'h' notations for the contact force n, the contact director force m, and the
surface director force k differ fron’ | Naghdi [1] and the previous papers on
the subject. 1In fact, the voctor fields n,m,k of the present paper correspond,
respectively to N,M,m in Naghdi (1].




Also, the physical dimensions of p,n,f are
~~

=
phys. dim. p = [METS]
e -2 (3.4)
phys. dim. m = [MP"S] ., phys. dim. £= [E2°] ,

where the symbols [L],[M] and [T] stand for the physical dimensions of length,
mass and time. The dimensions of the vector fields m, £ and k depend upon the
physical dimension of® 0 d. Here, we choose ¢ to have the difiension of length
and then m,4 will have the same physical dimensions as n,f in (3.2) while kK
will have the physical dimension of [ML™ '1"2J

In terms of the foregoing definitions of the various field quantities and
with reference to the present configuration, the conservation laws in the purely
mechanical theory of the Cosserat surface C are

d.f
pdo=0 ,
dtp

o \
;_t.i p(l’,"’l‘i’d":.:r";d""f DA 4
e P
d J‘ /
= pkav+-aw)aa=I(pzkdo+J mds |, (3.9)
R 3~

ﬁj [rxg\ oal».wulx(a 4aw)Jdo

= rpk£x£*gx£)dc+j (an+gxm)(lﬁ .
’p T 7

where do is the element of area and ds is the line element in the surface .

The first of (3.5) is a mathematical statement of the conservation of mass,
the second that of the linear momentwm, the third that of the director momentwn
and the fowrth is l.hw conservation of moment of momentum. The basic structure
of (3. ‘l and (3.5), and their forms are analogous to the corresponding conserva-
tion l\w" of the classical three-dimensional continuum field theory. The
structures of (3.5); and (3.5)), are less obvious, but a motivation for their
tforms ic provided by a d'-riv:\tlon of the basic field equations for shell-like
bodies obtained from the three-dimensional equations of continuum mechanics in
which the posxtlon vector p in 3-space is approximated by an expression of the
form (1.8).

It should be noted here that the conservation laws (3.9) are consistent
with the invariance conditions under superposed rigid body motions, which
ordinarily have wide acceptance in continuum mechanics Morcovor. as shown in
[1, Section 8], the conservation laws (3.5);, (%.“‘q sni (3.5)), are equivalent
to, and cun be derived from, an appropriate conservs ation of ene
variance conditions under superposed rigid body motions. The conservation law
for the director momentum must be postulated separately.

etwrning to the conservation laws (3.5), we note that under suitablie
continuit xs:'mx;vtionr the contact force n and the contact director force m can
be -,xprebsed in the forms (for details see [1, Section 8]): £

and t in-

L\)prvmlinu on the choice of the physical dimension of d and with refercnce to
Q,’/‘l_ and k, the terminologies of the contact director couple, the assigned
director couple and the intrinsic director couple, respectively, are also used
in the literature. In particular, the latter terminologies are employed in
[1]1, where d is taken to be dimensionless.

At the integrals on the left-hand sides of (3.° ;\2 ), allow for coupling in
inertia terms, they are slightly more general thad the corresponding expres-
sions in [1]. The conservation laws (3.5) with the coefficients @ =0,

ay =af 0 reduce to those given by equations (8.17) in [1].

Te




o P P ;
n =N =N n=My =M .0
gl =By . a=Mv =¥y , (3.6)
where the sccond order tensors ’X!,M and the vectors Na,L are related through

N=d N | g":wr"’ 3

2 o (3.7)
M=d ®M* , M = md
~ ~NY o~ ~ ~ ~

and the superscript T denotes transpose. Also, for convenience, we introduce a
tensor ¥ through

K=4,8k , k=Kda . (3.8) .
With the use of (3.6) and by usual procedures, from the conservation laws (3.5)
follow the local equations in either of two equivalent forms:

L o
pa® = A or p+pa%.v =0 ,

~ ~,a

L{“la“ oL = p(L+agw)

o i (3.9)
Moot o= = olayv+au)
a xN¥+dxk+d xM¥=0
~ o~ ~ o~ o~y o~ ~
or
ptpdivv=0 ,
div N +pf = p(Vv+aw) ,
T . ; (3.10)
div M +pp-k = O(al}y a:,:‘;) -
(N+K+G P M) = (N+K+G iy M)T "

where X\ is a function of eu only, a comma denotes partial differentiation with
respect to 87, a vertical line stands for covariant differentiation with respect
to the metric tensor of the surface o and

t
a® = la.a.a % 3edi)
; [~l~x.”~_s] 3
ALlbu, by the definition of the right divergence of a tensor field, we have

