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ABSTRACT

In an important but apparently little-known result,
M. Iri has given necessary and sufficient conditions for a
linear program to be solvable as a network flow problem.

For tutorial purposes we recapitulate his result, though
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from a different perspective. Then in the same spirit we
characterize linear programs that are solvable by the

matching algorithm.
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: Introduction : ;

Since we have no solution technique of guaranteed
efficiency for a general integer program, one typically
attempts to solve a given problem by exploiting special
structure. Most optimistically, one hopes to rzcognize
the problem as amenable to one of the special algorithms
of guaranteed efficiency, such as éhe minimum cost net-"
work flow.algorithm [ 8] or the maximum b-matching algo-
rithm [6, 7]. Indeed, many papers have "solved" problems
by revealing their hidden network flow or matching struc-

ture (e.g., Bratley et al. (2], Dantzig and Fulkerson [3],

de Werra [4 ], Dorsey et al. [5], Fujii et al. [9 ], Love
and Vemuganti [18], Veinott and Wagner [19]). The pro-

blems are considered solved because they are "equivalent"
to network flow or matching models, which are themselves
efficiently solvable. We formalize the notion of equivalence

and develop conditions to aid in recognizing it.

2. Equivalence of Linear Programs

Consider the linear program
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which we may write with the addition of slack variables as
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Now if T is a nonsingular matrix, the transformed problem

max CX

s.t. [TA, T] X = Tb (2.3)
x>0

is equivalent to (2.2) in the sense that x is feasible to
(2.2) iff x is feasible to (2.3). 1In the same way the in-
teger-constrained versions of (2.2) and (2.3) are equivalent.
We have changed merely the representation and not the essen-
tial structure of the problem. Thus solving one version of
the problem solves the other. This suggests that we identify
conditions on (2.2) that enable us to transform it to an

equivalent network flow or matching problem.

3. Network Flows in Disguise

In an important series of papers.[13-15], M. Iri has ex-

plored conditions under which a linear program may be solved

by the network flow algorithm. Unfortunately his results




seem to be little known in the MS/IE/OR community. This is
3 due in part to the limited availability of the journal which
he favored. Also his work is couched in the special ter-

minology of electrical engineering, which might have limited

its accessibi}ity. Recently some of his results were inde-
pendently rediscovered by the authors. Our approach, however,
represents a slightly different viewpoint, one which we think
may be of more immediate intuitive appeal. In the interest
of sharing Iri's results, the following recapitulation, re-

flecting our particular perspective, is offered.

Terminology

As in Johnson [16], a graph with directed arcs (i.e.,
a head at one end and a tail at the other) is a network.
A graph having only arcs which are undirected will be re-
ferred to simply as a graph. As in Edmonds et al. [7], un-
directed arcs may be imagined to have a tail at each end and
may be considered "inner-directed." A path v, 51, vy 52,

v Vo ye 8o Vo is an alternating sequence of vertices vj

and arcs Ej where each arc Ej has one end incident to vy_;

and the other end incident to Vj' For a network, a directed

path or dipath is a path with each arc Ej directed from i

to vj. A cycle is a path with i Pmin A tree is a connected

network or graph with no cycles (whether a network or a graph will

be plain from the context). A bl6éom is a graph with exactly
one cycle, that cycle consisting of an odd number of arcs.

Finally, due to the unique correspondence between a network




or graph G and its node-arc incidence matrix, we will refer
to the matrix as G also. Again, context will idehtify G as
a network/graph or a matrix.

Now consider the integer linear program
max cx
b

< 0, integer

where A is an m x n matrix whose every entry is 0, *1
(this may be generalized to account for scaling, as in Iri

[13], b+ is not important to the development). Further-

mor ntries of b and ¢ are assumed to be integer.

-d and Fulkerson [ 8], the network flow algorithm
applies to a linear integer program which satisfies

Requirement 1: All data are integer-valued, and

Requirement 2: The constraint matrix is the node-arc in-

cidence matrix of a network; that is, each column has no
more than two nonzero entries, one a +l1 and one a -1. We

refer to such a matrix as a network matrix.

We seek conditions under which for some T the problem

max cx
s.t. [TA, T]x = Tb, T nonsingular

X » 0, integer

(an equivalent form of (3.1)), satisfies Requirements 1 and
2. For (3.2) to satisfy Requirement 2, it is clear that T

in particular must be a network matrix. In addition we have
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Lemma 3.1: A network matrix is nonsingular iff it is the

full row-rank matrix of a tree (e.g., Johnson [16]). Hence,

. T must be a tree matrix (i.e., the full row-rank matrix of " i
; a tree). i
: As an illustration, consider the tree matrix in Table 1. i
E B
;'Ji I -2 '3 s 5 ;
' j i1 0 06 8 .87
| B |-1 1 0 0 0
i i g e R S ]
R S SR IR el -
é B L0 e =20

Table 1l: Illustration of a Tree Matrix.

| B This matrix corresponds to the network in Figure 1.

