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ABSTRACT

We study computationally feasible solutions for a number
of problems, related to a M/M/1 queue in which the arrival and
service rates vary according to the state of an underlying
Markov chain.

Our results may be used to model the effect of rush-hour
phenomena or other extraneous fluctuations on the characteristics

of an M/M/1 queue.
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I. Introduction

Consider an m-state, irreducible, continuous-parameter
Markov chain with infinitesimal generator Q, which describes a
randomly varying "environment" for a queue of M/M/1 type.
Specifically we assume that whenever the Markov chain is in the
state j, there is an arrival rate Aj to a single-server queue
and a service rate “j’ with Aj>0, uj>0, 1<j<m. When the state
of the Markov chain changes, so do both the arrival and service
rates. This model was introduced by U. Yechiali and P. Naor [8]
and further investigated by U. Yechiali [9] and P. Purdue [7].

It provides a tractable description of a simple queue, subject
to rush-hour behavior or other extraneous phase fluctuations.

In this paper, we solve the M/M/1 queue in a random
environment by an approach, which leads to easily implementable
algorithms for the numerical computation of the relevant stationary
distributions.

By A and u, we denote the m-vectors with components Aj and
My 1<jsm, respectively. For any vector a, we introduce the
matrix A(g)=diag(a],...,am). The matrices Ay, A, and A, are
defined by A0=A(H), A]=Q—A(1+£), A2=A(l). The invariant
probability vector of the matrix Q is denoted by m and is the
unique solution of the system nQ=0, with me=1, where e=(1,1,...,1)".

The queueing model of interest is then described by a
continuous-parameter Markov chain on the state space
{(i,j), 120, 1<j<m}. The chain is in the state (i,j), when i
customers are present in the system and the Q-process is in the

state j. The infinitesimal generator Q* of the chain is given by




and is of a form, studied by V. Wallace [10] under the name of

quasi-birth-and-death processes. We shall show that the

invariant probability vector x of the matrix Q*, if it exists,

is of a matrix-geometric form and may easily be computed. Before

doing so, we discuss a number of other points of independent

interest.
Lemma 1
The
matrices
strictly
equal to
The
left and
The
left and
The
to p=(m1)

Proof

inverse A{] exists and is strictly negative. The

et 1 b -1 i -1
C0-~A] AZ’ BO"AZA] and 82--AOA] are

positive. The matrix B=BO+B2 has a spectral radius

Ags Co=-Ay

one. The matrix C=Cy+C, is stochastic.

vectors m and 1=(£A]g)']A]g are respectively positive
right invariant vectors of B and mv=1.

vectors g=(1A]g)']£A] and e are respectively positive
right invariant vectors of the matrix C and ue=1.
inequalities u(2C,e)<1 and n(2B,v)21, are each equivalent

(EE)-]S]-

Since the matrix Q is irreducible, the matrix

(2) -A;

Ve crg-aasp)]”?

rTexplQ-a(r+p)]t dt,
0

is strictly positive [1]. The positivity of By BZ' C0 and C2 is




now obvious.
Since 1(A0+A1+A2)=10=g, and (A0+A]+A2)g=Qg=g, it readily
follows that

1A]C= A Ce=e.

Since the vector = is positive, the first equality in (3) shows
that the spectral radius of B is one.

The inner products 5(2625) and 3(2821) are given by

(4) 2ucCye-= -2(1A29)(1A1§)'] = 2 1 Alma+nyl ™!,

-2(nApe)( Are)™! = 2w ulmnel ™,

2182\_/_

so that the stated inequalities are each equivalent to p<l.

II. The Busy Period

We consider the queue, starting in the state (i+1,j) at
time t=0, and examine the first passage time to the set of states
i={(i,j'), 1<j'sm}. This first passage time corresponds to the
familiar busy period in simple queues.

By G (kyx), k21, x>0, 1<j, j'<m, we denote the probability

i 55 b .
that, starting in the state (i+1,j), the first visit to the set i
occurs no later than time x, into the state (i,j') and exactly

k service completions occur during the first passage time.

For convenience, we introduce 2 transforms
(5) G*.,(z,s) = 1 25 s e 5% 4 G..,(k,x),
Ji kel 0 JJi

and the matrix G*(z,s)=<G3j,(z,s)}.




