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In this paper we-study, the stationary covariance
generation problem, i.e. the problem of passing
from a stationary covariance function to a
dynamical system which generates a process having
the given covariance, in the case where the dynam-
ical system is a finite state, continuous time,
Markov process. MWe-find-that strictly positive
definite stationary covariances can be approximated
to any degree of accuracy in this way. However

the number of states required may approach infinity
as the covariance approaches the boundary of the
set of positive definite functions.

1. Introduction

The general area of stochastic realization
theory consists of results on how to pass from a
certain complete, or partial, description of a
stochastic process to a differential equation (or
difference equation) model for it with the
stochastic process which drives the differential
equation being simpler, or more "fundamental,
than the original process. In the case where the
given partial description is a stationary covar-
iance ¢ and of a constant mean m it has been known
for some time under what circumstances there exists
a realization in the form of a finite dimensional
linear Ito equation

dx(t) = Ax(t)dt+bdw(t)+rdt;
Ez(t) = m
o(t,T) = ¢(t-T) = E(y(t)-m(y(T)-m)

y(t)=cx(t)

with constant coefficients. This result, which has
its origin in the Bode-Shannon pre-whitening filter,
states that ¢ is realizable if it is an even,
Lp(-»,») function whose Fourier transform (power
spectrum) is rational and nonnegative on the real
axis. One then finds the system parameters A,b,c
and r by a factorization of the power spectrum.
Since the power spectrum is automatically nonnega-
tive this result is quite satisfactory; the only
price being paid for finite dimensionality of x is
the rationality of the power spectrum.

In this paper we consider covariance gener-
ation but with a view toward generating a given
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covariarce from a finite state continuous e
Markov process. Specifically we ask the following.

Question: Given a stationary covariance ¢(t,7)
under what circumstances does there exist a finite
state continuous time Markov process x(-) taking
on values in a finite set X and a function f:X*>7R
(the real numbers) such that

(a) The transition probabilities are given
by a time invariant infinitesimal gener-
ator whose null space is one dimensional.

(b) 1lim E f[x(t)] = 0 for all x(0)

t

(¢) lim E £[x(t)]£[x(t+1)] = ¢(7) for all x(0)

t

The reason for assuming that A has a one dim-
ensional kernel is so that regardless of the initial
state of the x-process, the steady state density is
the same.

In this paper we derive necessary and sufficient
conditions for ¢ to be realizable in this way.
Roughly speaking, what we find is that any non-
periodic stationary covariance can be approximated
by one which is realizable in this way. Moreover
those covariances with rational power spectra which
can be realized exactly are characterized.

Since one knows [4] that any finite state
continuous time Markov process is equivalent to one
which can be, expressed as

§
ax(t) = § A (RO ()5 x(b) € iR
i=1

with N, (t) a standard Poisson counting process
with rate A,, this work is a natural complement
to the Gauss-Markov covariance generation problem.

2. The Model

We find it convenient to associate with each
state of an n state Markov process a particular
point in 7®™. This lets us visualize the process
as jumping between points in a vector space and
allows us to use certain very familiar formulas
from linear system theory. Let e; be the ith
standard basic element in 7R° (prime denotes
transpose)

e, = [0405 505031 305004501"
ith coordinate

and let x be a process which takes on the values in
the set {el,ez,...,en}. If p,(t) is the probability
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that x(t)=e; then our assumptions imply that there
exists a constant matrix A such that

ﬁl(t) a, 8, - pl(t)
By (t) ay, 3, - pz(t)

pn(t) a, a, - ° (t)
Notice that because of the way we have embedded

the states in 1R we have
p(t) = Ex(t)

According to the well known theory of such
processes, see, e.g. Karlin [1], the entries of A
satisfy the condition

30i1if 1 # 3
(1) &y,
1 { <0 if i = j

n
(ii) a,, =0

121 13
Such matrices are called here infinitesimally
stochastic. Of course Peron-Frobenius theory
implies that A has a nontrivial null space. If we
ask that the null space be one dimensional then we
are assured that there is a unique steady state
probability distribution. For these reasons we
will assume

(iii) the kernel of A is one dimensional.
Such processes are called irreducible.