= B
-z ol & . - e ¢

div N v , aiv M =M F (3.12)

~ ~ la ~ ~

It is interesting that the last statement in (3.10) is similar to the symmetry of'
the stress in the three-dimensional theory. Furthermore, it may be observed that
B X ;.f‘.. i_yﬁ :m““l i,alx 'T“ are, respectively, the axial vectors of [} -5’], LK -K]
nd t(G F*M)™ =G F ~M}.
A€ €his point; i’ is desirable to make some observations concerning the two
sets of fiecld equations (3.9) and (3.10). If one assumes an expression of the
form (1.8) for the position vector of the shell-like body, then field equations
of the same form as (3.9) can also be derived from the three-dimensional field
equations of classical continuum mechanics by suitable integration with respect
to # between the limits £; and §, defined in (1.6). In a derivation of this
kind, one also needs to define appropriate resultants corresponding to }f,h,hf’\
as well as certain integrals corresponding to the inertia coefficients. 3

The nesigned field f, which occurs in the equations of motion (3,9)§ and
\2.1“‘:\, represents the combined effect of (i) the stress vector on the major
surfaces of the shell-like body denoted by f. and (ii) a contribution arising
from the three-dimensional body force denot,z-ﬁ by fy. A parallel statement holds
for the assigned field g in (3.9)), and (3.10)3. Thus, we may write

L5t v A Bk - (3.13)




The various quantities in (3.13) are {ree Lo be specified in o manner which de-
pends on the particular application in mind and, in the context off the theory of
n Cosserut surface, the inertia coefficients require constitutive equations.
Indeed, both B and .@c’ as well as fy and .&b’ can be identified with correspond-
ing expressions in a derivation from the three-dimensional eguations (for details
gee [1,2]). Likewise, the inertia coefficients may be identified with casily
accessible results from the three-dimensional theory.

Poth sets of equations (3.9) and (3.10) are simple in appearance but they
conceal the relative complexity of the results. Although it is the component
forms of the equations of motion that are useful for application to specific
problems, on occasions the forms (3.9) and (3.10) offer some advantages,
especially in discussions pertaining to aspects of the general theory. Either
of the Lwo sets can be expressed in ‘cormu of tensor components referred to either
the basis a, = (a ,ag) or the basis g; = »d,) defined by (2.3). We do not dis-
play res ult,'L of this kind herce but nuto t.mt. t.h component forms of (3.9) in
terms of tensor components referred to a; are presented and utilized in (1)

Before closing this section, we recall that the rate of work by all contact
and assigned forces acting on the part P and on its boundary 3@ minus the rate
of increase of the kinetic energy in @ can be reduced to

jp(t‘-v+1,-w)da+j (nev+m. w)ds

T BT
- — = 7 = = < L)
Ty JP‘ p(\ V20V - Wt aw wdc IPdo 3 (3.14)
where
P= N v +k-wrME
A O R B
tr{ll grad v+ K(w $d§) +M grad w}
= tr{[ (WK)F + M i‘.]:w'l} ’ (3.15)

L. ELASTIC SHELLS

Within the scope of the general theory of a Cosserat surface, we discuss
bLrie the constitutive equations for elastic shells in the presence of finite
deformation. ‘Preliminary to the discussion that follows, we assume the existence
of a strain energy or stored energy per unit mass y=y(6%,t) such that pf is
equal to the mechanical power defined by (3.15), i.e.,

P=py - (4.1)

ing, we note that by use of (4.l) and the definition of the strain energy
serat surface C, namely

= Ippw do (h.2)

from (3.13) follows the analogue of a well-known result in the three-dimensional
theory: the rate of work by the contact and the assigned forces and director
forces acting on @ and on its boundary 3P is equal to the sum of the rate of
kinetic energy in @ and the rate of the strain energy in @.