The first passage problem under consideration is of a type,
that was extensively examined by the author. We shall only
present the essential points here and refer for the detailed
proofs to [3] and [5].

Theorem 1

The matrix G*(z,s) satisfies the equation

1

(6) G*(z,s) = z{s1-A )']A0 + (sI-A])' A, G*2(z,s),

1

for s>0, 0<z<l. In an appropriately defined set of transform
matrices, G*(z,s) is the unique solution to (6).

The queue is stable if and only if the matrix G=G*(1,0) is
stochastic. The matrix G is the minimal solution in the set of

substochastic matrices to the equation
(7). & = E.50,6°
(3 i e

The matrix G is stochastic if and only if p<1 and is unique
and strictly positive.
Proof

Equation (6) follows from a standard first passage argument
by considering the first time that the queue length goes either
down or up. The other statements were proved in [3], where it is
also shown that G is stochastic if and only if the inequality
g(zczg)sl holds. From Lemma 1, we know that the latter is
equivalent to p<l. This is also the equilibrium condition
obtained by U. Yechiali [9]. Equation (6) was also derived and
discussed by P. Purdue [7].

In the remainder of the paper, we assume that p<l. The matrix

G may be computed by successive substitutions in Equation (7). We




shall denote the invariant probability vector of G by g and by G

an mxm matrix with identical rows given by g.

The following theorem gives explicit expressions for the
expected duration of and for the mean number of customers served
during a busy period.

We define the vectors u* and p° by

(8) u* = -[%; G*(z,S)g], = [2—; G*(Z,S)].

z=1 1
s=0 s=0

The quantity “3 is then the expected duration of a busy period,
starting with one customer and with the Q-process in the state j.
The quantity ”3 is the expected number of departures during such

a busy period.

Theorem 2
If p<1,
(93 p* = -(I-e+B)fQeslr-u)ET 'u,
§° = ~(1-6+E)0Q+ala-p)8] "y,
and
(10) gu* = {zu)" M), gu® = (1-p)7 .

If =1, the vectors u* and u° are infinite.
Proof

The formulas (9) can be obtained by particularizing results
in [5], but as the proof is short, we repeat the essential steps.

By routine differentiations in (6), we obtain




(11) (A +A,+R,G)u*=-e,

2
(Ay*+A,+A,6)u°=-A e=-u.

Since I-G+G is nonsingular and since also A0+ATG+AZGZ=0, we have

that
(12) (A]+A2+AZG)(I-G+G)=AO+A]+A2+(A]+2A2)G=Q+A(A-E)G,

which yields the formulas (9). In [5], it is shown that the
matrix in (12) is nonsingular if p<1 and becomes singular for p=1.

Finally, the formulas (10) follow by noting that

(13) g=9(I-G+G),
a[Q+a(r-p)G]=(mr-mu)g.

The formulas (10) provide powerful accuracy checks in numerical
computations.

Corollary 1

The transform matrix corresponding to a first passage from the
set of states i+r to the set of states i is given, for r>1, by
[G*(z,s)]r. The expected duration of and the mean number of
customers initially and with the Q-chain in the state j, are given

respectively by the j-th components of the vectors

(14)  w*(r)=-(1-6"+rG)[Q+a(2-u)E1 e,
u(r)=-(1-6"+rG)[Q+a(x-u)61 .

Proof
The first statement follows directly by probabilistic

considerations [3] and by standard differentiations we obtain




2
(15) u*{r})=

\Y

1 v | =~y =1
G u*=(I-6 +rG)(I-G+G) "p*,

0

" o4

and similarly for u°(r).

III. The Effective Service and Interarrival Times

In this section, we consider the probability distribution of
a service time starting at time t=0, with the Q-process in the
state i. This will be called the effective service time starting
in state i. The results for the effective interarrival times are
similar and will be stated without proofs.

Let wij(v,t), v20, t>0, 1<i,j<m, be the probability that a
service, starting at time 0 in the state i, lastsfor a time t at
least and that during (0,t], there are vz20 new arrivals to the queue.
A direct birth-and-death argument yields
(16) w;j(v,t)%ij(—xi—uiwﬁ)wﬁ(v,t)w“hiioihwhj(v,t)

+(]-6v0)xi Wij(v-],t),

for t>0, v20, 1<i,j<m, with initial conditions wij(v’0)=6v06ij’
for v>0. By Gij’ we denote the usual Kronecker delta.
In matrix notation we obtain the recursive system of

differential equations

(]7) wl(o,t)zA]w(Oat)a
w'(v,t)=A1w(v,t)+A2w(v—],t), tor val.