1 3
N 1
{i .
i’ root node
)

‘ Figure 1l: Tree Corresponding to the Matrix in Table 1. :
& 4




Observe that a tree matrix has m columns, corresponding to

m arcs of the tree. Similarly, its m rows correspond to m
nodes of the tree. The (m+l)5% node, or root node, is im-
plicitly giﬁen by minus the sum of the other rows of the matrix
[16].

Now tc analyze TA we shall ascribe a natural network-
related interpretation to A. Since T is a tree matrix, the
columns correspond to the arcs of the tree T. We may imagine
that through matrix multiplication this correspondence is
inherited by the rows of A (i.e., each row of A corresponds
to an arc of the tree T). It is then natural to interpret
each column of A as follows:

(1) 834 = +1 identifies arc i in T as a member of
the set Ej.

(ii) ag4 = -1 identifies arc i in T as a member of
the set Ej but with its direction reversed.

(iidi) a4 = 0 indicates that arc i in T is not a

member of the set Ej.

For example, with regard to the matrix T in Table 1, column

= [+1, +1, 0, -1, 0]t identifies as members of Ej the

a

arcs shown in Figure 2.
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Figure 2: Arcs Identified with Respect to Matrix T in
Table 1 by the Column &, = (+1, +1, 0, -1, "

With this interpretation imputed to A, consider the
product TA. As a network matrix, each row Ei of T gives
the degrees of incidence of arcs of T at node i; that is,

(1) t,; = 1 iff the tail of arc j is incident at

)
node 1i.

(ii) tij = -1 iff the head of arc j is incident at
node it.
(iii) tij = 0 iff arc j is not incident at node 1.
Therefore the vector product tiaj gives the net degree of
node i in the set of arcs Ej,and Taj is the vector of net

degrees of the nodes of T (excluding, of course, the root

node) with respect to the arcs in the set Ej. As an illus-

tration, again consider the column Ej = [+1, +1, 0, -1, 0]t
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and the matrix T given in Table 1. TSj = [+1, 0, 0, =2, +1]t,
which gives the net degrees of the nodes A, B, C, D, and E
of Figure 2.

Now in order for TA to be a network matrix, it is
necessary that no column TSj have more than two nonzero
elements. We will argue that as a consequence, the arcs of
a. must form a path in T. Clearly no more than two nodes
of T, plus possibly the root node, can have nonzero net
.. Thus no more than two nodes of T, plus pos-

J

sibly the root node, can have an odd number of arcs of ;j

incident to them. But for any graph, the number of nodes

degrees in a

of odd degree is even [12]. Therefore no more than two
nodes of T, including the root node, can have nonzero net
degree in Ej. Hence the arcs of 5j must form a path [12].
In particular 5j must form a simple path, i.e.,one without
cycles, since T is without cycles.

Now we argue that the path in T specified by Sj must
possess additional special structure. First assume the path
;j does not contain the root node. Then if the net degree
of the initial node is +1, that of the terminal node must be
-1, and those of interior nodes must be 0. But then Sj

orients the arcs of the path to form a dipath, i.e., a sequence

of arcs which meet head to tail. Similarly, if the initial

node is of net degree -1, ;j must still be a dipath.
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Since Ej forms a simple path, if it includes the root

node, it is divided into two parts by the root node. By

the above argument, each part is a dipath. But the dipaths

g
2
3

are aligned, since otherwise the net degrees of the initial
and terminal nodes of Sj are the same. Then, since the two
dipaths are aligned, Ej itself must be a dipath. l 3
Since each column of A chooses and orients arcs of T
to forma dipath , A must be an arc-dipath incidence matrix
for a tree T. Finally we note that since T is an integer
matrix, all data of problem (3.2) are integer, so that

Requirement 1 is met. We have therefore

Theorem 3.1: Problem (3.2) is a network flow problem iff

there exists some tree T for which A is an arc-dipath inci-

dence matrix. i 3
Proof: Since each step of the argument can be made "if-and- §

only-if," the conclusion holds.

