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AB STRA CT 
-

We study computationa lly feasible solutions for a number

of problems , related to a M/M /l queue in wh ich the arrival and

service rates vary according to the state of an underl ying

Markov chain.

Our resu lts may be used to model the effect of rush -hour

phenomena or other extraneous fluctuations on the characteristics

of an M/M /l queue .

KEY WORDS

M/tl/l queue , random environment , queue len gth , waiting time ,

quasi-birth-and -death processes , Markov chains , nonlinear
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I. Introduction

Consider an rn-state , irreducible , continuous-parameter

Markov chain with infinitesimal generator Q, which describes a

randomly varying h environment u for a queue of M/M/l type.

Specifically we assume that whenever the Markov chain is in the

state j, there is an arrival rate to a sin gle — server queue

and a service rate 
~~~~

., with x~ >O , ~i~ >O , l< j~ m. When the state

of the Markov chain changes , so do both the arrival and service

rates. This model was introduced by U. Yechia l i and P. Naor [8]

and further investigated by U. Yechia l i [9] and P. Purdue [7].

It provides a tractable description of a simple queue , subject

to rush -hour behavior or other extraneous phase fluctuations.

In this paper , we solve the M/M/ l queue in a random

environment by an approach , which leads to easily implementable

algorithms for the numerical computation of the relevant stationary

distributions.

By x and ~~~~, we denote the rn-vectors with components and

l~ j~ rn , respectively. For any vector a , we introduce the

matrix ~~~~~~~~~~~~~~~~~~~ The matrices A 0, A 1 and A 2 are

defined by A 0=A (p), A 1 =Q-~ (x+~i), A 2=~ (x). The invariant

probability ve ctor of the matrix Q is denoted by ii and is the

unique solution of the system iiQ=O , with iie=l , where e ( l  ,l , .  . .  ,l )‘ .

The queueing model of interest is then described by ~

continuous-parameter Markov chain on the state space

{(i ,j), i~ O , l~ j~ m}. The chain is in the state ( i ,j ) ,  when i

customers are present in the system and the Q-process is in the

state j. The infinites imal generator Q* of the chain is given by

-

~

-—-.—- • - - . .  ~~~~~~~~~~~~~~~~~~~~~
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A Q+A 1 A 2 0 0 . .

(1) Q* 
A 0 A 1 A 2 0 ...

0 0 A 0 A 1 . .

and is of a form , studied by V. Wallace [10] under the name of

quasi -birth -and- death processes. We shall show that the

invariant probability vector x of the matrix Q* , if it exists ,

is of a matrix -geometric form and may easily be computed. Before

doing so , we discuss a number of other points of independent

interest.

Lemma 1

The inverse A~
1 exists and is strictly negative. The

matrices C0 -A~~A 0, C2~
r~ A~~A 2, B0 -A 2A~~ and B2 -A 0A~~ are

strictly positive. The matrix B=B 0+B 2 has a spectral radius

equal to one. The matrix C=C 0+C 2 is stochastic.

The vectors ~r and v=( ir A 1 e) 
1 A 1 e are respectively positive

left and right invariant vectors of B and 1TV=l.

The vectors u=( ir A 1 e)~~ itA 1 and e are respectively positive

left and right invariant vectors of the matrix C and ue= l .

The inequalities u(2C 2e)~ l and i~(2B2v)?1 , are each equivalent

to p (7rX)( TTp ) 1
~~l

Proof

Since the matrix Q is irreducible , the matrix

(2) -A~~ = 
~[ Q (~

+
~)]~~ 

= f~ex p [Q-A (x+~ )]t dt ,

is strictly positive [1]. The positivity of B0, 82, C0 and C2 is
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now obvious.

Since ii- (A 0+A 1 +A 2) itQ O , an d (A 0+A 1 +A 2)e=Qe=O , it readily

follows that

(3) rrB= n , BA 1 e=A 1 e ,

Ce=e.

Since the vector ~i is positive , the first equality in (3) shows

that the spectra l radius of B is one.

The inner products u(2C 2e) and ir(2B 2V ) are given by

(4) 2 U C2 e = -2(1T A 2e)(1T A 1 eY~ = 2 ii

2 u B2 V = -2(-TT A 0e)(-TT A 1 e~~
1 

= 2

so that the stated inequalities are each e quivalent to p~~l.