This readily leads to

(18) y*(z,t)=

Y

n o™~ og

w(v,t)zv=exp[(A]+zA2)t], for O<z<l, t20.
0




Formula (18) has a number of useful consequences, which we
combine into the following theorem.
Theorem 3

The probability that a service, starting at time 0 in the
state i ends during (t,t+dt] with the Q-process in the state j, is

given by the (i,j)-th entry of the matrix
(19) exp[(A]+A2)t]AOdt=exp{[Q-A(E)]t}A(g)dt.

For any initial probability vector y over the states 1,...,m
of the Q-process, the distribution of the effective service time is
a distribution of phase type [4] with the representation

[y, Q-a(p)]. TIts mean ES is given by
(20) E=ylalu)-01 e,

The probability generating function pi(z) of the number of
arrivals during a service starting in the state i is given by the

i i-th component of the vector
(21) plz)=s7" exp[ (A +zh,)t]A edt
0

=[(1-2)a(A)+a(x)-Q] .

The matrix [A(E)—Q]']A(g) is stochastic and strictly positive.

Its invariant probability vector n* is given by

-1

(22) =*=(mp) "ns(p)-

If the state i of the Q-chain is chosen according to the

vector n*, the corresponding service time will be called the average

effective service time. Its mean Eg is given by (gg)'] and the

- , —— >




average number of arrivals during it is given by =n*p'(1)=p.
Proof

The first statement follows immediately from (18). The
effective service time with the initial probability vector y
has the same probability distribution as that of the time till

absorption in the Markov chain with infinitesimal generator

Q-a(u) u

0 0

and initial probability vector (y,0). It is therefore a PH-
distribution and may easily be computed numerically. The expression
for the mean E is immediate. [4]

The expression for p(z) follows directly from (18). Since
A(u)e-Qe=p, it follows that the matrix [A(E)—Q]-]A(E) is stochastic.
That n* is its invariant vector may be directly verified.

From (21), we obtain upon differentiation that

(23) p'(1)=[a(u)-Q1 ',
so that

(28) w*p'(1)=(zp)" e abp)Cofpl-a)""

) a7 (W)= (rw) T (21) =0

A

=

A similar calculation yields that E§=(3H)']. The interpretation
of p implied by (24) was first pointed out in [7].

The corresponding result for the interarrival times are as

follows.
Theorem 4

Given that an arrival occurs at t=0 and that the Q-process is
in the state i, the probability that the next arrival occurs during

(t,t+dt] with the Q-process in the state j, is the (i,j)-entry of




10
the matrix
(25) exp[(A0+A])t]AZdt=exp[(Q—A(A))t]A(l)dt.

For any initial probability vector y over the states 1,...,m,
the effective interarrival time has a PH-distribution with
representation [y,Q-A(2)] and mean ET=1[A(A)-Q]_]Q.

Given an infinite supply of customers at t=0, the probability
generating function of the number of departures during an

interarrival interval starting in the state i, is given by
= -1
(26) p(z)=[a(a)+(T1-z)a(u)-Q] "A.

For 1=i=(gl)_]1A(l), we obtain the average effective inter-

arrival time and the mean number of departures during the average

effective interarrival time is given by p-] and the mean duration

of the latter is (gl)-].

IV. The Steady-state Queue Length

This section is devoted to the proof of the following
statements.
Theorem 5

If p<1, the invariant probability vector x of the Markov chain

with infinitesimal generator Q* is given by x=(x;,X;,...), where

k

(27) x,=n(1-R)RK, for k20.

Xk
The matrix R is the unique solution in the set of nonnegative

matrices of order m, which have a spectral radius less than one,

of the equation

2 -
(28) R A0+RA]+A2-O.

e
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The matrix R is strictly positive and nR<m.
Proof

The invariant vector will be of the stated form, if there
exists a matrix R with the stated properties, such that (28)

holds and there exists a vector x,>0, such that
(29) 50(A0+A1+RA0)=Q.

