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ABSTRACT

In an important but apparently little-known result ,

M. In has given necessary and sufficient conditions for a

linear program to be solvable as a network flow problem.

For tutorial purposes we recapitulate his result , though

from a different perspective. Then in the same spirit we

characterize linear programs that are solvable by the

matching algorithm.
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1. Introduction

Since we have no solution technique of guaranteed

efficiency for a general integer program , one typically

attempts to solve a given problem by exploiting special

structure. Most optimistically, one hopes to recognize

the problem as amenable to one of the special algorithms

• of guaranteed efficiency, such as the minimum cost net-

work flow algorithm [ 8 ]  or the maximum b-matching algo-

rithm [6 , 7 ] .  Indeed , many papers have “ solved” problems

by revealing their hidden network flow or matching struc-

ture (e.g., Bratley et al. [2], Dantzig and Fulkerson [3],

• de Werra [4 ] ,  Dorsey et al. [ 5  ] ,  Fujii et al. [9 1, Love

and Vemuganti [18] , Veinott and Wagner [ 1 9] ) .  The pro-

blems are considered solved because they are “equivalent”

to network flow or matching models, which are themselve s

eff ic ient ly  solvable . We formalize the notion of equivalence

and develop conditions to aid in recognizing it.

2. Equivalence of Linear Programs

Consider the linear program

4
1
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max cx

s.t. Ax < b (2.1 )

x~~ 0

which we may write with the addition of slack variables as

uiax cx

s.t. [A , ‘j i~ = 5 (2 . 2 )

x > 0

Now if T is a nonsingular matrix , the transformed problem

max cx

st. (TA, TI ~ = T~ (2 .3 )

x > 0

is equivalent to (2.2) in the qense that x is feasible to

( 2 . 2 )  i f f  ~ is feasible to (2 . 3 ) . In the same way the in-

teger—constrained versions of (2.2) and (2.3) are equivalent.

We have changed merely th~ representation and not the essen-

tial structure of the problem. Thus solving one version of

the problem solves the other. This suggests that we identify

conditions on (2 .2 )  that enable us to transform it to an

equivalent network flow or matching problem.

3 Network Flows in Disguise

In an impor tant series of papers [13—l5), M. In has ex—

p].ored conditions under which a linear program may be solved

by the network flow algorithm . Unfortunately his results

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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seem to be little known in the MS/lB/OR community. This is

due in part to the limited availability of the journal which

he favored . Also his work is couched in the special ter-

minology of electrical engineering , which might have limited

its accessibility . Recently some of his results were inde-

pendently rediscovered by the authors. Our approach , however,

represents a slightly different viewpoint , one which we think

may be of more immediate intuitive appeal. In the interest

of sharing In ’s results, the following recapitulation, re-

flecting our particular perspective , is offered.

Terminology

As in Johnson [161, a graph with directed arcs (i.e.,

a head at one end and a tail at the other) is a network.

• A graph having only arcs which are undirected will be re-

ferred to simply as a graph. As in Edmonds et al. [7], un-

directed arcs may be imagined to have a tail at each end and

may be considered “inner-directed .” A path v0, a1, v1, a2,

v~_1, ~~~ 
v~ is an al ternating sequence of vertices

and arcs where each arc has one end incident to v~~1

and the other end incident to v~ . For a network , a directed

path or dipath is a path with each arc directed from vJ_ l

to v
3
. A cycle is a path with v0 = v~ . A tree is a connected

network or graph with no cycles (whether a network ora graph will

be plain from the context). A bloom is a graph with exactly

one cycle, that cycle consisting of an odd number of arcs.

Finally,  due to the unique correspondence between a network

• -~~ —. .-• ~~~~~~~~~~~~ .-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—.



or graph G and its node-arc incidence matrix , we will re fer

to the matrix as G also. Again, context will identify G as

a network/graph or a matrix.

Now consider the integer linear program

max cx

s.t. Ax < b (3,].)

x < 0 , integer

where A is an m x n matrix whose every entry is 0, ±1

(this may be generalized to account for scaling, as in In

(13], ~~~~~~~~ is not important to the development). Further-

mor ‘tries of b and ~ are assumed to be integer.

d and Fulkerson [ 8], the network flow algori thm

appiies to a linear ~.nteger program which satisfies

Requirement 1: All data are integer—valued , and

• Requirement 2: The constraint matrix is the node-arc in—

cidence matrix of a network ; that is, each column has no

more than two nonzero entries, one a +1 and one a —1. We

refer to such a matrix as a network matrix.