II. The Busy Period

We consider the queue , starting in the state (i+1 ,j) at

time t=O , and examine the first passa ge time to the set of states

i= ((i ,j’), 1~ j ’ �m }. Thi s first passa ge time correspond s to the

familiar busy period in simple queues.

By (k ,x) , k~ 1 , x?O , 1<j , j ‘sm , we denote the probability

that , starting in the state (1+1 ,j ), the first visit to the set I

occurs no later than time x , into the state (I ,j ‘ ) and exactly

k service completions occur during the first passage time .

For convenience , we introduc ~ ~ transforms

(5) G~~.1 (z ,s) = ;: 2 k 
~~ e

5X d ~~~~. ., (k ,x),
k=1 0

and the n Ia tr ix G~ (z~ s)={G*.j ~ (z 1 s)}.
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The first passage problem under consideration is of a type ,

that was extensivel y examined by the author. We shall only

present the essential points here and refer for the detailed

proofs to [3] and [5].

Theorem 1

The matrix G*(z ,s) satisfies the equation

(6) G*(z ,s) = z (sI-A 1 )~~ A 0 + (sI-A 1 )~~ A 2 G*
2(z,s),

for s~ 0, 0~ z~ l . In an appropriately defined set of transform

matrices , G*(z ,s) is the unique solution to (6).

The queue is stable if and only if the matrix G=G*( 1 ,O) is

stochastic. The matrix G is the minimal solution in the set of

substochastic matrices to the equation

(7) G = C0+C 2G
2.

The matrix G is stochastic if and onl y if p~ l and is unique

and strictly positive .

Proof

Equation (6) follows from a standard first passage argument

by considering the first time that the queue length goes either

down or up. The other statements were proved in [3], where it is

also shown that G is stochastic if and only if the inequality

u(2C 2e)�l holds. From Lemma 1 , we know that the latter is

equivalent to p~ 1. This is also the equilibrium condition

obtained by U. Yechia l i [9]. Equation (6) was also derived and

discussed by P. Purdue [7].

In the remainder of the paper , we assume that p~ l. The matrix

G may be computed by successive substitutions in Equation (7). We

_ _ _ _ _ _ _ _ _  •
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shall denote the invariant probability vector of G by ~ and by G

an rnxnl matrix with identical rows given by a•

The following theorem gives ex plicit expressions for the

expected duration of and for the mean number of customers served

during a busy period.

We define the vectors p~ and p ° by

(8) ~~~~~ = - [i G*(z~ s)e]; IL° [
~~ 

G*(z~s)]

The quantity is then the expected duration of a busy period ,

starting with one customer and with the Q-process in the state j.

The quantity is the expected number of departures during such

a busy period.

Theorem 2

If p < l ,

(9 )  ~~* =

= - (I-G+~ )[Q+ -p)ö]~~ p ,

and

(10) ~a* ~~~~~~~~~~~~~~ ( l -~~)~~~.

I f P 1 , the vectors L1 * and ~~ O are infinite.

Proof

The formulas (9) can be obtained by particularizing results

in [5], but as the proof is short , we repeat the essential steps.

By routine differentiations in (6), we obtain

_ _ _  _ _ _



__  • _ _

6 
p

(11 ) (A 1 +A 2+A 2G)p *
_e ,

(A 1+A 2 +A 2 G )ji ° = -A 0e = - p .

Since I-G+G is n onsi n gu l ar and since also A 0+A 1 G+A 2G
2=0 , we have

that

(12) (A 1 +A 2+A 2G )(I-G+~ )=A 0+A 1 +A 2+(A 1 +2A 2)~ =Q+~ (X-U )~~,

which yie lds the formulas ~9). In [5], it is shown that the

matrix in (12) is nonsingular if p <l and becomes singular for p = l .

Finally, the formulas (10) follow by noting that

(13) a=a (I-G+~ ),

The formulas (10) provide powerful accuracy checks in numerical

computations.

Corollary 1

The transform matrix corresponding to a first passage from the

set of states i+r to the set of states i is given , for r>l , by

[G*(Z ,S)]r . The expected duration of and the mean number of

customers initiall y and with the Q-chain in the state 
~~~~, 

are given

respectively by the j-th components of the vectors

(14)

~~° ( r ) = - ( T - G ~
’+ r G ) [ Q + ~~( X - ~~)G ]~~~~.