We first show that x,=m(I-R) and we shall verify below that

X0 is strictly positive. Equations (28) and (29) yield

Wiy .
(30) 50(A0+A1+RA0)+v : xgR (R A0+RA]+A2)—

N~ 8

LO(I-R)_](A0+A]+A2)=§0(I-R)-]Q=Q-

Since also x,(I-R)7'e=1, (30) implies that xy=r(I-R).

The equation (28) may be written as

2
(31) R=R“B,+B,.

Let {R(n)} be the sequence of matrices obtained from successive
substitutions, starting with R(0)=0, in (31). As was done in [6],

one may then verify that
(32) R(n+1)2R(n), aR(n)sm,

so that the spectral radius sp[R(n)]<1. The matrices R(n)
therefore converge to a matrix R, which is strictly positive,
has sp(R)<1, and satisfies (31). That matrix is also the minimal
nonnegative solution to Equation (31).

By repeating verbatim the argument given in [6], Lemma 4,

the spectral radius n of R is the smallest positive solution of the
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equation

(33) z=x(z), 0szs<l.

where x(z) is the Perron eigenvalue of the positive matrix

2
BZZ +BO.
Setting z=e >, Equation (33) may be written as
(34) s=-logx(e®), s20.

A theorem of J.F.C. Kingman [2] gquarantees that the function
1ogx(e's) is convex for s20. It is also clearly decreasing,
negative for s>0 and tends to the finite limit log sp(BO) as
s+=. The equation (34) has the solution s=0, since sp(B)=1.
There is a unique positive solution so=-1ogn, if and only if
x'(1-)>1.

A direct calculation, similar to that presented in [6],

Lemma 4, yields that
(35) x'(1-)=n(28B,)v,

where v is the right invariant vector of B, introduced in Lemma 1.
It follows that x'(1-)>1, if and only if p<1.

So, provided that p<1, the matrix R has spectral radius Tess
than one. The uniqueness of the solution R is proved exactly as
in [6].

It remains to show that nR<m. From (32), we have mRsm. The

; 2 .
equations 1(A0+A]+A2)=Q and n(R A0+RA1+A2)=Q imply that

2) -1.
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Since glez, but 1#1R2 and the matrix -AOA;] is strictly positive,

it is clear that the vector n(I-R) is strictly positive.
Remarks

Theorem 5 has a large number of straightforward, but useful
consequences. Once the easily computed matrix R is known, all
moments, marginal and conditional densities of the queue length
are known.

The conditional densities

21

(37) ag(§)=n] [n(1-RIR'D, i20,

of the queue length, given that the Q-process is in the state j,
shed Tight on the osciliatory behavior of the queue length in the
steady-state, at lTeast for such choices of the parameters which

correspond to alternating periods of high and Tow traffic.

V. The Steady-state Virtual Waiting Time

Assume the queue in steady-state at time 0. Let Nj(x) be the
probability that a (virtual) customer arriving at that time will
enter service no later than time x and that the Q-process will be
in the state j at the beginning of his service.

It is easy to see that wj(x) is also the probability that in

the Markov chain with infinitesimal generator Qw’ given by

0 0 0
A(u) Q-a(u) 0
0 A(n) Q-a(u)
(38) q,=| 0 0 A(w) SR
0 0 0
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and initial probability vector x=(Xx;,X;,...) with 5k=1(I-R)Rk,
k>0, absorption into the set of states 0={(0,1),...,(0,m)}

occurs no later than time x into the state (0,j).

The vector W(x) with components wj(x), 1<jsm, is, in general,

not expressible in a closed form. The vector ﬂ*(s) of the

Laplace-Stieltjes transforms of W(:) is given by

_]A(g)}k,

(39) W(s)= & x(I-R)RN([sT+a(4)-Q]

k

™ 8

0
for Re s20.

The time-in-system of the virtual customer arriving at time

0 can be studied in the same manner. Let ﬂj(x), with Laplace-
Stieltjes transform ﬁg(s), be the probability that a virtual
customer arriving at time 0, leaves the system (under the first-
come, first-served discipline) no later than time x with the
Q-process in the state j at the time of his departure.