Returning to our main objective in this section concerning the development
ot ponlinear constitutive equations for elastic shells, we assume that the
strain energy density § at each material point of C and for all t is specificd
by a response function which depends on r,d and their partial derivatives with
respect to 8. But since the response r‘nnctlon must remain unaltered under
superposed ripgid body translational displacement, the dependence on r must be
exeluded.  Thus, the constitutive assumption for the strain enerpgy density can
be written as

! dgd  y X h.3)
* (£’ar~a~,a ) ( 3




wnd we nlso moke similar constitutive assumptions for E’.h,_ff’. In these con-
stitutive equations, which represent the mechanical response of the mediuwm, the
dependence of the response functions on the local geometrical properties of a
reference state and material inhomogeneity is indicated through the argument X.

A general development of various aspects of constitutive theory of elastic
shells based on assumptions of the type (4.3) or variants thereof is given in
[1, Section 13]. 1In the rest of this section, we limit the discussion to an
elastic shell which is homogeneous in its reference configuration and suppose
also that the dependence of the response functions on the properties of the
reference state occurs through the values of the kinematical variables in the
reference state. Then, in place of (4.3), we have

= kfr @G SR ) (4.4)
w(~,0,~,~’a ? ~ ~,a 2

with similar assumptions for Na,"r,Ma. If instead of the kinematic variables in
(4.%) the response functions are v‘lgmed to depend on Grad r,d,Grad d end their
reference values, then we may write

=
¥ = y(Gred r,d,Grad D : Grad R,D,Grad D) ,
S ~ paths =

with similar assumptions for N,k.M Still another form for the response func-
tions could involve the tensors I G. In this connection, we observe that the
kinematic measure i in (2.10) n]rt-ady_involv'-.“» the reference values A  and D o
that a response function of the form § may be expressed as a different function
of F,i and the reference value of §. Thus, corresponding to the assumption (h.W)
we may write

¥ = @66 S (k.6
AU RE
‘_'h, re
G=Graa D =D, 8D¥ |, (4.7)
R~ ~ ~3,0  ~

along witn

similar asswunptions for N,K,M.
ping the above constitutive assumptions in mind, with the use of (4.1)
md (3.15 'l » 2, by usual techniques we obtain the following alternative forms

for the condtitutive equations:

N o g okl - - I 1 4.8)
&R Rl Rl e
~yQa T ~y
or
N G .,.___J_ 5 QJ. N = jrad .IL:.’J.)T L.qg)
N = p Grad r (37 rad T o de=pn M p Grad r(=%) (4.9)
or
@ : YT e T BT 4 4
p(d 8D s K=ol ﬂgi‘)( ) .J‘i«o{"\al,’ —o',reux;\a; o (L. 1

In addition, the stra 1m energy response functwn in (4.8) is restricted by the
invariance condition™? -

| ’
r X J—d + Li X ’l + d X Sdb = 0 o)
~y ar o ~ya ad o =

~y ~y

while the corresponding restriction for w is

o e a oy Y T 3, WN\T, . 3%, 1
E=5" 4, B N«x&ﬁ)« \A(-a% + (9:-18’2 r(g%) 42\5% “ (4.12)
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This form was employed in the paper of Carroll and Naghdi [8].

l".l'ompnr',‘ the combination of (4.8) and (4.11) with (3'Q)h'




A condition similar to (4.12); holds for th function y in (4.9).

We do not discuss here the reduced forms of the above constitutive equations
resulting from invariance requirements under superposed rigid body motiocuns, but
for such reductions refer the reader to [1, Section 13]. Just as with the
equations of motion, it is necessary in applications to specific problems to
obtain alternative forms of the above constitutive equations or their reduced
forms in terms of tensor components. Such component forms may be expressed with
ect to bases a;. or :l » Or corresponding bases in the reference configura-
ticn. Reduced forwus :if -\fa.W,‘ have been utilized extensively in [1, Chapters D

1

and Ej.

