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I. INTRODUCTION

In recent years the geometrical theory of diffraction [1] has
become one of the more useful methods for find i ng solutions to antenna
and scattering problems . The geometrical theory of diffraction is ,
however, limited to geometries for which the diffraction coefficient
is known .

Quite recently a technique has been developed for extending the
GID by the method of moments t2]. In this technique the diffraction
coefficient is treated as an unknown , thereby permitting a larger class
of problems to be treated with the GTD. In the case of planar geo-
metries such as the wedge, this procedure has been improved by Sahalos
and Thiele [3] using a three term representation of the diffraction
coefficient. Using this improved technique , it has been shown that
one can find the current near a discontinuity in a surface, such as
near the edge of a wedge, for an arbitrary incidence angle.

Previously, the extended GTD technique has been applied to 2-
dimensional problems . In this report we will use the method to treat

~~ a 3-dimensional geometry, the three sided pyramid. The reason for
treating this particular geometry is to demonstrate the applicability
of the extended GTD technique to 3-dimensional geometries. As such ,
it represents a firs t step in apply ing the GTD-moment method technique
to 3-dimensional problems. Other geometries and modifications of the
method to be described in this report will be considered subsequently.

For the problem of scattering by a pyramid as treated in this
report , each face of the pyramid is composed of two regions , a GTD
region and a moment method region near the edges. The current distri-
bution in the GTD region is found by solving the 3-dimensional wedge
diffraction problem once for each wedge, or a total of six times.
Next, the current near the edge of each wedge is found using the moment
method. However, the currents obtained on the faces of the pyramid
do not include that current caused by tip diffraction. The effect of
this current on the far zone scattered field may be added post facto
using a formula by Kel ler , et al [4]. While the effect of tip dif-
fraction is not large [5], its inclusion does bring the theoretical
results into closer agreement wi th measurements.

~n the work done here , only f irst order dif f rac t ion  is considered
and this Is found to be adequate for determining the far zone field.
On the other hand, If one was Interested in the near zone field , it
would be imperative that at least second order diffraction be con-
si dered.

Section III presents the extended GTD formulation for the pyra-
mid while Section IV gives results for the bistatic radar cross section
as well as the currents on the cone. Some conclud ing remarks are made
in Section V.
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II. FORMULATION

Consider the geometry of the three dimensional wedge diffraction
problem (Figure 1). The field at any point in space will be an expres-
sion of the form

= ~(r ,q+~~) + ~(r,~-~~) (1)

where V (r ,~+q~ ) defines the field due to the incident wave and V(r ,4,-4~~)
the field due to the reflected wave.

If we want to have an expression for the geometrical optics field
and the diffracted field separately, then by the help of the uniform
theory of the diffraction [1] we can see that:

= ~*(r ,It,~ ) + ~8(r ,q~~) (2) - I
where in the genera l situation the function V8 will be

VB(L,qIt ) = ~~~~~~~ + I+~(L,~~) . (3)

where •~ = q+p ’ and • =

The parameter I is not the distance of the observation point but a
function of this distance depending upon the nature of the incident
wave.

Now I+~(I,s~) has been given by Kouyoumji an as follows : 1
~ e~~~~~ ”~ ~‘i cot {!~.~} ei~~ J e jt dt (4)

where 8B21T/A and a=1+cos(~
t-2nitN).

N Is an Integer, positive, negative or zero, whichever best satisfies
the equations

2nirN-~
t -it , for I~~ (5)

and
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Figure 1. Geometry for three-dimensional wedgeI diffraction problem.
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2n~N-q~ =+~~, for ~~ . (6)

Anal yzing the incident and the diffracted field in terms of the polar
components at the observation point we will have

1E~s ( S ) -V~ 0 E~I(QE)l
[E~i(s )  

= 

~ -V~ E
~~QEj ~~~~~ 

A( s) e~J~~ (7)

where

= V~(L,q~ ) 4. V~(L,IP ) (8)

and the spatial attenuation factor A(s) is defined as

7 for plane, cylindrical and conical wave
A( s) = 1/2 m c i  ence

{_rç~+ ij} 
for spherical wave incidence

(9)

and the distance parameter L is defined as

S sin2B0 plane wave

L = cylindrical wave . (10)

SI ~ sin2~0 conical and spherical wave
S+S L

Let us now consider a triangular pyramid (Figure 2). If we want
to study the diffraction we can easily see that the diffracted field
at any point will be the sunination of six diffracted fields given by
Equation (7). Usually we need to find the radar cross section , or the
radiation of antennas wh i ch are on the body. So, it is helpful to con-
sider the current on the body. This current gives the necessary i nforma-
tion for the electromagnetic properties of the body.