Proo f

The first statement follows directly by probabilistic

considerations [3] and by standard differen tiations we obtain
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r-1 -

(15) u * (r)=
v 0

and similarl y for 1i °(r).

III. The E fre c t i ve Service and Inter arriva l Times

In this section , we consider the probability distribution of

a service time starting at time t=0 , with the Q-process in the

state i. This will be called the effective service time starting

in state i. The results for the effective interarrival times are

similar and will be stated without proofs.

Let ~~~~~~~~ v~ O , t�O , l~~i ,j~ m , be the probability that a

service , starting at time 0 in the state i , lasts for a time t at

least and that during (0,t], there are v� 0 new arrivals to the queue.

A direct birth-and-death ar gument yields

(16)

+ (l 
~~v0~~ i ~~~ 

(v-l ,t),

for t�O , v~0, l~~i ,j$m , with initial conditions

for v>O. By 6~~ , we denote the usual Kronecker delta.

In matrix notation we obtain the recursive system of

differential equations

(17) ~p ’ (O ,t )=A 1~p (O ,t)

(v ,t ) A 1~~(~~,t)+A 2~ (v- 1 ,t), for v~ l .

This readily leads to

(18) ~*(z ,t)=~~ ~(v ,t ) z V =ex p [(A1 +zA 2 )t], f o r  O~ z~~1 , tao .

_ _
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Formula (18) has a number of useful consequences , which we

combine into the following theorem.

Theorem 3

The probability that a service , starting at time 0 in the

state i ends during (t ,t+dt] with the Q-process in the state j ,  is

given by the (i ,j)-th entry of the matrix

(19) exp [(A 1 fA 2)t]A 0dt=exp{[Q _~ (p)]t}~ (i.i)dt.

For any initial probability vector y over the states l ,...,m

of the Q -process , the distribution of the effective service time is

a distribution of phase type [4] with the repres entation

[i~ 
Q—~ (p)]. Its mean E 5 is given by

(20) E 5 1[ ~~(~~) - Q J ~~ e.

The probability generating function p~ (z) of the number of

arrivals during a service starting in the state i is given by the

i -th component of the vector

(21) a ( z ) = f ~ exp [(A1 +zA 2)t]A 0edt0

The matrix [~~(p)-Q]~~~~~~i) is stochastic and strictly positive.

Its invariant probability vector TT * is giv en by

(22) ~~~~~~~~~~~~

If the state i of the Q-cha~ n is chosen accord ing to the

vec tor irk , the corresponding service time will be called the average

effective service time. Its mean E~ is given by (~~ ) 1 and the
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average number of arrivals during it is given by 71* a ( ] ) = p .

• Proof

The first statement follows immediately from (18). The

effective service time with the initial probability vector 
~

has the same probabilit y distribution as that of the time till

absorption in the Markov chain with infinitesimal generator

Q-A (p ) ii

0

and initial probabilit y vector (i,0). It is therefore a PH-

distribution and may easily be computed numerically. The expression

for the mean E 5 is in im ediate [4]

The expression for R (z) follows di rectly from (18). Since

~(u )e-Qe p , it follows that the matrix [A(~~)-Q]~~~ (p) is stochastic.

That i~~
C is its invariant vector may be directly verified.

From (21), we obtain upon differentiation that

(23) a’(l)=[A (u)-Q]~~ x ,

so that

(24) ~*~~1 (l ) ( u )  ~~~p )~~~ Q]~~~(p) ~~~f l \ ( )1 ( X )

A similar calculation yields that E~~~ (1TpY
’. The interpretation

of p implied by (24) was first pointed out in [7].