We seek conditions under which for some T the problem

max c ~
s.t. [TA , T]x = TB, T nonsinqular (3.2)

x ~ 0 , integer

(an equivalent form of (3.1)), satisfie s Requirements 1 and

2. For (3.2) to satisfy Requirement 2, it is clear that T

in particular must be a network matrix. In addition we have

4
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Lemma 3.1: A network matrix is nonsingular if f it is the

full row-rank matrix of a tree (e.g., Johnson [16]). Hence,

T must be a tree matrix (i.e., the ful l row-rank matrix of

a tree) .

As an illustration, consider the tree matrix in Table 1.

1 2 3 4 5

H A ] .  0 0 0 0

H B — i  1 0 0 0

• T =  C 0 0 1 . 0  0

D 0 — 1 —1 1 1

E 0 0 0 —l 0

Table 1: Illustration of a Tree Matrix.

This matrix corresponds to the network in Figure 1.

1

B

2 3

• 4/• root node

~.. —

Figure 1: Tree Corresponding to the Matrix in Table 1.

~~iil -. — ~~~~~~~~~~~~~~~~ ~~~~~~~~~ —•— - — 
. .
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Observe that a tree matrix has m columns, corresponding to

m arcs of the tree. Similarly , its m rows correspond to m

nodes of the tree. The (m+l)St node, or root node, is im—

plicitly given by minus the sum of the other rows of the matrix

[16].

Now to analyze TA we shall ascribe a natural network—

related interpretation to A. Since T is a tree matrix, the

columns correspond to the arcs of the tree T. We may imagine

that through matrix multiplication this correspondence is
• inherited by the rows of A (i.e., each row of A corresponds

• to an arc of the tree T). It is then natural to interpret

each column of A as follows:

Ci) a
~3 

= +1 identifies arc i in T as a member of

the set

(ii) ~~~ = -1 identifies arc i in T as a member of

the set a~ but with its direction reversed.

(iii) a.~ = 0 indicates that arc i in T is not a

member of the set

For example, with regard to the matrix T in Table 1, column

= [+1, +1, 0, -1, O]~ identifies as members of a the

arcs shown in Figure 2.

4 : ;
k • . - .• . — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .. •~~• •
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Figure 2: Arcs Identified with Respect to Matrix T in
Table 1 by the Column a~ = f +1, +1, 0 , ~~•]~

With this interpretation imputed to A , consider the

product TA. As a izetwork matrix, each row of T gives

— the degrees of incidence of arcs of T at node i; that is,

Ci) ~~~ = 1 iff the tail of arc j  is incident at

node i.
-

• (ii) t.. = -1 iff the head of arc j  is incident at

node it.

(iii) ~~~ = 0 j f f  arc j  is not incident at node 1.

Therefore the vector product gives the net degree of

node i in the set of arcs and ~~~ is the vector of net

• degrees of the nodes of T (excluding , of course , the root

node) with respect to the arcs in the set a~ . As an illus-

tration, again consider the column = [+1, +1, 0, —1 , OI~

• • . 7
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ .~ — .• •~
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and the matrix T given in Table 1. Ta~ = [+1, 0 , 0 , —2 , +l] t ,

which gives the net degrees of the nodes A , B , C , D , and E

of Figure 2.

Now in order for TA to be a network matrix , it is

necessary that no column Ta~ have more than two nonzero

elements. We will argue that as a consequence, the arcs of

a. must form a path in T. Clearly no more than two nodes

of T, plus possibly the root node, can have nonzero net

degrees in i~. Thus no mor€ than two nodes of T, plus pos—

sibly the root node, can have an odd number of arcs of

incident to them. But for any graph, the number of nodes

of odd degree is even [12] . Therefore no more than two

nodes of T, including the root node, can have nonzero net

degree in 
~~~~~~~

. Hence the arcs of a~ must form a path [12] .

In particular must form a simple path , i.e.,one without

cycles, since T is without cycles.

Now we argue that the path in T specified by a~ must

possess additional special structure. First assume the path

~~~~

. does not contain the root node. Then if the net degree

of the initial node is +1, that of the terminal node must be

-1, and those of interior nodes must be 0. But then

orients the arcs of the path to form a dipath, i.e., a sequence

of arcs which meet head to tail. Similarly, if the initial

node is of net degree -1, must still be a dipath.