As an immediate consequence of the definit-
ions we see that

Ex(t) = e*tx(0) (E)

Because the ith and jth components of x are never
simultaneously nonzero and because the components
take on only the values zero and one

pl(t) 0 siv 0
I(t) = Ex(t)x'(t)= .° py(t) ... 0
0 0 PR pn(t)

Moreover an elementary application of Bayes' rule
yields

Ex(t)x' (1) = Z(t)e T>E V)

The equations (E) and (V) together with one
more remark will yield a restatement of our
question in linear algebraic form. The additional
remark is this. Any map of the state space of the
Markov process into 7R is of the form c'x for some
¢ in 7R™. Simply let the ith component of c be
f(ey) where f : X > 7R. Bringing these remarks
together we have the following theorem.

A'(t-t),

Theorem 1: A stationary covariance ¢(t~T)=¢(t,T)

is realizable by a zero mean process which is a
function of a finite state, continuous time
irreducible Markov process if and only if

B(t) = c'zePte; £ >0 (s)

for some pair (A,c) where A is an n by n matrix
satisfying (1), (ii), (i4ii), ¢ is an n vector such
that c¢'x=0 for all x in the kernel of A and

12 0 0
5= 0 Py .- 0
00 cer P

with (p ) being the probability vector

.P s
in the &ernel of Ry,

3. Realization with A Circulant

The determination of what functions can be
expressed in the form required by equation (S)
is made especially hard by the requirement that A
be infinitesimally stochastic. To get around
the awkwardness of this constraint we focus
attention on a special class of matrices. By a
circulant matrix we understand a square matrix of
the form

"o e n-1
M= e ey T ) S
oy m, my ... W

Associated with each suih M there is a polynomial
m(z)=m +m z+...+m -12 The eigenvalues of a
circulant matrix ire simply the values

A = fite K0, 0= 1e0,1,... 001
Thus M meets condition (i), (ii), (iii) if and
only if

(i') the coefficients of @m(z) are all
nonnegative except for the constant term.

(1i') @(1) =0

(iii') m(z) does not vanish for z an nth root
of unity unequal to one.

Under these assumptions one sees easily that the
solution of

p =M
for p(0) a probability vector, tends to
1
oo M
o wils
1

Thus using such an M wf see that the matrix I in
equation (S) becomes I and we have

$(t) = l c'eMtc; t>0
The condition that the mean should vanish,c' P, =0,
is also easily interpretable. In fact if

)

c' = (co,cl,...cn_1

we introduce
n-1

e(z) = c +c,z+...4c_ 2z
(2) So1 n-1

In this notation c'po = 0 hecomes
(b') &) =0

We can also express 6 succinctly in terms of
m(z) and c(z) (see [3]).
) = I el e(zhe™PE,

{z:2"=1}
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The following lemma gives a somewhat more satis-
factory form of this.

Lemma 1: The set of finite state continuous time

realizable covariances includes those covariances
expressible as

& n-1 m(ez"ﬂ‘/“)‘
O(t)-Zrke ; t30
k=1
with m satisfying (i'), (ii') and (iii') and the
T real and nonnegative. In particular
Y(t) = re-ctcos wt; t 30

is so realizable if r and 0 are real and positive

and w is real.

Proof: Of course c(z)c(z- ) is, for z on the

‘wiit circle, real and nonnegative. Since c(1)=0
we must have c(z)c(z"1l) vanishing at z=1 but other-
wise we may pick the coefficients so that c(z) has
arbitrary complex values at the nth roots of unity
consistent with c(z) = ?5'?)' Adding up the con-
tribution from p = e27ik/n ye get

2 Re m(p)t

¢k(t) = 2|c(p)|“e cos Im m(p)t

But since c(p) is arbitrary we see that |c(p)|
can be any real nonnegative number. The general
form given in the lemma then follows.

To show that the specific y given in the
lemma is expressible in this way we make a
particular choice of n and m(z). Let

wx) « all-ta-tioa)s )s . Sty > 8

and let 0 > 0 and w be given. At z-eizw/"l -
cos(2m/n) Hsin(2m/n) the ratio of the real to the
imaginary parts of m is

_ l-acos (2m/n)-(1-0) cos (4T/n)
Y -asin(27/n)=-(1-a)sin(4m/n)

Inspection of this equation shows that for any
negative y we can choose an integer n large enough
so as to have a solution for a. (As Yy approaches
zero n(y) goes to infinity.) Thus we can, with
this choice of m(z) adjust the magnitude and
argument of m(exp 27mi/n) as needed to get the
function Y( ) of the lemma. Of course we pick c

in such a way as to vanish on all nth roots of
unity except the two which enter in this discussion.

