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covariarre from a finite state continuo~~~~~~~~~~~~ ~~~~~~~~~ Abstract

~~~~~~~~~~~~ Markov process . Specifically we ask the following.this paper we-.tisd~ the stationary covariance
gen~ration problem , i.e. the problem of passing Question: Given a stationary covariance ~~(t , T)
from a stationary covariance function to a under what circumstances does there exist a finite

~~~~ dynamical system which generates a process having state continuous time Ma rkov process x() taking
the given covariance , in the case where the dynam— on values in a finite set X and a function f:X-~7F~
ical system is a finite state, continuous time , (the real numbers) such that
Markov process. -,We—f~ad---the~ strictly positive (a) The transition probabilities are givendefinite stationary covariances can be approximated by a time invariant infinitesimal gener—to any degree of accuracy in this way . However ator whose null space is one dimensiojial.the number of states required may approach infinity
as the covariance approaches the boundary of the (b) u r n  E f(x(t)] 0 for all x(O)
set of positive definite functions. t-~~

(c) lim E f[x(tflf[x(t+t)] ~~(t )  for all x(O)
t-.~~1. Introduction

The reason for assuming that A has a one dim-
The general area of stochastic realization ensional ke rnel is so that regardless of the initial

theory consists of results on how to pass from a state of the x—process , the steady state density is
ce rtain complete , or partial , description of a the same .

• sto chastic process to a d i f fe rential equation (or In this paper we derive necessary and suf f ic ien tdifference equation) model for it with the conditions for ~ to be realizable in this way .• stochastic process which drives the differential
equation being simpler , or more “fundamental”, 50ug~~y speaking, what we find is that any non—

tha n the ori ginal p rocess. In the case where the pe riodic stationary covariance can be appro ximated
given partial description is a stationary covar— by one which is realizable in this way . Moreover

those covariances with rational power spectra whichlance ~ and of a constant mean rn it has been known
can be realized exactly are characterized.for some time under what circumstances there exists

a realization in the form of a finite dimensional Since one knows [4] that any finite state
linear Ito equation continuous time Markov process is equivalent to one

which can be , expressed asdx(t) Ax(t)dt+bdw(t)+rdt; y(t)~cx(t)
Ey(t) ‘ m dx(t) 

~ 
A
ix(t)dNj(t); x(t) ~4~ ( t , T) q > ( t — T )  E(y(t)—m) (y(t)—m) i=l

4 with N (t) a standard Poisson counting processwith constant coefficients . This result, which has with rAte X this work is a natural complementits origin in the Bode— Shannon pre—whitening filter
states that ~ is realizable if it is an even, 

‘ to the GausA-.Markov covariance generation ptoblein.

L2(—°’,°’) function whose Fourier transform (powe r 2. The Modelspectrum) is rational and nonnegative on the real

~ 
axis. One then finds the system parameters A ,b ,c We find it convenient to associate with each
and r by a factorization of the power spectrum . state of an n state Markov process a particular

O.. Since the power spectrum is automatically nonnega— point in ~~~ This lets us visualize the process
tive this result is quite satisfactory; the only as jumping between points ir a vector space and
price being paid for finite dimensionality of x is allows us to use certain very familiar formulas

• the rationality of the power spectrum . from linear system theory . Let e1 be the ith
standard basic element in ~~~~ (prime denotesLiJ In this paper we consider covariance gener— transpose)ation but with a view toward generating a given

__________________________________ [0,0,... ,O ,l,O ,. ..,O ]’
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that x(t)—e1 then our assumptions imply that there p1 0 . . .  o 1
• exists a constant matrix A such that

E~~ 1 0 p2 ... 0 1
1~1(t) 1 I 

~~ 
a~~ 51n111) l (t ) 1 

10 nI (t) I — 

a21 a22 :.: a2n Il (t) I 
with ~ ~2’”~n~ 

being the probability vectorL~
(
~)j L a 

• 

a a J1 o (t)J in the Ae rnel of A.
nl n2 on n

3. Realization with A Circul an t
Notice that becaus e of the way we have embedded

• the states in we have The dete rmination of what functions can be
exp ressed in the form required by equation (S)

p ( t )  Ex( t )  is made especially hard by the requirement that A
be infinitesimally stochastic. To get around• Acco rding to the well known theory of such the awkwa rdness of this constraint we focusprocesses , see , e.g.  Ka rlin (1], the entries of A at tention on a special class of matrices. By asat isfy  the condition circul an t matrix we understand a square matrix of

~~~ O i f i # j  the fo rm
~ ~ � O i f i = j  m m1 152 ... mn—l i

• ft F m m ... mM I n— l m1 n—2 i
(ii) 

~ 
a~~ 0 I • i;i~

• m~ rn3 :.: mi— u

Such matrices are called here infinitesimally Associated with each such M there is a polynomial
• stochastic. Of course Peron—Frobenius the ory fi~(z) — m +m z+.. .+m 

— 
z”~~. The eigenvalues of a

implies that A has a nontrivial nul l space. If we circul° 1 n 1 imply the valuesant matrix are s
ask tha t the null space be one dimensional then we ik8~~; 0 — ‘