• - • -— . - ~~~~~~~~~~~~~~~~~~~~~~ 
__.~~ J_ ~~~~~~~~~~~~~~~~~~~~ 
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Since forms a simple path , if it includes the root

node , it is divided into two parts by the root node. By

the above argument , each part is a dipath . But the dipaths

are aligned , since otherwise the net degrees of the initial

and terminal nodes of are the same . Then , since the two

dipaths are aligned, 
~~ 

itself must be a dipath.

Since each column of A chooses and orients arcs of T

to form a dipath , A must be an aro-dipath incidence matrix

for a tree T. Finally we note that since T is ~n integer

matrix , all data of problem ( 3 .2 )  are integez , so that

Requirement 1 is met. We have therefore

Theorem 3.1: Problem (3.2)  is a network flow problem if f

there exists some tree T for which A is an arc-dipath inci-

dence matrix.

Proo f: Since each step of the argument can be made “ i f -and-

only—if , ” the conclusion holds.

Q .E. D.

Consider the following instance of problem (3.1),

max~~~
s.t.l i —i 0 0 1 0 0 0 01

2 1 — 1  0 0 0 1 0 0 0 1

3 — l 0 1 0 0 0 1 0 0 ~~= B
• 4 0 0 1 1 0 0 0 1 0

5 0 — l 0 — l 0 0 0 0 l~
x > 0 , integer

L_______________ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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- Matrix A may be interpreted as an arc-dipath matrix on the

tree

A

1
I

F with tree matrix

1 0 0 0 0

— l 1 0 0 0

T =  0 0 1 0 0 

~~~~ • •  ~~~~~~~~~~~~ 
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in the following manner ,

B 

,
,~
/“ i:”

~\

\

I;
~
l

Thus , transforming the problem via the corresponding

tree matrix gives this instance of ( 3 . 2 ) ,

max cx

s.t. 1 — l 0 0 1 0 0 0 0

0 0 0 0 — 1  1 0 0 0

— l 0 1 0 0 0 1 0 0 x = T b

-
. 

0 0 0 0 0 — 1 —1 1 1

0 0 —l —1 0 0 0 —l 0

> ~~, integer

which is a network flow problem on the network

k.~
_ _ _s.~.— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — ~. — ~~ •~_ •— —

~~~ ——~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
_. 
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B c

Ta 2

- D

Ta 3

E

Ta 4
It is interesting to note that when A is already a

network matrix, then A describes dipaths on the very simple

tree given by T = I where I is an mxxn identity matrix .

This is illustrated in Figure 3.

- -  . Figure 3: Illustration of Dipaths Described by

~~~~A = 
~-i -1 on the Tree Given by T ~ t O 1 O~

-

• 

V 1 L ° ° 9  
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• By this result, recognizing network flow problems is

tantamount to recognizing arc—dipath incidence matrices for

trees. In [14] has developed an 0(m6) a1go~ ithm to do just

this In fact his algorithm either transforms a problem to

a network flow problem or else , by halting , concludes that

such a transformation is not possible. Special cases of this

have since been investigated by several authors, e.g., Clover

and Klingxnan [10], Glover et al. [11], Klingman [17].

To some extent recognition of arc-dipath matrices for

trees can be accomplished by some easily acquired intuition.

Forthnately the idea of “dipaths on a tree” has a certain

• amount of intuitive appeal that may be lacking in “pr imitive

cutsets of a network” in which In ’s statement of the theorem

is phrased. As an example, consider the matrices of conse-

cutive l’ s studied by Veinott and Wagner [19]. One such matrix

• is given in Table 2. It is easy to see (Figure 4) that these

matrices describe dipaths on a tree which is itself a dipath

and so possess underlying network structure.

• 1 1 0 0

1 1 1 0
A =

0 1 1 0

. o 0 1 1 •

Table 2: A Matrix with Consecutive l’s in Columns.

-“

~

--

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13
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Figure 4: Dipaths Described by the Consecutive l’s
Matrix in Table 2.

Most of the models to date which have been recognized

as network flow problems arise naturally as either matrices

with a +1 and a -1 in each column or consecutive l’s in

each column . As we have noted, both of these structures

correspond to dipaths on very simple trees. Therefore, it

seems reasonable that gaining additional insight regarding

dipaths on more complex trees might significantly expand

the class of problems which can be modeled as network flow

problems.

4. Matchings, Incognito

In the same spirit as In , we now ask when an integer

linear program is equivalent to a maximum b-matching problem

and so solvable with guaranteed efficiency . Again, let A be —

a 0 , ±i matrix and B, ~ integer—valued vectors. Consider the

problem

max cx
s.t. Ax < S (4.1 )

x > 0 , integer

and the equivalent , transformed version

max cx
s.t. [TA, T]~ = TB, T nonsingular (4.2)

x > ~, integer

~ 