The corresponding result for the interar rival times are as

follows.

Theorem 4

Given that an arrival occurs at t=0 and that the Q-process is

in the state i , the probability that the next a rrival occurs during

(t ,t+dt ] with the Q-process in the state j is the (i ,j)-.entry of
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the matrix

(25) exp [(A 0+A 1 )t]A2dt=exp[(Q -~ (~~))t]~ (x)dt.

For any i nitial probability vector y over the states 1 ,... ,m ,

the effective interarrival time has a PH -distribution with

representation [ 1 ,Q— ~ ( x ) ]  and mean

Given an infinite supply of customers at t=0 , the probability

generating function of the number of departures during an

interarrival interval starting in the state i , is given by

(26) ~(z)=[~~(x)+( l-z)A (U )-Q ]~~ x.

For i= =(irxY~~irA (A ), we obtain the average effective inter -

arrival time and the mean number of departures during the average

effective interarrival time is given by and the mean duration

of the latter is (irAY ~~.

IV. The Steady -state Queue Length

This section is devoted to the proof of the following

statements.

Theorem 5

If p<l , the invariant probability vector x of the Markov chain

with infinitesimal generator Q* is given by x=(x 0,x 1 , . .  . ),  where

(27) ~k=~
(I_ R)R k , for k�0.

The matrix R is the unique solution in the set of nonnegative

matrices of order m , which have a spectral radius less than one ,

of the equation

(28) R 2A 0-FRA 1 +A 2 0. 

- -- ~~~~• • • ••-~~~~--~~~~~~ -~~~~~~~~~- •~~~~~~~ _ _ _
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The matrix R is strictly positive and irR<ir .

Proof

The invariant vector will be of the stated form , if there

exists a matrix R with the stated prop erties , such that (28)

holds and there exists a vector ~~~~ such that

(29) x0(A 0+A 1 +RA 0)= O .

We first show that x 0
rir( I_ R) and we shall verify below that

is strictly positive. Equations (28) and (29) yield

(30) x0(A0+A 1 +RA 0)+~~ x 0R~ (R2A 0+RA 1 +A 2)=

x 0(I-R)
1 (A 0+A 1 +A 2 )=x 0( I- RY~ Q= O .

Since also x0(I- R)~~ e=l , (30) implies that x 0=n (I- R).

The equation (28) may be written as

(31) R=R 2B2+B 0.

Let {R(n)} be the sequence of matrices obtained from successive

substitutions , starting with R(O)=O , in (31). As was done in [6],

one may then verify that

(32) R(n +l )~ R(n), 1TR (n) �1T ,

so that the spectral radius sp[R(n)]~ l . The matrices R (n)

there fore  converge  to a ma t r i x  R , wh ich  is s t r i c t ly  po s i t i v e ,

has s p ( R )~ 1 , and s a t i s f i e s  ( 3 1 ) .  That  ma t r i x  is a l s o  the minimal

nonnega t i ve  s o l u t i o n  to Equat ion  ( 3 1 ) .

By repeat ing  ve rba t im  the ar g ument g i ven  in [ 6 ] ,  Lemma 4 ,

the spec t ra l  rad ius  r~ of R is  the s m a l l e s t  p o s i t i v e  so lu t i on  of the 

-- - .  ~~~~~~~ • - . -- -~~~~~~~~~~~-~~~~ - • • • ---~~ ~~~~~~~ --• ~~~ 
• • -~~ - • • • •~~ •- _
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equati on

(33) z=x (z), 0� z�1 .

where x (z) is the Perron eigenval u e of the positive matrix

B2z
2+B 0.

Setting z=e 5 , Equation (33) may be written as

(34) s=- log x (e~~ ), s�O.

A theorem of J.F.C. Kingm an [2] guarantees that the function

logx (e~~ ) is convex for s�0. It is also clearly decreasing,

negative for s>0 and tends to the fin ite limit log sp(B 0) as

s+~. The equation (34) has the solutio n s=O , since sp(B)=1.

There is a unique positive solution s0=- log ri , if and only if

x
’ (1 -)>l.

