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b INTRODUCTION

In recent years the geometrical theory of diffraction [1] has
become one of the more useful methods for finding solutions to antenna
and scattering problems. The geometrical theory of diffraction is,
however, limited to geometries for which the diffraction coefficient
is known.

Quite recently a technique has been developed for extending the
GTD by the method of moments [2]. In this technique the diffraction
coefficient is treated as an unknown, thereby permitting a larger class
of problems to be treated with the GTD. In the case of planar geo-
metries such as the wedge, this procedure has been improved by Sahalos
and Thiele [3] using a three term representation of the diffraction
coefficient. Using this improved technique, it has been shown that
one can find the current near a discontinuity in a surface, such as
near the edge of a wedge, for an arbitrary incidence angle.

Previously, the extended GTD technique has been applied to 2-
dimensional problems. In this report we will use the method to treat
a 3-dimensional geometry, the three sided pyramid. The reason for
treating this particular geometry is to demonstrate the applicability
of the extended GTD technique to 3-dimensional geometries. As such,
it represents a first step in applying the GTD-moment method technique
to 3-dimensional problems. Other geometries and modifications of the
method to be described in this report will be considered subsequently.

For the problem of scattering by a pyramid as treated in this
report, each face of the pyramid is composed of two regions, a GTD
region and a moment method region near the edges. The current distri-
bution in the GTD region is found by solving the 3-dimensional wedge
diffraction problem once for each wedge, or a total of six times.
Next, the current near the edge of each wedge is found using the moment
method. However, the currents obtained on the faces of the pyramid
do not include that current caused by tip diffraction. The effect of
this current on the far zone scattered field may be added post facto
using a formula by Keller, et al [4]. While the effect of tip dif-
fraction is not large [5], its inclusion does bring the theoretical
results into closer agreement with measurements.

In the work done here, only first order diffraction is considered
and this is found to be adequate for determining the far zone field.
On the other hand, if one was interested in the near zone field, it
would be imperative that at least second order diffraction be con-
sidered.

Section III presents the extended GTD formulation for the pyra-
mid while Section IV gives results for the bistatic radar cross section
as well as the currents on the cone. Some concluding remarks are made
in Section V.
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II.  FORMULATION

Consider the geometry of the three dimensional wedge diffraction
problem (Figure 1). The field at any point in space will be an expres-
sion of the form

U(r,e) = V(r,e+¢') + V(r,¢-¢"') (1
where V(r,¢+¢') defines the field due to the incident wave and V(r,¢-¢')
the field due to the reflected wave.

If we want to have an expression for the geometrical optics field

and the diffracted field separately, then by the help of the uniform
theory of the diffraction [1] we can see that:

V(raot) = V*(r,et) + UB(r,4t) (2) |
where in the general situation the function vB will be i

Vg(Lso™) = I_p(Lyo%) + Lip(L,o®) : (3) ‘

where ¢* = ¢+¢' and ¢~ = ¢-¢

The parameter L is not the d1stance of the observation point but a
function of this distance depending upon the nature of the incident
wave.

it ]

Now Ii“(L,¢i) has been given by Kouyoumjian as follows:

-j(BL+n/4) ' R EAP VR (o
*“(L ¢i) v g_J;‘_szﬂ____ /'a_cot {_‘"_5%_] eJBa j e Jt dt (4)

(sLa)1/2

where g=2n/x and a=1+cos(¢*-2nnN).

N is an integer, positive, negative or zero, whichever best satisfies
the equations

2naN-¢* = -n  , for I__ (5)

and
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Figure 1. Geometry for three-dimensional wedge
diffraction problem.




2nnN-¢" =+,  for I, ‘ (6)

Analyzing the incident and the diffracted field in terms of the polar
components at the observation point we will have

£ (s) vioo | (el .
d : + /L edBL -jgs
Egr (s) 0 -Vg Eq (Qp) et Ms)e (7)
(o} 0 (0]
where
Vg = Vg(L.e7) * Vg(L,oh) (8)

and the spatial attenuation factor A(s) is defined as

1

72 for plane, cylindrical and conical wave
A(s) = \1/2 incidence
{—T(;%_rr} for spherical wave incidence
s (sts

(9)

and the distance parameter L is defined as
~

3 sinzeo plane wave
el (S
TR cylindrical wave . (10)
$' S ginl
.__gzzulfﬁl conical and spherical wave

Let us now consider a triangular pyramid (Figure 2). If we want
to study the diffraction we can easily see that the diffracted field
at any point will be the summation of six diffracted fields given by
Equation (7). Usually we need to find the radar cross section, or the
radiation of antennas which are on the body. So, it is helpful to con-
sider the current on the body. This current gives the necessary informa-
tion for the electromagnetic properties of the body.