~~~~ 
; k..O ,l n— lare assured that there is a uni que steady state Ak = m(e

• p robability distribution . For these reasons we Thus M meets condition (i) , ( i i ) ,  ( i i i )  if and
will ass ume only if

(iii) the kernel of A is one dimensional. (i ’) the coefficients of £(z)  are all
Such processes are called irreducible , nonnegative except for the constant term.

(ii ’) ~ (l) — 0As an immediate consequence of the definit-
ions we see that (iii’) m(z) does not vanish for z an nth root

Ex(t) = eAtx(O) (E) of unity unequal to one.

Unde r these assumptions one sees easily that theBeca use the ith and j th  components of x are never solution of• simultaneously nonzero and because the components
take on only the val ues zero and one = )fpL

p1(t) 0 ... 0 1 for p(O) a probability vector , tends to

1(t) Ex(t)x’(t) 0 p2(t) ... 0 111
l i i i[.0 

~~~~~~~~~

Moreover an elementary application of Bayes’ rule [ij• yields
• Ex(t )x ’(T) = E( t ) e A (T_t ) ; T > ~ (v) Thus using such an Mwç see that the matrix I in

equation (S) becomes -~~ I and we havenThe eq uations (E) and (V) toge ther with one — 1 , Mt•~ more remark will yield a restatement of our q ( t )  — — c e C ; t > 0nquesti on in linear algebraic form. The additional The condition that the mean should vanishremark is this. Any map of the state space of the Is al so easily interpretable. In fact if °
Marko v process into ~~ is of the form c ’x for some
o in R~ . Simply let the ith component of c be c ’ (c ,c ,. •o 1 n—l
f(ei) where f : X • B~. Bringing these remarks we introduce

• together we have the following theorem. n—Ia(z) — c + c  z+...+c zTheorem 1: A stationary covariance •( t—T )~~~(t ,T) o 1 n—i
is realizable by a zero mean process which is a In this notation c’p 0 ‘,ecomesfunction of a finite state , continuous time o

• irreducible Markov process if and only if (b’) 0(1) — 0

• •( t )  = c~Ee~
tc; t > 0 (S) We can also express • succinctly in terms of• tn(z) and c(z) (see [31).• for some pair (A,c) where A is an n by n matrix

satisfying (i), (ii), (iii), c is an n vector such
that c ’x O  for all x in the kernel of A and •( t )  — 

2 
( C(z  ‘)e ; t ~ o
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The following lemma gives a somewhat more satis— 
— cos wtdiif actory form of this. q(t)

[O ,’=)
Lemma 1: The set of f inite state continuous time
realizable covariances includes those covarian cee for some nonnegative measure 1,1. Of course If ii is

absolutely continuous with respec t to Lebesgueexpressible as• measure then we can wri te
• n— l 2i~ik/ n) tm(e •(t) = cos wt~’(u)du •(~) ~• (t) L rke ; t ~ 0 J Ok=l

with m satisfying (i’), (i~’) and (iii’) and the 
displaying the power spectrum explicitly.

r~ real and nonnegative. In particular However, if we assume that $ is not only
— re

_Ot
cos ut; ~ 0 positive definite but in addition it is strictly

positive definite in the sense that
• is so realizable if r and a are real and positive

2c It Iand u is real. 
$~~

(t)

Proof: Of course c(z)c(z~~) is, for z on the is fo r , some c > 0, also square integrable and
~~T~

”circle , real and nonnegative. Since c(l) O positive definite then we can express $ as
we must have c(z)c(z 1) vanishing at z l  but other—
wise we may pick the coefficients so that c(z) has
arbitrary complex values at the nth roots of unity $(t) = r e t I t I cos wt4>(w)dw
consistent with c ( Z )  = ‘~ ‘1Y. Adding up the con— J O
tribution from p = e2~ik/n we get with 4’ analytic . (This follows from Payley—

2 Re m(p)t Wiener theory ; the Fourier transform of
k(t) = 21c(p) I e cos Im m(p)t

But since c(p) is arbitrary we see that c(p)1
2 $(t)e~~

tI analytic in a strip of width 2c centered
on the u—axis and 4’ is its Fourier t ransform. ) Let

can be any real nonne gative number. The general {t i }
~~ 1 be any f ini te set of real numb ers . We

fo rm given in the lemma then follows , can appro ximate simultan eously the integrals 4 ’( t1)