Because of the Incident, reflected and diffracted fields , we 1
suppose that on the body we have surface currents normal to the surface
fields. The fields on the surface of the body can be computed by the
help of the aoove equations. By knowing the surface current we can find4
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the field at any point in space. The current on the surface is depend-
ent only on the ~~~~s field and wi !l be the vector summation of currents
because of inciden~, reflected and diffracted rays. In the problem of
a pyramid , for example , the currenj on the point M (Figure 3) will be
the summation of four currents. ‘d’ ~~ I~ are currents due to thediffraction on the edges 1 , 2 and ~ correspondingl y and 1i~ 1r is the
current due to the incident and reflected fields.

All the above expressions can give us is an approximation for the
electromagnetic properties of the pyramid and the results cou’d be
sufficient if the uniform theory of the diffraction was valid for points
near the edges. Since it is not, a MM-GTD formulation is necessary.

III . FORMULATION OF MM-GTD SOLUTION

A. Three Dimensional Wedge Diffraction

Let us consider again (Figure 4) the geometry for the three dimen-
sional wedge diffraction problem. To find the surface current on the
walls we can use the magnetic field integra l equations. By the assum-
tion that the incident wave is a plane wave , the current parallel and
norma l to the edge has been found by Sahalos and Thiele [2]. The problem
is reduced to the two dimensional one and the method of moments along
with the GTD as used by Burnside , et al [3] gives very good results.

The current on the X1Y1 plane is expressed by orthg9onal pulses
in the MM region and by GTD elsewhere . So the J~] and current
parallel to (x1,Y1) will be given by the solution of linear equations
as below[2):