A direct calculation , similar to that presented in [6],

Lemma 4, yields that

(35) ~‘( l- )=~ (2B 2)~~,

where v is the right invariant vector of B , introduced in Lemma 1.

It follows that x ’ (l- )>l , if and only if p<l

So , provided that p<l , the matrix R has spectral radius less

than one. The uniqueness of the solution R is proved exactly as

in [6].

It remains to show that rr R<rr . From (32), we have ITR~~n- . The

equations n- (A 0+A 1 +A 2 )=O and Tr (R2A 0+RA 1 -fA 2)=O imply that

(36) ~~~~~~~~~~~~~~~~~
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Since 1r~~7TR
2
, but ~T~ -nR 2 and the matrix -A 0A~~ is strictly positive ,

it is clear that the vector n-(I -R) is strictly positive.

Re m ar k s

Theorem 5 has a large number of strai ghtforward , but useful

consequences. Once the easily computed matrix R is known , all

moments , marginal and conditional densities of the queue length

are known.

The conditional densities

(37) q 1 (j)=
l [1T (I~ R)R 1 ]~~, i� O ,

of the queue length , given that the Q-process is in the state j,

shed light on the oscillatory behavior of the queue length in the

steady-state , at least for such choices of the parameters which

correspond to alternating periods of high and low traffic.

V. The Steady-state Virtual Waiting Time

Assume the queue in stead y-state at time 0. Let W~ (x) be the

probability that a (virtual) customer arriving at that time will

enter service no later than time x and that the Q-process will be

in the state j at the beginning of his service.

It is easy to see that W~ (x) is also the probability that in

the Markov chain with infinitesimal generator 
~w ’ 

given by

O 0 0

Q- A (~i) 0 . .

O ~
(a) Q-

~
(E) . .

(38) = 0 0 A(~i )  . . .

O 0 0 . . .
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and initial probabilit y vector x=(~~ ,x 1,...) with

k~ O , absorption into the set of states O= ((0 ,l),. .. ,(O ,m))

occurs no later than time x into the state (0,j).

The vector W(x ) with components W~ ( x )~ l� j�m , is , in general ,

not expressible in a closed form. The vector W*(s) of the

Lap lace -Stieltjes transforms of W( .) is given by

(39) W*(s)= ~
k=0

for Re s�O.

The time-in-system of the virtual customer arrivin g at time

o can be studied in the same manne r. Let W~ ( x ) ~ with Laplace-

Stieltjes transform W~ (s), be the probability that a virtual

customer arriving at time 0, leaves the system (under the first-

come , first-served discipline) no later than time x with the

Q-process in the state j at the time of his departure.

By using the results obtained for the distribution of the

effective service t ime , one immediately obtains that

(40)

• Com putation of W (.) and ~
( .)

Although W( .) and W( .) are not tractable in a convenient

analytic manner , they can easily be computed as follows.

For W( •), we form the infinite system of differential

equations

• (41) 
~ 

x )  k (x)[
Q_
~
(a)]

~~.k+1 
(x)A (p )

for k>1 , x?O , with the initial conditions



- -  ---.--

15

(42) 
~k (0 ) L( 1

~~~
) 1

~~
, k~ l.

For every x~ O , the vector W(x) is then g iven by

(43) W(x)= IL (I_R)+f x 
~1 (u)duA (U ),

— 0

and

(44) W (x)e 1- E 
~k - ~-~

Remarks

a. If only W(x)e and not W(x) is to be computed , there is a

• slight gain in efficiency by solving for the vectors 
~k

(x)=
V~ k 

y~,(x),

after modifying the system (41) in the obvious manne r. The

summation in (44) is then eliminated.

b. The Markov chain can only move towards lower states. It is

therefore obvious how to truncate the system of differential

equations (41). In order to lose at most a probability mass ~ in

tail of the probability distribution W(x)e , one truncates at the

index K such that

( 4 5 )  TrR K l e= ~
v=K+l

This bounds the error due to truncation of the infinite system.

The global error involved in solving the resulting finite system

of differential equations needs to be considered separatel y.

c. The vector W (~~) can be evaluated by solving the system (41)

with the initial conditions

(46) 
~k
(0
~~~~~~~~ 

, for k~ l .