By using the results obtained for the distribution of the

effective service time, one immediately obtains that

-1

(40) Wx(s)=W*(s)[sI+a(u)-Q1 'a(n).

Computation of W(-) and W(-)

Although W(-:) and ﬂ(-) are not tractable in a convenient
analytic manner, they can easily be computed as follows.
For W(+), we form the infinite system of differential

equations

(41)  yp ()= (OTQ-a0w) T4y, 4 (x)alw),

for k>1, x320, with the initial conditions
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(42) y, (0)=x(1-R)RK, k21.
For every x20, the vector ﬂ(x) is then given by
(43) kl_(x)=1r_(I-R)+(f)x vy (u)dua(y),
and

(44) W(x)e=1-

(x)e.
; Y \X)E

™8

.
Remarks

a. If only W(x)e and not W(x) is to be computed, there is a
slight gain in efficiency by solving for the vectors lk(x)=

5 v
after modifying the system (41) in the obvious manner. The

Y, (x),

o8

k

summation in (44) is then eliminated.

b. The Markov chain Qw can only move towards lower states. It is
therefore obvious how to truncate the system of differential
equations (41). In order to lose at most a probability mass e in
tail of the probability distribution W(x)e, one truncates at the

index K such that

(45) aR"*le= & n(1-R)RVe<e.

v=K+1

This bounds the error due to truncétion of the infinite system.
The global error involved in solving the resulting finite system
of differential equations needs to be considered separately.

c. The vector W(+) can be evaluated by solving the system (41)

with the initial conditions
- k-1
(46) Xk(o)‘l(l'R)R 3 for k21.

Formula (40) also leads to

e
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(47) Q‘(X)+E(X)A-](u)[Q-A(g)]A(g)=E'(X)A(g),
for x20, with Q(O)=Q.

d. The quantities NS(O) and wg(o) give respectively the
probability that, in the stationary queue, a customer will enter
service with the Q-process in the state j and will depart the
system with the Q-process in the state j.

These quantities can be used in specific examples to obtain
measures of the amount of spill-over from a rush-hour into the

subsequent periods of lower traffic.

VI. Some Applications and Problems for Further Investigation

A. Rush-hour Phenomena

In a simple description of an alternating sequence of rush-
hours and quieter periods, we construct the Q-matrix as follows.

Let F](-) and F2(~) be PH-distributions on (0,=) with
representations (g],T]) and (gz,Tz) respectively and with means
K]=-g]T;]g and K2='22Té]g. We may assume without loss of
generality that the matrices T]+T?A(g]) and T2+T§A(gz), of orders
m and m, respectively, are irreducible. As usual in discussions
of PH-distributions T? and TE are matrices with identical columns
given by the vectors I§=-T1g and I§=-ng, respectively. The
stationary probability vectors of T,+T{a(a;) and T,+T3a(a,) are
respectively denoted by e and Ty [4].

There is now a convenient way of formalizing the alternating
renewal process with underlying distributions F](-) and F2(-).

We form the Q-matrix
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T] T?A(EZ)
(48) Q= |
TZA(El) T2

With a slight abuse of notation, T? is here an m,xm, matrix with

m, identical columns given by T?. Similarly for TE.
The Q-matrix now defines a Markov chain with m=m]+m2 states.
If the chain is in any one of the states 1,...,m], an interval of

the first type is "in course" in the alternating renewal process.

With the chain in one of the states m]+1,...,m]+m2, the alternating

renewal process is in an interval of type 2.
It is elementary to verify that the stationary probability

vector = of Q is then given by

(49) IT__=(K-i_7_'_‘|s Kélz)’

b= '] 0 s
where K]‘K](K]+K2) 5 Kz-]-K].

We can now model a rush hour, by assuming e.g. that xi is
large for 1sism] and small for m]+1sism]+m2. The parameters M
can either be independent of i or can be chosen in some judicious
way. This leads to an interesting problem in non-linear
optimization, which we formulate next.

B. Rush-hour Control

There is a whole class of interesting nonlinear optimization
problems associated with the choice of the service rates My
1<ism, for the model described above. We may e.g. endeavor to
choose the rates Wy subject to certain cost constraints, so that

the conditional mean queue lengths

S
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(50) o l[a(1-R)"1]

j Tsjsm,

j?
vary only little with j. This would be one of many ways of
smoothing the queue.