4. The Approximation Lemma

Lemma 1 makes it clear how to realize non-
negative linear combinations of the basic terms
labeled there Y; take the direct sum of realiza-
tions of the type constructed in its proof. How-
ever these realizations

(a) will not, in general, satisfy the
irreducibility condition, and
(b) give no suggestion as to how to realize

covariances such as ¢(t)-10e-|t|-e-5|t' which are

differences of positive definite functions but
still positive definite.

In this section we establish the results
necessary to get around these difficulties.

1f ¢(t) isa continuous, even, positive def-
inite function then according to the well known re-
presentation theorem of Bochner it can be expressed
as

o(t) = [ cos wtdy
[0,=)

for some nonnegative measure . Of course if u is
absolutely continuous with respect to Lebesgue
measure then we can write

@

¢(t) = J cos wtd(w)dw : d(w) 20
0

displaying the power spectrum explicitly.

However, if we assume that ¢ is not only
positive definite but in addition it is strictly
positive definite in the sense that

2|t

¢ (£) = ¢(t)e

is for, some € > 0, also square integrable and
positive definite then we can express ¢ as

o(t) = r e_eltlcos wtd(w) dw
0

with ¢ analytic. (This follows from Payley-
Wiener theory; the Fourier transform of

Q(t:)eCItI analytic in a strip of width 2¢ centered
on the w-axis and ¢ is its Fourier transform.) Let
{ti}i | be any finite set of real numbers. We
can approximate simultaneously the integrals ¢(t )
by Riemann sums and thus obtain

o(t) = E e Ccos w, th(w,)s +e(t)
1-1

with |e(t,) less than any preassigned positive
number. ﬁoth ¢ and the approximation go to zero
as [t]| > =; in view of the continuity of ¢
we see that it can be uniformly approxi-
mated by a linear combination of Y-like terms
with positive coefficients. The following theorem
summarizes.

Theorem 2: Any continuous, strictly positive defi-
nite tunction is the uniform limit of a sequence
¢, of the form

m(n)

®(t)- 2 :xke cosmk(t); a >0

We now address the second problem mentioned at
the start of this section.

Lemma 2: Stationary covariances of the form
appearing in theorem 2 can be realized by a pair
(A,c) satisfying conditions (i), (ii), and (iii).

Proof: Let (Ak,ck) be a realization of

ake- €t/2 g §t of the form given in the proof of

léemma 1; i.e. of the circulant form. (Note we
have e/2 as the decay factor.) Then for

Al 0 s @ ¢
X 0 A2 . 0 ; & ?2
. ¢

n n

it follows that

creh Z e “€t/2 08 wt
k=1
Now subtract from A the infinitesimally stochastic
matrix

1059
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where n is the sum of the dimensions of the A,.
Clearly A-F is infinitesimally stochastic ané
irreducible. Notice that
m
cre(Ael/2)e | ) ake-st cos w
k=1
(This time the decay factor agrees with theorem 2.)
Finally, because of the null spaces of each of the
Ai we see that {

-
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TR TR
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Bl C D |
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Together these imply c'e(A'l"')'zc-'c'e(A_EI/Z)t and so

(A-F,c) meets all requirements.

5. On the Number of States

In response to a question raised by
Kolmogorov, about 30 years ago Dimitriev and
Dynkin established that an n by n stochastic matrix
cannot have any eigenvalues in the part of the unit
circle bounded by a chord passing through the point
(1,0) in the complex plane and making angles of
(2n/p)+m/2 with the real axis (see figure 1b)
provided p > n is an integer (see [2] for refer-
ences). Since the exponential of an infinitesimal
forbidden

iy region
1 et s T /‘ =~ ///
exp. W
- \
y @ e (b)
f ; I
E;; Figure 1: The infinitesimal version of the

Dimitriev-Dynkin result.

stochastic matrix with eigenvalues A ,)‘2....,)\
is a stochastic matrix with eigenvalies
exp A},exp )‘2,.. .,exp A this imposes certain

n

const
stochastic matrix. The space of infinitesimally
stochastic matrices is a cone and so the excluded
subset of the complex plane must be bound by

straight lines passing through zero (see figure la).

Some arithmetic establishes that o+iw cannot be
an eigenvalue of an n by n infinitesimally
stochastic matrix unless

{of

2n m
T < = n cos 70 (A)

Theorem 3: The power spectrum associated with the
steady state covariance matrix of n-state contin-
uous time Markov process is rational and has no
poles in the region of the complex plane for which
inequality (A) is violated.
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