- ~~~~~~~~~~~~~ • •. - . 14 - - - -  — - • . ~~~ . -~~~~ --~~~~~. ~~~~~ . •  . I



Now by Edmonds [5 ] ,  the basic matching algorithm is

applicable to (4.2) when the following are satisfied:

Requirement 1: All data are integer-valued , and

Requirement 2: The constraint matrix is the node—arc in-
- 

cidence matrix of a graph; that is, no column may have more

than two nonzero elements, each a +1. We refer to such a

matrix as a graph matrix.

An expanded form of the matching algorithm [ 7] will in fact

apply even when Requirement 2 is relaxed to

Requirement 2’: For any column of the constraint matrix,

~ Ic 3 1 < 2. Thus, each column contains all 0’ s except for

one +1, or one —1 , or one +2, or one —2 , or two +1’s, or two

-l’s, or a +1 and a -1.

We restrict ourselves to the simpler case in order to

more clearly present the ideas involved. Extension to the

more general form of the algorithm is straightforward and is

indicated in Appendix 2.

The derivation of conditions is analogous to that of

Section 3. In this case, it is clear that T must be a

graph matrix.

Lemma4.l : A graph matrix is nonsingular if f it is the graph

matrix of a bloom, or the full row-rank graph matrix of a tree.

Proof: Without loss of generality we may assume T is con-

nected , since otherwise problem (4.2) is separable. Then

since T has at most m arcs and at least m nodes, T contains

at most one cycle. But this cannot be an even cycle. If it

were, with arcs (columns of matrix T) t1, t2, 
~~

-
~~~~ ‘ 

t2k~ 
then

2k
~ (-l)~ t •  = 0 , a contradiction to T nonsingular. Thus, T
jrl

• - - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - - — ~~~~~~~~~~~~~ -• - • . • - 15
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contains either no cycles and is a tree , or else contains

exactly one odd cycle, and is a bloom.

To see that such matrices are indeed nonsingular , see

Appendix 1 for a simple inversion scheme .

Q.E D.

Note that when the more general definition of a matching

matrix is used (Requirement 2 ’ ) ,  an appropriately more

genera l version of Lemma 4.1 ensues ( see Appendix 2 ) .

Again , as in Section 3 , we may interpret each col-

umn a~ as picking out and orienting a set of arcs in the

tree/bloom T. However, to maintain the graphical metaphor,

as in Edmonds et al. [7 ] ,  we interpret an undirected arc,

i.e., one corresponding to a column with two +1’s, as having

a tail on each end , as in

Such an arc will be called “inner-directed. ” Thus , when arc

i is reoriented by ~~~ = -l far some j ,  it has a head on each

end, and corresponds to a column with two —l’ s, as in

H 
? .1

H

Such an arc will be called “outer-directed. ” 

~~~~~~~~~~ -•~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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As before , Ta 3 
gives the net degrees of each of the

nOdes of T (except for the root node when T is a tree) in

the set of arcs ~~~~~~~. Thus , the reasoning of the previous

section establishes that the arcs of ~~~~ . form a (not neces-

sari].y simple) path in T. To discover the additional spe-

cial structure of consider the following,

Case 1: T a tree

Assume the path . does not contain the root node.

Then since the net degrees of nodes interior to the path

must be zero, must orient the arcs o~ the path to form

an alternating path, that is, one in which successive arcs

are alternately inner- and -outer-directed , as in

+1 0 0 +1 : net degrees_of
nodes in a.

• 
~~~~~~~

-,‘- ~~~ —4~
.
~’.): alternating path

Furthermore , so that the net degrees of the terminal nodes

are +1, the terminal arcs must be inner-directed.

If the path 
~~~~

. does contain the root node , then since

a
3 
is a simple path, it is divided into two subpaths by the

root node. But by the previous argument, each of these sub-

paths muse be alternating and have terminal arcs which are

inner-directed as in 

17
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~Q1 ~Q: path
root

F +1 0 node - 
0 +1 : net degrees_of

nodes in a
3

Therefore , a must describe a path with inner-directed arcs

-
~ such that each path is either

(i)  an alternating path , or else

(ii) a path divided by the root node into .two

alternating subpaths.