QoE-Do

Consider the following instance of problem (3.1),

max cCXxX .
IR e R e T T RS Bl R i
- ol SR S e ol e e el '
= 0 O SR R M T B SRRE SR TRl e N T
b e S MR 0¥ U dap R Rk DR
TR BT S o N SE TR St e T

x > 0, integer
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Matrix A may be interpreted as an arc-dipath matrix on the

tree
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in the following manner,

Thus, transforming the problem via the corresponding

tree matrix gives this instance of (3.2),

max c©x :
Tk v v DR e W B Gl it e HORE
e B WERS v T R Gl YRR B
T oe I B el Sl e REe O R
00 0 EE e ek
o AT WRL T B B S S U

x > 0, integer

which is a network flow problem on the network
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Ta4
It is interesting to note that when A is already a
network matrix, then A describes dipaths on the very simple
tree given by T = I where I is an mxm identity matrix.

This is illustrated in Figure 3.

Figure 3: Illustration of Dipaths Described by

1 0
A= |-1 -1 on the Tree Given by T =
0 1

o
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By this result, recognizing network flow problems is

tantamount to recognizing arc~dipath incidence matrices for

trees. Iri [14] has developed an O(mG) algorithm to do just

this. In fact his algorithm either transforms a problem to

a network flow problem or else, by halting, concludes that
such a transformation is not possible. Special cases of this
have since been investigated by several authors, e.g., Glover
and Klingman [10], Glover et al. [11], Klingman ([17].

To some extent recognition of arc-dipath matrices for
trees can be accomplished by some easily acquired intuition.
Forthnately the idea of "dipaths on a tree" has a certain
amount of intuitive appeal that may be lacking in "primitive
cutsets of a network" in which Iri's statement of the theorem

is phrased. As an example, consider the matrices of conse-

cutive 1l's studied by Veinott and Wagner [19]. One such matrix

is given in Table 2. It is easy to see (Figure 4) that these
matrices describe dipaths on a tree which is itself a dipath

and so possess underlying network structure.

Table 2: A Matrix with Consecutive l1l's in Columns.




Q——0—0—0—0

Figuré 4: Dipaths Described by the Consecutive 1l's
Matrix in Table 2.

v

Most of the models to date which have been recognized
as network flow problems arise naturally as either matrices
with a +1 and a -1 in each column or consecutive 1l's in
each column. As we have noted, both of these structures
correspond to dipaths on very simple trees. Therefore, it
seems reasonable that gaining additional insight regarding

dipaths on more complex trees might significantly expand

oo

the class of problems which can be modeled as network flow

problems.

4. Matchings, Incognito

In the same spirit as Iri, we now ask when an integer
linear program is equivalent to a maximum b-matching problem
and so solvable with guaranteed efficiency. Again, let A be
a 0, +1 matrix and b, ¢ integer-valued vectors. Consider the
problem

max cx
s.t. AX

<
X >

b (4.1)
0, integer

and the equivalent, transformed version

max Cx
s.t. [TA, T]lx = Tb, T nonsingular (4.2)
x > 0, integer
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Now by Edmonds [5], the basic matching algorithm is

applicable to (4.2) when the following are satisfied:

Requirement 1: All data are integer-valued, and

Requirement 2: The constraint matrix is the node-arc in-

cidence matrix of a graph; that is, no column may have more
than two nonzero elements, each a +1. We refer to such a

matrix as a graph matrix.

An expanded form of the matching algorithm [ 7] will in fact

apply even when Requirement 2 is relaxed to

Requirement 2': For any column Ej of the constraint matrix,

) Icijl < 2. Thus, each column contains all 0's except for
)

one +1, or one -1, or one +2, or one -2, or two +1's, or two
-1's, or a +1 and a -1.

We restrict ourselves to the simpler case in order to
more clearly present the ideas involved. Extension to the
more general form of the algorithm is straightforward and is
indicated in Appendix 2.

The derivation of conditions is analogous to that of
Section 3. In this case, it is clear that T must be a
graph matrix.

Lemma4.l : A graph matrix is nonsingular iff it is the graph
matrix of a bloom, or the full row-rank graph matrix of a tree.
Proof: Without loss of generality we may assume T is con-
nected, since otherwise problem (4.2) is separable. Then
since T has at most m arcs and at least m nodes, T contains

at most one cycle. But this cannot be an even cycle. If it
g;fe, with arcs (columns of matrix T) El' Ez, IR EZk' then

) (-1)j Ej = 0, a contradiction to T nonsingular. Thus, T
i=1




contains either no cycles and is a tree, or else contains

exactly one odd cycle, and is a bloom.