re

. ADDITIONAL REMARKS

In this section we briefly comment on some special cases of

theory nnd also mention some recent researches which bear 2 ts
of elastic shells. Although these developments will be d ntext

of a mechanical theory, some of the references cited are somewt general

and include thermal effects.
As noted in Section 1, the well-known membrane theory of
obtained as a special case of the general theory discussed
suppressing the effect of the director and corres
this is discussed briefly in [1, Section 14]. A development of an
theory, known as the inextensional theory, wherein the length of
the surface of C is assumed to remain constant thro 1
contained in [1, Section 14]. Similarly, a nonline:
lirect spproach, motivated mainly by the classical
i given
constrained theory of an elastic Cosserat ¢
n and Naghdi [10] and includes as a special case a theory which is in 1-1
correspondence with the restricted theory mentioned above
The nonlinear constitutive equations in Section 4 are valid for an elastic
rat surface which may be anisotropic with reference to preferred directions
einted with material points of C. A general discussion of mat
for chells is given by Naghdi [1, Section 13]. Carroll and
quently examined the influence of the reference geometry on the r
ic shel tence of a local preferred state of the body
nce of the reference geometry, as in (4.h4),
onstitutive variables in the preferred state.
‘or elastic shells have been discussed also, from
ricksen [11] who indicated in [12] a compari-

ding kinetic va

ions is also
ory of shells
sponding to

Sections X(

1¢

S Lt cussed by

ic shells by
then stipulating that t
through the s

ial =)

different

son with the results 1 i %
fome general aspects of wave propagatic in elastic shells, based on the
of a Cosserat surfac mve kb cus i ricksen [13]. A related

propaga tion in a surface not endowed
and Suh [14].
s large deformation of an
proble of stability and vibrations
deformed plates, «d by Green and Naghdi [15). For a

linear ions characteri the initial mixed boundary-value

of elastic shells, Naghdi and Trapy 16| have obtained a uniqueness

ithout the use of definiteness umptions for the strain energy density.
theorem in [16] holds for nonhomogenec i anisotropic shells undergoing
emall motiong superposed on a large deformation.
In still another study, the theory of a Cosserat surface has been em;

by liapghdi [17]) to formulate contact problems of shells and plates. 1In the
derivation of shell theory from the three-dimensional equations, equations of
motion in terms of resultants and detailed consideration of constitutive equa-
ticns for chells are usually obtained relative to an interior surface, rather
than one of the major surfaces of the shell-like body which may be the contacting
curface; the interior surface ordinarily is identified with the middle surface of
the shell or plate in the reference configuration. In the development of shell
theory by direct approach, although the material surface of C may be identified
with any surface of the (three-dimensional) shell-like body, nevertheless the

on the subject,
directc

The theory of small def

r'y Was §

sserat surface,

s

loy




complete discussion of constitutive equations and the identification of the §
inertia coefficients and the assigned fields again require explicit use of a
reference surface in the shell-like body. For certain problems it is more natural {
and conceptually more appealing to select one of the two major surfaces as the
reference surface but then the detailed available development of the constitutive
equations, as well as identification of such quantities as the inertia coeffi-
cients, have to be reconsidered relative to the new surface. This problem is
resolved in [17) by deriving appropriate transformation relations which relate
the kinetic variables I ,k,M¥ (and hence the response functions) in the two h
formulations. The results in [17] are applicable to any shell-like medium and
their validity is not limited to elastic shells alone.

IFinally, we briefly describe here the results of a recent study by Naghdi
and Tang [18] concerning controllable deformations that can be maintained, in
the absence of body force, in every isotropic elastic membrane by the applica-
tion of edge loads and/or uniform normal surface loads on the major surfaces of
the thin shell-like body. The static solutions of finitely deformed membranecs,
which are valid for both compressible and incompressible materials, are obtainecd
with the use of a strain energy response function which depends on the metric
tensor of the membrane in its deformed configuration. The main results are
summarized by several theorems and their corollaries in accordance with three
mutually exclusive cases for which the initial undeformed surface of the membrane
{which may be a sector of a complete or closed surface) is, respectively, develop~-
able, spherical and a surface of variable Gaussian curvature satisfying certain
differential criteria. The corresponding deformed surfaces are, respectively,
a plane or a right circular cylinder, a sphere and a surface of constant mean
curvature. These results are exhaustive in that they represent all finite
deformation solutions possible in every isotropic elastic material characterized
vy the strain energy response mentioned above. Also discussed in [18] are some
speciual cases of the general results and several families of solutions in terms
of an alternative description which should be useful in application and which
permit easy interpretations.
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Fig. 1. An element of a chell-like body with uniform thickness in a reference
configuration showing the middle surface € =0 and the major surface:
£ = L h/2. Also indicated are the position vector R from a fixed origin
to a point on the middle surface g =0, the position vector I to a point
of the region of space occupied by the shell in the reference configura-
tion and the unit normal A, to the middle surface.
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