Formula (40) also leads to
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(47) (x)+~ (x)A (p )[Q-A (u)] )W ’ (x)~~(~~),

for x~0, with W (0)=O.

d. The quantities w~(O) and W~ (0) give respectively the

probability that , in the stationary queue , a customer will enter

service with the Q-process in the state j and will depart the

system with the Q— process in the state j.

These quantities can be used in specific examples to obtain

measures of the amount of spill -o ver from a rush -ho ur into the

subsequent periods of lower traffic.

V I. Some Applications and Problems for Further Investigation

A. Rush -hou r Phenomena

In a simple description of an alternating sequence of rush -

hours and quieter periods , we construct the Q-matrix as follows.

Let F 1 (.) and F2(.) be PH— distributions on (O ,cC) with

representations (ci 1 , T1 ) and (ct 2,T2) respectively and with means

and K 2=-c L2T~~e. We may assume without loss of

generality that the matrices T1 +T~~ (ct 1 ) and T
2
+T~~~(cx 2

), of or d ers

and m 2 respectively, are irreducible. As usual in d iscussions

of PH— distributions T~ an d T~ are matrices with iden tical columns

given by the vectors T~ = -T 1 e and T~ = -T 2e , respectively. The

stationary probability vectors of T1 +T~ t~(a 1 ) and T 2 +T~ A ( cz2 ) are
respectively denoted by 

~l and 
~2 

[4].

There is now a convenient way of formalizing the alternating

renewa l process with underlying di stributions F 1 (.) and

We form the Q -m atrix
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T~~ (a 2)
(48)  Q=

T
~~

(ci i ) T2

With a slight abuse of notation , T~ is here an m 1 xm 2 matrix with

m 2 identical columns g iven by T~~. Similarly for T~ .

The Q-matr ix now defines a Markov chain with m=m 1 +m 2 states.

If the chain is in any one of the states 1 ,...,m 1, an interval of

the first type is “in course ” in the alternating renewal process.

With the chain in one of the states m 1 +l ,...,rn1 +m 2, the alternating

renewal process is in an interval of type 2.

It is elementary to verify that the stationary probability

vector iT of Q is then given by

(49) 
~
= (Kj1r 1 , K~~ 1t

2
) ,

where K j K 1 (K 1~~ 2)~~
, K~ =l~ Kj .

We can now mode l a ru sh hour , by assuming e.g. that is

large for l~ i~ m 1 and small for m 1
#l~~i~ m 1 +m 2. The parameters

can either be independent of i or can be chosen in some judicious

way. This leads to an interesting p~r-oblem in non-linear

optimization , which we formulate next.

B. Rush -hou r Control

There is a whole class of interesting nonlinear optimization

probl ems associated with the choice of the service rates

l< j~ m , for the model described above. We may e.g. endeavor to

choose the rates ~
j ., subject to certain cost constraints , so that

the conditional mean queue lengths
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(50) iT [1T(I~~RY
’]~~ l~ j~ m ,

vary only little with j. This would be one of many ways of

smoothing the queue.

An interesting partial result arises from the tractable

special case , noted by Yec h iali [9]. In our notation and in a

slightly refined form , we obtain the following.