To see that such matrices are indeed nonsingular, see

Appendix 1 for a simple inversion scheme. g
Q.E.D. ?

Note that when the more general definition of a matching
matrix is used (Requirement 2'), an appropriately more
general version of Lemma 4.1 ensues (see Appendix 2).

Again, as in Section 3 , we may interpret each col-
umn ;j as picking out and orienting a set of arcs in the
tree/bloom T. However, to maintain the graphical metaphor,
as in Edmonds et al. [7 ], we interpret an undirected arc,
i.e., one corresponding to a column with two +1's, as having

a tail on each end, as in

+1

+1

Such an arc will be called "inner-directed." Thus, when arc
i is reoriented by aij = -1 for some j, it has a head on each
end, and corresponds to a column with two ~1l's, as in

-l

Such an arc will be called "outer-directed."
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As before, TSj gives the net degrees of each of the
nodes of T (except for the root node when T is a tree) in
the set of arcs Ej. Thus, the reasoning of the.previous
section establishes that the arcs of Sj form a (not neces-

sarily simple) path in T. To discover the additional spe-

Ve il

cial structure of Sj' conéider the following,

Case 1l: T a tree

Assume the path ;j does not contain the root node.
Then since the net degrees of nodes interior.to the path
must be zero, a. must orient the arcs of the path to form

J
an alternating path, that is, one in which successive arcs

are alternately inner- and outer-directed, as in

+1 0 0 +1 : net degrees_of
nodes in aj

O—P—‘O‘——?O—P-——*—O: alternating path ;j

Furthermore, so that the net degrees of the terminal nodes

i i AT AN AN BN T 1A P A i L 8 5y TR A Ao i b 3

are +1, the terminal arcs must be inner-directed.

If the path Ej does contain the root node, then since
;j is a simple path, it is divided into two subpaths by the
root node. But by the previous argument, each of these sub-

paths must be alternating and have terminal arcs which are

inner-directed as in




e N A e Sl S AR
‘ ‘ ' o5 s
1 B O"—‘O‘_h\_,""‘—’OHO : path a, ;
- root k|
EF +1 0 node A 0 +1 : net degrees_of
% {; . 5 ; nodes in aj
- Therefore, a must describe a path with inner-directed arcs 1
; such that each path is either
: (i) an alternating path, or else i
5 (ii) a path divided by the root node into.two |
% . alternating subpaths.
: ;; Case 2: T a bloom
%; The previous argument shows that Ej must orient arcs
% ;ﬁ to form an alternating path in T with terminal arcs that
g are inner directed. However, since a bloom contains a 4
: cycle C, an extra stipulation is needed: the alternating ]
: path cannot be only the cycle C, since then one node would
? fi ¢ have net degree +2, as in
3l
-
| +2
;
3
1 0 0
E |
: i Thus ;j must describe an altefnating path on the bloom T
i< with inner-directed terminal arcs and with distinct ter-
minal nodes.
Finally, we observe that since T is an integer matrix,
all of the data of problem (4.2) are integer so that Re-
;}% quirement 2 is satisfied.
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Therefore, we have

Theorem 4.1: Problem (4.2) is a matching problem (restricted

version) iff there exists some tree or bloom T for which A
is an arc~path incidence matrix such that each path
- (i) has inner-directed terminal arcs, and
(ii) has distinct terminal nodes, and
(iii) is either alternating or else is divided by the
root node into two alternating subpaths.
Proof: Since each step of the argument can be made "if-and-

only-if," the conclusion follows.

Consider the following instance of problem (4.1),

max cx
CTEREE NSl W U e, T VR SR RS e
U RN T e e N TR eSS S T
-0 o e Dhe T Rhl BT R G il D S ns S
' x=Db
Il T S R AN T WM T T e
o RS S ] SR i Y e, e
RS W Sk T SN AR B G

x > 0, integer
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Matrix A may be realized as an arc-path incidence matrix
3 on the bloom {

with bloom matrix
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which is a maximum b-matching problem on the graph

Also note that for A already a matching matrix, A

must describe paths on the tree given by T = I.

As an example consider
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Then on the tree given by T = I, A describes paths
with inner-~directed tefminal arcs such that the paths are

divided by the root node into two alternating subpaths, as in

Finally, we observe that conditions (i) and (ii) are
necessary only for the restricted version of the matching
algorithm. Any problem which meets all the conditions of
the theorem but not (i) and (ii) is still solvable via the

generalized matching algorithm.