Case 2: T a bloom

The previous argument shows that must orient arcs

to form an alternating path in T with terminal arcs that

are inner directed . However, since a bloom contains a

cycle C, an extra stipulation is needed: the alternating

-• path cannot be only the cycle C, since then one node would

have net degree +2 , as in

.

O~~~~~~~~~~~~~~~~0 •
,

• Thus must describe an alternating path on the bloom T

with inner-directed terminal arcs and with distinct ter-

minal nodes.

Final ly , we observe that since T is an integer matrix ,

all of the data of problem (4 . 2 )  are integer so that Re-

quirement 2 is -satisfied .

18 
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Therefore , we have

Theorem 4.1: Problem (4 .2 )  is a matching problem (restricted

version) if f there exists some tree or bloom T for which A

is an arc-path incidence matrix such that each path

Ci) has inner—directed terminal arcs, and

(ii) has distinct terminal nodes, and

(iii) is either alternating or else is divided by the

root node into two alternating subpaths.

Proof: Since each step of the argument can be made “if-and—

only-if,” the conclusion follows.

Consider the following instance of problem (4 .1 ) ,

max cx

s.t. l 1 0 0 1 1 0 0 0 0 0

2 — 1  1 0 — 1  0 1 0 0 0 . 0

3 0 1 0 1 .0  0 - l  0 . 0 0~~~~x = B
4 1 — 1  0 0 0 0 - • 0  1 0 0

5 0 — i . 1 0 0 - O  0 0 1 0

6 0 1 0 0 0 0 0 0 0 1

x > 0 , integer

~~~~~~~~~ ~~~~—~~
—

~~~~~~~~-
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Matrix A may be realized as an arc—path incidence matrix

on the bloom

A

1

B c

• 2 3

D

4 5

E •
6 F

with bloom matrix

1 2 3 4 5 6

A [1 0 0 0 0 0

B~~~ l 1 0 0 0 0

C 0 0 0 0 0 1

D 0 1 1 0 1 1

E 0 0 1 1 0 0

F 0  0 0 1 1 0

• • _._•__ ;.,__ __:.~____
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which is a maximum b-matching problem on the graph

-

~~~~~~~~~~~

D
- Ta 3

• E • F

- Also note that for A already a matching matrix, A
- must describe paths on the tree given by T = I.

As an example consider

1 1 0 
• 

. 

•. -•

1 0 1

0 1 1

__________________ — - — - - — -—- -— -
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Then on the tree given by T — I , A describes paths

• with inner-directed terminal arcs such that the paths are

divided by the root node into two alternating subpatha, as in

Finally , we observe that conditions (i ) and (ii) are

necessary only for the restricted version of the matching

algorithm. Any problem which meets all the conditions of

the theorem but not (i) and (ii) is still solvable via the

generalized matching algorithm.

5. Additional Considerations

AS ~ practical matter in identifying network flow or

matching prob lems , the case of et u a li t v  constra ints must

be considered . Suppose the original problem w~s of the

form

max cx
s.t. Ax = £ (5.1)

____________ — -~~~‘—~~~‘-•~~~. .- ,
~~~~~

- _
~
••__ •___ ~•_~~_1~~~•••___ ~~~~~~~~~~~~ •~~~~~~~~~~~ •~~~ •~~• _. •
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• where A is a full row-rank matrix of dimensions m x n Cm < n).

Let B be a basis of A so that A may be partitioned as A = (B ,N ] .

Then transforming (5.1) by B 1 yields the equivalent problem

max cx
s.t. [B~~N,I]~ = B 1b ( 5 . 2 )

x > 0

to which Theorems 3.1 and 4.1 apply, with A = B 1N.

Note that, if transformable to a network matrix, A must

be totally unimodular since TA must be totally unimodular

[15]. Furthermore , by the correspondence of extreme points,
A

A must have all bases unimodular [1]. 

• -  - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ • - . ~~~~~  —- - •



APPENDIX 1

INVE RTING A NONS INGULAR GRAPH MATRIX

-
- Inverting a nonsingular graph matrix is similer to

-
• inverting a nonsingular network matrix (16]. We consider

the two cases:

Ci) Let T be the m x m full row-rank graph matrix

of a tree and let r be the root (implicit) node. Then

since T is a tree, for any node i there is a unique path

~~
-
. 

to node r. Let be the 0, ±1 vector that picks out

the arcs in P1 and orients them so that they are alter—

4 nating, with the arc incident at node i inner-directed.