Because of the incident, reflected and diffracted fields, we
suppose that on the body we have surface currents normal to the surface
fields. The fields on the surface of the body can be computed by the
help of the aoove equations. By knowing the surface current we can find

4
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the field at any point in space. The current on the surface is depend-
ent only on the E;+ field and will be the vector summation of currents
because of inciden?, reflected and diffracted rays. In the problem of
a pyramid, for example, the current on_the point M (Figure 3) will be
the summation of four currents. 1), Ig, 14 are currents due to the
diffraction on the edges 1, 2 and ﬂ correspondingly and I'+I" is the
current due to the incident and reflected fields.

A1l the above expressions can give us is an approximation for the
electromagnetic properties of the pyramid and the results could be
sufficient if the uniform theory of the diffraction was valid for points
near the edges. Since it is not, a MM-GTD formulation is necessary.
III. FORMULATION OF MM-GTD SOLUTION

A. Three Dimensional Wedge Diffraction

Let us consider again (Figure 4) the geometry for the three dimen-
sional wedge diffraction problem. To find the surface current on the
walls we can use the magnetic field integral equations. By the assum-
tion that the incident wave is a plane wave, the current parallel and

normal to the edge has been found by Sahalos and Thiele [2]. The problem

is reduced to the two dimensional one and the method of moments along
with the GTD as used by Burnside, et al [3] gives very good results.

The current on the X;Y; plane is expressed by orth9 onal pulses
in the MM region and by GTB elsewhere. So the J 1 and Jy? current
parallel to (Xj,Yy) will be given by the solution of linear equations
as below([2]:

% 3
a N Y 1 :
n 1 2 =2 i
- mf] 3 lmn * lz Dyqlp~ = -Hy(xn) - kn

>

11)
1 N n N N Y] ! b (
ng_] Dx] Ex] mz] a, I'“D + Z_ Dy, Ip = ~kp
A

where a, is the weight of the nth pulses in MM region and D" is the dif-
fraction coefficient in the GTD region.




Figure 3.

Geometry for one face of the
triangular pyramid.




The current is:

N
r ) a, P(e-2p) MM-region
dy =% : (12)
5 1 y e-chossz
J'4"+ § D) —m— GTD-region
4 i=-1 Y1

where 2 is either X] or Y].

The JZ] and le currents can be expressed [2] as a combination of a,

Dp and they have been given also by Sahalos and Thiele. The parameters
ne and kpn are dependent on the geometry of the wedge
ana the1r expregs1ons are in Reference [3].

(¢',6')

W ($y6y,)

Figure 4. Geometry showing 6TD and MM regions
on both sides of a wedge.
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Figure 5. Geometry showing two faces (ABC and ACD)
of the pyramid for far zone scattering.

Supposg that we want to find the far zone scattered field in the
direction (¢ ,es) due only to the surface ABCD which is composed of two
triangular plates as shown in Figure 5. We will use the field expression

4 u . J r. x J%)e ds 3
ro & Jiagcp) ST

tion po?nt. ¢ is the current on the wall and k is the wavelength number.
The current

where r, is §he distance between the origin point A and the observa-
# on the two faces ABC and ADC can be expressed as:

I = [9,(x)Z + 9, (x)X] e"IKZCOSE 4 age
‘32 = [97(x*)2 + Iy (x)cosy X = Jy,(x')siny §) e-Jkzcos8 o0 apc
(14)
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The vector rg can be exgressed in the three components parallel to x,
¥,z by the help of ¢%,6°. So,

re = sineScose® x + sino®sing y + cose® 2 (15)

while the vector r is

Sy
n

x sing” x + z cose” z on ABC
(16)

>

= x sing"cosy x - y sing"siny y + z cose¢” z on ADC

Sy
1]

By the help of the above 1;4), (15) and (16) equations we can find the
scattered magnetic field Hz.

A more useful expression for the scattered field can bg obtained
by the following method. Denote that the face ABC is the 15 face and
ADC the 2"d one. The current on those faces will be:

J](x) g * 3
: iky2z Face 1
] -~
Jx(x) e X
Jjk,z
Jz(x') ¢ g
2 Face 2
Jjk,z
Ji.(x‘) e L
We define the integral
i 1 resina § jkx[(cosg-cos6g)]cot a-sinog
Aw“’S’es) 3 jk(cosB-cosesj’jo Jw(x) 2e
jk2(cosg-cosog) Jkxsinogcoseg
- (} +e - dx . (17)
A vector A with the components
Ac(9g085) = Al(0g205) + cosy AZ(egty,n) :
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L Ay(os,es) = - siny A£(¢s{y.ﬂs) (19)

Ay(05205) = Al(ogabg) + A2(ogtva0,) (20)

can give the expression of HS.