An interesting partial result arises from the tractable
special case, noted by Yechiali [9]. 1In our notation and in a
slightly refined form, we obtain the following.

Theorem 6
In the particular case, where xj=puj, for 1<j<m, with o<1,

the equation (31) may be written as

(51) R=R2D+pD,

with D=a(u)[(1+0)a(x)-01"".

The matrix R is then given explicitly by

The matrix D satisfies 1D=(1+p)']1, so that (52) implies
that nR=pm.

The invariant probability vector x of Q* is then given by
" k
(53) 5k—(1—p)p T, for k>0.

Proof

In this case, one sees by direct substitution that the
equation (51) has the same formal solution as the scalar equation
r=r2d+pd. The series (52) is the matrix analogue of

!5 o
(54) r=§% 1-(1-45d?%) ] . % 3 (zz)pvdzv_].

\Y
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The remaining statements are easily verified.

The qualitative interpretation of Theorem 6 is clear. If
the server can produce a service rate uj=p-lkj, whenever the
arrival rate is Aj, the stationary queue length distribution
will be independent of the state of the Q-process. This ideal
smoothing of the queue may however be infeasible in practice.

The server may not be able to serve at rates higher than a given
value of u, or cost considerations may make such a high flexibility
in the service rate prohibitive.

We do not pursue these topics here. It is important to
emphasize however that there is no hope of obtaining tractable
analytic solutions for this type of problem in view of the
complicated nonlinear dependence through R of the quantities in
(50) on the parameters of the problem. A combination of computational
experience and techniques from nonlinear optimization on the other
hand appears to be promising and will be discussed elsewhere.

C. Interruptions of Arrivals or Services

By setting some of the parameters Ai and My equal to zero,
we can model interruptions of arrivals or services during random
intervals of time.

In the main body of the paper, we have assumed that all Ai
and Wy are positive in order to avoid consideration of particular 1
cases. This assumption can frequently be relaxed in an obvious
manner for each theorem. Provided that at least one of the

parameters Ay orow is positive, the matrix A;] remains strictly

J
negative. When some of the arrival or service parameters are

zero, some of the matrices BO’ 82’ CO and C2 acquire rows or

columns which are identically zero and some of the statements
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regarding the matrices G and R need to be modified.

For purposes of illustration, we consider the case of service
interruptions. We assume that Aj>0, for 1<j<m and uj>0, for 1sjsm],
“j=0’ for m]+1sj5m, with 15m]<m. In this case the matrix B0
remains strictly positive and Theorem 5 continues to hold as
stated. The statements regarding the busy period require changes,
since no busy period can now end when the Q-process is in one of
the states m1+1,...,m. In terms of the equation (7), we see that
the columns labeled m]+1,...,m of CO are now identically zero.

We see that this is also the case for the matrix G*(z,s) and
therefore also G.

A complete discussion of the busy period requires that we
show that Equation (6) has a unique solution with the first m,
columns strictly positive and the other columns equal to zero.

The proof of this and of the corresponding moment formulas
of Theorem 2 is fully analogous to the irreducible case [5], but
requires more tedious steps as we need to partition the matrix

G*(z,s) into the form

Gf(z,s) 0

G§(z,s) 0

where Gﬁ(z,s) is my X, and Gg(z,s) is (m-m1)xm2.
If also some Aj are zero, the matrix R will have the
corresponding rows equal to zero. The form of the vector x,
given in Theorem 5 remains valid, but the proof of the existence
and uniqueness of R requires greater care and a consideration of

cases.

-
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D. Some Comments on Numerical Computations

Even in the case m=2, the matrix R cannot be obtained in an
explicit form, but its numerical computation is straightforward.
Successive substitutions in Equation (31) exhibits very rapid
convergence, except for cases where p is close to one. Computations
for problems with m as large as one hundred are entirely feasible
and stable.

The approach to numerical computations, described in [9],
should however be applied with caution as it involves the computa-
tion of the roots of a polynomial equation in the unit interval.
Knowledge of these roots permits the computation of the vector
50,and the vectors x,, k21, can then be recursively computed. If
the roots, discussed by Yechiali, are close together, however the

computation of x, and therefore of the vectors Xy kil s s likely

0
to be of doubtful accuracy.
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