To show that the specific $ given in the by Riemann sums and thus obtain

lemma is expressible in this way we make a m
4 particular choice of n and m(z) . Let $(t) = ~ e

_ t t
cos uj t$( wi)s i+C(t)

i— l
m(z) = a(l— ctz— ( l— a) z2) ;  a ,a, > 0 with Ic (t ) j  less than any preassigned positi ve

and let a > 0 and w be given. At z_e i21
~~ = number. both 4’ and the appro ximation go to zero

cos( 2it/n) -I(sin(2iT/n) the ratio of the real to the as t i  • ~ ; in view of the continuity of 4’
imaginary parts of in is we see that i t  can be uniformly ap p roxi-

mated by a linear combination of 4 ’—l ike terms
l—acos( 2 1T/n)—( l— ca )cos(4~ /n)

= 
—cjsin(2n/n)— (l—a)sin(4~/n) 

with positive coefficients . The following theorem
summarizes

Inspection of this equation shows that for any Theorem 2: Any continuous, strictly positive defi—
• negative ‘y we can choose an integer n large enough nite tunction is the uniform limit of a sequence
-• so as to have a solution for a. (As y approaches 

•~ of the formzero n(y) goes to infinity.) Thus we can, with 15(n)
this choice of m(z) adjust the magnitude and
argument of m (exp 2iti/n) as needed to get the 4’n(t) — ~ z,ce

_tt
cos w.K(t); a.

K 
> 0

k—l
function 4’( ) of the lemma. Of course we pick c
in such a way as to vanish on all nth roots of We now address the second problem mentioned at
unity except the two which enter in this discussion, the start of this section.

Lemma 2: Stationary covariances of the form
4. The Approximation Lemma appearing in theorem 2 can be realized by a pair1• ,. 4

Lemma 1 makes it clear how to realize non— (A,c) satisfying conditions (i), (ii), and (iii).
negative linear combinations of the basic terms Ptonf: Let (A.K ,ck ) be a realization of
labeled the re ~4~; take the direct sum of realiza—
tions of the type constructed in its proof. How— c*ke 

“2cos ¶t of the form given in the proof of
ever these realizations lemma 1; i.e. of the circulant form. (Note we

have c/2 as the decay facto r .)  Then for
(a) will not , in general, satisfy the

—

(b) give no suggestion as to how to realize o A 2 0 I 
I~~,

2 I
irreducibility condition, and 

[A

i 0 ... 0 1 fc 11

covariances such as 4’(t)=1O “ lt I _ 5 1 t 1 A — ‘ ‘  ‘ . . I ; c —
e e which are

differences of positive definite functions but 0 0 • . .  A cn.J m i
s t i l l  positive def in i te .

it follows that
In this section we establish the results

necessary to get around these d i f f i cu l t i e s . c~eAt c = ~ %e 
tt / 2c05 ut

If 4’(t) isa continuous , even, positive def— k—i
m ire function then according to the well known re— Now subtract fro m A the in f in i t~~.imaliy stochastic
presentation theorem of Bochner it can be expressed matrix
as
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r i 1 ... i ’~ stochastic matr ix with eigenvalues X1,A2,. . . , A~
r 

Il 
l .,. 1 is a stochastic matrix with eigenvalues

exp A ,exp A2,.. .,exp A this imposes certain
const~aints on the eigeflvaiues of an infinitesimally

whe re n is the sum of the dimensions of the A stochastic matrix. The apace of infinitesimally
Clea rly A—F is infinitesimally stochastic anA stochastic matrices is a cone and so the excluded

• irreducible. Notice that subset of the complex plane mus t be bound by
strai gh t lines passing through zero (see fi gure la)

• ct e~~
_’
~~

/’2)tc — ~ ~~~~~ cos W
~K
t Some arithmetic establishes that a+iu cannot be

k—i an eigenvalue of an n by n infinitesimally
stochastic matrix unless

(This time the decay factor agrees with theo rem 2.)
Finally , beca we of the null spaces of each of the 

£ in cos —
~- (A)we see that  2n

1 .• .  1, Theorem 3: The power spectrum associated with the
A l ’ 1 11  — 0 steady state covariance matrix of n—state contin-

uous time Markov process is rational and has no[ i i : . :  1.1 poles in the region of the complex plan e for which
and inequality (A) is violated.• I r~ i ... 11

c’Il 
l ... 1 
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