Xla N Y  1
2 + 

m~1 
am

1 
‘mn + 

~~~~~~~~ 

0~~I~~ = H~(x~) - kn 1
~ 

N N V 1 (11)
— ~ n 1 ~ ~~~~~

— k2 
n- l  X1 x1 

+ 
m 1  

am mD 
+ 

z~-l yl D 
- - D

where an is the weight of the n
th pulses in MM region and Dli is the dif-~

fraction coefficient in the GTD region.

1
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The current is:

(N
~ a~ P(~~

Zn) MM-region
I n=l

(12)= 

1 e~~~
05

~~[ ~i~~r +

i=-l

where is either X 1 or V 1.
The and currents can be expressed [2] as a combination of a~,1 Yl
D
~ 

and they have been given also by Sahalos and Thiele. The parameters
1mri’ I~, k~, ~~~ 1~ and k0 are dependent on the geometry of the wedgeand their expreSSions are in Reference [3].
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Figure 4. Geometry showing STD and I.~l regionson both sides of a wedge.
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1 Figure 5. Geometry showing two faces (ABC and ACD)
of the pyramid for far zone scattering .

I Suppos~ that we want to find the far zone scattered field in the
direction (

~ ,8S ) due only to the surface ABCD which is composed of two
tri angular plates as shown in Figure 5. We will use the field expression

.jkr0 ~ • jkr r5I Hs = _ e (r5 x J ~)e dS (13)
‘(ABC D)

I where r is ~he distance between the origin point A and the observa-tion po?nt , ~~ is the current on the wall and k is the wavelength number.
The current J

~ 
on the two faces ABC and ADC can be expressed as:

I 4 = [J
~
(x)

~ 
+ J

~
(x)

~) e
jk2C058 on ABC

I * [‘1
~
(”)

~ 
+ J11(x)cosy - J,1(x ’)siny $j ~~~~~~~~

(14)

. 1
~ I



The vector r5 can be ex~ressed in the three components parallel to ~~,

j’,i by the help of •~,o . So,

+ s~nO
5sjn~

5 , + cosos ~ (15)

while the vector ~ is

~~= x s i n o r x + z c o s e r z on ABC
(16)

= x sino ’cos y x - y sine rsiny y + z coser on ADCJ

By the help of the above ~~4), (15) and (16) equations we can find thescattered magnetic field Hf.

A more useful expression for the scattered field can b~ obtainedby the following method . Denote that the face ABC is the 1SI~ face and
ADC the 2nd one. The current on those faces will be:

ik z Z
J1 (x) e z

Z jkzz Face 1
J ~ ( x ) ’ e  x

jkzz 1
J2(x’) e z

Z Face 2
2 jk

~
z
~ I 1~e x ’J

We define the integral j

~sina . ~ 
jkx[(cos8—cose5)]cot a—sine5

= 
jk(cos8 cose j J J ,(x) ~2 e

jk2 (cos8—coses)\ jkxsino 5cos,sl)
~ 

e dx. (17)

A vector ~ with the components I I
A
~
(
~
s,es) A~(~5,e5) + C05y A~(,s±~,

A5) • (18)

10



r A~(~51 e5) = - siny A~(~5ty,ü5) (19)

A
~
(,s,O5) = A~(~5,e 5 ) + A~(~5±y,o5) (20)

can give the expression of

The vector A(A ,A ,A2) expressed in another cartesian system A (x~,y 0z0 )
will be given ~y ~si ng the Euler ’s angl es. So

(AX O\
IA  = e ~ [K] A I (21 )
I ~ O l  I ~

‘

~A I
\

Z O/

where R is the distance AA and K is the matrix of th~ directionalcos i nes°of the axis x,y,z t~ the axis x0,y0,z0. The l~ field wi 1l be:

0 cose5 si no5sin~
5 
/A~I j(k•R0—kr0)( = - e 2r0A 

-cose5 0 ~~~~~~~~~~

_s ineSsin,S sine5cos~
5

(22)

At this point we have only the scattered field from two triangular
plates by using the diffraction from the coniuon edge. In the next
section we will use the above expressions to obtain the diffracted field
from a pyramid.

B. Diffraction By a Pyramid

A pyramid is a combination of six edges and since the length of
the edges are more than the wavele ngth the problem of the diffraction
can be separated Into six problems of wedge diffraction. For the six
edges (see Figure 6) the scattered field will be the sunmiatlon of six
expressions like Equation (22).• 1

11



Figure 6. Six diffracti ng edges of the triangular
pyramid.

First, it is important to define the shadow region of the pyramid.
Wi th the help of Figure 7 we can see for example that

~I it the face 12 is shadowed

~~ 
< it-A 1 the face 13 is shadowed

A more general definition of the shadow region can be obtained in the
following manner. We take the horizontal plane (456) and starting from
the direction of the incident wave we measure the angles •l’~2 

from the
edges 1 and 2. We define the maximum of the ratios:

12
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I
- tano~~ — 

tano ln 
- 

tane in
, , •13 3 .

tanG tanec tanG

If any of the T1 is not in the distance (-1 ,1) then we are not in the
shadow region except the face (456). If all -r 1 are in the distance
(-1 ,1) then w define

cos~ ax (T 1 )

and we construct the following table:

__________ 
Illuminated

Angle edges faces

1 1+3+6 (13) for e~~<ir/2

1+3+4+5+6 (l3)+(456) for O htl >n/2 I
2 ‘~1

< si’~2 
1+2+3 (12)÷(13) for

1+2+3+4+5+6 (12)+(l3)+(456) for 0~~>ir/2

1+2+3 (l2)+(13)+(23) for

From this table we can determine if the wave is striking face (23) or
face (12).

The above table is useful for computations because with the
described conditions we can easily program the diffracted and G.O.
fields . The incident field H’ (Figure 4) is formal to the vector ~and the definition of 6H gives the value of •“ with the help of the
formula: I

cos_l cote IcoteH) . (23) 1
In our problem of finding the radar cross section the diffraction

from the tips Is negligible In comparison to the total scattered field.