é The vector A(A,,A »A,) expressed in another cartesian system A (xo¥oZo)
3 will be given ﬁy zsing the Euler's angles. So

g,

¢ A A

% 7 J"A"_ﬁo s

§ Ayo = e (K] Ay (21)

% Azo Az,

S where R, is the distance AA, and K is the matrix of th

g directional
cosines of the axis X,y,z t0 the axis Xg,¥gsZ,- The P> field will be:

S S s 1 Sein S]]
- in n A
on A i <A cos6 sing>sing Xo
J(k-Ry-kry)

S £ - e - S -ci S S A
Hyo ""?F;T__“—_ cos6 0 sin6>cos¢ Yo
S g g G g % S
Hzo | -sine>sing sine>cosé 0 i Azo

(22)

At this point we have only the scattered field from two triangular
plates by using the diffraction from the common edge. In the next

section we will use the above expressions to obtain the diffracted field
from a pyramid.

B. Diffraction By a Pyramid

A pyramid is a combination of six edges and since the length of

the edges are more than the wavelength the problem of the diffraction
can be separated into six problems of wedge diffraction. For the six

edges (see Figure 6) the scattered field will be the summation of six
expressions like Equation (22).

n
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Figure 6. Six diffracting edges of the triangular
pyramid.

First, it is important to define the shadow region of the pyramid.

With the help of Figure 7 we can see for example that

if ¢}2 >m the face 12 is shadowed
if °:2 < n=-Ay the face 13 is shadowed "

A more general definition of the shadow region can be obtained in the
following manner. We take the horizontal plane (456) and starting from
the direction of the incident wave we measure the angles ¢7,¢p from the
edges 1 and 2. We define the maximum of the ratios:

y— - e )




-

[
|
\ ’,
&

Figure 7. Geometry used in defining the shadowed regions.
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s tano " i tangin e tane "
- s 0 ’ 2=
1 tanol tanG2 3 tan93

If any of the t; is not in the distance (-1,1) then we are not in the
shadow region except the face (456). If all 15 are in the distance
(-1,1) then v define

cos¢g = .ax(ri)

and we construct the following table:

I1luminated
Angle edges faces
1| O<og<t) 14346 (13) for 8'M<n/2
143+4+5+6 | (13)+(456) for 615772
2 | ¢1<95<¢) 14243 (12)+(13) for ein<n/2
142+43+4+5+6 | (12)+(13)+(456) for oiM>n/2
3 4>9, AJ 14243 (12)+(13)+(23)  for

From this table we can determine if the wave is striking face (23) or
face (12).

The above table is useful for computations because with the
described conditions we can easily program the diffracted and G.O.
fields. The incident field H1 (Figure 4) is normal to the vector k
and the definition of ef gives the value of ¢" with the help of the
formula:

"

[¢1-¢"| = cos=(cote'cote g (23)

In our problem of finding the radar cross section the diffraction
from the tips is negligible in comparison to the total scattered field.
So, except for the case of axial incidence, by the above work we can
have a good approximation for the radar cross section without considering
tip diffraction. In a future report we will show a method for finding

14
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the tip diffraction. This will be done by using the GTD-MM formulation
and the magnetic integral equation.

For bistatic scattering a modification to the method in this
report for the scattered field could be obtained by adding the tip dif-
fracted field as it is given by Keller, et al [4]. This formula gives
the diffraction coefficient of a plane corner with two straight edges
meeting at an angle and is of the form

Cw.d {cose+cose')sing (24)
47k, (cosa-cosa')(cosb-cosb")

where a and b are the angles between the incident field and the two
edges at the corner, a', b' are the angles between the diffracted field
and the two edges; 6 and 6' are the angles between the normal to the
plane of the corner and the incident and diffracted rays; and & is the
angle between the two edges. Formula (24) along with expression (22)
will give at least the far zone scattered field. It will be seen in

the next section that inclusion of the tip diffracted field does notice-
ably raise the level of the radar cross section results at most aspect

angles but the "scattering pattern" is little changed by the tip dif-
fracted field.

IV.  EXAMPLES

In all examples which follow we used a pyramid with the edges 1,
2,3 of length 9.144) making an angle with the z-axis of 15°. At first
the surface current was computed. In this current there is no diffracted
current from the tips. The scattered field was computed two times, one
without the tip diffraction and one with. By using Keller's formula the

results as we will see are in closer agreement with the measurements
than without the tip diffraction.

In Figures 8 and 9 we show the current on the faces of the pyramid
(except the base) for an incident plane wave normal to edge 1 and with
the magnetic field parallel to this edge. The current which is plotted
shows only the diffracted current since the current of the geometrical
optics field has been deleted from the curve.