L Additional Considerations

As 2 practical matter in identifying network flow or

matching problems, the case of eguality constraints must

be considered. Suppose the original problem was of the

form

max cx 1
s.t. Ax = b (5.1) ! _'
x>0 1
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where A is a full row-rank matrix of dimensions m x n (m < n).

Let B be a basis of A so that A may be partitioned as A = [B,N].

Then transforming (5.1) by 13_1 yields the equivalent problem

max cx
s.t. [B™IN,1)% (5.2)
X

to which Theorems 3.1 and 4.1 apply, with A = B-lN.

Note that, if transformable to a network matrix, A must
be totally unimodular since TA must be totally unimodular

[15]. Furthermore, by the correspondence of extreme points,

~

A must have all bases unimodular [1].
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7 ‘ INVERTING A NONSINGULAR GRAPH MATRIX
Inverting a nonsingular graph matrix is similar to ;
inverting a nonsingular network matrix [16]. We consider é
gj the two cases:
ii (i) Let T be the m x m full row-rank graph matrix
%§; of a tree and let r be the root (implicit) node. Then
igf since T is a tree, for any node i there is a unique path
%ﬁ P, to node r. Let Ei be the 0, t1 vector that picks out
%, the arcs in Pi and orients them so that they are alter-
%: nating, with the arc incident at node i inner-directed.
‘§i Then in p; the net degree of node i is +l and that of all
%g; other nodes is 0 (see Example Al.l), so that Tﬁi = Ei'
1% Then if P is the m x m matrix whose ith colum is p;, we :
é; have TP = I, so that P = T T, ?
g; As an illustration consider j
j: Sl il fands W R S
‘ N e R e R O
?‘ B |1 1 0 0 0
T = T B e
3 " R i e
TGS el TR e




corresponding to the tree
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with root node F.

Then B, = [+1, -1, 0, O, +11%, corresponding to the

alternating path
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in which only node A has net degree # 0, so that Tﬁa =

iy BT Y L

Continuing, we compute

(ii) Supposé T is the m x m graph matrix of a bloom.
In this case the odd cycle plays a role similar to that of
a root node. For any node i there is a unique path Pi to
the odd cycle C. Now let ﬁi be the vector that identifies
arcs by entries +1 for arcs in Pi' +1/2 for arcs in C, and
0 for all other arcs of T. Furthermore let the signs of
the entries in Ei be chosen to orient the arcs of P; v 94
to form an alternating path with the arc incident at node i
inner-directed. Then in p; the net degree of node i is +1

and that of all other nodes is 0 (see Example Al.2), so

that Tii = Ei. Then if P is the m x m matrix whose ith

column is 51, TP = I so that P = T L,



As an illustration consider

1 2
Y W A
B 1 1
C 0 0

T =

D 0» X
E 0 0
T LY 0

corresponding to the bloom
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Then Ea = [+1, -1, 0, +%, +%, -%], corresponding to the

weighted alternating path

in which only node A has net degree # 0, so that Tﬁa =
i, Cae b & 01",

Continuing, we compute

Py Py Pe Py Py Py
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APPENDIX 2

RECOGNIZING A GENERAL MATCHING PROBLEM

The most general form of a matching matrix, that of
Requirement 2', may be interpreted as the node-arc incidence
matrix of a so-called "bi-directed" graph [ 7]. According
to this scheme, the rows of the matrix correspond to nodes
of the graph, and the columns to arcs, where

(i) a column with one +1 and one -1 corresponds to a
directed arc, i.e., one with a tail on one end and a head
on the other.

(ii) a column with two +1's (-1's) corresponds to an

. inner- (outer-) directed arc, i.e., one with a tail (head)
at each end.
(iii) a column with ocne +1 (-1) corresponds to a "spike,"
i.e., an arc with a tail (head) at the node end.

(iv) a column with one +2 (-2) corresponds to a loop,
i.e., an arc with both ends incident at the same node, with
a tail (head) at each end. Such arcs are inner- (outer-)
directed.

With this enlarged metaphor, it is possible to extend Lemma
4.1 to

Lemma 4,1': A bi-directed graph matrix is nonsingular iff

it is the full row~rank matrix of a bi-directed graph with at '




L A . & - Als #
o Mo i e ikl N el 2 AR s

most one cycle, that cycle having an odd number of undirected
(i.e., inner- or outer-directed) arcs.

We will call the graph of Lemma 4,1' a bi-directed bloom.

Then the same sort of argument as Section 4 establishes

Theorem 4.1': Problem (4.2) is a matching problem (general-

ized version) iff there exists some bi-directed bloom for
which A describes paths such that the net degree of any

interior node (other than possibly a root node) is 0.
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