So, except for the case of axial Incidence, by the above work we can
have a good approximation for the radar cross section without considering
tip di ffraction. In a future report we will show a method for finding

14
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the tip diffraction. This will be done by using the GTD-*I formulation
and the magnetic integra l equation.

For uistatic scattering a modific ation to the method in this
report for the scattered field could be obtained by adding the tip dif-
fracted field as it is given by Keller , et al [4]. This formula gives
the diffraction coefficient of a plane corner with two straight edges
meeting at an angle and is of the form

~ c = J__ LcosO+cose’~~sino (24)4nk0 (cosa—cosa ’ )(cosb-cosb’)

where a and b are the angles between the incident field and the two
edges at the corner, a ’, b’ are the angles between the diffracted field
and the two edges; ft and 0’ are the angles between the norma l to the
plane of the corner and the incident and diffracted rays; and 6 is the
angle between the two edges. Formula (24) along with expression (22)
will give at least the far zone scattered field. It will be seen in
the next section that inclusion of the tip diffracted field does notice-
ably raise the level of the radar cross section results at most aspect
angles but the “scattering pattern ” is little changed by the tip dif-
fracted field.

IV. EXAMPLES

J 
In all examples which follow we used a pyramid with the edges 1 ,

~ 23 of length 9.144A making an angle with the z-axis of 15°. At first
the surface current was computed. In this current there is no diffracted
current from the tips. The scattered field was computed two times, one

I wi thout the tip diffraction and one wi th. By using Keller ’s formula the
resul ts as we wi ll see are i n closer agreement with the measurements
than wi thout the tip diffraction .

I In Figures 8 and 9 we show the current on the faces of the pyramid
(except the base) for an incident plane wave normal to edge 1 and with
the magnetic field parallel to this edge. The current which is plotted

I shows only the diffracted current since the current of the geometrical
optics field has been deleted from the curve.

I In Figures 10, 11 and 12 we plotted the magnitude of the surface
current of the pyramid for an incident plane wave normal to edge 4 and
wi th the magnetic field parallel to this edge. The bistatic normalized
electric field on the xy plane can be seen in Figure 13 for this case.

I In Figures 14, 15, 16 and 17 we show the bistatic radar cross
section. In all cases we keep the bistatic angle constant and rotate

I the pyramid about one axis. Figure 14 shows the bistatic cross section
for the case of rotation about the z axis, with the transmitted signal

1 15
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PACE (456)

A ‘1

~~dh /
.~

5 4

Figure 12. Magnitude of the surface current
on face 456.

horizontally polarized . In Figure 15 we see the same situation but with
the signal vertically polarized . The bistatic cross sections for rota-
tions about the y- and x-axes can respectively be seen in Figures 16
and 17. In both cases the polarization is vertical.

As we can see in all cases, by includin g the tip diffraction we 1
have results that are more close to the measurements although the
theoretical results are a little down from the measurements probably
because second order diffraction Is i gnored. For the problem of finding -

the near zone field, our analysis shows that we must take into account
diffracted rays of more than the first order.
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V. SUMMARY AND CONCLUSIONS

The work reported in this report has used the method of moments
to extend the geometrical theory of diffra ction such that a good approx i-
mate solution to the problem of scattering by a pyramidal cone is ob-
tained. The solution basically neglects tip diffraction but it is shown
that this effect can be included post facto and improves the results at
most aspect angles for bistatic (15° ) radar scattering . Even though the
solution neglects second and higher order diffraction , the radar scat-
tering results in all cases considered are quite good as evidenced by
the agreement between theoretical and experimental resul ts.

A primary motivation for this work was to apply the moment method
- GTD technique to a three-dimensional geometry to determine the diffi-
culties in doing so and also to determine the limitations of the method
when applied to a three-dimensional problem . Thus, while the formula- 

-

tion in this report for the three-dimensional problem is obviously more
involved than that for two-dimensional problems , it is not unduly so.
And , while the radar cross section is not the most sensitive indicator
of solution accuracy , the results for the radar cross section do indicate
that all the features of the pyramid as a scatterer are well-predicted
by the theory .

As a result of the work presented here , the application of the
geometrical theory as extended by the method of moments should find use
by other researchers seeking solutions to other three-dimensional problems .
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