In Figures 10, 11 and 12 we plotted the magnitude of the surface
current of the pyramid for an incident plane wave normal to edge 4 and
with the magnetic field parallel to this edge. The bistatic normalized
electric field on the xy plane can be seen in Figure 13 for this case.

In Figures 14, 15, 16 and 17 we show the bistatic radar cross
section. In all cases we keep the bistatic angle constant and rotate
the pyramid about one axis. Figure 14 shows the bistatic cross section
for the case of rotation about the z axis, with the transmitted signal

15




($33¥930) 3SVHd

8

*ALUO uOL3ORASJLPp 03 anp pLwedAd ayj JO S3dey OM} UO JUdJAN)

*g 34nbi4

€1 30vd X
2l 30vd e

’

—
b N

16




0o8I-

0

(S334930) 3SVYHd

08I

*ALuo uoL3dRJU4Lp 03 anp pLwedAd 3y3 O S3dey OM} UO Judaun) g dunbiy
X/p
S 14 € 2 | 0
— | _ [ sl
X
X \ \ —{ro-
% . o
N Y e Y e = . =¥ CEC 0 s A S e S nu.v
X X |pf
X X \\\
\ —Hro
v X
X2¢ 8 62 30v4 X
i€ B 12 30V e
e e 20

i e B P




=
p— pr—
=

P

-

»l

Pam—

T .

*pLweakd mﬂwmwm ‘0L 24nby4
: 9pnjl
UUQ&sz UZH %O
R
u3un
ej uo
peL 9

|

T gy — T

II[IIIIIIIIIIIJ 7ITIIII[IIITIJIJII »a IIIII lllll

ITIJIILIITTFIJI JIIIlIIITIIIIIIIIl ~ Bam® Bma S

[IILLIIIIIIIJII IJIIIILIIITIIIIIII ] IIIII Bmm ¥

v erlIJIIIlIIlII IJJIIJTITI!IIIIIII 4 IIIIT T
L[IILIIIIIIJTrl lIIIIIlIIIIIIIIlII B IIIII IIIII ©
IIIIIIIIIIIIJII LlTIIlITllIIIIITII 4 Bem W IIIII s

JIIIIIIII[IJIII ITIJIIIILIIIIIII B [1111 T

IlleIIlLTIIIIT =4 T]IIITIIIII ema lllll

= Bmy lﬂ = u & uu ~ u 4

-

) Y S—
0 7~ \\ e
S

f—F———F

(¥21) 3ovd




"9E| 40 GEZ 304 UBYIL3 UO JUIJUND 3IRJUnS 3yl jo apnjiubey || dunbLy

9/s

AN3¥YND

€
=
P
- ¥ R -
— 1 b~
B .y i1

el
L

{ 11

i

(9€1) AGNvV (g€2) S30v4

19




FACE (45%6) ‘

NN

CURRENT

T

)
]
\
\
Wt
N
§

N

& e
SO DNSN S S

Figure 12. Magnitude of the surface current
on face 456.

horizontally polarized. In Figure 15 we see the same situation but with
the signal vertically polarized. The bistatic cross sections for rota-
tions about the y- and x-axes can respectively be seen in Figures 16

and 17. In both cases the polarization is vertical.

As we can see in all cases, by including the tip diffraction we
have results that are more close to the measurements although the
theoretical results are a little down from the measurements probably
because second order diffraction is ignored. For the problem of finding
the near zone field, our analysis shows that we must take into account
diffracted rays of more than the first order.
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br* V. SUMMARY AND CONCLUSIONS

The work reported in this report has used the method of moments
to extend the geometrical theory of diffraction such that a good approxi-
mate solution to the problem of scattering by a pyramidal cone is ob-
tained. The solution basically neglects tip diffraction but it is shown
that this effect can be included post facto and improves the results at
most aspect angles for bistatic (15°) radar scattering. Even though the
solution neglects second and higher order diffraction, the radar scat-
tering results in all cases considered are quite good as evidenced by
the agreement between theoretical and experimental results.

A primary motivation for this work was to apply the moment method
- GTD technique to a three-dimensional geometry to determine the diffi-
culties in doing so and also to determine the limitations of the methed
when applied to a three-dimensional problem. Thus, while the formula-
tion in this report for the three-dimensional problem is obviously more
involved than that for two-dimensional problems, it is not unduly so.
And, while the radar cross section is not the most sensitive indicator
of solution accuracy, the results for the radar cross section do indicate
that all the features of the pyramid as a scatterer are well-predicted
by the theory.

B As a result of the work presented here, the application of the
geometrical theory as extended by the method of moments should find use
by other researchers seeking solutions to other three-dimensional problems.
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