Theorem 6

In the particular case , where X
3
= pi i. , for l~ j~m , with ~<l

the equation (31) may be written as

(51) R=R 2D+ pD ,

with

The matrix R is then given explicitly by

(52) R=~- 
v=l 

(2V ) 
~~~~ 

D2”~~ .

The matrix D satisfies 7TD=( 1+ p~~
’it , so that (52) implies

that iR= p -rr .

The invariant probability vector x of Q* is then given by

(53) ~k= (l_ p) p k
~ , for k?O.

Proo f

In this case , one sees by direct substitution that the

equation (51) has the same formal solution as the scalar equation

r=r 2d+pd . The series (52) is the matrix analog ue of

(54) r=~-~j [l~~o~ 4Pd
2
~~
] 

= ~ (2v )p vd 2 v 1 .
v n l
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The remaining statements are easily verified.

The qualitative interpretation of Theorem 6 is clear. If

the server can produce a service rate i~~p 1 X
3
, whenever the

arr ival rate is A~ . the stationary queue length distribution

will be independent of the state of the Q-process. This ideal

smoothing of the queue may however be infeasible in practice.

The server may not be able to serve at rates higher than a given

value of ~~~~, or cost considerations may make such a high flexibility

in the service rate prohibitive.

We do not pursue these topics here. It is important to

emphasize however that there is no hope of obtaining tractable

analytic solutions for this type of problem in view of the

complicated nonlinear dependence through R of the quantities in

(50) on the parameters of the problem. A combination of computational

experience and techniques from nonlinear optimization on the other

hand appears to be promising and will be discussed elsewhere.

C. Interruptions of Arrivals or Services

By setting some of the parameters A~ and p~ equal to zero ,

we can model interruptions of  arrivals or services during random

intervals of time .

In the main body of the paper , we have assumed that all

and j.i~~ are positive in order to avoid consideration of particular

cases. This assumption can frequently be relaxed in an obvious

manner for each theorem. Provided that at least one of the

parameters 
~ 

or 
~~~~

. is positive , the matrix A~~ remains strictly

ne ga ti ve.  W he n som e of the arr i val  or ser vi ce pa rame ters are
ze ro , some of the matrices B0, B2, C0 and C 2 ac qu i re ro w s or
columns which are identically zero and some of the statements

- -

~

•• •- •

~

•-••

~

•- • •• • -•-•••- - J
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regardi n g the matrices G and R need to be modified.

For purposes of illustration , we consider the case of service

interruptions. We assume that X~ >O , for l�j sm and u~ >O , for 1~ j�m 1
for m 1 +l~ j~ m , with l~ m 1 <m . In this case the matrix B0

remains strictly positive and Theor em S continues to hold as

stated . The statements regarding the busy period require changes ,

since no busy period can now end wh en the Q-process is in one of

the states m 1 -~1 ,. . . ,m. In terms of the equation (7), we see that

the columns labeled m 1 +l ,... ,m of C0 are now identically zero.

We see that this is also the case for the matrix G*(z ,s) and

therefore also G.

A complete discussion of the busy period requires that we

show that Equation (6) has a unique solution with the first

columns strictly positive and the other column s equal to zero.

The proof of this and of the corresponding m oment formulas

of Theorem 2 is fully analogous to the irreducible case [5], but

requires more tedious steps as we need to partition the matrix

G*(z ,s) into the form -

G1(z,s) 0

G~ (z ,s) 0

where 9(z,s) is m 1 xm 2 and G~ (z,s) is (m—m 1 )xm 2
If also some are zero , the matrix R will have the

corresponding rows equal to zero. The form of the vector x ,

given in Theorem 5 remains valid , but the proof of the existence

and uniqueness of R requires greater care and a consideration of

cas es.

—.-—- --.- • - - • • • • - • • • • • • • -- -  •. — - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  — • ~~~~~~~~~~~~~~~~
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D. Some Comments on Numerical Computations

Even in the case m 2 , the matrix R cannot be obtained in an

explicit form , but its numerical computation is straightforward .

Successive substitutions in Equation (31) exhibits very rapid

convergence , except for cases where p is close to one. Computations

for problems with m as large as one hundred are entirely feasible

and stable.

The approach to numerical computations , described in [9],

should however be applied with caution as it involves the computa-

tion of the roots of a polynomial equation in the unit interval.

Knowledge of these roots permits the computation of the vector

x 0,and the vectors ka l , can then be recursively computed . If

the roots , discussed by Yechia l i , are close together , however the

computation of and therefore of the vectors 
~k’ 

k� l , is likely

to be of doubtful accuracy. 

- - - .- - - - -  • ~~~~~~~~~~~~~~~~~~~~~~~~~ --—-- --~~~~ -- • - • •• - - - • • • • • -~~~~-- • - • •~~~~ ~~~~~ .- -••- • - - • •
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