Then in the net degree of node i is +1 and that of all

other nodes is 0 (see Example Al.l), so that ~~~ =

Then if P is the m x m matrix whose ith colum is P
j~~ 

we

have TP = I , so that P =

As an illustration consider

1 2 3 4 5

• A 1 0 0 0 0

B 1 1 0 0 0

T =  C 0 0 1 0 0 

,- • - --~~~~ ~~~~~~~~~~~~~~~~~~ - • • - -
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corresponding to the tree

2 3

D
. 4 5

E

with root node F.

Then 
~a 

= [+1 , -1, 0, 0, +i1~~, corresponding .to the

alternating path

I .



~~~~~~
—•-

~ ~~~~~~~~~~~ ___  _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _

w•~ 
_ _ _ _ _ _ _

--__-- _ _ _ _ _

• in which only node A has net degree ~ 0, so that T~ =

Il , 0, 0, 0,

Continuing, we compute

~A ~B ~ c ~D ~E
- 

l 0 0 0 0

—l 1 0 0 0

0 0 1 0 0

—l —.1 1 — 1~

1,
(ii) Suppose T is the in x in graph matrix of a bloom.

In this case the odd cycle plays a role similar to that of

— a root node. For any node i there is a unique path P~ to

the odd cycle C. Now let be the vector that identifies

arcs by entries ±1 for arcs in P1, ±1/2 for arcs in C, and

0 for all other arcs of T. Furthermore let the signs of

the entries in be chosen to orient the arcs of P~ ii C

to form an alternating path with the arc incident at node i

inner-directed. Then in the net degree of node i is +1

and that of all other nodes is 0 (see Example Al.2), so

-

- 
. that Tj~ = 

~~~~~~~

. Then if P is the m x m matrix whose ith

column is p1, TP = I so that P = T~~ . 
•

- - ---:•~~~ ~~~~~~~ •~ _ _ _ • _ . • - - - -



~~

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•-

• ...—.——‘•....—-—•—•—. ~—

As an illustration consider

1 2 3 4 5 6

A 1 0 0 0 0 0

B 1 1 0 0 0 0

C 0 0 1 0 0 0
T =

D 0 1 1 1 1 0

E 0 0 0 1 0 1

F 0 0 0 0 1 1

corresponding to the bloom

A

- 1

B C

2 3

D
I

4 5

E 6 F

L • 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Then 
~a 

= (+1, -1, 0, +½, +½, -½]~ 
corresponding to the

weighted alternating path

A

+1

B 0
—1

D

E F
— ½

in which only node A has net degree ~ 0, so that T~a 
=

[1, 0, 0, 0, 0,

Continuing, we compute

~A ~B ~ c ~D ~E E’F
1 ~ 1 0 0 0 0 0~
2 — l 1 0 0 0 0

3 0 0 . 1  0 0 0

4 ½ - ½ -½ ½ ½ - ½

5 ½ —½ -½ ½ -½ ½

6 ½ ¾ ¾  



~~~~~~~~~~~~~~~~~~~~ - - 
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APPENDIX 2

RECOGNIZING A GENERAL MATCHING PROBLEM

The most general form of a matching matrix, that of

Requirement 2’, may be interpreted as the node-arc incidence

matrix of a so-called “bi-directed” graph 1 7 ]. According

- to this scheme, the rows of the matrix correspond to nodes

of the graph, and the columns to arcs, where

Ci) a column with one +1 and one -l corresponds to a

directed arc, i.e., one with a tail on one end and a head

on the other.

(ii) a column with two +1’s (-l’s) corresponds to an

inner- (outer— ) directed arc, i.e., one with a tail (head)

at each end.

(iii) a column with one +1 (—1) corresponds to a “spike,”

i.e., an arc with a tail (head) at the node end.

(iv) a column with one +2 (—2) corresponds to a 1oop,

i.e., an arc with both ends incident at the same node, with

a tail (head) at each end. Such arcs are inner- (outer-)

directed.

With this enlarged metaphor, it is possible to extend Lemma

4.l to

Lemma 4.1’-: A bi-directed graph matrix is nonsingular if f

it is the full row—rank matrix of a bi-directed graph with at 

- - - - • 30 A~.- — •~~ 
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1

most one cycle, that cycle having an odd number of und irected

(i.e., inner- or outer-directed) arcs. -

We will call the graph of Lemma 4.1’ a bi-directed bloom.

Then the same sort of argument as Section 4 establishes -

Theorem 4.1’: Problem (4.2) is a matching problem (general-

ized version) if f there exists some bi-directed bloom for

which A describes paths such that the net degree of any

interior node (other than possibly a root node) is 0.

i

31 
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